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A new exact solution to the field equations in the Einstein-Gauss-Bonnet modified theory of gravity, for
a six-dimensional spherically symmetric static distribution of a perfect fluid source is presented. The
pressure isotropy equation is integrated after a form for the temporal potential proportional to the radius is
postulated to close the system of equations. For a specific choice of the coupling parameter it is
demonstrated that the matching of the interior and exterior spacetimes is explicitly achievable. The general
model has been tested to be physically acceptable in this framework using criteria extrapolated from the
standard four dimensional theory and after locating a suitable parameter space through fine-tuning. A
vanishing pressure hypersurface signifying a boundary exists and the speed of sound is subluminal
throughout the interior of the matter distribution. Furthermore, all energy conditions are satisfied. Finally,
the Chandrasekhar adiabatic stability bound is satisfied.
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I. INTRODUCTION

The case for considering higher dimensional gravita-
tional fields was made during the pioneering work of
Kaluza [1] and Klein [2] who introduced the idea of a 15
component metric tensor: four of which were connected to
the Maxwell field, one to a scalar field called a dilaton, and
the remaining ten to the usual four-dimensional spacetime.
The fact that extra dimensions could not be accessed
physically did not hamper investigations. The standard
explanation is that the extra spatial dimensions are topo-
logically curled as microscopic circles and are of negligible
magnitude compared to the Planck scale; however, they
are sufficient to influence the dynamical evolution of the
system. It must be noted that the Large Hadron Collider
experiment failed to confirm the existence of large scale
extra dimensions but did not rule out small scale extra
angular dimensions. Subsequent to Kaluza-Klein theory,
several other theories delved into higher dimensions includ-
ing brane-world cosmologies [3,4] and more recently
Lovelock gravity [5,6]. The former has been motivated by
developments in 10-dimensional string theory and its gen-
eralizationM theory, which requires up to 11 dimensions. A
notable five-dimensional advance at low energies is inherent
in the Dvali-Gabadadze-Porrati models [7]. Another impor-
tant development in the study of higher dimensional space-
times was the construction of a background spacetime by
Chamseddine [8,9] using Chern-Simons gauge theory,
which generated nontrivial perturbations. The action

constructed consisted of the Gauss-Bonnet, the Einstein
and the cosmological constant term.
Our interest in this article lies not only in higher

dimensional gravity but also higher curvature effects. In
particular the Lovelock [5,6] theory has been shown to be
the most general tensorial theory generating up to second
order equations of motion and consequently being totally
ghost free. Moreover, the standard requirements of the
Bianchi identities or diffeomorphism invariance are satis-
fied. The Lovelock lagrangian is constructed from scalar
invariants comprising quadratic forms of the Riemann
and Ricci tensors as well as the square of the Ricci scalar.
Amazingly all derivatives of order higher than 2 cancel off.
Another important feature of Lovelock gravity is that it
regains all known results of general relativity as higher
curvature effects are only dynamic from dimension 5
onwards and reduce to general relativity when the dimen-
sion is 4 or lower. To zeroth order the cosmological
constant term is regained. The second order Lovelock
polynomial gives the Einstein-Gauss-Bonnet (EGB) invari-
ant, which uncannily appears in the effective action
principle of low energy heterotic string theory [10].
Herein lies a further motivation to specialize to the EGB
Lovelock case in studying the impact of higher curvature
terms on astrophysical phenomena. It generates a string
theory inspired gravitational theory which should stand the
test in cosmology, galaxy formation as well as in astro-
physics. The last mentioned is what is of interest.
Following the work of Lovelock in the 1970s Boulware

and Deser [11] established the exterior five-dimensional
spacetime for static fluid spheres in 1985, and a year later
Wiltshire [12] not only extended the vacuum result to
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include the effects of the electromagnetic field but obtained
a general result for all spacetime dimensions. Both these
solutions are unique up to branch cuts. The nonlinearity of
the field equations prohibited the immediate location of
exact solutions for interior spacetimes that could be used
to model stellar structure. The first exact solutions for
five-dimensional perfect fluid spheres with isotropic
stresses were reported some 30 years after Wiltshire [12]
by [13–15]. Just prior to this Dadhich and coworkers [16]
proved that the Schwarzschild interior is universal in
Lovelock gravity and is independent of the spacetime
dimension. In other words the usual Schwarzschild metric
of Einstein gravity generates the most general incompress-
ible Lovelock star. A five-dimensional model proposed by
Kang et al. [17] was incomplete in that a further integration
was required to unlock the true dynamics of the star model.
For a variety of reasons six-dimensional spacetimes in

