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In this work, new solutions for regular black holes that have multihorizons are proposed. These are
formed by the direct product of solutions already published in the literature, which are described through
the coupling of gravity with nonlinear electrodynamics. We analyze the regularity of the spacetime, the
electric field, and the energy conditions of each solution. The strong energy condition is always violated
within the event horizon in all solutions, while other energy conditions depend on the ratio between
extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-
Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions,
except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on
the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of
1.09915, a value that allows this feature. A regular solution with up to six horizons is proposed, Balart-
Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions,
except the strong one. This was possible due to the ratio between extreme charges that are neither too high
nor too close. We propose solutions with any number of horizons. We show that points where −FðrÞ has a
non-null minimum represent a cusp in the Lagrangian −LðFÞ. We also show an example of multihorizon
solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative
energy density, or violation of energy conditions, but which can be circumvented with a selected choice of
customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all
energy conditions, less the strong.
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I. INTRODUCTION

Classical mechanics, despite successfully describing
many phenomena, requires the existence of an inertial
framework which cannot be precisely defined. Another
problem that arises in the classical context is the fact that
Maxwell equations are not invariant by Galileo transforma-
tions [1]. Being related to classical mechanics, Newton
gravity also had difficulties in describing some phenomena.
This motivated Albert Einstein to develop the theory of
general relativity, published in 1915 [2], in which gravity is
no longer a force, but the spacetime geometry itself, this
being a pseudo-Riemannian manifold, whose equations of
motion are coupled nonlinear differential equations. Einstein
did not solve these equations, it was Karl Schwarzschild, in
1916, who obtained the first solution, a vacuum solution
with spherical symmetry [3]. This solution has a null
hypersurface, called event horizon and a point where
spacetime is singular. Over the years after Schwarzschild

solution to the present day, many other solutions have been
found, between the various solutions, we can highlight two,
the Reissner-Nordstrom solution and the one proposed by
Bardeen [4]. Both solutions have two horizons, but the first
has mass and electric charge, that can be obtained from the
coupling of general relativity and Maxwell electromagnetic
theory, and presents a singularity; the second can be built to
have mass and electric charge from the coupling of general
relativity with nonlinear electrodynamics, but it has no
singularity at any point in spacetime. The Bardeen solution
motivates the search for new solutions that do not present
singularities in the causal structure, regular solutions. A
convenient way to obtain regular black hole solutions
without rotation is to use general relativity coupled to
nonlinear electrodynamics with spherical symmetry, in
which case the stress-energy tensor is diagonal and has
symmetry T2

2 ¼ T3
3 and T

0
0 ¼ T1

1; this implies that there will
be only two equations of motion that are linearly indepen-
dent, and the matter, at the center of the radial coordinate,
will have a de Sitter–like behavior, pressure ¼ −density.
Maxwell linear electrodynamics is characterized by

the following properties: it is invariant by the gauge
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transformation of group Uð1Þ and has second-order linear
equations in the potentials. These are excellent properties,
but when relaxed, new phenomena arise that do not appear
in the linear case. For example, if we break Uð1Þ
symmetry invariance, equations of an order greater than
two in the potentials appear, as in the case of Podolsky and
Proca electrodynamics [5–7]. If we relax for nonlinear
equations, several families of electrodynamics appear
with many other new phenomena, such as linear magnetic
birefringence, where the propagation of light is aniso-
tropic, depending on which direction the polarization of
light and the external magnetic field are applied [8]. These
classes of electrodynamics are commonly called nonlinear
electrodynamics (NED).
The first description of NED, in 1934, was formulated by

Born and Infeld (BI) [9], when they wanted to eliminate the
effects of the self-energyon the fields of a charged particle and
the singularity that appeared in the description at the point
above the charge. This formulation corrects these difficulties.
Two years later, in 1936, Euler and Heisenberg investigated
photon-photon scattering and formulated another description
of NED [10]. Three years after BI proposed their electrody-
namics, Hoffmann coupled the Lagrangian of BI to gravita-
tion [11]. Over the years, several applications have appeared
for the NEDs, and here is a list of some of them: ionization of
the hydrogen atom [12], baryogenesis [13], cosmic micro-
wave background polarization [14], multicooling [15], neu-
trino astrophysics [16], light propagation in one direction
[17], pulsar [18], cosmological inflation [19], photon gas
thermodynamics [20], and acceleration of the Universe [21].
NED was measured in the laboratory by the following
experiments: PVLAS (Polarizzazione del Vuoto by
LASERs) [22], LSW (light shining through walls) [23],
BMV (Biréfringence Magnétique du Vide/Toulouse) [24],
VH (photon collider ¼ vacuum Hohlraum) [25], XFELS
(x-ray free electron LASERS) [26], ELI (extreme light
infrastructure) [27], and SULF (Shanghai ultra-laser facili-
ties) [28], and may have proof corroborated by the following
experiments: SEL(StationofExtremeLight, Shanghai, 2023)
and XCELS (ExaWatt Center for Extreme Light Studies,
Russia, 2026).
With the proposal to regularize the electric field provided

by a point charge, at the origin of the radial coordinate, and
Bardeen’s proposal for a regular solution in all space-time,
some authors considered to use NED to describe regular
solutions. Pellicer and Torrence [29] used Plebanski’s NED
to obtain a spherically symmetrical and regular solution.
Beato and Garcia also used the NED to formulate the
Bardeen solution as a nonlinear magnetic monopole [30].
This particular solution is not asymptotically Reissner-
Nordström. So, we have some other regular solutions, such
as de Bronnikov [31], Dymnikova [32], Culetu [33], and
Balart and Vagenas [34].
The work of Odintsov and Nojiri [35] deals with new

solutions of regular de Sitter–type black holes with

multihorizons in general relativity, fðRÞ gravity, and
Gauss-Bonnet in 5D. In the same way, the paper by Gao
et al. [36] brings new solutions for black holes with
multihorizons. Thus, Rodrigues and Silva formulate regular
black holes with multihorizons in modified gravity theory
fðGÞ [37]. So, the natural question is “can we formulate
new solutions for regular black holes with multihorizons
in general relativity.” The main objective of this work is to
answer this question and analyze these possible new
solutions.
The structure of this paper is organized as follows. In

Sec. II, we present regular solution in general relativity and
some features about these solutions as energy conditions,
regularity, and electric field. In Sec. III, we present the
multihorizon black hole solution and a method to build
regular black holes with multiple horizons. Our conclusions
and perspectives are in Sec. IV. We adopt c ¼ G ¼ 1.

