
 

Spontaneous holographic scalarization of black holes
in Einstein-scalar-Gauss-Bonnet theories

Hong Guo,1,† Stella Kiorpelidi ,2,‡ Xiao-Mei Kuang ,3,* Eleftherios Papantonopoulos,2,§

Bin Wang,3,4,∥ and Jian-Pin Wu3,¶
1School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

2Physics Division, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
3Center for Gravitation and Cosmology, College of Physical Science and Technology,

Yangzhou University, Yangzhou 225009, China
4School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 5 August 2020; accepted 28 September 2020; published 13 October 2020)

We holographically investigate the scalarization in the Einstein-scalar-Gauss-Bonnet gravity with a
negative cosmological constant. We find that instability exists for both Schwarzschild-AdS (anti–de Sitter)
and Reissner-Nordström-AdS black holes with planar horizons when we have proper interactions between
the scalar field and the Gauss-Bonnet curvature corrections. We relate such instability to possible
holographic scalarization and construct the corresponding hairy black hole solutions in the presence of the
cosmological constant. Employing the holographic principle, we expect that such bulk scalarization
corresponds to the boundary description of the scalar hair condensation without breaking any symmetry,
and we calculate the related holographic entanglement entropy of the system. Moreover, we compare the
mechanisms of the holographic scalarizations caused by the effect of the coupling of the scalar field to the
Gauss-Bonnet term and holographic superconductor effect in the presence of an electromagnetic field, and
unveil their differences in the effective mass of the scalar field, the temperature-dependent property, and the
optical conductivity.
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I. INTRODUCTION

The simplest modification of general relativity is to
introduce a scalar field in the Einstein-Hilbert action, which
is known as scalar-tensor theory. If the scalar field backreacts
to the background metric, hairy black hole solutions are
expected to be generated. There was an extensive study of
the solutions and no-hair theorems were developed con-
straining the possible black hole solutions and their param-
eters. One of the first hairy black hole solutions in an
asymptotically flat spacetimewas discussed in [1], but it was
found that there is a divergence of the scalar field on the
event horizon and soon it was realized that the solution was

unstable [2]. A way to avoid such irregular behavior of the
scalar field on the horizon is to introduce a scale in the
gravity sector of the theory with the presence of a cosmo-
logical constant. The resulting hairy black hole solutions
have a regular scalar field behavior on the horizon and all the
possible infinities are hidden behind the horizon [3–13].
Without the presence of any matter, hairy black hole

solutions can also be generated by introducing a coupling
of a scalar field directly to second order algebraic curvature
invariants. The introduction of this coupling leads to hairy
black holes because the scalar field interacts with the
spacetime curvature. Various black hole solutions and
compact objects in extended scalar-tensor-Gauss-Bonnet
(GB) gravity theories were studied in the literature [14–19].
The simplest approach is to couple the scalar field to the
GB invariant in four dimensions.
Recently, in these gravity theories choosing particular

forms of the scalar coupling function, scalarized black hole
solutions were generated, evading in this way the no-hair
theorems [20–26]. In these solutions, the Schwarzschild
black hole background becomes unstable below a critical
black hole mass [22,26–28], and it was found that scalar-
ized black holes were generated at certain masses. The
characteristic feature of these solutions is that the scalar
charge is not primary, but it is connected with the black hole
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mass. Various scalarized black hole solutions and compact
objects in Einstein-scalar-Gauss-Bonnet theories were
discussed in [29–34]. Spontaneous scalarization of asymp-
totically anti–de Sitter (AdS) black holes in Einstein-
scalar-Ricci-Gauss-Bonnet gravity with applications to
holographic phase transitions was studied in [35].
The scalarization of black holes in scalar-tensor-Gauss-

Bonnet gravity theories when an electromagnetic field is
present was studied in [36]. The presence of the GB
invariant acts as a high curvature term that triggers the
instability of the background Reissner-Nordström black
hole. Then the coupling of the scalar field to these terms
scalarized the Reissner-Nordström black hole. In spite that
the electromagnetic field is not coupled to the GB term, the
presence of the charge Q is introducing another scale in
the theory, and the interplay between the mass M and the
charge Q gives more interesting results on the scalarization
behavior of the Reissner-Nordström black hole compared
to that of the Schwarzschild case.
In this work, we will study the spontaneous scalarization

of planar black holes when there is a coupling of a scalar
field to the GB term in a scalar-tensor theory with a
negative cosmological constant and its holographic reali-
zation. In Sec. II, we will show that the presence of the
coupling of the scalar field to the curvature invariant
introduces an extra negative contribution to the effective
mass of the scalar field, and then the scalar potential
emerges the potential well, leading to an instability. We will
analyze the instability of both Schwarzschild-AdS (SAdS)
and Reissner-Nordström-AdS black holes with planar
horizon. For the case with neutral scalar, comparing to
that in Schwarzschild-flat black holes, the potential well
modified by the GB coupling in our AdS case is larger and
deeper, which implies that the scalarization can occur more
easily.
We further investigate the bulk formation process of a

hairy black hole due to the GB coupling in the case with
neutral scalar field. Moreover, according to the remarkable
gauge/gravity duality [37–39], a black hole in the gravity
side in AdS spacetime is holographically dual to a certain
state in the dual conformal field theory (CFT); thus, the
SAdS black hole and the hairy AdS black hole should be
dual to different states in the boundary CFT theory.
Consequently, from the CFT side, the spontaneous scala-
rization in the bulk can be interpreted as a certain phase
transition, and the GB coupling somehow mimics a
mechanism that leads to the phase transition. In addition,
according to holography, if we perturb a scalar field and we
find unstable modes, then these modes correspond to an
expectation value for Oϕ, and such an expectation value
will condensate. To further understand the scalarized
process and its holographic duality, we study how the
condensation of Oϕ emerges as the GB coupling increases
from CFT side and then probe the dual phase transition via
holographic entanglement entropy (HEE). The occurrence

of phase transition is usually accompanied by symmetry
breaking, unless it is a quantum phase transition. The
obtained phase transition dual to the spontaneous scalari-
zation of SAdS black hole due to the GB coupling is likely
to be a certain quantum phase transition since there is no
related symmetry in the setup.
It is well known that a hairy black hole can be formed