Einstein-Gauss-Bonnet theory are of greater interest than
five. Firstly it is well known that pure Lovelock gravity,
where the lagrangian consists solely of the Nth order
Lovelock terms and not the sum of terms up to N, that
in the odd dimension bounded objects do not occur due to a
generic failure of the pressure to vanish on a suitable
hypersurface. Moreover for some spacetimes such as Gödel
universes [18] and vacuum spacetimes [19], the odd
dimensional pure Lovelock terms are nondynamical or
kinematic. This is not necessarily true for general Lovelock
lagrangians with terms of all orders, but does expose a
potential defect in odd dimensional spaces. Of course, odd
dimensional Lovelock theory (not pure Lovelock) does
indeed admit compact objects [20,21]. Nevertheless the odd
dimensional case eliminates the contribution of a number
of terms in the field equations. For even dimensional pure
Lovelock gravity no such restrictions apply. The total effect
of all relevant higher curvature terms become evident in
six-dimensional EGB theory. To date, besides the universal
Schwarzschild interior solution, only one other exact
solution for six-dimensional EGB has been found [22].
This underscores the difficulty of finding exact solutions
given the presence of extra nonlinear terms in the stellar
structure equations. Note that a large number of articles
have focused on the seriously easier version of five
dimensional anisotropic EGB stars—usually the isotropic
system consists of three equations in four unknowns, but if
anisotropy is allowed then there are now five unknowns
making it trivial to write down exact “solutions” at will. The
problem can be weakened even further by introducing
charge in which case there are now six unknowns and up to
three a priori prescriptions are allowed. The challenge in
these weak mathematical problems is to test post facto if the
elementary physical conditions are met.
Another motivation to analyze extensions to the Einstein

theory is that the belief is that the observed accelerated
expansion of the universe is not a natural result of general
relativity. The Λ-CDM model in use relies on the existence

of dark matter to drive the expansion. Till now there has
been no experimental support for the existence of the
pervasive dark matter. An alternative idea is to modify the
standard theory geometrically. Some success has been
achieved with the fðRÞ theory of Starobinksy [23]; how-
ever, the caveat is that higher order derivatives arise and
these generate ghosts of the theory. The Lovelock paradigm
cannot claim any success in this problem yet, however, it
does have such potential. We examine the EGB amend-
ments to the Einstein field equations and we endeavor to
check its prospects in providing explanations to phenomena
such as stars and cold fluid planets. Not much work on
exact solutions has been reported in this framework
because of the complexity of the field equations.
Standard Einstein theory is known to comprise a com-

plex system of partial differential equations and locating
exact solutions which are physically relevant has proved to
be difficult. Following Schwarzschild’s two solutions in
1916, the next major advance was in 1939 with the Tolman
[24] eight classes of solutions due to a cunning rearrange-
ment of the equation of pressure isotropy. Indeed this
approach may be attempted in EGB as well, although the
equations are more complicated. Kuchowicz [25] provided
further methods for solving the field equations using
curvature coordinates and also by considering isotropic
coordinates. This approach also offers a route to solving
the EGB system and is currently being pursued. To date,
exact solutions are still being discovered using different
approaches available and presently some 127 exact sol-
utions for static spherically symmetric isotropic fluids are
known in Einstein gravity. The work has profited from
substantial advances in computing software. Delgaty and
Lake [26] show that only about 13% of these exact
solutions satisfy all the elementary physical requirements.
A comprehensive, albeit not exhaustive, list of exact
solutions may be found in [27].
The traditional approach to solving Einstein’s equations

for a static spherically symmetric distribution has been to
make an assumption for one of the gravitational potentials,
since the system of field equations has three equations in
four unknowns. This is an ad hoc technique that was
invoked in four-dimensional spacetime by Finch and Skea
[28] in correcting Duorah and Ray [29]. This work was
recently extended by Chilambwe and Hansraj [30] for the
higher dimensions. One would prefer adopting a physically
reasonable equation of state; however, this approach leads
to a dead end with an intractable differential equation.
Although it should be checked, but it is highly unlikely this
tactic will have any success with the more complicated
EGB equations. In our approach we speculate on a number
of possible potentials in the hope of finding an exact
solution. The solution reported herein is generally well
behaved physically; however, it does suffer the undesirable
presence of a singularity at the stellar center. Of course,
this singularity may be eliminated by supposing that our
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six-dimensional solution is enveloping another nonsingular
solution such as the Schwarzschild interior. Matching
across the inner core boundary and the interface with the
vacuum will then have to be achieved. However, we
concentrate on the behavior of the model elsewhere in
the interior of the hyperstar.
Our work is arranged as follows: in Sec. II, we very

briefly review rudiments of the Einstein-Gauss-Bonnet
theory. In the following Sec. III, we present the six-
dimensional line element and a transformation of the
Einstein-Gauss-Bonnet field equations to an equivalent
form by a coordinate redefinition. The exterior gravitational
field applicable to our study is derived in Sec. IV. Section V
details a new exact solution obtained by a prescription of
the spatial gravitational potential in order to solve the six-
dimensional EGB equations. Matching of the interior and
exterior spacetimes is dealt with in Sec. VI. A qualitative
physical analysis of the model is conducted in Sec. VII
for a suitable parameter space. Finally in Sec. VIII, we
conclude our investigation by summarizing and discussing
our major results.