II. REGULAR BLACK HOLE
IN GENERAL RELATIVITY

Regular black holes can be interpreted as solutions of
Einstein equations with nonlinear electrodynamics. The
action that describes this type of theory is given by

S ¼
Z

d4x½Rþ κ2LðFÞ�; ð1Þ

where R is the curvature scalar, κ2 ¼ 8π, and F ¼ 1
4
FμνFμν

is the electromagnetic scalar, with Fμν ¼ ∂μAν − ∂νAμ

being the Maxwell-Faraday tensor. If we vary the action
(1) with respect to gμν and Aμ, we get

Rμν −
1

2
gμνR ¼ κ2Tμν; ð2Þ

∇μ½LFFμν� ¼ ∂μ½
ffiffiffiffiffiffi
−g

p
LFFμν� ¼ 0; ð3Þ

where Rμν is the Ricci tensor and Tμν is the stress-energy
tensor, given by

Tμν ¼
1

8π
½gμνLðFÞ − LFFμ

αFνα�; ð4Þ

with LF ¼ ∂LðFÞ=∂F.
Let us consider a spherically symmetric and static

spacetime described by the line element

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ: ð5Þ

If the source has only electric charge, we may integrate
the modified Maxwell equation (3), to the line element (5),
and we find that the only nonzero and independent
component of Fμν is
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F10 ¼ q
r2
L−1
F : ð6Þ

Using the line element (5) and the electric field (6), the
nonzero components of the Einstein equations are

1

r2
−
fðrÞ
r2

−
f0ðrÞ
r

¼
�
LðFÞ þ q2

r4
L−1
F

�
; ð7Þ

−
f0ðrÞ
r

−
f00ðrÞ
2

¼ LðFÞ: ð8Þ

To regular solutions, we may write fðrÞ as

fðrÞ ¼ 1 −
2MðrÞ

r
; ð9Þ

where the mass function, M ¼ MðrÞ, must satisfy the
conditions limr→0 M=r ¼ 0, to guarantee the regularity,
and limr→∞ M ¼ m, where m is de Arnowitt-Deser-Misner
(ADM) mass. Using the equations of motion (7) and (8),
we find

LðrÞ ¼ −
2f0 þ rf00

2r
; ð10Þ

LFðrÞ ¼
2q2

r2ð2 − 2fðrÞ þ r2f00ðrÞÞ : ð11Þ

Therefore, for regular black hole model, we will have a
different nonlinear electrodynamics. The electromagnetic
scalar F is

FðrÞ ¼ −
1

2
½F10ðrÞ�2 ¼ −

ð2 − 2f þ r2f00Þ2
8q2

: ð12Þ

In [31,38,39], Bronnikov presented a theorem of nonexist-
ence which says that the electrodynamic of a static regular
solution with electric charge may not behave asymptoti-
cally as Maxwell to F → 0 at r → 0. If the electrodynamic
behaves as Maxwell to weak fields, we have LðFÞ → F and
LF → 1 to F → 0. Usually, in regular solutions with
electric charge, F → 0 at r → 0 and r → ∞. To guarantee
the regularity in the center, we need FLF < ∞ while
FL2

F → −∞, which implies in LF → ∞ with F → 0 at
r → 0, so that the solution may not have a regular center
with an electrodynamics which behaves like Maxwell in
this region. However, the electromagnetic theory may
behave as Maxwell at r → ∞. Hence, to the same value
of F, we may have different LðFÞ.
We may also define the dual tensor Pμν ¼ LFFμν. Using

(6) and (12), we have the following scalar:

P ¼ PμνPμν ¼ 4L2
FF ¼ −

2q2

r4
ð13Þ

and

rðPÞ ¼
�
2q2

−P

�
1=4

: ð14Þ

Using (12) and (14), we find the function FðPÞ. According
to [31], the extremes of FðPÞ, dF=dP ¼ 0, play an
important role in the description of electrically charged
solutions. The maximums of the function −Fð−PÞ re-
present cusps in the representation LðFÞ and how many are
there; each cusp generates a new branch of the function
LðFÞ. The minimums, being −Fð−PminÞ ¼ 0, we have a
smooth branch change in LðFÞ. There are cases in which a
local minimum of −Fð−PÞ is not null, being another cusp
in the representation of the function LðFÞ. This will be
clear soon, when we specify concrete examples. This does
not happen for magnetically charged solutions, as we will
see later.
To analyze the regularity of the spacetime, we need to

calculate the Kretschmann scalar, K ¼ RμναβRμναβ, that
may be written as

K ¼ f00ðrÞ2 þ 4ðr2f0ðrÞ2 þ ðfðrÞ − 1Þ2Þ
r4

: ð15Þ

If the Kretschmann scalar does not present divergences, the
spacetime does not have curvature singularities [40].
To obtain regular solutions, some energy conditions

must be relaxed [41]. To analyze that, we may identify
the components of the stress-energy tensor as T0

0 ¼ ρ,
T1

1 ¼ −pr, and T2
2 ¼ T3

3 ¼ −pt, where ρ is the energy
density, pr is the radial pressure, and pt is the tangential
pressure. From the Einstein equations, the fluid quantities
may be written as

ρðrÞ ¼ 1 − fðrÞ − rf0ðrÞ
κ2r2

¼ −prðrÞ; ð16Þ

ptðrÞ ¼
2f0ðrÞ þ rf00ðrÞ

2κ2r
: ð17Þ

With that, the energy conditions are

WEC1;2ðrÞ ¼ NEC1;2ðrÞ ¼ SEC1;2ðrÞ ¼ ρþ pr;t ≥ 0;

ð18Þ

SEC3ðrÞ ¼ ρþ pr þ 2pt ≥ 0; ð19Þ

WEC3ðrÞ ¼ DEC1ðrÞ ¼ ρ ≥ 0; ð20Þ

DEC2;3ðrÞ ¼ ρ − jpr;tj ≥ 0: ð21Þ

About the strong energy condition, we may consider the
following theorem:
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Theorem.—Given a spherically symmetric solution from
the Einstein equations, whose the stress-energy tensor
satisfies the condition T0

0 ¼ T1
1, the strong energy con-

dition will be violated for regions where we have
ff0ðrÞ < 0; f00ðrÞ < 0g.
Proof.—If the component Tμν satisfies T0

