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In this work, new solutions for regular black holes that have multihorizons are proposed. These are
formed by the direct product of solutions already published in the literature, which are described through
the coupling of gravity with nonlinear electrodynamics. We analyze the regularity of the spacetime, the
electric field, and the energy conditions of each solution. The strong energy condition is always violated
within the event horizon in all solutions, while other energy conditions depend on the ratio between
extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-
Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions,
except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on
the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of
1.09915, a value that allows this feature. A regular solution with up to six horizons is proposed, Balart-
Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions,
except the strong one. This was possible due to the ratio between extreme charges that are neither too high
nor too close. We propose solutions with any number of horizons. We show that points where —F(r) has a
non-null minimum represent a cusp in the Lagrangian —L(F'). We also show an example of multihorizon
solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative
energy density, or violation of energy conditions, but which can be circumvented with a selected choice of
customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all

energy conditions, less the strong.
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I. INTRODUCTION

Classical mechanics, despite successfully describing
many phenomena, requires the existence of an inertial
framework which cannot be precisely defined. Another
problem that arises in the classical context is the fact that
Maxwell equations are not invariant by Galileo transforma-
tions [1]. Being related to classical mechanics, Newton
gravity also had difficulties in describing some phenomena.
This motivated Albert Einstein to develop the theory of
general relativity, published in 1915 [2], in which gravity is
no longer a force, but the spacetime geometry itself, this
being a pseudo-Riemannian manifold, whose equations of
motion are coupled nonlinear differential equations. Einstein
did not solve these equations, it was Karl Schwarzschild, in
1916, who obtained the first solution, a vacuum solution
with spherical symmetry [3]. This solution has a null
hypersurface, called event horizon and a point where
spacetime is singular. Over the years after Schwarzschild
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solution to the present day, many other solutions have been
found, between the various solutions, we can highlight two,
the Reissner-Nordstrom solution and the one proposed by
Bardeen [4]. Both solutions have two horizons, but the first
has mass and electric charge, that can be obtained from the
coupling of general relativity and Maxwell electromagnetic
theory, and presents a singularity; the second can be built to
have mass and electric charge from the coupling of general
relativity with nonlinear electrodynamics, but it has no
singularity at any point in spacetime. The Bardeen solution
motivates the search for new solutions that do not present
singularities in the causal structure, regular solutions. A
convenient way to obtain regular black hole solutions
without rotation is to use general relativity coupled to
nonlinear electrodynamics with spherical symmetry, in
which case the stress-energy tensor is diagonal and has
symmetry 73 = T3 and T) = T!; this implies that there will
be only two equations of motion that are linearly indepen-
dent, and the matter, at the center of the radial coordinate,
will have a de Sitter—like behavior, pressure = —density.
Maxwell linear electrodynamics is characterized by
the following properties: it is invariant by the gauge

© 2020 American Physical Society
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transformation of group U(1) and has second-order linear
equations in the potentials. These are excellent properties,
but when relaxed, new phenomena arise that do not appear
in the linear case. For example, if we break U(1)
symmetry invariance, equations of an order greater than
two in the potentials appear, as in the case of Podolsky and
Proca electrodynamics [5-7]. If we relax for nonlinear
equations, several families of electrodynamics appear
with many other new phenomena, such as linear magnetic
birefringence, where the propagation of light is aniso-
tropic, depending on which direction the polarization of
light and the external magnetic field are applied [8]. These
classes of electrodynamics are commonly called nonlinear
electrodynamics (NED).

The first description of NED, in 1934, was formulated by
Born and Infeld (BI) [9], when they wanted to eliminate the
effects of the self-energy on the fields of a charged particle and
the singularity that appeared in the description at the point
above the charge. This formulation corrects these difficulties.
Two years later, in 1936, Euler and Heisenberg investigated
photon-photon scattering and formulated another description
of NED [10]. Three years after BI proposed their electrody-
namics, Hoffmann coupled the Lagrangian of BI to gravita-
tion [11]. Over the years, several applications have appeared
for the NEDs, and here is a list of some of them: ionization of
the hydrogen atom [12], baryogenesis [13], cosmic micro-
wave background polarization [14], multicooling [15], neu-
trino astrophysics [16], light propagation in one direction
[17], pulsar [18], cosmological inflation [19], photon gas
thermodynamics [20], and acceleration of the Universe [21].
NED was measured in the laboratory by the following
experiments: PVLAS (Polarizzazione del Vuoto by
LASERs) [22], LSW (light shining through walls) [23],
BMYV (Biréfringence Magnétique du Vide/Toulouse) [24],
VH (photon collider = vacuum Hohlraum) [25], XFELS
(x-ray free electron LASERS) [26], ELI (extreme light
infrastructure) [27], and SULF (Shanghai ultra-laser facili-
ties) [28], and may have proof corroborated by the following
experiments: SEL (Station of Extreme Light, Shanghai, 2023)
and XCELS (ExaWatt Center for Extreme Light Studies,
Russia, 2026).