below a critical temperature because of the condensation of
a charged scalar field coupling to a Maxwell field. Such
mechanism was described by Gubser in [40,41] where it
was shown that a spontaneous breaking of the Uð1Þ
symmetry leads to the occurrence of a holographic super-
conducting phase transition [42,43]. However, it is clear
that the formation of the hairy black hole because of
interaction between the scalar field and GB curvature
correction is different from such Abelian Higgs model.
We shall discuss the differences both in the bulk gravity
side and on the boundary CFT side. The details will be
present in Sec. III.
In addition to discussing differences in two mechanisms

of scalarizations, in Sec. IV, we will add the Uð1Þ gauge
field to the Einstein-scalar-Gauss-Bonnet theory, such that
the scalar field becomes charged and we will investigate the
charged scalar field condensation in the background of
Schwarzschild-AdS planar black hole. This can present us a
picture on the combined effect of two different scalarization
mechanisms, which can accommodate a wider and deeper
effective mass to speed up the formation of hairy black
holes. We will observe that above certain critical temper-
ature, only the GB coupling plays the role in the formation
of scalar hair; however, when temperature drops below
critical value, the holographic superconducting condensa-
tion participates and we have the combined stronger effects
on the formation of hairy black holes. Finally, we present
our conclusion and discussion in Sec. V.

II. STABILITY ANALYSIS OF A GAUSS-BONNET
THEORY COUPLED TO A SCALAR FIELD

A. Model and setup

In this section, we will study the stability of a Gauss-
Bonnet theory coupled to a scalar field in four-dimensions.
Let us first consider a charged scalar field ϕ outside the
horizon of a black hole described by the Lagrangian

L¼ 1

16πGN

�
Rþ 6

L2
−
1

4
F2
μν− j∇μϕ− iqAμϕj2−m2jϕj2

�
;

ð2:1Þ

where GN is the Newton’s constant, Fμν is the Maxwell
field, L is the curvature radius of AdS spacetime, and ϕ is a
real scalar field with mass m and charge q.
Consider a charged black hole as the background metric.

Then, the metric, the electromagnetic field, and the scalar
field are
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ds2 ¼ gttdt2 þ grrdr2 þ ds22

Aμdxμ ¼ ΦðrÞdt; ϕ ¼ ϕðrÞ; ð2:2Þ

where all fields are assumed to depend only on r. Assuming
that there is no backreaction of the scalar field to the metric,
the scalar field part of the Lagrangian (2.1) is

Lϕ ¼ 1

16πGN
ð−gttq2Φ2jϕj2 − grrj∂rϕj2 −m2jϕj2Þ: ð2:3Þ

Then the effective mass of the scalar field ϕ is

m2
eff ¼ m2 þ gttq2Φ2: ð2:4Þ

Because gtt is negative outside the horizon, thenm2
eff should

become negative there if Φ is nonzero. If q is large, and the
electric field outside the horizon is large and m2 is small,
then m2

eff becomes negative a little outside the horizon.
Then it was argued in [40,41] that this is a signal of an
instability. However, if this instability could be manifest at
large distances and not only outside the horizon, then one
has to study the superradiance effect [44,45] and rely on the
qausinormal modes of the perturbed scalar field in the
background of the charged black hole.
Let us now consider the scalar-tensor theory with the

scalar field coupled to GB term. Because of the presence of
the coupling of the scalar field to the GB term, Eq. (2.4)
will be modified and this coupling will appear as another
source of instability with important consequences in the
theory as we will discuss in the following.
Consider a theory which is given by the action [36]

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
−
1

4
FμνFμν

−DμϕðDμϕÞ� −m2jϕj2 þ fðϕÞR2
GB

�
; ð2:5Þ

where Dμ ¼ ∇μ − iqAμ, ϕ ¼ ϕðrÞ is set to be real scalar
field, and fðϕÞ is the scalar field coupling function which
depends only on ϕ and the GB term is given by

R2
GB ¼ R2 − 4RμνRμν þ RμναβRμναβ: ð2:6Þ

The variation of the action (2.5) with respect to the metric
yields the modified Einstein equations as

Rμν −
1

2
Rgμν −

3

L2
gμν þ Γμν

¼ ∇μϕ∇νϕ −
1

2
gμν∇αϕ∇αϕ

−
�
1

2
m2gμν þ

1

2
q2AαAαgμν − q2AμAν

�
ϕ2

þ 1

2

�
FμαFν

α −
1

4
FακFακgμν

�
; ð2:7Þ

where Γμν is defined by

Γμν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨα

�
Rμν −

1

2
Rgμν

�

þ 4Rμα∇αΨν þ 4Rνα∇αΨμ

− 4gμνRαβ∇αΨβ þ 4Rβ
μαν∇αΨβ; ð2:8Þ

with

Ψμ ¼
dfðϕÞ
dϕ

∇μϕ: ð2:9Þ

The variation of the metric (2.5) with respect to the electric
potential leads to

∇αFαμ ¼ 2q2Aμϕ2; ð2:10Þ

while the Euler-Lagrange equation for the scalar field and
Maxwell electromagnetic field reads as

∇μ∇μϕ − ðm2 þ q2AμAμÞϕþ 1

2
f0ðϕÞR2

GB ¼ 0: ð2:11Þ

Note that different choices of the function fðϕÞ corre-
spond to different scalar GB gravity theories [22]. A
function like fðϕÞ ∼ 1 − e−ϕ

2

satisfies the conditions for
spontaneous scalarization for a trivial scalar field, namely,
f0ðϕ0Þ ¼ 0 and f00ðϕ0Þ > 0 [22]. So here, we choose

fðϕÞ ¼ λ2

2β
ð1 − e−βϕ

2Þ: ð2:12Þ

Note that for convenience we have incorporated the Gauss-
Bonnet coupling λ in the fðϕÞ function (2.12). Moreover,
we found that our results are slightly affected by the
parameter β, so we will set β ¼ 1 in the following study.
If we consider that the scalar field and the Maxwell field do
not backreact to the metric, then the Einstein equations
admit the planar Schwarzschild-AdS black hole as a
solution

ds2 ¼ −gðrÞdt2 þ 1

gðrÞ dr
2 þ r2ðdx2 þ dy2Þ; ð2:13Þ

where the metric function is
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gSðrÞ ¼
r2

L2
−
M
r
: ð2:14Þ

In the case where the scalar field does not backreact to the
metric, we get the Reissner-Nordström-AdS black hole as a
solution endowed with an electric potential