0 ¼ T1
1, we

have an equation of state ρ ¼ −pr and then (19) will
depend only on pt. Since the SEC3 depends only on the
tangential pressure, the sign of f0ðrÞ and f00ðrÞ will
determine if SEC3ðrÞ is positive or negative. So, in regions
where ff0ðrÞ < 0; f00ðrÞ < 0g, SEC3ðrÞ is also negative
and then SEC is violated.
Actually, here is general proof to the violation of SEC

for regular, static, and spherically symmetrical solutions.
In [41], Zaslavskii defines the Tolman mass as being

mT ¼
Z

rf

ri

½T0
0 − T1

1 − T2
2 − T3

3�dr

¼
Z

rf

ri

½ρþ pr þ 2pt�dr; ð22Þ

Zaslavskii shows that Tolman mass is always negative for a
region within the event horizon for regular, static, and
spherically symmetric solutions, thus violating SEC for that
region. This result is still valid for multihorizons, as
established in [41] and verified later in our solutions.
We may also define

ωr ¼
pr

ρ
; ωt ¼

pt

ρ
;

ωt

ωr
¼ pt

pr
: ð23Þ

If ρ ≥ 0, then DEC1,WEC1 are satisfied and we can check
the other energy conditions just by analyzing ωr and ωt.
Considering ρ ≥ 0, if ωr > 1 we affirm that DEC2 is
violated, and ωt > 1 we have that DEC3 is violated.
If ωr < 1, then NEC1, WEC1, SEC1 are violated and
for ωt < 1 we have that NEC2, WEC2, SEC2 are violated.
If ωt < 0, then SEC3 is not satisfied.

A. Balart-Vagenas solution

Before building multihorizon solutions, let us look at an
example of a regular solution.
A regular black hole model was proposed by Balart and

Vagenas [34]. They consider the mass function

MðrÞ ¼ m

�
1þ q2

4βmr

�−2β
; ð24Þ

where β ≥ 3=2 to guarantee the regularity and β ≤ 3=2 to
satisfy the weak energy condition (WEC). If we choose
β ¼ 3=2, we get

fðrÞ ¼ 1 −
432m4r2

ðq2 þ 6mrÞ3 : ð25Þ

This solution has an event and a Cauchy horizon. If we
expand fðrÞ far from the event horizon and near to the
black hole center, we find

fðrÞ ≈ 1 −
2m
r

þ q2

r2
þO

�
1

r3

�
ðr → ∞Þ; ð26Þ

fðrÞ ≈ 1 −
432m4r2

q6
þOðr3Þ ðr → 0Þ: ð27Þ

So, for regions far from the event horizon, we find that
the solution behaves like a Reissner-Nordström solution
and near the center we see the behavior of a de Sitter
solution.
The Kretschmann scalar is given by

KðrÞ ¼ 4478976m8

ð6mrþ q2Þ10 ð648m
4r4 − 216m3q2r3

þ 126m2q4r2 þ q8Þ; ð28Þ

which is regular for all values of r. The asymptotic behavior
of this scalar is given by

Kðr → 0Þ ∼ 4478976m8

q12
þOðrÞ; ð29Þ

Kðr → ∞Þ ∼ 48m2

r6
þOðr−7Þ: ð30Þ

We then see clearly that it is always regular with a constant
curvature in the black hole center and the solution is
asymptotically flat.
From (10) and (11), with (6), the electromagnetic

Lagrangian of the theory, that generates this solution,
and the electric field are

LðrÞ ¼ 1296m4q2ðq2 − 6mrÞ
ðq2 þ 6mrÞ5 ; ð31Þ

F10ðrÞ ¼ 15552m5qr3

ðq2 þ 6mrÞ5 : ð32Þ

The electric field is always regular and tends to zero at the
infinity in the origin of the radial coordinate. Since we have
the electric field, it is possible to construct the scalar F, that
is given by

FðrÞ ¼ −
120932352m10q2r6

ðq2 þ 6mrÞ10 : ð33Þ

We have the following asymptotic limits to LðrÞ and FðrÞ:

Lðr → ∞Þ ∼ −
q2

r4
þOðr−5Þ; ð34Þ
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Lðr → 0Þ ∼ 1296m4

q6
−
46656m5r

q8
þOðr2Þ; ð35Þ

Fðr → ∞Þ ∼ −
2q2

r4
þOðr−5Þ; ð36Þ

Fðr → 0Þ ∼ −
120932352m10r6

q18
þOðr7Þ: ð37Þ

So, we have

LðFÞ ∼ F; r → ∞; ð38Þ

LðFÞ ∼ 1296m4

q6
−
1296

ffiffiffi
26

p ffiffiffi
33

p ffiffiffiffiffiffi
−F6

p
m10=3

q5
; r → 0: ð39Þ

Using (14) and (31), we get

−Fð−PÞ ¼ 61917364224m10Pðq2PÞ
5=2

�
12m

ffiffiffiffi
q2

P
4

q
þ 23=4q2

�10
; ð40Þ

which has a maximum at P ¼ 512m4=q6. As said before,
a maximum of −Fð−PÞ represents a cusp in LðFÞ. We can
parametrically represent the function −Lð−FÞ using (31)
and (33), whose behavior is represented in Fig. 1. We
see a cusp at m2F ≈ −11.8098, with two branches.
This is a characteristic of regular electrically charged
solutions. Branches appear because a single value
of FðrÞ corresponds to two positive real values of the
radial coordinate r, resulting in two distinct values of
LðrÞ. Let us look at a numerical example. To
m2FðrÞ ≈ −9.4748, using (33) to find the values of r,
we have r1 ¼ 0.10471057627514681m and r2 ¼
0.24750771046605197m. These two values of r give
us two values of LðrÞ, which are m2L1 ¼ m2Lðr1Þ ¼
2.96672 and m2L2 ¼ m2Lðr2Þ ¼ −16.1742. This can now
be verified in the graph of −Lð−FÞ in Fig. 1.