With the proposal to regularize the electric field provided
by a point charge, at the origin of the radial coordinate, and
Bardeen’s proposal for a regular solution in all space-time,
some authors considered to use NED to describe regular
solutions. Pellicer and Torrence [29] used Plebanski’s NED
to obtain a spherically symmetrical and regular solution.
Beato and Garcia also used the NED to formulate the
Bardeen solution as a nonlinear magnetic monopole [30].
This particular solution is not asymptotically Reissner-
Nordstrom. So, we have some other regular solutions, such
as de Bronnikov [31], Dymnikova [32], Culetu [33], and
Balart and Vagenas [34].

The work of Odintsov and Nojiri [35] deals with new
solutions of regular de Sitter—type black holes with

multihorizons in general relativity, f(R) gravity, and
Gauss-Bonnet in 5D. In the same way, the paper by Gao
et al. [36] brings new solutions for black holes with
multihorizons. Thus, Rodrigues and Silva formulate regular
black holes with multihorizons in modified gravity theory
f(G) [37]. So, the natural question is “can we formulate
new solutions for regular black holes with multihorizons
in general relativity.” The main objective of this work is to
answer this question and analyze these possible new
solutions.

The structure of this paper is organized as follows. In
Sec. II, we present regular solution in general relativity and
some features about these solutions as energy conditions,
regularity, and electric field. In Sec. III, we present the
multihorizon black hole solution and a method to build
regular black holes with multiple horizons. Our conclusions
and perspectives are in Sec. IV. We adopt ¢ = G = 1.

II. REGULAR BLACK HOLE
IN GENERAL RELATIVITY

Regular black holes can be interpreted as solutions of
Einstein equations with nonlinear electrodynamics. The
action that describes this type of theory is given by

S = /d4x[R+K2L(F)], (1)

where R is the curvature scalar, k* = 8z, and F = %F HY fr w
is the electromagnetic scalar, with F,, = 0,A, —0,A,
being the Maxwell-Faraday tensor. If we vary the action
(1) with respect to g,, and A,, we get

1
R;w - Eg/wR = KZT/ALH (2)

V,|LpF*] = 0,[\/=gLrF"] =0, (3)

where R, is the Ricci tensor and T, is the stress-energy
tensor, given by

1

T/u/ = g [g/wL(F) - LFFﬂaFD(l]’ (4)

with L = OL(F)/F.

Let us consider a spherically symmetric and static
spacetime described by the line element

ds* = f(r)de* — f(r)~'dr* — r*(d6* + sin’0d¢?). (5)

If the source has only electric charge, we may integrate
the modified Maxwell equation (3), to the line element (5),
and we find that the only nonzero and independent
component of F* is
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a
2

F10= =L (6)

Using the line element (5) and the electric field (6), the
nonzero components of the Einstein equations are

- [L(F) +z—jL;1}, (7)

flr)=1-—-, ©)

where the mass function, M = M(r), must satisfy the
conditions lim,_,M/r =0, to guarantee the regularity,
and lim,_ ., M = m, where m is de Arnowitt-Deser-Misner
(ADM) mass. Using the equations of motion (7) and (8),
we find

L =21 (10)
_ 24°
tO e ey Y

Therefore, for regular black hole model, we will have a
different nonlinear electrodynamics. The electromagnetic
scalar F' is

F(r) = _%[FIO(},)]Z _ _(2—2];;_2,, ) |

(12)

In [31,38,39], Bronnikov presented a theorem of nonexist-
ence which says that the electrodynamic of a static regular
solution with electric charge may not behave asymptoti-
cally as Maxwell to F — 0 at r — 0. If the electrodynamic
behaves as Maxwell to weak fields, we have L(F) — F and
Lr—1 to F— 0. Usually, in regular solutions with
electric charge, F — 0 at r - 0 and r — oo0. To guarantee
the regularity in the center, we need FLyp < co while
FL% — —oco, which implies in Ly — oo with F — 0 at
r — 0, so that the solution may not have a regular center
with an electrodynamics which behaves like Maxwell in
this region. However, the electromagnetic theory may
behave as Maxwell at r — oo. Hence, to the same value
of F, we may have different L(F).

We may also define the dual tensor P, = LpF,,. Using
(6) and (12), we have the following scalar:

U 2 2q2

and

2 q2 1/4
r(P) = <—P> . (14)
Using (12) and (14), we find the function F(P). According
to [31], the extremes of F(P), dF/dP =0, play an
important role in the description of electrically charged
solutions. The maximums of the function —F(—P) re-
present cusps in the representation L(F) and how many are
there; each cusp generates a new branch of the function
L(F). The minimums, being —F(—P;,) = 0, we have a
smooth branch change in L(F). There are cases in which a
local minimum of —F(—P) is not null, being another cusp
in the representation of the function L(F). This will be
clear soon, when we specify concrete examples. This does
not happen for magnetically charged solutions, as we will
see later.

To analyze the regularity of the spacetime, we need to

calculate the Kretschmann scalar, K = R””"/’R”mﬁ, that
may be written as
4 2 ¢! 2 -1 2
ko g AT GO =)

/%

If the Kretschmann scalar does not present divergences, the
spacetime does not have curvature singularities [40].