II. EINSTEIN-GAUSS-BONNET GRAVITY

We require an adapted action, different from the Einstein
case, to generate the field equations in EGB gravity. The
Gauss-Bonnet action in six dimensions can be written as

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
ðR − 2Λþ αLGBÞ

�
d6xþ Smatter; ð1Þ

where the parameter α denotes the Gauss-Bonnet coupling
constant. The value of the dimensionful coupling constant,
which goes as 1=ðlÞ2 with l being length in the Planck
scale, has been the subject of debate with the expectation
that it should be very small in comparison with the Planck
length. On the other hand, in their analysis of constraints
on Gauss-Bonnet gravity in dark energy cosmologies
Amendola et al. [31] motivate a value for α of the order
up to 1023. Additionally, it is not even settled whether α
should necessarily be positive. In the paper just mentioned,
the authors acknowledge that the prospects of constraining
α experimentally are encouraging although to date it has
not been achieved yet. Note that the Lagrangian is quadratic
in the geometric quantities: Ricci tensor, Ricci scalar,
and the Riemann tensor. Observe that the equations of
motion for this action are second order and quasilinear
which are distinguishing features in EGB gravity. This is an
advantage when compared with other modified theories
of gravity. The Gauss-Bonnet term LGB is dynamic for
n > 4 but does not contribute to the gravitational field
when n ≤ 4.
The field equations in EGB gravity can be written as

Gab þ αHab ¼ Tab; ð2Þ

where we have adopted the metric signature ð−þþþþþÞ
in what is to follow. The tensor Gab is the Einstein tensor in
six dimensions. The Lanczos tensorHab can be expressed in
the form

Hab ¼ 2ðRRab − 2RacRc
b − 2RcdRacbd þ Rcde

a RbcdeÞ

−
1

2
gabLGB: ð3Þ

The Lovelock term of order 2 is defined by

LGB ¼ R2 þ RabcdRabcd − 4RcdRcd; ð4Þ

also known as the Gauss-Bonnet term that is present in the
action of low energy string theory. The presence of the LGB
term substantially increases the complexity of the field
equations in comparison to the already complicated
Einstein equations.

III. FIELD EQUATIONS

The six-dimensional line element for static spherically
symmetric spacetimes is taken as

ds2 ¼ −e2νdt2 þ e2λdr2 þ r2dΩ2; ð5Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2 þ sin2θ×
sin2ϕsin2ψdη2 and where νðrÞ and λðrÞ are arbitrary
functions representing the gravitational field with
coordinates ðxaÞ ¼ ðt; r; θ;ϕ;ψ ; ηÞ. We use the timelike
comoving fluid velocity ua ¼ e−νδa0 with the property
uaua ¼ −1. The matter field is defined by the energy
momentum tensor

Tab ¼ ðρþ pÞuaub þ pgab; ð6Þ

which is characteristic of perfect fluids and where ρ and p
are the energy density and isotropic pressure, respectively.
Then the EGB field equations (2) when expanded

amount to the system

ρ ¼ 1

e4λr4
½ð4r3e2λ − 48αrð1 − re2λÞÞλ0

− 6r2e2λð1 − e2λÞ þ 12αðe2λ − 1Þ2�; ð7Þ

p ¼ 1

e4λr4
½ð1 − e2λÞð6r2e2λ − 48αrν0 þ 12αe2λ − 12αÞ

þ 4r3e2λν0�; ð8Þ

p ¼ 1

e4λr2
ðð12αðe2λ − 1Þ þ r2e2λÞðν00 þ ðν0Þ2 − ν0λ0Þ

þ 24αν0λ0Þ þ 1

e4λr3
ðð3r2e2λ þ 12αðe2λ − 1ÞÞ

× ðν0 − λ0Þ þ 3re2λð1 − e2λÞÞ; ð9Þ
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in the canonical spherical coordinates ðxaÞ. Eliminating α
yields the stellar structure equations of Einstein gravity in
six dimensions. Note that the system (7)–(9) consists of
three field equations in four unknowns which is similar to
the standard Einstein case for spherically symmetric perfect
fluids. However, the nonlinearity in the system (7)–(9) has
now greatly increased because of the presence of the EGB
coupling parameter α. The presence of terms containing α
makes the system more complex and difficult to solve in
general.
We attempt to rewrite the system (7)–(9) in a simpler

form by utilizing new coordinates due to Durgapal and
Bannerji [32]. We make the coordinate change x ¼ Cr2,
e2ν ¼ y2ðxÞ and e−2λ ¼ ZðxÞ. Equations (7)–(9) now
assume the form