From the stress energy, we get

ρðrÞ ¼ 1296m4q2

ð6mrþ q2Þ4 ; pr ¼ −ρðrÞ; ð41Þ

ptðrÞ ¼ ωtðrÞρðrÞ; ωtðrÞ ¼
6mr − q2

6mrþ q2
: ð42Þ

We may write pt ¼ ptðρÞ inverting ρðrÞ and finding rðρÞ.
With this, we have

ptðρÞ ¼ ωtðρÞρ; ωtðρÞ ¼
36m2

ffiffiffiffiffi
q24

p
− ð6mþ 1Þq2 ffiffiffi

ρ4
p

36m2
ffiffiffiffiffi
q24

p
þ ð1− 6mÞq2 ffiffiffi

ρ4
p :

ð43Þ

The solution behaves like an anisotropic fluid, pr ≠ pt,
with an equation of state pr ¼ −ρ. We have the following
asymptotic limits for tangential pressure ptðr → ∞Þ ∼ ρ
and ptðr → 0Þ ∼ −ρ, and

ρðr → ∞Þ ∼ q2

8πr4
þOðr−5Þ; ð44Þ

ρðr → 0Þ ∼ 162m4

πq6
−
3888m5r

πq8
þOðr2Þ: ð45Þ

The energy conditions are

SEC3ðrÞ ¼
2592m4q2ð6mr − q2Þ

ð6mrþ q2Þ5 ; ð46Þ

WEC1ðrÞ ¼ DEC2ðrÞ ¼ 0; ð47Þ

WEC2ðrÞ ¼
15552m5q2r
ð6mrþ q2Þ5 ; ð48Þ

WEC3ðrÞ ¼ DEC1ðrÞ ¼
1296m4q2

ð6mrþ q2Þ4 ; ð49Þ

DEC3ðrÞ ¼
162m4ð−jq4 − 6mq2rj þ 6mq2rþ q4Þ

πð6mrþ q2Þ5 : ð50Þ

We can see that SEC3 assumes negative values, and soon
SEC is violated. In Fig. 2, we see that to q ¼ 0.8mwe have
a Cauchy horizon at r ¼ rC ¼ 0.03952m and an event
horizon at r ¼ rE ¼ 1.65898m. SEC is violated in the
interval r ¼ ½0; 0.106667m�. SEC is violated inside or
outside the Cauchy horizon depending on the charge,
but always inside the region bounded by the event horizon,
while the other energy conditions are satisfied both inside
and outside the event horizon.

−30

−20

−10

 0

 10

 20

 30

 0  2  4  6  8  10  12

−
m
2 L
(F
)

−m2F

FIG. 1. Graphical representation of −LðFÞ×−F with q¼0.8m.
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III. MULTIHORIZON SOLUTIONS

A. Black holes with multihorizons

The most simple black hole solution is described by the
Schwarzschild metric, where the metric coefficient g00 is

fðrÞ ¼ 1 −
2m
r

: ð51Þ

We may also write fðrÞ as

fðrÞ ¼ g1ðrÞðr − r1Þ; ð52Þ

with g1ðrÞ ¼ 1=r and r1 ¼ 2m. To Reissner-Nordström
solution, when we have two horizons, fðrÞ may be
written as

fðrÞ ¼ g2ðrÞðr − r1Þðr − r2Þ; ð53Þ

where r1 and r2 are the event horizon and Cauchy horizon
radius, respectively. To the regular solution presented
before, the metric coefficient is similar to Reissner-
Nordström. If we consider the presence of cosmological
constant, when we have a de Sitter–type solution, a new
horizon appears in the solution and fðrÞ becomes

fðrÞ ¼ g3ðrÞðr − r1Þðr − r2Þðr − r3Þ; ð54Þ

with r3 being the radius of the cosmological horizon. The
number of horizons is not limited to only three; in fact, it is
possible to build structures with multiple horizons.
The metric coefficient to a multihorizon black hole may

be written as

fðrÞ ¼ gNðrÞ
�
1 −

r1
r

��
1 −

r2
r

��
1 −

r3
r

�

×… ×

�
1 −

rN
r

�
; ð55Þ

where ri, with i ¼ 1; 2; 3;…; N, represents the radius of
each horizon, gNðrÞ is finite, and limr→∞ gNðrÞ ¼ 1.
Depending of gNðrÞ, the solution may be regular or singular
in the center. However, we will write the metric coefficient
in a different form in the next subsection. In [36], the
authors analyzed the properties of a multihorizon solution,
where they consider gNðrÞ ¼ 1. This type of solution
presents many horizons but only one singularity. The
curvature invariants to this solution are

RðrÞ ¼ d2

dr2

�YN
i¼1

�
1 −

ri
r

��
þ 4

r
d
dr

�YN
i¼1

�
1 −

ri
r

��

þ 2

r2

�YN
i¼1

�
1 −

ri
r

�
− 1

�
; ð56Þ

KðrÞ ¼
�
d2

dr2

�YN
i¼1

�
1 −

ri
r

���2

þ 4

r4

��YN
i¼1

�
1 −

ri
r

�
− 1

�2

þ r2
�
d
dr

�YN
i¼1

�
1 −

ri
r

���2�
: ð57Þ

The curvature scalar is null to one and two horizons and is
singular in the black hole center to N ≥ 3, while the
Kretschmann scalar is singular in r ¼ 0 to all values
of N. With some modifications, we may also construct
regular multihorizon solutions in general relativity.

B. Regular black holes with multihorizons

To regular solutions, we write the coefficient g00 as

fðrÞ ¼
YN
i¼1

�
1 −

2MiðrÞ
r

�
; ð58Þ

where limr→∞MiðrÞ=r ¼ 0. Which mass function tends to
a constant in the infinity, limr→∞MiðrÞ ¼ mi, where the
ADM mass is the sum of these constants, mADM ¼P

N
i¼1mi. One way to satisfy these conditions is to use

the product of known regular solutions. The solution
obtained from known regular solutions is also regular
and has the number of horizons equal to the sum of the
number of horizons of the solutions that compose it.

1. First example with four horizons

Let us considere a solution with the metric coefficient

fðrÞ ¼
�
1 −

2M1ðrÞ
r

��
1 −

2M2ðrÞ
r

�
; ð59Þ

where

FIG. 2. Graphical representation of ωr, ωt, and ωr=ωt as a
function of the radial coordinate to q ¼ 0.8m. We see that SEC3

is violated (green area).
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M1ðrÞ ¼
mr3

ðr2 þ q2Þ3=2 and M2ðrÞ ¼ me−q
2=2mr: ð60Þ

We consider m1 ¼ m2 ¼ m. The functions M1ðrÞ and
M2ðrÞ were proposed by Bardeen [4] and Culetu [33],
respectively. The solution proposed by Bardeen violates the
strong and dominant energy condition, while the Culetu
solution violates the strong and weak energy condition.
The solution (59) is asymptotically flat, has a de Sitter core.
To q ≤ qBDext ¼ 4m=ð3 ffiffiffi