ΦðrÞ ¼ Q
rH

−
Q
r
; ð2:15Þ

where the metric function now is

gRNðrÞ ¼
r2

L2
−
2M
r

þ Q2

4r2
: ð2:16Þ

Thus, the Gauss-Bonnet curvature can be calculated with
the planar Schwarzschild-AdS metric gS or the Reissner-
Nordström-AdS metric gRN as

R2
GB ¼ 4

r2
½g0ðrÞ2 þ gðrÞg00ðrÞ�: ð2:17Þ

B. (In)stability analysis for a charged scalar field

A small scalar fluctuation on the background is governed
by the Klein-Gordon equation

�
□ − ðm2 þ q2AμAμÞ þ 1

2
f00ðϕ0ÞR2

GB

�
δϕ ¼ 0; ð2:18Þ

where □ is the d’Alambert operator. This equation defines
an effective mass term given by

m2
eff ¼ m2 −

q2ΦðrÞ2
gðrÞ −

λ2

2
R2

GB: ð2:19Þ

These small scalar fluctuations may break the Uð1Þ sym-
metry if the m2

eff is negative enough for long enough. This
mass becomes tachyonic and the fluctuations are unstable.
So, it is the effective mass that determines the qualitative and

quantitative behavior of the modes of the scalar fluctuations.
Themass of the blackhole can be expressed asMS ¼ r3h=2L

2

for the neutral background or can be expressed as
MRN ¼ ðL2Q2 þ 4L2r2h þ 4r4hÞ=8L2rh, for the charged
one. Note that the parameter rh corresponds to the horizon
of the black hole. Moreover, in both cases, by using (2.15)
for the electric potential, the effective mass (2.19)
can be expressed as a function of six parameters m2

eff ¼
m2

effðm; q; L;Q; λ; rÞ, wherewehave set rh ¼ 1 in both cases
which guarantees that r ¼ 1 is the largest root of the metric
function. Moreover, in the following discussion, we shall set
L ¼ 1 unless we assign it.
As we can see in Fig. 1 if the GB coupling λ is increased

the effective mass becomes more negative. We observe the
same behavior if the background metric is Schwarzschild-
AdS. The same behavior for the effective mass we observe
in Fig. 2 for the charge of the scalar field q and for the
charge of the black hole in Fig. 3. Then as we discussed in
the previous section, according to the gauge/gravity duality,
it is more easy for the scalar field to condense.
According to the gauge/gravity duality, for a condensate

to be formed on the boundary theory, the effective mass
should be below the Breitenlohner-Freedman (BF) bound,
i.e., for m2

eff < m2
BL. In our case, the (3þ 1)-dimensional

asymptotically AdS spacetime with AdS radius L ¼ − 3
Λ,

the BF bound ism2
BF ¼ − d2

4L2 ¼ − 9
4L2. So, the condition for

instability is

m2
eff < −

9

4L2
; ð2:20Þ

m2 −
q2ΦðrÞ
gðrÞ −

λ2

2
R2

GB < −
9

4L2
: ð2:21Þ

The scalar perturbation corresponds to a particular
perturbation of a thermal state of the CFT. The Hawking
temperature of the background is
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FIG. 1. Left: the effective mass m2
eff as a function of the coordinate z ¼ r − 1 outside the horizon (located at z ¼ 0) for coupling

constant λ ¼ 0, 0.05, 0.1, the event horizon is fixed as rH ¼ 1, and the other parameters are fixed as m ¼ 0.2; q ¼ 2; L ¼ 1; Q ¼ 1.
Right: the effective mass m2

eff for the Schwarzschild-AdS black hole for the same value of parameters.
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T ¼ g0ðrHÞ
4π

: ð2:22Þ

In the next section, we will try to understand where this
instability leads to. As we already discussed, in [40], it was
claimed that the spontaneous breaking of an Uð1Þ sym-
metry could lead to a superconducting layer formed outside
the horizon of a charged black hole. On the gravity sector,
this can be understood if the scalar field backreacts with the
background metric and spontaneously scalarizing it. This
can happen because the gravitational attraction is balanced
by the electromagnetic repulsion of the scalar field that
bounced off the AdS boundary and then a thin layer of
matter is formed outside the horizon of the black hole. In
the field theory on the boundary, the scalarization of the
background metric corresponds to the formation of a
condensate which breaks the gauge invariance of a gauge
field, scalarizing it in a sense.

C. (In)stability analysis for a neutral scalar field

The presence of the coupling of the scalar field to the GB
term introduces another term in the effective mass of the

scalar field in (2.19). Then it would be interesting to study
possible instabilities in the case that the scalar field is
neutral and the background metric is the Schwarzschild
anti–de Sitter black hole. The GB term is a high curvature
term, so it would be interesting to see if the gravitational
attraction works as counterbalance mechanism leading to
the scalarization of the bulk black hole and the formation of
a condensate on the boundary.
Consider a SAdS black hole

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2ðdx2 þ dy2Þ; ð2:23Þ

with gðrÞ ¼ −M
r þ r2

L2. To study the (in)stability of the scalar
field near the event horizon, we have to analyze the
effective potential and the time evolution. To this end,
we consider the time-dependent radial perturbation in the
background of the metric (2.23) as φ ¼ ϵϕðr; tÞ=r, and then
the Klein-Gordon equation under the tortoise coordinate
r� ¼

R
g−1dr takes the form
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FIG. 2. Left: the effective mass m2
eff as a function of the coordinate z ¼ r − 1 outside the horizon (located at z ¼ 0) for scalar charge

q ¼ 1.5, 2, 2.5, the event horizon is fixed as rh ¼ 1, and the other parameters are fixed as m ¼ 0.5; λ ¼ 0.1; L ¼ 1; Q ¼ 1. Right: the
effective mass m2

eff for the Schwarzschild-AdS black hole for the same value of parameters.
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FIG. 3. Left: the effective mass m2
eff as a function of the coordinate z ¼ r − 1 outside the horizon (located at z ¼ 0) for black hole

chargeQ ¼ 1.5, 2, 2.5, the event horizon is fixed as rh ¼ 1, and the other parameters are fixed asm ¼ 0.5; q ¼ 1; L ¼ 1; λ ¼ 0.1. Right:
the effective mass m2

eff for the Schwarzschild-AdS black hole for the same value of parameters.
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−
∂2ϕðr; tÞ