To obtain regular solutions, some energy conditions
must be relaxed [41]. To analyze that, we may identify
the components of the stress-energy tensor as 7% = p,
T', = —p,, and T?, = T?; = —p,, where p is the energy
density, p, is the radial pressure, and p, is the tangential
pressure. From the Einstein equations, the fluid quantities
may be written as

o)== e
pulr) = LI (1)

2K%r
With that, the energy conditions are

WEC,,(r) = NEC,,(r) = SEC,,(r) =p + p,; 20,

(18)

SECy(r) = p + p, +2p, > 0, (19)
WEC,(r) = DEC,(r) = p > 0, (20)
DECy5(r) = p —|pril 2 0. (21)

About the strong energy condition, we may consider the
following theorem:
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Theorem.—Given a spherically symmetric solution from
the Finstein equations, whose the stress-energy tensor
satisfies the condition 7%, = T',, the strong energy con-
dition will be violated for regions where we have
{£(r) <0, £"(r) < O}.

Proof.—If the component T, satisfies 70 = T";, we
have an equation of state p = —p, and then (19) will
depend only on p,. Since the SEC; depends only on the
tangential pressure, the sign of f/(r) and f”(r) will
determine if SEC5(r) is positive or negative. So, in regions
where {f'(r) <0, f"(r) <0}, SEC5(r) is also negative
and then SEC is violated.

Actually, here is general proof to the violation of SEC
for regular, static, and spherically symmetrical solutions.
In [41], Zaslavskii defines the Tolman mass as being

myr = /rf [T% = T'y = T% — T%s]dr
=/fM+Pﬁ4th (22)

Zaslavskii shows that Tolman mass is always negative for a
region within the event horizon for regular, static, and
spherically symmetric solutions, thus violating SEC for that
region. This result is still valid for multihorizons, as
established in [41] and verified later in our solutions.

We may also define

wr:&, a),:&, O _ P (23)

P P o,  p,

If p > 0, then DEC;, WEC, are satisfied and we can check
the other energy conditions just by analyzing @, and w,.
Considering p >0, if o, > 1 we affirm that DEC, is
violated, and w, > 1 we have that DEC; is violated.
If , <1, then NEC,, WEC,, SEC, are violated and
for o, < 1 we have that NEC,, WEC,, SEC, are violated.
If o, <0, then SEC; is not satisfied.

A. Balart-Vagenas solution

Before building multihorizon solutions, let us look at an
example of a regular solution.

A regular black hole model was proposed by Balart and
Vagenas [34]. They consider the mass function

M(r) = m (1 + 4§;r) - (24)

where f# > 3/2 to guarantee the regularity and f < 3/2 to
satisfy the weak energy condition (WEC). If we choose
p=3/2, we get

432m* r?

f(r)zl—m. (25)

This solution has an event and a Cauchy horizon. If we
expand f(r) far from the event horizon and near to the
black hole center, we find

f(r)z1—2:71+32+0<:3> (r—> o), (26)
m4r2
flry~1- 432q6 +0(r*) (r—-0). (27)

So, for regions far from the event horizon, we find that
the solution behaves like a Reissner-Nordstrom solution
and near the center we see the behavior of a de Sitter
solution.

The Kretschmann scalar is given by

4478976m?3
= ﬁ (648m4 4 216m3q2r3
mr q

+ 126m2g*r* + ¢8), (28)

K(r)

which is regular for all values of r. The asymptotic behavior
of this scalar is given by

4478976m8
K(r = 0) ~ T’" +o(r), (29)
48m? 7
K(r - o) ~ —+ o(r™"). (30)
r

We then see clearly that it is always regular with a constant
curvature in the black hole center and the solution is
asymptotically flat.

From (10) and (11), with (6), the electromagnetic
Lagrangian of the theory, that generates this solution,
and the electric field are

_ 1296m*q*(¢* — 6mr)

L(r) = @ rom T (31)
mS r3
FIO(r) = (13251261;)5' (32)

The electric field is always regular and tends to zero at the
infinity in the origin of the radial coordinate. Since we have
the electric field, it is possible to construct the scalar F, that
is given by

120932352m10q2r6
(¢* + 6mr)!°

F(r) = (33)

We have the following asymptotic limits to L(r) and F(r):

7
L(r - ) N—F—FO(}’_S), (34)
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1296m*  46656m°
L(r > 0) ~—— L 22O 0(2), (35)
q q
2 2
F(r — 00) ~ = =14+ 0(r7%), (36)
r
120932352m10,6
F(r — 0) m — 2OPP0RMT7 600y ag)
q
So, we have
L(F)~F, r— oo, (38)
1296m*  1296/2+/3/—Fm'%/3
L(F)~—"— - , 0. (39)
q q
Using (14) and (31), we get
61917364224m"P(£)>/?
F(-P) = PG )

(12m\/; n 23/4q2)

which has a maximum at P = 512m*/g%. As said before,
amaximum of —F(—P) represents a cusp in L(F). We can
parametrically represent the function —L(—F) using (31)
and (33), whose behavior is represented in Fig. 1. We
see a cusp at m’F ~—11.8098, with two branches.
This is a characteristic of regular electrically charged
solutions. Branches appear because a single value
of F(r) corresponds to two positive real values of the
radial coordinate r, resulting in two distinct values of
L(r). Let us look at a numerical example. To
m*F(r) ~ —9.4748, using (33) to find the values of r,
we have r; =0.10471057627514681m and r, =
0.24750771046605197m. These two values of r give
us two values of L(r), which are m*L; = m*L(r)) =
2.96672 and m*L, = m*L(r,) = —16.1742. This can now

be verified in the graph of —L(—F) in Fig. 1.
30
20 f
10 f
S
0
g
|
—10
=20
-30 .
0 2 4 6 8 10 12
-m’F
FIG. 1. Graphical representation of —L(F) x —F with ¢g=0.8m.