3
p Þ, the solution presents four hori-

zons, when qBDext < q < qCLext two horizons and one horizon
to q ¼ qCLext , where qCLext ¼ 2mffiffi

e
p is the extreme charge to the

Culetu solution.
The asymptotic behavior of the Kretschmann scalar is

given by

K ∼
96m2

q6
þ e−

q2

mr

�
q8

4m2r10
−
4q6

mr9
þOðr−8Þ

�

þ e−
q2

2mr

�
4

ffiffiffiffiffi
q2

p
r5

−
32mffiffiffiffiffi
q2

p
r4

þOðr−3Þ
�
; r → 0: ð61Þ

From the curvature invariant, Fig. 3, the regularity of the
spacetime is highlighted.
In relation to the electromagnetic sector, the intensity of

the electric field is shown in Fig. 4. The electric field goes
to zero in the black hole center and in the infinity. As the
sing of F10 changes, it means that the field will repel and
attract the same test particle for different regions.
The asymptotic behavior of LðrÞ and FðrÞ is given by

Lðr → ∞Þ ∼ −
4m2 þ q2

r4
þOðr−5Þ; ð62Þ

Lðr → 0Þ ∼ 6m
ffiffiffiffiffi
q2

p
q4

þ q4e−
q2

2mr

4mr5
; ð63Þ

Fðr → ∞Þ ∼ −
2ð4m2 þ q2Þ2

q2r4
þOðr−5Þ; ð64Þ

Fðr → 0Þ ∼ −
225m2r8

2q12
: ð65Þ

So, we have

LðFÞ ∼ F; r → ∞; ð66Þ

LðFÞ ∼ 6m
ffiffiffiffiffi
q2

p
q4

þ 15
ffiffiffiffiffi
154

p
e
−

ffiffiffi
15

4p ffiffi
q

p

2
ffiffiffiffiffi
−2F8p m3=4

4ð−2FÞ5=8q7=2 ; r → 0: ð67Þ

We note that close to the center, the Lagrangian does not
behave like Maxwell, only to r → ∞. Replacing (59) in
(10)–(12) and (6), we get LðrÞ and FðrÞ. In Fig. 5, we see
the behavior of the scalar F as a function of r. Replacing
(14) in FðrÞ, we have the analytical expression to FðPÞ.
We will not show −Fð−PÞ because it is extensive; numeri-
cally we can find nine extreme to this function of which
five local maximums and four local minimums, where
−Fð−PminÞ ¼ 0. We may also see that from Fig. 5, since
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FIG. 3. Kretschmann scalar to (59) with q ¼ 0.1m.
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FIG. 4. Electric field associated to the solution with four horizons to q ¼ 0.1m.
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dFðrÞ=dr ¼ 0 → dFðPÞ=dP ¼ 0, it is due to the fact that dF=dr ¼ ðdF=dPÞðdP=drÞ and dP=dr is null only to r → ∞.
We have five cusps in the function −Lð−FÞ, which we can see in Fig. 6. So, we have ten distinct branches for LðFÞ.
From the components of the stress-energy tensor, we find

ρðrÞ ¼ e−
q2

2mr

8πr4ðq2 þ r2Þ5=2 ðm
2ð4r5 − 8q2r3Þ − 2mq2r2ðr2ð1 − 3e

q2

2mrÞ þ q2Þ þ q2ðq2 þ r2Þ5=2Þ ¼ −pr; ð68Þ

ptðrÞ ¼
e−

q2

2mr

32πmr5ðq2 þ r2Þ7=2 ð−2q
2r2ð3e q2

2mr þ 1Þ þ 4m2q2r3ðr4ð9e q2

2mr − 4Þ þ 2q4Þ

þ 2m

�
2q2r3ðq2 þ r2Þ5=2 þ q4rðq2 þ r2Þ2 ×

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

q
þ r

��
þ q4ð−ðq2 þ r2Þ7=2Þ

þ 8m3ð2q4r4 − 11q2r6 þ 2r8ÞÞ: ð69Þ

The solution behaves like an anisotropic fluid with a de Sitter–type equation of state, ρ ¼ −pr. We have the following
asymptotic limits:

ρðr → ∞Þ ¼ −prðr → ∞Þ ∼ 4m2 þ q2

8πr4
þOðr−5Þ; ð70Þ
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FIG. 5. Behavior of −FðrÞ to q ¼ 0.769m. The radial coordinate range is (a) ½0; 0.015m�, (b) ð0.015m; 0.5m�, (c) ð0.5m; 0.9m� and
(d) ð0.9m; 5m�.
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ρðr → 0Þ ¼ −prðr → 0Þ ∼ e−
q2

2mr

�
q2

8πr4
þOðr−3Þ

�
þ 6m

8πðq2Þ3=2 ; ð71Þ

ptðr → ∞Þ ∼ 4m2 þ q2

8πr4
þOðr−5Þ; ð72Þ
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FIG. 6. Parametric representation of −Lð−FÞ to q ¼ 0.769m. The radial coordinate range is (a) ½0; 0.014m�, (b) ð0.014m; 0.1m�,
(c) ð0.1m; 0.45m�, (d) ð0.45m;m�, and (e) ðm; 5m�.

REGULAR MULTIHORIZON BLACK HOLES IN GENERAL … PHYS. REV. D 102, 084038 (2020)

084038-9



ptðr → 0Þ ∼ −e−
q2

2mr

�
q4

32πmr5
þOðr−4Þ

�
−

6m

8πðq2Þ3=2 :

ð73Þ

The energy density is not always positive; however, we
may impose some constraints on the charge to guarantee
the positivity. To values of charge q < 0.721m, we have an
interval in which the energy density is negative, so we will
choose q such that the density is always greater than zero
for all values of r, this is necessary to satisfy WEC and
NEC. The function WEC1ðrÞ is identically zero. To
guarantee that some energy conditions will be always
satisfied, we must impose some constraints on the charge.
In order to determine which energy conditions are met in
this case we look at Fig. 7; we can see, for q ¼ 0.75m the
SEC is violated in the regions yellow and green, while DEC
as violated in the green region. All energy conditions are
met in the region outside the black hole.