12βxðZ − 1Þ _Z − 4x2 _Z − 6xðZ − 1Þ þ 3βðZ − 1Þ2
x2

¼ ρ

C
;

ð10Þ

ð24βxð1− ZÞ þ 8x2ÞZ _yþ ðZ − 1Þð6xþ 3βð1− ZÞÞy
x2y

¼ p
C
;

ð11Þ

4x2Zðxþ 3β½1 − Z�Þÿ
þ 2xðx2 _Z þ 3β½ð1 − 3ZÞ _Zx − 2Zð1 − ZÞ�Þ_y
þ 3ðβð1 − ZÞ þ xÞð _Zx − Z þ 1Þy ¼ 0; ð12Þ

where the condition (12) is the equation of pressure
isotropy in six-dimensional EGB theory and we have
redefined β ¼ 4αC. It has been written as a linear second
order differential equation in y (if Z is a known quantity).
This is the distinctive advantage of the coordinate trans-
formation. An equivalent form of the condition of pressure
of isotropy is

½x2ð2x_yþ 3yÞ þ 3βxð2x_yþ y − ð6x_yþ yÞZÞ� _Z
− 3β½4x2ÿ − 4x_y − y�Z2 þ ½xð4x2ÿ − 3yÞ
þ 6βð2x2ÿ − 2x_y − yÞ�Z þ 3ðxþ βÞy ¼ 0; ð13Þ

which may lend itself to finding exact solutions.
Equation (13) is a nonlinear first order differential in Z
(if y is a known quantity). Note that (13) is an Abel
differential equation of the second kind and only few exact
solutions are known for isolated cases. We want to find
exact solutions to the generalized pressure isotropy con-
ditions (12) and (13) in the presence of α. When α ¼ 0 we
find that (12) reduces to the simpler form

4x2Zÿþ 2x2 _Z _yþ3ðx _Z − Z þ 1Þy ¼ 0; ð14Þ

which is the pressure isotropy condition in six-dimensional
Einstein gravity.

IV. EXTERIOR SOLUTION

The exterior vacuum solution is already known and for
six dimensions can be deduced from the solution of
Wiltshire [12]. However, we compute it in our coordinates
in order to complete the matching later. It is well known
that vacuum metrics have the general structure

ds2 ¼ −Fdt2 þ 1

F
dr2 þ r2dΩ2; ð15Þ

for some function F and which in our context translates to
y ¼ ffiffiffiffi

Z
p

as a relationship between the metric potentials.
Substituting into (13) gives the differential equation

3β − 3Zð2β þ 2βx2Z̈ − βx _Z þ xÞ − 6βx2 _Z2 þ 6βx2Z̈

þ 2x3Z̈ þ 3xðx − βÞ _Z þ 3βZ2 þ 3x ¼ 0 ð16Þ

governing the spatial potential. Equation (16) has the
solution

Z ¼ 1þ x
3β

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ

c1
x
5
2

r �
; ð17Þ

which is unique up to branch cuts. Wiltshire [12] expressed
the exterior metric in the form

F ¼ 1þ R2

8κ2α̃

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32κ2α̃GM

R5

s !
; ð18Þ

where κ2 ¼ 4πG (G being the gravitational constant) and
α̃ ¼ α�ðd − 3Þðd − 4Þ where d is the spacetime dimension
and α� is the Gauss-Bonnet coupling used by Wiltshire.
The potential in (17) reduces to the Wiltshire solution upon
setting the values of the integration constants as c2 ¼ 1 and

c1 ¼ 4GM
ffiffiffi
C

p
3α and harmonizing the coupling constants

α ¼ 2κ2α̃
3

¼ 4κ2α�. Note that the presence of two integration
constants is only an artifact of the nonlinear system of
equations—we have elected to use the second order
pressure isotropy equation; hence, two independent con-
stants arise. We could also have used the vanishing of the
energy density (10) that is ρ ¼ 0 to generate the solution as