From the stress energy, we get

_1296mtq? B
p(r) = W7 pr=—p(r), (41)
mr — g*
PN = 0o, o) =T )

We may write p, =
With this, we have

p,(p) inverting p(r) and finding r(p).

B 36m?/q* — (6m+1)q P
pip) = (p)p.  o(p) = 3o/ (1= om) 7
(43)

The solution behaves like an anisotropic fluid, p, # p;,
with an equation of state p, = —p. We have the following
asymptotic limits for tangential pressure p,(r - o0) ~p
and p,(r - 0) ~ —p, and

2

q -5
~— 44
plr =)~ Lyt 0(79), (44)
162m*  3888m°r 5
plr—0)~— =2 0(2). (45)
q q
The energy conditions are
2592 6mr — q*
SEC,(r) = 202 ma ), (46)
(6mr +q%)
WEC,(r) = DECy(r) =0, (47)
15552m° ¢*
WEC,(r) = 2224 T (48)
(6mr + q*)
1296m* ¢?
WEC = DEC L S 49
() =DEC\() =g P T (49)
162 * —6mq*r| + 6mq? 4
DEC;(r) = m(=|q* = 6mq’r| + 6mq’r + ) (50)

x(6mr + g*)>

We can see that SEC; assumes negative values, and soon
SEC is violated. In Fig. 2, we see that to ¢ = 0.8m we have
a Cauchy horizon at r = rc = 0.03952m and an event
horizon at r = rg = 1.65898m. SEC is violated in the
interval r = [0,0.106667m|. SEC is violated inside or
outside the Cauchy horizon depending on the charge,
but always inside the region bounded by the event horizon,
while the other energy conditions are satisfied both inside
and outside the event horizon.
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2

FIG. 2. Graphical representation of w,, @,, and w,/w, as a
function of the radial coordinate to ¢ = 0.8m. We see that SEC,
is violated (green area).

III. MULTIHORIZON SOLUTIONS

A. Black holes with multihorizons

The most simple black hole solution is described by the
Schwarzschild metric, where the metric coefficient gy, is

iy =1-2 51)
We may also write f(r) as
f(r) = gi(r)(r—r), (52)

with g,(r) = 1/r and r; = 2m. To Reissner-Nordstrom
solution, when we have two horizons, f(r) may be
written as

f(r) = ga2(r)(r=ri)(r=r), (53)

where r; and r, are the event horizon and Cauchy horizon
radius, respectively. To the regular solution presented
before, the metric coefficient is similar to Reissner-
Nordstrom. If we consider the presence of cosmological
constant, when we have a de Sitter—type solution, a new
horizon appears in the solution and f(r) becomes

f(r) = g3(r)(r = r))(r = ra)(r = rs), (54)

with r; being the radius of the cosmological horizon. The
number of horizons is not limited to only three; in fact, it is
possible to build structures with multiple horizons.

The metric coefficient to a multihorizon black hole may
be written as

0 =antn(1-2) (1-2) (1-2)
X o X <1—r7’v>, (55)

where r;, with i = 1,2,3,..., N, represents the radius of
each horizon, gy(r) is finite, and lim,_ . gy(r) = 1.
Depending of gy(r), the solution may be regular or singular
in the center. However, we will write the metric coefficient
in a different form in the next subsection. In [36], the
authors analyzed the properties of a multihorizon solution,
where they consider gy(r) = 1. This type of solution
presents many horizons but only one singularity. The
curvature invariants to this solution are

AR

The curvature scalar is null to one and two horizons and is
singular in the black hole center to N >3, while the
Kretschmann scalar is singular in » =0 to all values
of N. With some modifications, we may also construct
regular multihorizon solutions in general relativity.

B. Regular black holes with multihorizons

To regular solutions, we write the coefficient gy, as

N

=TI (1- 7). (58)

i=1

where lim,_,, M;(r)/r = 0. Which mass function tends to
a constant in the infinity, lim,_ o, M;(r) = m;, where the
ADM mass is the sum of these constants, mypy =

N, m;. One way to satisfy these conditions is to use
the product of known regular solutions. The solution
obtained from known regular solutions is also regular
and has the number of horizons equal to the sum of the

number of horizons of the solutions that compose it.

1. First example with four horizons

Let us considere a solution with the metric coefficient

£r) = <1 _2M1(r)) <1 _ZMi<r))’ (59)

r

where
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21016
1.5x10'°
&
Tz
1x10'°
5%10"°
0 i i ’ i 1 ‘ :
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
rlm
FIG. 3. Kretschmann scalar to (59) with ¢ = 0.1m.
mr3 —q*/2mr
M(r) = and M, (r) = me™1 . (60)

(r2 + q2)3/2

We consider m; = m, = m. The functions M,(r) and
M,(r) were proposed by Bardeen [4] and Culetu [33],
respectively. The solution proposed by Bardeen violates the
strong and dominant energy condition, while the Culetu
solution violates the strong and weak energy condition.
The solution (59) is asymptotically flat, has a de Sitter core.
To g < ¢B2 = 4m/(3/3 ) the solution presents four hori-
zons, when ¢2? < g < gL two horizons and one horizon

to ¢ = g5k, where ¢Sk = %/”i is the extreme charge to the

Culetu solution.
The asymptotic behavior of the Kretschmann scalar is
given by

K~

9%6m> 2 ( ¢ 44 -8
£ e””<42rm—mr9+0(r )

g (4\/: 32m

+0(r‘3)), r—0. (61)

2000

1000

-1000 f

-2000 f

0 0.2 04 0.6 0.8 1
rim

From the curvature invariant, Fig. 3, the regularity of the
spacetime is highlighted.