2. Second example with four horizons

Let us consider a solution like (59); however, we replace
M1ðrÞ by M3ðrÞ, where this mass function is the one that
generates the solution (25). So, the metric coefficient g00 is

fðrÞ ¼
�
1 −

432m4r2

ðq2 þ 6mrÞ3
��

1 −
2me−q

2=2mr

r

�
: ð74Þ

This solution is asymptotically flat, regular in all spacetime,
and behaves like de Sitter in the black hole center and has
four horizons for q < qCLext . The Kretschmann scalar is
shown in Fig. 8 and we have no divergences, which implies
in no curvature singularities. We have the following limits:

Kðr → ∞Þ ∼ 192

r6
þOðr−7Þ; ð75Þ

Kðr → 0Þ ∼ 4478976m8

q12
þOðrÞ: ð76Þ

So, the Kretschmann scalar is regular in the center and in
the infinity of the radial coordinate.
The asymptotic limits of the electromagnetic quantities

are

Lðr → ∞Þ ∼ −2
2m2 þ q2

r4
þOðr−5Þ; ð77Þ

Lðr → 0Þ ∼ 1296m4

q6
þ q4e−

q2

2mr

4mr5
; ð78Þ

Fðr → ∞Þ ∼ −8
ð2m2 þ q2Þ2

q2r4
þOðr−5Þ; ð79Þ

Fðr → 0Þ ∼ −
120932352m10r6

q18
: ð80Þ

So, the asymptotic dependence is the same of (66) to
r → ∞. We have

LðFÞ ∼ F; r → ∞; ð81Þ

LðFÞ ∼ 839808
ffiffiffi
26

p ffiffiffiffiffiffiffiffiffiffi
3m103

p
m4e

−325=632=3m2=3ffiffiffiffiffi
−Fq6

p

q11ð−FÞ5=6 þ 1296m4

q6
;

r → 0: ð82Þ

Solving −F0ðrÞ ¼ 0 numerically, we have three extremes,
two local maximums and a local minimum to −FðrminÞ not
null, which implies in a −Fð−PminÞ not null. This point in
−Fð−PÞ represents a cusp in −Lð−FÞ; this is a new result
in the literature. We represent the graph of −FðrÞ in Fig. 9,
where we may see that it has two maximums and one
minimum as tends to zero to r → 0 and r → ∞. We
represent the parametric graph of −Lð−FÞ in Fig. 10,
where we see three cusps and four branches.

FIG. 7. Graphical representation of ω in terms of the radial
coordinate to q ¼ 0.75m.
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FIG. 8. Behavior of the Kretschmann scalar to (74) with
q ¼ 0.1m.
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From the stress-energy tensor, we find

ρðrÞ ¼ e−
q2

2mr

κ2r4ð6mrþ q2Þ4 ð5184m
6r4 þ 24mq8rþ q10

− 432m4q2r3ð10m − 3rðe q2

2mr þ 1ÞÞ
− 432m3q4r2ðm − 2rÞ þ 216m2q6r2Þ ¼ −prðrÞ;

ð83Þ

ptðrÞ ¼
e−

q2

2mr

4κ2mr5ð6mrþ q2Þ5 ð124416m
7r6ð5m

− rðe q2

2mr þ 1ÞÞ− 10368m6q2r5ð28mþ r− 5re
q2

2mrÞ
− 864m5q4r4ð46m− rð2e q2

2mr þ 41ÞÞ
þ 144m4q6r3ð24mþ 95rÞ þ 48m3q8r2ð9mþ 35rÞ
− 16m2q10r2 − 18mq12r− q14Þ: ð84Þ

As the examples before, we have the behavior of an
anisotropic fluid. We have the following asymptotic limits:

ρðr → ∞Þ ∼ 2m2 þ q2

4πr4
−
q2ð48mþ 7q2Þ

48mπr5
þOðr−6Þ; ð85Þ

ρðr → 0Þ ∼
�
162m4

πq6
þOðrÞ

�

þ e−
q2

2mr

�
q2

8πr4
þOðr−2Þ

�
; ð86Þ

ptðr→∞Þ∼ 2m2 þ q2

4πr4
−
q2ð48mþ 7q2Þ

32mπr5
þOðr−6Þ; ð87Þ

ptðr → 0Þ ∼ −
�
162m4

πq6
þOðrÞ

�

þ −e−
q2

2mr

�
q4

32πmr5
þOðr−2Þ

�
; ð88Þ

ωtðr → ∞Þ ∼ 1 −
48m2q2 þ 7q4

24mrð2m2 þ q2Þ þOðr−2Þ; ð89Þ

ωtðr → 0Þ ∼ −1: ð90Þ

The energy density admits negative values for some ranges
of r; however, if we impose constraints in the electric
charge, it is possible to guarantee the positivity. In Fig. 11,
we see that for some values of charge we may have positive
energy density, so through Fig. 12 we see that SEC is
violated in the yellow region which is inside the black hole.
NEC, DEC, and WEC are satisfied.

3. Example with six horizons

Let us consider the case where we combined the three
functions previously. To this model, the metric coefficient
g00 is

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

−
m

2 F

r/m

FIG. 9. Graphical representation of −FðrÞ to q ¼ 1.21m.
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fðrÞ¼
�
1−

2M2ðrÞ
r

��
1−

2M3ðrÞ
r

��
1−

2M4ðrÞ
r

�
; ð91Þ

where M4ðrÞ is a mass function proposed by Dymnikova
[32] that generates a regular solution and is given by

M4ðrÞ ¼
2m tan−1ð8mr

πq2 Þ
π

−
16m2q2r

64m2r2 þ π2q4
: ð92Þ

The Dymnikova solution has an extreme given by
qDC
ext ¼ 1.07304927103275m. This solution has up to six

horizons; however, the number of horizons decreases as the
electrical charge increases. As the cases before, this
spacetime is regular and asymptotically flat. Near to the
center, the Kretschmann scalar behaves as

Kðr→ 0Þ∼ 2048ð65536þ 41472π4 þ 6561π8Þm8

3π8q12
þOðrÞ:

ð93Þ

The asymptotic form of LðrÞ and FðrÞ is given by

Lðr → ∞Þ ∼ −
3ð4m2 þ q2Þ

r4
þOðr−5Þ; ð94Þ

Lðr → 0Þ ∼ 16ð256þ 81π4Þm4

π4q6
−
46656m5r

q8
; ð95Þ

Fðr → ∞Þ ∼ −
18ð4m2 þ q2Þ2

q2r4
þOðr−5Þ; ð96Þ

Fðr → 0Þ ∼ −
120932352m10r6

q18
: ð97Þ

The asymptotic dependence of LðFÞ is

LðFÞ ∼ F; r → ∞; ð98Þ

LðFÞ∼ 16ð256þ 81π4Þm4

π4q6
−
1296

ffiffiffiffiffiffiffiffiffiffi
3m103

p ffiffiffiffiffiffiffiffiffi
−2F6

p

q5
; r→ 0:

ð99Þ

We see that in the infinity of the radial coordinate, the
electrodynamics behaves asymptotically as Maxwell but
not in the center of the solution. In Fig. 13, we graphically
represent the function −FðrÞ, where we may see five
extremes, three maximums and two non-null minimums.
So we have five cusps in −Lð−FÞ, which are represented
in Fig. 14.
As this solution has a structure composed of several

horizons, the components of the stress-energy tensor are
analytically extensive. In Fig. 15, we analyze the energy
density, radial pressure, and tangential pressure. As the
examples before, we have the behavior of an anisotropic
fluid, but, for regions close to r ¼ 0, it is approximately
isotropic.
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FIG. 11. Energy density to the solution (74) for different values
of charge.