Z ¼ 1þ R2

12α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 144α2c3ffiffiffiffi

C
p

R5

s !
; ð19Þ

reverting to β ¼ 4αC, setting r ¼ R at the boundary
interface and where c3 is the sole integration constant.
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In this case we set c3 ¼ 2κ2α̃GM
ffiffiffi
C

p
9α2

to obtain the form of
Wiltshire (18).
At this point it may be worthwhile clarifying what we

mean by the radius of the hypersphere. In standard Einstein
general relativity it is known that the matching of the
second fundamental form across a common boundary
surface is tantamount to the vanishing of the pressure at
a finite radius. These are the well-known Israel-Darmois
junction conditions. However, whether this holds true in
EGB theory is unknown to date. Davis [33] generated the
conditions to accomplish such a matching; however, the
tangible resolution of these conditions to the spherically
symmetric case has still not been realized. It is still
unknown whether the vanishing of the pressure along a
boundary hypersurface does indeed determine the radius of
the sphere. Consequently, the matching we have achieved
later is independent of this and instead relies on the
matching of the metric potentials across a common hyper-
surface for a finite radial value r ¼ R. However, we do
make the assumption of a pressure-free hypersurface to
locate a specific radial value that allows us to construct a
specific stellar model to test the other remaining physical
requirements.
The active gravitational mass m of a d-dimensional star

is calculated with the help of the formula m ¼ R ρrd−2dr
where ρ is the energy density of the star. As will be seen
later, it is generally not easy to evaluate this integral in
light of the complexity of the density expressions in six-
dimensional EGB gravity. However, the mass as measured
by an observer situated at spatial infinity may be estab-
lished with the aid of the Boulware-Deser or neutral
Wiltshire exterior solution. In fact to complete a stellar
model it will be necessary to express all constants of
integration in terms of the mass M and radius R of the
distribution of perfect fluid. This will indeed be achieved as
will be demonstrated later for a specific case of the
coupling parameter α ¼ β=4C.

V. NEW EXACT INTERIOR SOLUTION

In this section, we postulate a form for the metric
potential form y to solve the Abel differential equation

of the second kind (13). A number of exact solutions have
been found with this approach in Einstein gravity. For
example, following the discovery of the Schwarzschild
exterior and interior metrics and the constant potential
Einstein universe, the next significant advance in locating
exact solutions to the nonlinear field equations came from
Tolman [24], who displayed five new classes of solutions
arising out of a cunning rearrangement of the pressure
isotropy condition. Since then various ad hoc prescriptions
of one of the potentials have resulted in some 120 exact
solutions of the Einstein field equations for perfect fluid
spheres have emerged [26]. While it would be desirable to
seek solutions based on physical grounds, such as by
imposing an equation of state, such an approach has failed
even in the simpler Einstein gravity theory, so it is not
expected to hold much promise in the current EGB context
with several new higher curvature terms contributing to the
nonlinearity in the equations. In light of this we explore
choices of potentials that lead to the location of an exact
solution.
Consider the metric potential stipulation y ¼ ffiffiffi

x
p

in (13).
We obtain the real valued solution

ZðxÞ ¼ 1

36

�
hffiffiffi
23

p
Q
þ 81

ffiffiffi
23

p
Q

h
þ 3x

B
þ 27

�
; ð20Þ

and two complex valued solutions

ZðxÞ ¼ �
�
9Bþ x
12B

−
ð1 − i

ffiffiffi
3

p Þh
72

ffiffiffi
23

p
Q

−
9ð1þ i

ffiffiffi
3

p ÞQ
4
ffiffiffi
43

p
h

�
; ð21Þ

where we have set

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2x3 − 1458Q3 þ j3

q
and

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2x3Þ2 − 2916Q5x3

q
:

Note that A is an integration constant and we have put both
B ¼ 1

4
β and Q ¼ AB3 for ease of referenīce. Inserting the

solution (20) into (10)–(11), the energy density and the
pressure are given by

ρ

C
¼ ½B2jð486hþ 5

ffiffiffi
2

3
p

x3Þh − 90x2h2 þ 52488
ffiffiffi
4

3
p

ðA2B7Þ2x3 − 54
ffiffiffi
2

3
p

A3B11x3ð54hþ
ffiffiffi
2

3
p

x3Þ
− 54

ffiffiffi
2

3
p

AB5jð81hþ
ffiffiffi
2

3
p

x3Þ þ
ffiffiffi
2

3
p

ðAB4Þ2ð5x6hþ 39366
ffiffiffi
2

3
p

jÞ�=216Bx2jh2; ð22Þ
p
C
¼½ð13122

ffiffiffi
4

3
p

Q4−54
ffiffiffi
4

3
p

Qj−5
ffiffiffi
2

3
p

jhþQ2ð162h−5
ffiffiffi
2

3
p

x3Þh−54
ffiffiffi
2

3
p

Q3ð27hþ
ffiffiffi
2

3
p

x3Þþ90ðAB2Þ2x2h2Þ�=216A2B5x2h2;