In relation to the electromagnetic sector, the intensity of
the electric field is shown in Fig. 4. The electric field goes
to zero in the black hole center and in the infinity. As the
sing of F' changes, it means that the field will repel and
attract the same test particle for different regions.

The asymptotic behavior of L(r) and F(r) is given by

L(r — o) ~—%+ 0(r ), (62)
6 mr
L(r = 0)~ ’"V q4e 25 , (63)
2(4 2_,’_ 2\2
F(r—>oo)~-%+0(r—5)’ (64)
225m?% 8
So, we have
~F, r— oo,
L(F F 66
) V5.
6m+/q 15v/15¢ 2 Y2/t
L(F)~ s 0. 67
(F)~ P A(—2F)B r—= (67)

We note that close to the center, the Lagrangian does not
behave like Maxwell, only to r — oo. Replacing (59) in
(10)—(12) and (6), we get L(r) and F(r). In Fig. 5, we see
the behavior of the scalar F as a function of r. Replacing
(14) in F(r), we have the analytical expression to F(P).
We will not show —F(—P) because it is extensive; numeri-
cally we can find nine extreme to this function of which
five local maximums and four local minimums, where
—F(=Pyin) = 0. We may also see that from Fig. 5, since

2500 f

2000 f

1500 f

mFlO

1000 |

500 f

-500

0 0.002 0.004 0.006 0.008 0.01 0.0120.0140.016 0.018 0.02
rim

FIG. 4. Electric field associated to the solution with four horizons to ¢ = 0.1m.
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FIG. 5. Behavior of —F(r) to ¢ = 0.769m. The radial coordinate range is (a) [0,0.015m], (b) (0.015m,0.5m], (c) (0.5m,0.9m] and
(d) (0.9m,5m].

dF(r)/dr =0 — dF(P)/dP = 0, it is due to the fact that dF/dr = (dF/dP)(dP/dr) and dP/dr is null only to r — oo.
We have five cusps in the function —L(—F), which we can see in Fig. 6. So, we have ten distinct branches for L(F).
From the components of the stress-energy tensor, we find

42
— e 2(4,5 2,3 2,2(,2 Z 2 20,2 4 42)5/2) —
p(r) —W(’" (4r° = 8¢°r*) = 2mq*r* (r*(1 = 3ew7) + ¢*) + ¢*(¢* + r*)°/%) = —p,, (68)
e_Tir 2 2
r) = =242 (3erm + 1) + 4m2 @23 (r*(9ezw — 4) + 24*
pi(r) e (& rz)m( g r( ) g r (r'( ) +24°%)
+8m3 (2g*r* — 11¢%r° + 2r%)). (69)
The solution behaves like an anisotropic fluid with a de Sitter—type equation of state, p = —p,. We have the following
asymptotic limits:
plr = 00) = =p,(r > ) ~ L4 O(r), (70)
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FIG. 6. Parametric representation of —L(—F) to g = 0.769m. The radial coordinate range is (a) [0,0.014m], (b) (0.014m,0.1m],
(¢) (0.1m,0.45m], (d) (0.45m, m], and (e) (m, 5m).

(r=0) = —py(r = 0) e (L 0(r)) 4 2" (1)
r — = =D, r — ~ @ 2mr| —— r —75,
P p 8art 87(q%)%?
4m* + ¢ _
pi(r — ) ~ A o(r7). (72)
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2 4 » 6m
pi(r = 0) ~—e 2w <327rmr5 + O(r )) — W

(73)

The energy density is not always positive; however, we
may impose some constraints on the charge to guarantee
the positivity. To values of charge ¢ < 0.721m, we have an
interval in which the energy density is negative, so we will
choose ¢ such that the density is always greater than zero
for all values of r, this is necessary to satisfy WEC and
NEC. The function WEC,(r) is identically zero. To
guarantee that some energy conditions will be always
satisfied, we must impose some constraints on the charge.
In order to determine which energy conditions are met in
this case we look at Fig. 7; we can see, for g = 0.75m the
SEC is violated in the regions yellow and green, while DEC
as violated in the green region. All energy conditions are
met in the region outside the black hole.