∂t2 þ ∂2ϕðr; tÞ
∂r2� − VðrÞϕðr; tÞ ¼ 0; ð2:24Þ

where the effective potential is given by

VðrÞ ¼ g

�
g0

r
þm2 −

2λ2

r2
ðg02 þ gg00Þ

�
; ð2:25Þ

from which the scalar mass together with the Gauss-
Bonnet term contributes to the effective mass, me, of the
perturbed scalar field, which we will formally define
in Eq. (3.3).
We exhibit the profile of the effective potential in the left

panel of Fig. 4. As is shown, when λ increases to some
critical value, there emerges the potential well. With the
growing of the coupling, the potential well becomes
deeper and larger. This behavior indicates that there exists
certain instability of the scalar field. With more careful
study, we find that the potential well emerges at the
coupling around λ ≈ 0.6. Meanwhile, in the right plot,
we show the effective potential for the flat Schwarzschild
background, i.e., L → ∞. It is obvious that the potential
well in AdS case is more larger and deeper. This implies
that comparing to the flat case, the instability brought by
the GB coupling for the planar black hole in AdS case
could occur easier.
Moreover, we obtain the time domain profile of the

scalar field by solving the time-dependent perturbation
equation at the radial distance r ¼ 1000. The results are
shown in the right panel of Fig. 5. Below a critical value of
the coupling, the scalar field decays with time, which
implies the stability of the scalar field. However, when the
coupling parameter λ increases over a critical value
λ ≈ 0.678, the scalar field grows up with time. This

behavior is consistent with the analysis of the effective
potential.

III. SCALARIZATION ANALYSIS AND
HOLOGRAPHY IN EINSTEIN-SCALAR-

GAUSS-BONNET THEORY

A. Signal of scalarization in the probe limit

From the analysis in above section, we know that the
scalar field could be unstable from dynamical analysis. On
the other hand, in asymptotical AdS space time, the
massive, real scalar field possesses a classical instability
when the effective mass is below the Breitenlohner-
Freedam bound [46], and in our study, it is m2

e < m2
BF ¼

− 9
4
where the effective mass me will be defined later.

In order to peer the possible fate of the scalar field, we
shall study the boundary behavior of the scalar field
induced by the GB coupling term in the fixed SAdS
background geometry. Then, the Klein-Gorgon equation
for ϕ ¼ ϕðrÞ under the background (2.13) is given by

=0
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FIG. 4. Left: the behavior of the effective potential for the AdS black hole as the function of r outside the horizon. Right: the effective
potential for the flat case with L → ∞ with the same value of parameters. Here we have set rh ¼ 1 and m2

e ¼ −2 without loss of
generalization.
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FIG. 5. The time domain profile of the scalar field at fixed radial
coordinate r ¼ 1000.
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ϕ00ðrÞ þ
�
2

r
þ g0ðrÞ

gðrÞ
�
ϕ0ðrÞ − m2

gðrÞϕðrÞ

þ λ2

2gðrÞR
2
GB

dfðϕÞ
dϕ

¼ 0; ð3:1Þ

where the Gauss-Bonnet term is evaluated in (2.17). Near
the horizon, the above equation implies

ϕ0 −
1

3
ð−3 −m2 − 18λ2e−βϕ

2Þϕ ¼ 0; ð3:2Þ

while at the infinity their behavior is

ϕðrÞ ¼ ϕ−

rΔ−
þ ϕþ
rΔþ

; ð3:3Þ

whereΔ� ¼ 3�
ffiffiffiffiffiffiffiffiffiffi
9þ4m2

e

p
2

and here we setm2
e ¼ m2L2 − 12 λ2

L2.
As we mentioned previously, when m2

e > −9=4, an
instability would occur for the scalar field. We shall set
m2

e ¼ −2 and numerically solve the equation (3.1).
The behavior of ϕ− versus the coupling strength is present
in Fig. 6. It is obvious that as the coupling parameter
increases to a critical value, λc ≈ 0.64, the ϕ− emerges and
enlarges rapidly.
Moreover, we show the profile of the scalar field in

Fig. 7. It is obvious that the scalar field becomes nonzero
when λ is larger than the critical coupling. Different
from the nonmonotonic behavior of ϕ−, the scalar at
the horizon monotonically increases as the coupling
parameter becomes larger. Similar behavior is also
observed in [22].
Since we are working in the probe limit, so the

emergence of nonzero ϕ− could be a strong signal of
spontaneous scalarization of the theory. Next, we will

explicitly construct the scalarized hairy solutions by
considering the backreaction of the scalar on the
Schwarzschild-AdS geometry.

B. Scalarization with backreaction and
the dual phase transition

1. Scalarized hairy black hole solution

In this section, we will construct the hairy solution with
the backreaction of the scalar field to the gravitational
system. To this end, we consider the ansatz,

ds2 ¼ 1

z2

�
−ð1 − zÞpðzÞUðzÞdt2 þ 1

ð1 − zÞpðzÞUðzÞ dz
2

þ VðzÞdx2 þ VðzÞdy2
�
; ð3:4Þ

where z ¼ rh=r, pðzÞ ¼ 1þ zþ z2, andUðzÞ and VðzÞ are
metric functions to be determined; thus, the horizon is
located at z ¼ 1 and the asymptotical boundary is at z → 0.
Then, the Klein-Gordon equation is

ϕ00ðzÞ þ
�
p0ðzÞ
pðzÞ þ

U0ðzÞ
UðzÞ þ

V 0ðzÞ
VðzÞ −

z − 2

zðz − 1Þ
�
ϕ0ðzÞ

þ 1

ðz − 1Þz2pðzÞUðzÞ
�
m2ϕðzÞ þ λ2

2

dfðϕÞ
dϕ

R2
GB

�
¼ 0;

ð3:5Þ

and the nonvanishing components of Einstein equations
are
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FIG. 6. The boundary condensate parameter ϕ− as a function of
the Gauss-Bonnet coupling constant λ.
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FIG. 7. The profile of the scalar field as the function of the
coordinate z ¼ rh

r here we set the horizon rh ¼ 1. We see that the
scalar field condensates near the horizon contributing to the black
hole hair for some intermediate λ.
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U0
�
2zðz − 1ÞpV2ðzV 0 − 2VÞ þ λ2

dfðϕÞ
dϕ

UM

�
þ U½ðz − 1Þz2Vð2pVV 0 − pV 02Þ

− 4zðz − 1ÞV3p0 þ 2pV3ð−6þ 4zþ ðz − 1Þz2ϕ02Þ − 2zpV2ðð3z − 4ÞV 0 − 2zðz − 1ÞV 00Þ�

þ λ2
dfðϕÞ
dϕ

U2

�
p0

p
M þ 4ðz − 1Þ2z4p2V 0ϕ0ð2V 00 − V 02Þ þ 8zðz − 1Þp2V3N

þ 2ðz − 1Þz3p2VV 02ðN þ 4ðz − 1Þϕ0Þ − 8ðz − 1Þz2p2V2ð2zðz − 1Þϕ0V 00 þ NV 0Þ
�
þ 2V3ð6 −m2ϕ2Þ; ð3:6Þ

V 02
�
ðz − 1Þz2pU þ z2

4
X

�
þ VV 0½2ðz − 1Þz2ðUp0 þ pU0Þ − 2zð3z − 4ÞpU − zX�

þ V2½12 − 2m2ϕ2 − 4zðz − 1ÞðUp0 þ pU0Þ þ X − 2pUð6 − 4zþ ðz − 1Þz2ϕ02Þ�; ð3:7Þ

V 00
�
−2ðz − 1Þz2pU þ 2ϕ0λ2

dfðϕÞ
dϕ

ð2ðz − 1Þðz − 2Þz3p2U2 − ðz − 1Þ2z4ðp2U2Þ0Þ
�

þ V 02

V

�
ðz − 1Þz2pU þ z2

12
X

�
þ V 0½2zðz − 2ÞpU − 2ðz − 1Þz2pU0 − 2Y�

þ V

�
−12þ 2m2ϕ2 þ 2pUð2ð3 − zÞ − ðz − 1Þz2ϕ02Þ þ 4zðz − 2ÞUp0 þ 2ðz − 1Þz2ð2p0U0 þ Up00Þ

þ 2zpð2ðz − 2ÞU0 − zðz − 1ÞU00Þ þ 4

z
Y

�
; ð3:8Þ

where

M ¼ 6ðz − 1Þ2p2Vϕ0ð4V2 − 4zVV 0 þ z2V2Þ;
N ¼ ðzþ 2Þϕ0 þ 2ðz − 1Þzϕ00;

X ¼ 12ϕ0λ2
dfðϕÞ
dϕ

½ðz − 1Þ2z2ðp2U2Þ0 − 2zðz − 1Þðz − 2Þp2U2�;

Y ¼ λ2
dfðϕÞ
dϕ

f½ðz − 1Þ2z4ϕ0ðU2p2Þ0�0 − 2ðz − 1Þz4ϕ0ðU2p2Þ0 −Qg;

Q ¼ 2z2p2U2½ðz2 − 2Þϕ0 þ zðz2 − 3zþ 2Þϕ00�: ð3:9Þ

It is easy to check that when UðzÞ ¼ VðzÞ ¼ 1 and ϕ ¼ 0,
the metric (3.4) is a solution of the above system which is
nothing but the SAdS background geometry.
The asymptotical AdS4 of the metric requires the

boundary condition Uðz ¼ 0Þ ¼ Uðz ¼ 0Þ ¼ 1, and the
scalar field behaves the same as (4.5), i.e., ϕðz → 0Þ ¼
ϕ−z3−

ffiffiffiffiffiffiffiffiffiffi
9þ4m2

e

p
=2 þ ϕþz3þ

ffiffiffiffiffiffiffiffiffiffi
9þ4m2

e

p
=2. We shall set the model

parameters the same as those in the probe limit and solve
the above differential equations group numerically.
By tunneling the coupling parameter λ, we find the

nonzero solution of the scalar hairy of black hole. The
profiles of the metric functions UðzÞ, VðzÞ and the non-
vanishing scalar field ϕðzÞ are shown in Fig. 8. It is obvious
that near the critical coupling, the UðzÞ and VðzÞ are close

to unit because the scalar hair starts to form. As λ increases,
UðzÞ and VðzÞ shift from unit which means that a new hairy
black hole solution forms. In the right plot for the scalar
field, we see that as the coupling increases, the scalar field
at the horizon increases first and then decreases.
According to AdS=CFT duality, the scalar field is dual to

a scalar operator in the boundary theory. ϕ− or ϕþ in (4.5)
is dual to the source, while the other is the vacuum
expectation value (VEV) of the operator in term of the
choice of the standard quantization or alternative one. Here
we choose the coefficient of higher order term, ϕþ, as the
source, i.e., ϕþ ¼ 0 and treat ϕ− as vacuum expectation
value in the dual theory. The VEV, ϕ− as a function of the
coupling parameter is plotted in Fig. 9. Similar to the case
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in the probe limit, as the coupling increases, ϕ− becomes
nonzero around 0.64, and it increases sharply to a maxi-
mum meaning a hairy black hole emerges. ϕ− would
decrease as we further increase the coupling; this may
be because the scalar field is too difficult to live around the
black hole due to so strong gravity.1

Our study shows that the GB coupling destabilizes the
SAdS planar black hole and a hairy black hole could form.
As we already mentioned, the formation of the hairy black
hole because of interaction between the scalar field and GB
curvature correction is apparently different from that in
the Abelian Higgs model [41]. Then we shall discuss the
differences both in the bulk gravity side and on the
boundary CFT side. On one hand, in the bulk gravity
side, the scalarization occurs because the GB coupling term
contributes to the effective mass of the scalar field, so that it
is possible to be lower than the BF bound and cause
instability even though only the gravitational force is
involved. While in the Abelian Higgs model, the nonzero
Uð1Þ gauge field could suppress the effective mass.

The formation of a hairy black hole as a result of this
instability was discussed in [40], and the gravitational
attraction and the electromagnetic repulsion are two com-
peting forces in the system. On the other hand, from the
viewpoint of the dual boundary theory, it is known that a
black hole in the gravity side is holographically dual to a
thermal state in the boundary field theory (CFT).
Consequently, the formation of hairy black hole in the
bulk can be interpreted as a certain phase transition
characterized by nonvanishing VEV emerged in the boun-
dary theory, and the GB coupling somehow mimics a
mechanism that leads to the phase transition. Since there is
no symmetry in this setup, so the scalarization could be
dual to certain quantum critical phase transition which
usually does not accompany with breaking of a symmetry.
Similar phase transition at finite temperature was holo-
graphically studied by adding the new coupling between
the scalar field and the Weyl curvature [47,48]. The
formation of a hairy black hole of Abelian Higgs model
is dual to holographic superconductor phase transition
[42,43]. Above a critical temperature, the VEV is zero
and the system is dual to a normal state, while below the
critical temperature, the VEV becomes nonzero and the
system is dual to a holographic superconducting state.