ð23Þ

respectively, while the expressions
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ρ − p
C

¼ ½ð5 − 8748QxÞðAB6Þ2
ffiffiffi
2

3
p

hx2 þ 2ð6561
ffiffiffi
4

3
p

Q − 729
ffiffiffi
2

3
p

hÞAB9jh − 52488
ffiffiffi
4

3
p

ðA2B9Þ2x2

þ ð162B2h − 90x2hþ 5
ffiffiffi
2

3
p

B2x3ÞB4jh�=108B5jh2x2; ð24Þ
ρþ p
C

¼ ½1944
ffiffiffi
4

3
p

A4B13x3 þ 486
ffiffiffi
4

3
p

A2B7jþ 6Bjh2 −
ffiffiffi
2

3
p

A3B10x3ð
ffiffiffi
2

3
p

x3 − 108hÞ −
ffiffiffi
2

3
p

AB4jð54hþ
ffiffiffi
2

3
p

x3Þ�=2x2jh2;
ð25Þ

3ρþ 5p
C

¼ ½157464
ffiffiffi
4

3
p

ðAB3Þ6x3 − 162
ffiffiffi
2

3
p

ðAB3Þ5x3ð54hþ
ffiffiffi
2

3
p

x3Þ − 270
ffiffiffi
4

3
p

AB3j2

þ ðAB2Þ2hðB2jð2268hþ 5
ffiffiffi
2

3
p

ð3x3 − 5ÞÞ þ 90hð5j − 3Þx2Þ − 25
ffiffiffi
2

3
p

hj2

þ 3
ffiffiffi
2

3
p

ðAB3Þ4½−108
ffiffiffi
2

3
p

ðAB3Þ3jð189hþ 4
ffiffiffi
2

3
p

x3Þ�=216A2B5h2jx2 ð26Þ

will be helpful in analyzing the energy conditions later. Note that setting α ¼ 0 in (10) with the potential choice Z ¼ 1þ kx
yields constant density ρ ¼ −10kC, where k is constant. This matches to the four-dimensional Schwarzschild interior
metric. Dadhich et al. [16] proved that this result holds independent of the spacetime dimension. Our calculation
corroborates that of Dadhich et al. in six-dimensional EGB gravity. Observe that this model does not allow us to express the
isotropic pressure as a function of the energy density, that is, the equation of state may not be readily established for this
model. Utilizing (10) and (11), the expression for sound speed is computed to be

dp
dρ

¼ ½ð2916Q − x3Þh6ð6jh2 þ 1944
ffiffiffi
4

3
p

Q4x3 þ 486
ffiffiffi
4

3
p

Q2j −
ffiffiffi
2

3
p

Qjð54hþ
ffiffiffi
2

3
p

x3Þ

−
ffiffiffi
2

3
p

Q3x3ð
ffiffiffi
2

3
p

x3 − 108hÞÞ�=4A4B12½12050326889856
ffiffiffi
4

3
p

Q7x3 − 9x9jh2 − 4860Q4
ffiffiffi
4

3
p

x12

− 1033121304
ffiffiffi
2

3
p

Q6x3ð1134hþ 19
ffiffiffi
2

3
p

x3Þ þQx6jð52488h2 − 135
ffiffiffi
2

3
p

x3hþ
ffiffiffi
4

3
p

x6Þ
þ 177147Q5ð7128

ffiffiffi
2

3
p

x6hþ 629856x3h2 þ 65
ffiffiffi
4

3
p

x9 þ 12754584
ffiffiffi
4

3
p

jÞ
− 486Q4ð516560652

ffiffiffi
2

3
p

jh − 81
ffiffiffi
2

3
p

x9hþ 314928x6h2 þ 21789081
ffiffiffi
4

3
p

x3jÞ
− 9Q2x3ð17496

ffiffiffi
2

3
p

x3jhþ x9h2 þ 9565938jh2 þ 378
ffiffiffi
4

3
p

x6jÞ þQ3ð889632234
ffiffiffi
2

3
p

x3jh − 135
ffiffiffi
2

3
p

x12hþ 65610x9h2

þ 27894275208jh2 þ
ffiffiffi
4

3
p

x15 þ 7617321
ffiffiffi
4

3
p

x6jÞ�: ð27Þ

The adiabatic stability index is found, with the help of (23), (25), and (27), to be of the form