FIG. 12. Graphical representation of ω as a function of the
radial coordinate to q ¼ 1.21m. SEC is violated in the yellow
region. Each horizontal line represents a horizon.
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FIG. 13. Graphical representation of −FðrÞ to q ¼ 1.07m.
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The asymptotic forms are

ρðr → ∞Þ ∼ 3ð4m2 þ q2Þ
8πr4

þOðr−5Þ; ð100Þ

ρðr → 0Þ ∼
�
2m4ð256þ 81π4Þ

π5q6
þOðrÞ

�

þ e−
q2

2mr

�
q2

8πr4
þOðr−2Þ

�
; ð101Þ

ωtðr → ∞Þ ∼ 1 −
144m2q2 þ 96m4 þ 7q4

36mrð4m2 þ q2Þ þOðr−2Þ;

ð102Þ

ωtðr → 0Þ ∼ −1: ð103Þ

The energy density is not always positive; however,
depending on the charge, we may impose the positivity.
When the energy density is positive, WEC3 is positive.

The remains energy conditions should be evaluated through
ωr;t. In Fig. 16, we see that ωt assumes negatives values,
also do SEC3, and then the strong energy condition is
always violated, as expected with regular solutions, while
the other conditions are satisfied for some values of charge.
The method used here may be used to build solutions

with even more horizons. For that, we need to only consider
more terms in Eq. (58) with different mass functions.
Examples of mass functions may be found at [42,43],
where, depending on the parameters chosen in the mass
functions, we will have different solutions.

C. Magnetically charged solution

In this section, we will cover a solution with up to four
horizons magnetically charged. This type of solution does
not have cusps in the graphical representation of the LðFÞ,
as will be shown soon.
Let us consider the Bardeen solution, M1ðrÞ, and the

Kruglov solution, M5ðrÞ, that are given by [44,45]

M5ðrÞ ¼
r3hðrÞ

r3 þ 2l2hðrÞ ; ð104Þ
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FIG. 14. Parametric representation of −Lð−FÞ to q ¼ 1.07m. The interval of r is (a) ½0; 0.45m� and (b) ð0.45m; 2.5m�.
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FIG. 16. Graphical representationωt, ωr,ωt=ωr as a function of
r to q ¼ 1.07m. Each horizontal line represents a horizon.

REGULAR MULTIHORIZON BLACK HOLES IN GENERAL … PHYS. REV. D 102, 084038 (2020)

084038-13



hðrÞ ¼
�
mþ jqmj3=2

23=4
ffiffiffi
β4

p tan−1
�

21=4rffiffiffiffiffiffiffiffiffijqmj
p ffiffiffi

β4
p

��
; ð105Þ

where qm is the magnetic charge, β is a real and positive
parameter, and l is the fundamental length scale constant.
The metric function is

fðrÞ ¼
�
1 −

2M1ðrÞ
r

��
1 −

2M5ðrÞ
r

�
: ð106Þ

The asymptotic behavior is given by

fðr → ∞Þ ∼ 1 −
4mþ πjqmj3=2

23=4
ffiffi
β4

p
r

þOðr−2Þ; ð107Þ

fðr → 0Þ ∼ 1 − r2
�
1

l2
þ 2m

ffiffiffiffiffiffi
q2m

p
q4m

�
þOðr3Þ: ð108Þ

The spacetime is asymptotically flat and has a de Sitter
core. We have four horizons in the interval of magnetic
charge 0.342150825324m < qm < 4m=ð3 ffiffiffi

3
p Þ with β ¼

0.1m2 and l ¼ m (we will consider this values from
now). The asymptotic behavior of the Kretschmann
scalar is

Kðr → 0Þ ∼
�
24

l4
þ 96mjqmj

l2q4m
þ 96m2

q6m

�

− r2
�
240mjqmj

l4q4m
þ 480m2

l2q6m
þ 360mjqmj

l2q6m

þ 720m2

q8m

�
þOðr3Þ: ð109Þ

The asymptotic behavior of LðFÞ is

LðF → ∞Þ ∼ 3

l2
þ 6mjqmj

q4m
−
5mð3l2 þ 2q2mÞffiffiffi

2
p

l2q4m
F−1=2

þOðF−3=4Þ; ð110Þ

LðF → 0Þ ∼
�
8m2

q2m
þ 2

ffiffiffi
24

p
πmffiffiffi

β4
p ffiffiffiffiffiffiffiffiffijqmj

p þ 2

�
F: ð111Þ

In Fig. 17, we see that there are no cusps. The asymptotic
behavior of the energy density and ωtðrÞ are

ρðr → ∞Þ ∼

ffiffi
24

p
πmjqmj3=2ffiffi

β4
p þ q2m þ 4m2

8πr4
þOðr−5Þ; ð112Þ

ρðr → 0Þ ∼
�

3

8πl2
þ 3mjqmj

4πq4m

�
−
5r2mjqmjð3l2 þ 2q2mÞ

8πl2q6m
þOðr3Þ; ð113Þ

ωtðr → ∞Þ ∼ 1þ mq2m

r
� ffiffiffi

24
p

π
ffiffi
1
β

4

q
mjqmj3=2 þ q2m þ 4m2

�

þOðr−2Þ; ð114Þ

ωtðr→ 0Þ∼−1þ 5mr2ð3l2þ 2q2mÞ
3jqmjð2l2mjqmj þq4mÞ

þOðr3Þ: ð115Þ

In Fig. 18, we represent the behavior of ωr;t and we may see
that SEC3, yellow region, and DEC3, green region, are
violated. In particular, DEC3 is violated to r → ∞.

IV. CONCLUSION

In this work, we proposed a way to build solutions of
regular black holes with multihorizons in general relativity.
With that, we verified some properties of these solutions as
regularity, energy conditions, and electric field.
For the case of regular black holes with two horizons,

we revised the Balart-Vagenas solution. This solution is
regular, behaves asymptotically as Reissner-Nordstrom and
has a de Sitter core with a constant Kretschmann scalar in
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FIG. 17. Behavior of LðFÞ to qm ¼ 0.5m; l ¼ m, and
β ¼ 0.1m2.