2. Holographic entanglement entropy as a probe

It is known that entanglement entropy (EE) is an
important physical quantum in quantum field theory. It
plays a crucial role in holographic framework, especially in
the further understanding of quantum gravity and phase
transition physics. It has been proposed that in holographic
framework, the EE for a subregion on the dual boundary is
proportional to the minimal surface in the bulk geometry,
for which is being called the Hubeny-Rangamani-
Takayanagi (HRT) surface [49], i.e., HEE is a well-known
geometrical description of EE in the dual boundary theory.
One of the most important applications of HEE and the
studies of HRT surfaces is to diagnose and study various
phase transitions, for instance, holographic superconduct-
ing phase transition [50–53], quantum phase transition
[54,55], confinement/disconfinement phase transition in
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FIG. 9. The boundary condensate parameter ϕ− as a function of
the coupling parameter λ. The condensate merges around λc ≈
0.64 which is the same as the results in the probe limit.
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FIG. 8. The profiles of the metric function U, V and the scalar function ϕ of the hairy black hole as the function of the coordinate
z ¼ rh

r .

1Due to the nonlinearity, the numerics would break down for
large coupling.
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QCD [56,57] and thermodynamic phase transition [58], and
so on.
In this subsection, we will probe the scalarized process

brought by the GB coupling by calculating the HEE of the
dual theory, which is one of the most important character-
istic scales of the boundary theory. Especially, we expect
that the HEE would be a good probe of scalarization, in the
sense it would characterize the phase transition in the dual
boundary theory.
We shall apply Ryu-Takayanagi proposal [49] to

calculate HEE of the sector. To this end, we consider
the subsystem A with a straight strip geometry described by

− l
2
≤ x ≤ l

2
; 0 ≤ y ≤ L, where l is the size of A and L is a

regulator which can be set to be infinity. Ryu and
Takayanagi proposed in [49] that the HEE SA is determined
by the radial minimal extended surface γA bounded by
A via

SA ¼ AreaðγAÞ
4GN

ð3:10Þ

in Einstein gravity. Then in [59], a general formula for HEE
was proposed in higher derivative gravity,

SA ¼ −2π
Z
Ξ
d2x

ffiffiffi
h

p ∂L
∂Rμνρσ

εμνερσ þ anomaly term

¼ −2π
Z
Ξ
d2x

ffiffiffi
h

p � ∂L
∂Rμρνσ

εμρενσ −
X
α

� ∂2L
∂Rμ1ρ1ν1σ1∂Rμ2ρ2ν2σ2

�
α

2Kλ1ρ1σ1Kλ2ρ2σ2

qαþ1

×½ðnμ1μ2nν1ν2 − εμ1μ2εν1ν2Þnλ1λ2 þ ðnμ1μ2εν1ν2 þ εμ1μ2nν1ν2Þελ1λ2 �
�
; ð3:11Þ

which includes the Wald entropy as the leading term and
the anomaly term of HEE corrected from extrinsic curva-
ture. Here qα is treated as “anomaly coefficients,” L is the
Lagrangian density of action shown in (2.5) for neutral
case, and h is determinant of the induced metric on the
extended surface Ξ which minimizes the functional SA. In
our model, due to the existence of the Gauss-Bonnet
coupling term, we shall employ the above proposal to
compute HEE for the dual theory, which is evaluated as

SA ¼ 1

4

Z
Ξ
dx2

ffiffiffi
h

p �
1 − fðϕÞ

�
2R − 4

�
Ra
a −

1

2
KaKa

�

þ 2ðRabRab − KaijKaijÞ
��

; ð3:12Þ

where Kaij is the extrinsic curvature tensor and Ka is
defined as Ka ≡ Kaijhij. It is noticed that in the above
expression, the terms explicitly relative with the extrinsic
curvature are the contribution from anomaly brought by
the GB coupling, while the remaining terms stem from the
Wald entropy in the proposal (3.11). Before we exhibit the
numerical result of SA, we shall refer to [59] and briefly
explain the notations in the above two formulas. The Greek
letters μ; ν; · · · are indices of four-dimensional bulk geom-
etry, and i; j; · · · are indices of two-dimensional extended
surface Ξ while the Latin letters a; b; · · · are as indices of
two-dimensional space orthogonal to Ξ. In terms of two

orthogonal unit vectors nðaÞμ , we define nμν ¼ nðaÞμ nðbÞν Gab

which projects to the induced two-dimensional metric
Gab in the xa directions. Then the tensor εμν could be

constructed as εμν ¼ nðaÞμ nðbÞν εab, where εab is the usual
Levi-Civita tensor and εμν is nothing but the usual Levi-
Civita tensor in the two orthogonal directions with all other
components vanishing.
When the coupling parameter λ is smaller than the

critical value, the SAdS black hole is the physically
favorable solution and the HEE SA0 is a constant which
is independent of the coupling. When λ increases to be
larger than the critical value, the scalarized hairy solution
emerges and the HEE starts to grow. This behavior is
present in Fig. 10, where we show the relation between the
difference ΔS ¼ SA − SA0 and the coupling parameter λ.
First, the critical coupling λc ≈ 0.64, which agrees with that
we obtained in previous study, can also be read from the
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FIG. 10. The difference of holographic entanglement entropy
ΔS ¼ SA − SA0 as a function of the GB coupling.
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jumping of HEE. Moreover, it is obvious that the HEE of
the hairy solution is larger than the SAdS solution. Since
HEE is a measure of degree of freedom in a system, the
scalar field should introduce new degree of freedom into
the boundary theory dual to hairy black hole, causing the
HEE increase after scalarization. It is worthwhile to point
out that this behavior of the HEE is quite different with that
in holographic superconductors, where the hairy super-
conducting state usually has less HEE than the normal state
because the emergence of cooper pairs in superconduting
state reduces the degree of freedom of the system; see, for
example, [50–53,60–66] and therein. Along with the
different mechanisms as we studied in last subsection, this
is another different feature between the phase transitions of
scalarization and holographic superconductor. Deep physi-
cal essence of those and more differences between them
deserve further efforts.
Moreover, scalarization means that at small distances

r > rh there is a formation of halo of matter. This is a
dynamical process and the only force is the gravitational
force. Figure 10 shows that the HEE first grows from λc and
then decreases until it is stabilized. This indicates that the
black hole acquired hair even though scalar field goes
inside the background black hole horizon until the black
hole is stabilized. Since this is a small scale process, the
dual boundary can only be described as a quantum physics
effect. From this perspective, we can again argue that the
sclarization we discuss could correspond to a certain
quantum phase transition; however, more effort should
be made for deep physics in this direction.