2. Second example with four horizons

Let us consider a solution like (59); however, we replace
M, (r) by M5(r), where this mass function is the one that
generates the solution (25). So, the metric coefficient g is

432m*r? 2me=1 /2
0= (=g o) (1-5—) 0

This solution is asymptotically flat, regular in all spacetime,
and behaves like de Sitter in the black hole center and has
four horizons for g < ¢Sk The Kretschmann scalar is
shown in Fig. 8 and we have no divergences, which implies

in no curvature singularities. We have the following limits:

192
K(r > 00) ~ 22 1 0(7), (75)
r
4478976m8
K(r = 0) N%+0(r). (76)

-_— wr

— wt

— wt/wr

-1

-2

FIG. 7. Graphical representation of @ in terms of the radial
coordinate to g = 0.75m.
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0 0.001 0002 0.003 0.004 0.005 0.006 0.007
rim

FIG. 8.
q =0.1m.

Behavior of the Kretschmann scalar to (74) with

So, the Kretschmann scalar is regular in the center and in
the infinity of the radial coordinate.

The asymptotic limits of the electromagnetic quantities
are

2m? + ¢*
Tq +o(r). (77)

L(r— o) ~=2

2
1296m*  ge im

L 0 , 78
(r= 0~ =g T (78)
2 2 2\2
F(r — o) ~ —8%+ o). (19

qr
120932352m 1076
F(r = 0) ~ = 120932352 (80)
q

So, the asymptotic dependence is the same of (66) to
r — oco. We have

L(F)~F.  r— o, (81)
325/632/3,,2/3
L(F) 8398082V 3mOm*e V4 N 1296m*
PEGRE o
r— 0. (82)

Solving —F’'(r) = 0 numerically, we have three extremes,
two local maximums and a local minimum to —F (7, ) not
null, which implies in a —F (=P, ) not null. This point in
—F(—P) represents a cusp in —L(—F); this is a new result
in the literature. We represent the graph of —F(r) in Fig. 9,
where we may see that it has two maximums and one
minimum as tends to zero to r - 0 and r — co0. We
represent the parametric graph of —L(—F) in Fig. 10,
where we see three cusps and four branches.
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FIG. 9. Graphical representation of —F(r) to ¢ = 1.21m.

From the stress-energy tensor, we find

qZ

e 2mr
= 6
) = s gy 1B 2amatr g
— 432m* > r (10m — 3r(e¥w + 1))
— 4300 = 20) + 216m2%) = —p, (1
(83)
qz
pi(r) = S (124416m7/5(Sm
' 4>mr’ (6mr + q*)°
> 2
— r(ez + 1)) = 10368m°q>r> (28m + r — Srezw)
2
— 864m° ¢*r* (46m — r(2e2m + 41))
+ 144m* ¢ (24m + 95r) + 48m’ ¢ > (9m + 357)
— 16m2q10r2 _ 18mq12r _ q14)' (84)
0 —
=50
&
N‘Q
¥
100
-150
0 02 04 0.6 08 1
-m’F
(@)
FIG. 10.

As the examples before, we have the behavior of an
anisotropic fluid. We have the following asymptotic limits:

2m? + ¢* B q*(48m + 74°)

4

Arr +0(r %), (89)

plr— o)~ A8mnrd

162m*
7q°

plr =0~ (*25 1 o)

> 2
+ et <8]q”4 + o(r—2)>, (86)

2m?> +q*  @*(48m+74q%)
dzrt 32mar

pi(r— o0)~ +0(r %), (87)

pu(r = 0) ~ — <1i]’?4 + 0(r)>

7 q4
+ —e 7w <3 s+ O(r‘z)), (88)

2mmr

48m*q* + ¢

m‘f‘O(r_z), (89)

@,(r—> o0)~1-

w,(r - 0) ~—1. (90)

The energy density admits negative values for some ranges
of r; however, if we impose constraints in the electric
charge, it is possible to guarantee the positivity. In Fig. 11,
we see that for some values of charge we may have positive
energy density, so through Fig. 12 we see that SEC is
violated in the yellow region which is inside the black hole.
NEC, DEC, and WEC are satisfied.

3. Example with six horizons

Let us consider the case where we combined the three
functions previously. To this model, the metric coefficient

oo 18

0.1 f

——
S

0.25 03 0.35 04 045

Parametric representation of —L(—F) to ¢ = 1.21m. The interval of r is (a) [0,0.5m] and (b) (0.5m, 2m].
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FIG. 11. Energy density to the solution (74) for different values
of charge.
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FIG. 12. Graphical representation of w as a function of the
radial coordinate to ¢ = 1.21m. SEC is violated in the yellow
region. Each horizontal line represents a horizon.

£ = (1_2M2(r)> (1_2M3(r)) (1_2M74(r))’ (o1)

r r r

where M, (r) is a mass function proposed by Dymnikova
[32] that generates a regular solution and is given by

2m tan~! (821 L6m2a2
My(r) = L L A7)
T 64m?r* + 77:26]4

The Dymnikova solution has an extreme given by
gB¢ = 1.07304927103275m. This solution has up to six
horizons; however, the number of horizons decreases as the
electrical charge increases. As the cases before, this
spacetime is regular and asymptotically flat. Near to the
center, the Kretschmann scalar behaves as

2048(65536 + 414727* + 65612%)m®
~ 8 12 +
3n°¢q

K(r—0) o(r).