κ ¼ ½27jh6ð
ffiffiffi
2

3
p

Qjð54hþ
ffiffiffi
2

3
p

x3Þ − 6jh2 − 1944
ffiffiffi
4

3
p

Q4x3 þ
ffiffiffi
2

3
p

Q3x3ð
ffiffiffi
2

3
p

x3 − 108hÞ
− 486

ffiffiffi
4

3
p

Q2jÞ2�=A6½B18ðQ2ð5
ffiffiffi
2

3
p

x3 − 162hÞhþ 5
ffiffiffi
2

3
p

jh − 90ðAB2Þ2x2h2 − 13122
ffiffiffi
4

3
p

Q4

þ 54
ffiffiffi
2

3
p

Q3ð27hþ
ffiffiffi
2

3
p

x3Þ þ 54
ffiffiffi
4

3
p

QjÞð12050326889856
ffiffiffi
4

3
p

Q7x6 − 9x12jh2

− 1033121304
ffiffiffi
2

3
p

Q6x6ð1134hþ 19
ffiffiffi
2

3
p

x3Þ þQx9jð52488h2 þ
ffiffiffi
4

3
p

x6 − 135
ffiffiffi
2

3
p

x3hÞ
þ 177147Q5x3ð7128

ffiffiffi
2

3
p

x6hþ 629856x3h2 þ 65
ffiffiffi
4

3
p

x9 þ 12754584
ffiffiffi
4

3
p

jÞ
− 486Q4x3ð516560652

ffiffiffi
2

3
p

jh − 81
ffiffiffi
2

3
p

x9hþ 314928x6h2 þ 10
ffiffiffi
4

3
p

x12 þ 21789081
ffiffiffi
4

3
p

x3jÞ
− 9Q2x6ð17496

ffiffiffi
2

3
p

x3jhþ x9h2 þ 9565938jh2 þ 378
ffiffiffi
4

3
p

x6jÞ þQ3x3ð65610x9h2
− 135

ffiffiffi
2

3
p

x12hþ 889632234
ffiffiffi
2

3
p

x3jhþ 27894275208jh2 þ
ffiffiffi
4

3
p

x15 þ 7617321
ffiffiffi
4

3
p

x6jÞÞ�; ð28Þ

and we finally evaluate the surface redshift, which is then given by the simple expression

z ¼ 1ffiffiffi
x

p − 1: ð29Þ

We have been successfully obtained necessary quantities for our model to be examined. In the following section we shall
analyze our solution and test the model for physical meanings using the standard requirements.
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VI. MATCHING

In order to complete the six-dimensional Einstein-Gauss-
Bonnet stellar model, it is necessary to perform the
appropriate matching with the exterior at the radial value
r ¼ R, R being the bounding radius, which will determine
the integration constant as well as the parameters inserted.
In other words we require A, B, and C in terms of the mass
M and radius R of the hypersphere. Recall that B actually
contains the coupling constant α and an extra constant C
introduced in our coordinate transformation. The model we
have constructed can be represented by the line element

ds2 ¼ −xdt2 þ 36

�
V þ 81

V
þ 3x

B
þ 27

�
−1
dr2 þ r2ðdΩ2Þ;

ð30Þ

where we have put V ¼ hffiffi
2

3
p

Q
to simplify the expressions.

A comparison of the components of this line element with
the vacuum solution (19) allows us to determine the
required constants and parameters. The matching of the
g00 components gives the equation

X ¼ 1þ X
3β

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

X5=2

r �
; ð31Þ

where we have replaced X ¼ CR2 to make the calculations
transparent. After some simplifications the algebraic
equation

3βð3β − 2ÞX5=2 þ 6βð1 − 3βÞX3=2 þ 9β2X1=2 ¼ M ð32Þ

results. Effectively, (32) is a quintic for which no general
solution is known. However, it may be observed that on
setting β ¼ 2

3
, Eq. (32) reduces to a cubic equation and the

real valued solution may be written in the form

X ¼ 1

6

�
W þ 4

W
þ 4

�
; ð33Þ

where we have put W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M2þ3

ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M4−64M2

p
−323

p
22=3

.
Backtracking this allows us to establish the constant C
in the form

C ¼ ðW þ 2Þ2
WR2

ð34Þ

in terms of the massM and radius R of the sphere. We now
consider matching the g11 components. Comparing the line
element (30) with the exterior metric (19) requires a
solution of the equation

36

�
V þ 81

V
þ 12X

β
þ 27

�
¼ 1þ X

3β

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

X5=2

r �
ð35Þ

at r ¼ R and recalling B ¼ 1
4
β ¼ αC. The solution of the

quadratic type Eq. (35) has the form

V ¼
−2913β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2913β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
X1=2 þ X2

q
þ 1295XÞ2 − 3779136β2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
X1=2 þ X2

q
− 1295X

216β
ð36Þ

for all values of β. Note that the resolution of C in terms of M and R was only possible for β ¼ 2
3
; hence, the coupling

constant α has the value

α ¼ 1

6C
¼ WR2

6ðW þ 2Þ2 ð37Þ

in terms of the stellar massM and radius R in this model. By writing capital letters for the equivalent small letters to indicate
that we are working at the boundary r ¼ R, we have