IV. HOLOGRAPHIC PHASE TRANSITION
IN EINSTEIN-SCALAR-GAUSS-BONNET
THEORY IN THE PRESENCE OF AN

ELECTROMAGNETIC FIELD

In this section, we will add the electromagnetic field into
the Einstein-scalar-Gauss-Bonnet theory and then the scalar
field becomes charged. According to the instability analysis
in Sec. II, the two different scalarization mechanisms
accommodate a wider and deeper effective mass, so this
part shall show us a picture on their combined effect on the
formation of hairy black holes. We shall investigate the
charged scalar field condensation in the probe limit in
which the matter fields will not backreact into gravity. So,
the background metric is the Schwarzschild-AdS planar
black hole shown in (2.13) and (2.14), and L and M
determine the Hawking temperature of the black hole,

T ¼ 3M1=3

4πL4=3 : ð4:1Þ

We expect a phase transition to occur at a certain critical
temperature of black hole, and this process according to
gauge/gravity duality corresponds to a holographic super-
conducting phase transition [42,43].

A. Holographic superconducting condensation

We then start from the theory with the action (2.5). We
set ϕ ¼ ϕðrÞ and A ¼ AtðrÞdt, so the equations of scalar
and electromagnetic field are shown as

A00
t ðrÞ þ

2

r
A0
tðrÞ −

2q2ϕðrÞ2
gðrÞ AtðrÞ ¼ 0; ð4:2Þ

ϕ00ðrÞ þ
�
2

r
þ g0ðrÞ

gðrÞ
�
ϕ0ðrÞ þ q2AtðrÞ2 −m2gðrÞ

gðrÞ2 ϕðrÞ

þ R2
GB

2gðrÞ
dfðϕÞ
dϕ

¼ 0; ð4:3Þ

where the Gauss-Bonnet term is evaluated in (2.17). Near
the horizon, the scalar and electromagnetic field are regular
so at the horizon r ¼ rh, for AtðrÞ to have finite norm,
AtðrhÞ ¼ 0, and Eq. (4.3) then implies

ϕ0ðrhÞ ¼
L2

3rh

�
m2 −

18λ2e−6ϕðrhÞ2

L4

�
ϕðrhÞ; ð4:4Þ

while at the infinity their behavior is

ϕðrÞ ¼ ϕ−

rΔ−
þ ϕþ
rΔþ

; AtðrÞ ¼ μ −
ρ

r
; ð4:5Þ

where Δ� ¼ 3�
ffiffiffiffiffiffiffiffiffiffi
9þ4m2

e

p
2

with m2
e ¼ m2 − 12λ2.

By setting L ¼ M ¼ q ¼ 1; m2
eL ¼ −2, we solve the

above equation via the boundary conditions. We obtain a
phase diagram λ − Tc in the left plot of Fig. 11. Tc is the
critical temperature of the holographic superconducting
phase transition, above which the normal black hole is
physically stable while below it the black hole is stabilized
in a superconducting state with nonvanishing ϕ−. In this
figure, we observe that the critical temperature Tc first
slightly increases as the GB coupling λ increases. When the
coupling goes to a critical value λcc ≈ 0.6339, Tc increases
dramatically and then becomes divergent. It implies that the
holographic superconducting phase transition only can
occur when λ < λcc and when λ ≥ λcc; a hairy black hole
does not form in the gravity sector while on the boundary
there is no any holographic superconducting phase.
This result is very interesting. It indicates that as the GB

coupling λ becomes larger than a critical value, the
gravitational attraction from the GB high curvature term
becomes stronger and the formation of the scalarized black
hole is not possible. A similar effect was observed in [67] as
well as [68–70] and therein. It was found that the strong
curvature effects outside the horizon of a five-dimensional
Gauss-Bonnet-AdS black hole, the holographic supercon-
ducting mechanism is less effective as the GB coupling is
increased.
It is noticed that in the limit of λ ¼ 0, from Eqs. (4.2) and

(4.3) we recover the s-wave superconductor model [42].
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In the right plot of Fig. 11, we depict the dependence of the
critical temperature on the charge of the scalar field. It can
be seen that as the charge is increased the critical temper-
ature also increases. With different couplings, we also
study the condensation of the scalar field below the

corresponding critical temperature, and the results are
shown in Fig. 12 remaining however smaller than its
critical value λcc. As the GB coupling increases, the
condensation gap is suppressed, meaning the copper pairs
are less in the dual boundary theory. We shall verify these
phenomena by studying the conductivity in the next
subsection.
Combining our observers in neutral and charged cases,

let us figure out the possible scalarized picture in Einstein-
scalar-Gauss-Bonnet gravity with a negative cosmological
constant. Above certain temperature, only the GB coupling
could play the role in the formation of scalar hair which is
dual to a certain quantum phase transition in the boundary
theory. While the temperature becomes lower than a critical
value, the holographic superconducting condensation par-
ticipates and we have the combined stronger effects on the
formation of hairy holes.

B. Optical conductivity

To compute the conductivity in the dual CFT as a
function of frequency, we need to solve the Maxwell
equation for fluctuations of the vector potential Ax. We
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FIG. 12. The condensation of scalar field as the function of the
temperature T=Tc with different couplings.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

Tc

1.5 2.0 2.5 3.0

0.12

0.14

0.16

0.18

0.20

q

Tc

FIG. 11. Left: the phase diagram λ − Tc. Right: the phase diagram q − Tc.
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will calculate the conductivity in the probe limit with a
charged scalar field in the background of Schwarzschild-
AdS black hole. The Maxwell equation at zero spatial
momentum and with a time dependence of the form e−iωt

gives

A00
xðrÞþ

g0ðrÞ
gðrÞA

0
xðrÞþ

�
ω2

gðrÞ2−
2q2ϕðrÞ2
gðrÞ

�
AxðrÞ¼0: ð4:6Þ

We will solve the perturbed Maxwell equation with
ingoing wave boundary conditions at the horizon, i.e.,
Ax ∝ gðrÞ−iω=3rh jr→rh . The asymptotic behavior of the

Maxwell field at large radius is Ax ¼ Að0Þ
x þ Að1Þ

x
r þ � � �.