FIG. 18. Graphical representationωt, ωr,ωt=ωr as a function of
r to q ¼ 0.5m, l ¼ m, β ¼ 0.1m2. Each horizontal line represents
a horizon.
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the center and null in the infinity. WEC, NEC, and DEC are
satisfied in all points of the spacetime for any value of
charge, while SEC is violated inside the event horizon. The
scalar−Fð−PÞ has non-null a maximum at P ¼ 512m4=q6,
and because of this, we have a cusp with two branches in
the representation LðFÞ. Analytically, we obtained that the
Lagrangian LðFÞ behaves as Maxwell to r → ∞ however
do not to r → 0. So, as F → 0 to r → 0 and r → ∞, the
Lagrangian LðFÞ has two different forms to the same F.
We formulate two examples with up to four horizons

with electric charge. The first one, called the Bardeen-
Culetu case, may present up to four horizons, if we have the
value of the charge q < qBDext ¼ ½4m=ð3 ffiffiffi

3
p Þ�. If q ¼ qBDext ,

we have three horizons, and above that value up to
q < qCLext ¼ ½2m=

ffiffiffi
e

p �, we have two horizons. When
q ¼ qCLext , we have only one horizon, and above that value,
we have no more horizons. The solution is different from
that of Bardeen and Culetu, with different energy density,
different radial and tangential pressures, different electric
field, and nonlinear Lagrangian. The solution is regular
with a constant Kretschmann scalar in the center. The scalar
−FðrÞ has nine extremes, five local maximums and four
local null minimums. For which null minimum in −FðrÞ,
the function −Lð−FÞ touches smoothly the axis F ¼ 0 and
for which maximum we have a cusp in −Lð−FÞ. Since the
ratio between charges is qCLext=q

BD
ext ¼ 1.57581, WEC and

NEC may be satisfied for charges close to qBDext , but DEC
and SEC are always violated within the event horizon. The
second example, called Balart-Culetu, has up to four
horizons, just like the case of Bardeen-Culetu, depending
only on the ratio between charge and mass. In this case,
unlike the previous one, we may have a solution with four
horizons that satisfy NEC, WEC, and DEC; the SEC is
always violated within the event horizon. This is due to the
ratio qBLext=qCLext ¼ 1.09915, which shows that the extreme
charges are close. The solution behaves as Maxwell in the
infinity and has a nonlinear behavior in the center. The
scalar −FðrÞ has two local maximums and a minimum. As
−FðrminÞ is not null, as the maximums, it represents a cusp
in the Lagrangian −Lð−FÞ, which has three cusps.
We also proposed a solution with up to six horizons,

called Barlart-Culetu-Dymnikova. Likewise, this solution
has the ratios between the extreme charges qBLext=qCLext ¼
1.09915 and qCLext=q

DC
ext ¼ 1.13048, which shows how

close they are. So, we can have charges values close to
qDC
ext ¼ 1.07304927103275m, where NEC, WEC, and DEC

are satisfied, and SEC is violated within the event horizon.
If we choose a solution as Bardeen, where the extreme
charge is small in relation to the others, then the ratio
between these charges would be appreciable, and therefore

cannot satisfy the energy conditions. The scalar −FðrÞ has
three maximums and two non-null minimum and, due to
this fact, −Lð−FÞ has five cusps with six brunches.
We proposed a solution with up to four horizons but with

magnetic charge, which we called Bardeen-Kruglov sol-
ution. Different from the case with electric charge, F just
goes to zero in r → ∞ where the Lagrangian does not
behave as Maxwell, as it already happened with the isolated
Bardeen solution. As the scalar F does not present the same
value to different ranges of the radial coordinate, −Lð−FÞ
presents no cusps. In this solution, DEC is violated since
DEC3 presents negative values to r → ∞ as the SECwhich
is violated inside the event horizon once SEC3 is negative
in this region.
From the results obtained, we can conclude the follow-

ing: given two or more solutions multiplied to form a
general solution, where one of the solutions has an extreme
charge with a very different value, or very close to the
others, then it will not be possible that all energy con-
ditions, except the SEC, be satisfied. Now, if the isolated
solutions have an extreme charge reasonably close to
another, it will be possible, for values close to the extreme,
to satisfy all conditions except the SEC. In general,
solutions can be built in such a way that the horizons
depended only on the charge and mass ratio, it is also
possible to write other physical quantities (L;F; LF;…)
like this. Also, q → −q does not change the metric and
other related quantities. It seems to us that all regular mass
functions have a maximum of two horizons.
This work opens up a new possibility of solutions for

regular black holes with more than two horizons. We can
have as perspectives the geodetic analysis, shadows,
stability, causal structure, and maximum space-time ana-
lytical extension of the solutions presented here. Also, to
analyze Hawking temperature and thermodynamics of
these black holes. The thermodynamic system of these
solutions is much richer than the isolated solutions. We can
also verify the phase transition, add the cosmological
constant to an extended phase model, such as the van
der Waals model.

ACKNOWLEDGMENTS

M. E. R. thanks Conselho Nacional de Desenvolvimento
Científico e Tecnológico—CNPq, Brazil for partial finan-
cial support. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 001. The
authors would like to thank the anonymous referee for
his important suggestions that made it possible to improve
the paper.

REGULAR MULTIHORIZON BLACK HOLES IN GENERAL … PHYS. REV. D 102, 084038 (2020)

084038-15



[1] R. A. D’Inverno, Introduction Einstein’s Relativity
(Clarendon Press, New York, 2008).

[2] R. Wald, General Relativity (University of Chicago Press,
London, 1984).

[3] K. Schwarzschild, On the gravitational field of a mass point
according to Einstein’s theory, arXiv:physics/9905030.

[4] J. M. Bardeen, Non-singular general relativistic gravita-
tional collapse, in Proceedings of the International
Conference GR5, Tbilisi, U.S.S.R. (1968).

[5] B. Podolsky, A generalized electrodynamics Part I-Non-
quantum, Phys. Rev. 62, 68 (1942).

[6] F. Bopp, Eine lineare theorie des elektrons, Ann. Phys.
(Berlin) 430, 345 (1940).

[7] A. Proca, Sur la theorie ondulatoire des electrons positifs et
negatifs, J. Phys. Radium 7, 347 (1936).

[8] A. Cadène, D. Sordes, P. Berceau, M. Fouché, R. Battesti,
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