(93)

The asymptotic form of L(r) and F(r) is given by

S ET) L o), (oa)

L(r—> o) ~—
-

16(256 + 812*)m* _ 46656m°r

L(r—0)~ )
7 e

(95)

18(4m> + ¢*)

77 +0(r3),  (96)

F(r - o) ~-—

120932352m'0%

q
The asymptotic dependence of L(F) is
L(F)~F, r— oo, (98)
16(256 +812*)m*  1296V3m'0y/-2F
L(F)~ TG - < , r—0.
T q q
(99)

We see that in the infinity of the radial coordinate, the
electrodynamics behaves asymptotically as Maxwell but
not in the center of the solution. In Fig. 13, we graphically
represent the function —F(r), where we may see five
extremes, three maximums and two non-null minimums.
So we have five cusps in —L(—F), which are represented
in Fig. 14.

As this solution has a structure composed of several
horizons, the components of the stress-energy tensor are
analytically extensive. In Fig. 15, we analyze the energy
density, radial pressure, and tangential pressure. As the
examples before, we have the behavior of an anisotropic
fluid, but, for regions close to r = 0, it is approximately
isotropic.

2
15F
=
s 1
|
05}
0 . . . . . . .
0 05 1 15 2 25 3 35 4
rim
FIG. 13. Graphical representation of —F(r) to ¢ = 1.07m.
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FIG. 14. Parametric representation of —L(—F) to ¢ = 1.07m. The interval of r is (a) [0,0.45m] and (b) (0.45m,2.5m].

The asymptotic forms are

3(4m? 2
p(r = o) N(mi—:q) +0(r7d), (100)
8nr
2m*(256 + 817*
p(r—>0)~( ( ¢ )+O(r)>
q
4 q2
+ e 2+ 0(r %)), (101)
8rr
144m?q? + 96m* + 74*
~1- o(r2),
@i(r = o) Somramt + ) o0
(102)
@,(r > 0)~—1. (103)

The energy density is not always positive; however,
depending on the charge, we may impose the positivity.
When the energy density is positive, WEC; is positive.

40
g —
_ P, -
30 F—
2 }
10}

0.05 0.1 0.15 0.2 0.25 03 0.35 04

rim

FIG. 15. Components of the stress-energy tensor to the solution
91) for g = m.

The remains energy conditions should be evaluated through
w,,. In Fig. 16, we see that w, assumes negatives values,
also do SEC;, and then the strong energy condition is
always violated, as expected with regular solutions, while
the other conditions are satisfied for some values of charge.

The method used here may be used to build solutions
with even more horizons. For that, we need to only consider
more terms in Eq. (58) with different mass functions.
Examples of mass functions may be found at [42,43],
where, depending on the parameters chosen in the mass
functions, we will have different solutions.

C. Magnetically charged solution

In this section, we will cover a solution with up to four
horizons magnetically charged. This type of solution does
not have cusps in the graphical representation of the L(F),
as will be shown soon.

Let us consider the Bardeen solution, M,(r), and the
Kruglov solution, Ms(r), that are given by [44,45]

rh(r)
M = 104
s(7) r +2Ph(r) (104)
2r i 1 i
o .
N~ i —
| 1 1 _wt
5 ! 1.0 P e
e i H
P l P

FIG. 16. Graphical representation @,, @,, ®,/®, as a function of
r to ¢ = 1.07m. Each horizontal line represents a horizon.
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h(r) = [m—l—zZZ'j;;tan‘l (%Bﬂ (105)

where ¢g,, is the magnetic charge, f is a real and positive
parameter, and [ is the fundamental length scale constant.
The metric function is

f(r) = <1 —ZM;W> <1 —ZM;(r>>. (106)

The asymptotic behavior is given by

4m +”‘qm|3/2
3/4 4
froo)~lo— 2V Vﬂ o(r2), (107)
r
1 2 2
flr=0)~1-7? (1_2 + mq4 q’") +0(r?).  (108)

The spacetime is asymptotically flat and has a de Sitter
core. We have four horizons in the interval of magnetic
charge 0.342150825324m < q,, < 4m/(3v/3) with =
0.1m? and [ =m (we will consider this values from
now). The asymptotic behavior of the Kretschmann
scalar is

24 96mlq,,| 96m>
K 0)~|—
=0 <l4+ Pah
. 240m|q,,|  480m>  360m|q,,|
"\ Pqp, Pqp,
720m?
- ) + o). (109)

The asymptotic behavior of L(F) is

3 6m|q, B 5m(317 4+ 242) Pl

L(F — o0)~—+ 2
( ) IS LIﬁz \/Elzq;tn
+ O(F3/%), (110)
2 2V2
L(F = 0) ~ (8%+M+2>F. (111)
m W\/ |qm|

In Fig. 17, we see that there are no cusps. The asymptotic
behavior of the energy density and w,(r) are

32
ﬁ”%n‘ + q%n + 4m2

p(r — o0) ~ I +0(r73), (112)
8xr
3 3mlg,|\ 5r*mlq,|3 + 2q;,)
0) ~ -
plr=0) <8ﬂlz+ drq ) 8712
+0(?), (113)

e

FIG. 17.
B =0.1m2.

Behavior of L(F) to ¢, =0.5m,l=m, and

-_— wr

— wt

— wt/wr

-2-

FIG. 18. Graphical representation @,, @,, ®,/®, as a function of
rtoq = 0.5m, [ = m, f = 0.1m>. Each horizontal line represents
a horizon.