Then, according to AdS=CFT dictionary, the dual source

and expectation value for the current are given by Ax ¼ Að0Þ
x

and hJxi ¼ Að1Þ
x , respectively. Then, the conductivity is

given by the Ohms law,

σðωÞ ¼ −
iAð1Þ

x

ωAð0Þ
x

: ð4:7Þ

The results of conductivity are shown in Fig. 13. We see
that as the coupling becomes stronger, the real part of σ
increases to unit for all frequency, which means that the
conductivity is weaker and finally the system is dual to a
metal at fixed temperature.
We can also explore the behavior of conductivity at very

low frequency. When T < Tc, the real part of the conduc-
tivity present a delta function at zero frequency and the
imaginary part has a pole, which is attributed to the
following Kramers-Kronig relations:

Im½σðωÞ� ¼ −
1

π
P
Z

∞

−∞

Re½σðω0Þ�
ω0 − ω

dω0: ð4:8Þ

More specifically, as ω → 0, the imaginary part behaves as
ImðσÞ ∼ ns=ω, and according to Kramers-Kronig relations,
the real part has the form ReðσÞ ∼ πnsδðωÞ. Here the
coefficient ns of the delta function is defined as the
superfluid density. By fitting data near the critical temper-
ature, we find that with various couplings, the superfluid
density has the behavior

ns ≃ C1Tcð1 − T=TcÞ; ð4:9Þ

which means that ns vanishes linearly as T goes to Tc. This
is consistent with that happens in the minimal coupling.

The various values of the coefficient C1 are listed in Table I.
We see that C1 decreases drastically to suppress the
superfluid density when the coupling is increased. This
property is consistent with the condensation shown in
Fig. 12 that the stronger coupling corresponds to lower
condensation gap.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we carried out a holographic realization of
the spontaneous scalarization in the Einstein-scalar-Gauss-
Bonnet gravity theory with a negative cosmological con-
stant. We first studied the stability of this theory with or
without the presence of an electromagnetic field. Perturbing
the background metric of a Schwarzschild-AdS or a
Reissner-Nordström-AdS black hole with planar horizons
by a probe scalar field, we calculated the effective mass.
We found that this effective mass becomes negative for
nonzero values of the charge of the scalar field and the
coupling λ of the scalar field to the GB term. We then
studied the holographic scalarization of the background
black holes in the presence of neutral and charged scalar
field, respectively.
In the case the scalar field is neutral, when the GB

coupling λ is tuned to be large enough, a hairy black hole
could form and we numerically construct the hairy solution
in the bulk theory. From gauge/gravity duality, the for-
mation of hairy black hole in the bulk corresponds to the
condensation becoming nonzero, and this could be treated
as certain holographic phase transition in the dual boundary
theory even though it occurs without any breaking of
symmetry. We then probe the phase transition by comput-
ing the λ-dependent vacuum expectation value of the dual
scalar operator and the entanglement entropy in the
boundary theory.
We know that a hairy black hole can be formed in AdS

space if a charged scalar field couples to a Maxwell field,
accompanying with spontaneous breaking of the Uð1Þ
symmetry in Abelian Higgs model [40]. This process
was described by a holographic superconducting phase
transition [42,43] in the boundary theory. However, appa-
rently, the formation of the hairy black hole because of GB
coupling in this model is different from that with charged
scalar. We have discussed the differences both from the
bulk side and on the boundary theory side. In the bulk side,
the occurrence of scalarization in our model stems from that
the GB coupling term could lower the effective mass of the
scalar field and cause instability, while in Abelian Higgs
model it is the nonvanishing Uð1Þ gauge field that
contributes a negative effect to the effective mass. In the
boundary theory, in our model, the tuning quantity is
the coupling parameter and the VEV is nonzero above
the critical value λc. Moreover, the phase transition should
be a quantum type because we do not have any symmetry
involved. However, the formation of a hairy black hole of
Abelian Higgs model is dual to holographic superconductor

TABLE I. The coefficient C1 of the superfluid density near the
critical temperature for different coupling.

λ 0 0.2 0.4 0.6 0.63 0.633 0.6339

C1 16.92 10.95 4.04 0.46 0.09 0.04 0.01
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phase transition which accompanies with the breaking of
Uð1Þ gauge symmetry. The tuning quantity is the temper-
ature of the theory, and above a critical temperature the
system is dual to a normal state with vanishing VEV while
it is dual to a holographic superconducting state.
Finally, we investigated the holographic scalarization of

the charged scalar field and it was found that the background
black holes are scalarized below a critical temperature. In the
probe limit, the temperature-dependent properties of the
scalar condensation were studied and the optical conduc-
tivity of superconducting phase transition was analyzed. It
was found that as the charge of the scalar field is increased
the critical temperature also increases. For the coupling of
the scalar field to theGB term λ, it was found that there exists
a critical value of λc beyond which a scalarized black hole
does not form in the gravity sector while on the boundary
there is no any holographic superconducting phase. This can
be understood from the fact that above λc the gravitational
attraction from the GB high curvature term becomes
stronger and the formation of the scalarized black hole is
not possible. Also, below λc the conductivity and the
superfluid density were calculated. We found that as λ
becomes stronger, reaching its critical value λc, the real part
of conductivity increases to unit for all frequency, which
means that the conductivity is weaker and finally the system
is dual to a metal at fixed temperature.
To conclude, the (in)stability analysis in Sec. II indicates

that the combined effect of two different scalarization
mechanisms (interaction between the scalar field and GB
curvature correction and interaction between the scalar and
the Uð1Þ electromagnetic field) accommodates a wider and

deeper effective mass to speed up the formation of hairy
black holes. Correspondingly, in the boundary theory, we
have shown that above certain critical temperature, only
certain phase transition intrigued by large enough GB
coupling could occur such that the scalar hair forms.
However, when temperature drops below a critical value,
the holographic superconducting condensation participates
and we have the combined stronger effects on the formation
of hairy black holes.
It would be interesting to investigate to what holographic

system on the boundary the formation of a condensation
corresponds without breaking a symmetry in the bulk. As
we already discussed, this may correspond to certain
quantum phase transition which occurs in the dual theory.
It is known that the coupling of the scalar field to the GB
term in flat spacetime can lead to a scalarized black hole
solution violating in this way the nonhair theorems.
Therefore, it would also be interesting to investigate
in the AdS spacetime the dynamics of the interplay between
the gravitational force displayed by the GB term and the
electromagnetic field in the formation of a scalarized black
hole solution.
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