V ¼ Hffiffiffi
23

p
Q
; where H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðCR2Þ3 − 1458Q3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2ðCR2Þ3Þ2 − 2916Q5ðCR2Þ3

q
3

r
ð38Þ

from (23). Solving for Q in (38) gives the remarkably compact form

Q ¼ C3R6V
ð729þ VÞ2 ð39Þ

in terms of V and C and effectively in terms of M and R via (36). The matching is now complete with all parameters and
integration constants expressed in terms of the total mass and radius of the hypersphere as measured by an observer at
spatial infinity.
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VII. QUALITATIVE PHYSICAL ANALYSIS

We require that matter distribution be well behaved and
the metric potentials to be regular. Now observing that we
have obtained a complicated form for our matter variable
y ¼ ffiffiffi

x
p

, we then make choice of parameters d ¼ −4.3,
α ¼ 2004, and C ¼ −1. These particular values allow us to
examine our results using graphical plots of the physical
quantities to ensure a compatible model. Figure 1 displays
the energy density that is a monotonically decreasing
function everywhere within the matter distribution. The
pressure in Fig. 2 displays a similar behavior as the energy
density inside the boundary and decreasing monotonically.
Most importantly we observe a pressure-free hyper-
surface occurring at approximately x ¼ 312 radial units.
Additionally, the criterion: ð0 < dp

dρ < 1Þ for the speed of
sound is satisfied as plotted in Fig. 3 and shows that
the speed of sound is never superluminal within the
distribution. It is crucial also to study how the energy
conditions behave in the interior of the star. The applicable
energy conditions are these: weak energy condition
(ρþ p ≥ 0; ρ ≥ 0), strong energy condition (ρþ p ≥ 0;
ðd − 3Þρþ ðd − 1Þp ≥ 0), and the dominant energy

condition (ρ − jpj ≥ 0; ρ ≥ 0). That these conditions are
all satisfied within the star is demonstrated by Fig. 4. The
graphical representation of the decreasing surface redshift
in the interior as radius increases is given by Fig. 5. For
radial values greater than 0.1 the redshift is less than 2 units
and is therefore consistent with redshift values associated

FIG. 4. Plot of energy conditions (ρ − p, ρþ p, and 3ρþ 5p)
versus radial coordinate (x).

0 100 200 300 400 500
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FIG. 1. Plot of energy density (ρ) versus radial coordinate (x).

FIG. 2. Plot of pressure (p) versus radial coordinate (x).

FIG. 3. Plot of sound speed ðdpdρÞ versus radial coordinate (x).

FIG. 5. Plot of surface redshift (z) versus radial coordinate (x).
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with neutron stars [34,35]. It is shown in Fig. 6 that the
Chandrasekhar adiabatic stability index ratio, ρþp

p
dp
dρ >

4
3
, is

satisfied as demanded. One negative feature of this model is
that a singularity at the stellar center is unavoidable.
Nevertheless, given the rarity of exact solutions in this
area, the positive features of the model cannot be dis-
counted. In the standard Einstein theory it is not uncommon
to remove central singularities by utilizing a core of well-
behaved, perfect fluid surrounded by a spacetime such as is
reported here. This of course introduces a new common
hypersurface requiring further matching, which we do not
pursue at this time, save to mention that the singularity may
be adequately dealt with.

VIII. DISCUSSION

We have constructed an exact model for spherical
distributions of perfect fluids in the Einstein-Gauss-
Bonnet theory of gravitation by solving the associated
equation of pressure isotropy. The prescribed simple form
for the temporal metric potential y ¼ ffiffiffi

x
p

allowed for the
solution of the second order ordinary differential equation
in elementary functions. The exact solution enabled a study
of the impact of the higher curvature terms on the evolution
of the hypersphere of perfect fluid matter for an appropriate
parameter space. This solution was subjected to a battery of
tests for physical applicability and found to be reasonably
well behaved. For the selected parameter space, adiabatic
stability and causality were guaranteed. In addition all the
energy conditions were satisfied. The use of plots assisted
in verifying the compliance with the basic physical require-
ments. In general it is extremely difficult to find exact
solutions for compact objects in higher curvature gravity
due to the added complexity of the defining equations and it
is pleasing that an explicit solution was located. The
pleasing astrophysical behavior of the solution suggests
that the higher curvature corrections to the standard theory
may hold promise in resolving other problems, such as in
cosmology, where general relativity appears to require
modification.
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