2
w,(r - o) ~1+ M
r(V2rfimlan? + @ + 4n)
+o(r), (114)
Smr (312 + 242
o(r = 0)m o1 £ BEH2) L g8y (g1

3|q,u| (2P m|q,,| + q1)

In Fig. 18, we represent the behavior of w, , and we may see
that SEC3, yellow region, and DEC;, green region, are
violated. In particular, DECj is violated to r — oo.

IV. CONCLUSION

In this work, we proposed a way to build solutions of
regular black holes with multihorizons in general relativity.
With that, we verified some properties of these solutions as
regularity, energy conditions, and electric field.

For the case of regular black holes with two horizons,
we revised the Balart-Vagenas solution. This solution is
regular, behaves asymptotically as Reissner-Nordstrom and
has a de Sitter core with a constant Kretschmann scalar in
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the center and null in the infinity. WEC, NEC, and DEC are
satisfied in all points of the spacetime for any value of
charge, while SEC is violated inside the event horizon. The
scalar —F (—P) has non-null a maximum at P = 512m*/¢5,
and because of this, we have a cusp with two branches in
the representation L(F). Analytically, we obtained that the
Lagrangian L(F) behaves as Maxwell to r — co however
donottor—0.So,as F—>0tor—0and r - oo, the
Lagrangian L(F) has two different forms to the same F.

We formulate two examples with up to four horizons
with electric charge. The first one, called the Bardeen-
Culetu case, may present up to four horizons, if we have the
value of the charge ¢ < ¢80 = [4m/(3V/3)]. If g = ¢5%,
we have three horizons, and above that value up to
q < qSk =[2m/\/e], we have two horizons. When
g = ¢Sk, we have only one horizon, and above that value,
we have no more horizons. The solution is different from
that of Bardeen and Culetu, with different energy density,
different radial and tangential pressures, different electric
field, and nonlinear Lagrangian. The solution is regular
with a constant Kretschmann scalar in the center. The scalar
—F(r) has nine extremes, five local maximums and four
local null minimums. For which null minimum in —F(r),
the function —L(—F) touches smoothly the axis F = 0 and
for which maximum we have a cusp in —L(—F). Since the
ratio between charges is ¢k /B2 = 1.57581, WEC and
NEC may be satisfied for charges close to 22, but DEC
and SEC are always violated within the event horizon. The
second example, called Balart-Culetu, has up to four
horizons, just like the case of Bardeen-Culetu, depending
only on the ratio between charge and mass. In this case,
unlike the previous one, we may have a solution with four
horizons that satisfy NEC, WEC, and DEC; the SEC is
always violated within the event horizon. This is due to the
ratio ¢BL/qSk = 1.09915, which shows that the extreme
charges are close. The solution behaves as Maxwell in the
infinity and has a nonlinear behavior in the center. The
scalar —F(r) has two local maximums and a minimum. As
—F(7min) is not null, as the maximums, it represents a cusp
in the Lagrangian —L(—F), which has three cusps.

We also proposed a solution with up to six horizons,
called Barlart-Culetu-Dymnikova. Likewise, this solution
has the ratios between the extreme charges ¢5L/qSk =
1.09915 and ¢Sk/qB¢ = 1.13048, which shows how
close they are. So, we can have charges values close to
qg;; = 1.07304927103275m, where NEC, WEC, and DEC
are satisfied, and SEC is violated within the event horizon.
If we choose a solution as Bardeen, where the extreme
charge is small in relation to the others, then the ratio
between these charges would be appreciable, and therefore

cannot satisfy the energy conditions. The scalar —F(r) has
three maximums and two non-null minimum and, due to
this fact, —L(—F) has five cusps with six brunches.

We proposed a solution with up to four horizons but with
magnetic charge, which we called Bardeen-Kruglov sol-
ution. Different from the case with electric charge, F just
goes to zero in r — oo where the Lagrangian does not
behave as Maxwell, as it already happened with the isolated
Bardeen solution. As the scalar F does not present the same
value to different ranges of the radial coordinate, —L(—F)
presents no cusps. In this solution, DEC is violated since
DEC, presents negative values to r — oo as the SEC which
is violated inside the event horizon once SECj5 is negative
in this region.

From the results obtained, we can conclude the follow-
ing: given two or more solutions multiplied to form a
general solution, where one of the solutions has an extreme
charge with a very different value, or very close to the
others, then it will not be possible that all energy con-
ditions, except the SEC, be satisfied. Now, if the isolated
solutions have an extreme charge reasonably close to
another, it will be possible, for values close to the extreme,
to satisfy all conditions except the SEC. In general,
solutions can be built in such a way that the horizons
depended only on the charge and mass ratio, it is also
possible to write other physical quantities (L, F,Lp,...)
like this. Also, ¢ - —¢g does not change the metric and
other related quantities. It seems to us that all regular mass
functions have a maximum of two horizons.

This work opens up a new possibility of solutions for
regular black holes with more than two horizons. We can
have as perspectives the geodetic analysis, shadows,
stability, causal structure, and maximum space-time ana-
lytical extension of the solutions presented here. Also, to
analyze Hawking temperature and thermodynamics of
these black holes. The thermodynamic system of these
solutions is much richer than the isolated solutions. We can
also verify the phase transition, add the cosmological
constant to an extended phase model, such as the van
der Waals model.
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