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We study spherically symmetric black hole solutions in a four-parameter Einstein-Cartan-type class of
theories, called “torsion bigravity.” These theories offer a geometric framework (with a metric and an
independent torsionfull connection) for a modification of Einstein’s theory that has the same spectrum as
bimetric gravity models. In addition to an Einsteinlike massless spin-2 excitation, there is a massive spin-2
one (of range κ−1) coming from the torsion sector, rather than from a second metric. We prove the existence
of three broad classes of spherically symmetric black hole solutions in torsion bigravity. First, the
Schwarzschild solution defines an asymptotically-flat torsionless black hole for all values of the
parameters. [And we prove that one cannot deform a Schwarzschild solution, at the linearized level,
by adding an infinitesimal torsion hair.] Second, when considering finite values of the range, we find that
there exist non asymptotically flat torsion-hairy black holes in a large domain of parameter space. Third, we
find that, in the limit of infinite range, there exists a two-parameter family of asymptotically flat torsion-
hairy black holes. The latter black hole solutions give an interesting example of non-Einsteinian (but still
purely geometric) black hole structures which might be astrophysically relevant when considering a range
of cosmological size.
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I. INTRODUCTION

The new observational windows opened by the detection
of the gravitational wave signals emitted during the
coalescence of binary black holes (BHs)[1], and by the
imaging of the close neighborhood of supermassive BHs
[2], offer the unprecedented possibility to probe the strong-
field regime of gravity, and notably the structure of BHs.
Einstein’s theory of general relativity (GR), has, so far,
been found to be in excellent quantitative agreement with
all gravitational-wave data [3]. In particular, all the current
gravitational-wave observations are compatible with the
specific properties of the BHs predicted by GR.
BHs in GR are rather simple objects whose physical

properties are encoded in only two1 parameters: their mass
and their spin. This “no-hair” property of pure (isolated)
GR BHs (in four spacetime dimensions) [4–6] has been
extended to many cases where BHs interact with simple
field models, such as a scalar field with non-negative
energy density [7], or a massive vector field [8,9]. In spite
of its theoretical appeal, the no-hair property of BHs is a
hindrance to planning and interpreting strong-field tests of
gravity involving BHs. Indeed, most discussions of exper-
imental tests of gravity are guided, and motivated, by the
existence of modified gravity theories making alternative
predictions in various regimes [10–12]. But, many of the

traditionally considered alternative theories of gravity
modify GR by adding degrees of freedom (notably scalar
or vector) that are, a priori, submitted to the no-hair
property, so that BH solutions in most theories are expected
to be identical to those in GR.2

This motivates one to look for loopholes in the existing
no-hair theorems, and to search for theoretical models
allowing for “hairy” BHs, i.e., BHs that differ from the GR
ones by supporting some regular field structure, though
they possess the defining property of a BH, namely the
presence of a regular horizon in an asymptotically flat
spacetime metric. There are not many examples of modi-
fied theories of gravity containing such (sufficiently stable)
hairy BHs.
A first type of hairy BHs was found in a class of extended

tensor-scalar theories involving a coupling between the
scalar and the Gauss-Bonnet invariant [14–17]. A second
type of hairy BHs was found in certain classes of ghost-free
[18] bimetric gravity theories [19]. A pioneering work on
BHs in ghost-free bimetric theories [20] constructed hairy
BHs having an anti–de Sitter type asymptotics, but found as
only asymptotically flat BH the Schwarzschild solution. The
existence, besides the Schwarzschild solution, of asymp-
totically flat BHs with massive graviton hair was later

1We do not consider here the possibility of adding an electric
(or magnetic) charge.

2However, Ref. [13] has emphasized that even in such cases,
the BH perturbations in modified theories will generally be
different from the GR ones, and will lead to different observable
predictions.
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established in Ref. [21]. See Refs. [22,23] for more
discussion of these hairy BHs.
The existence of such BHs endowed with massive

graviton hair was unexpected because Bekenstein [9]
had proven a no-hair theorem for massive spin-2 fields.
However, his proof had assumed that the squared mass of
the spin-2 field, say κ2, was much larger than the curvature
tensor (measured, say, by Rh ≡ 1=r2h where rh denotes the
BH areal radius). And indeed, the hairy BHs found in
bimetric gravity [21,23] only exist when the squared mass
is smaller than the horizon curvature. The precise upper
bound for the existence of hairy BHs, κ2 < 0.767Rh (or
κrh < 0.876) was found to correspond to the lower bound
on κrh for the stability of the Schwarzschild solution
considered as a (codiagonal [24]) solution of bimetric
gravity [25,26].
The aim of the present paper is to investigate BH solutions

within torsion bigravity. The latter theory is a specific four-
parameter class of geometric theories of gravitation that
generalize the Einstein-Cartan theory [27–29]. The basic
idea of this generalization of GR is to consider the metric,
and a metric-preserving affine connection, as a priori
independent fields (first-order formalism). The connection
is restricted to preserve the metric, but is allowed to have
a nonzero torsion. The original Einstein-Cartan(-Weyl-
Sciama-Kibble) [27–32] theory used as basic (first-order)
field action the curvature scalar of the affine connection.As a
consequence the torsion tensor, Ti½jk� ¼ −Ti½kj�, was alge-
braically determined by its (quantum) fermion spin-density
∼ 1

2
ψ̄γiγ½jγk�ψ , so that the first-order actionwas equivalent to

a second-order (purely metric) action containing additional
“contact terms” quadratic in the torsion source [30].
In the more general class of Poincaré gauge theories

[33,34], one considers field actions involving termsquadratic
in the torsion, as well as in the curvature tensor of the affine
connection. In such generalized Einstein-Cartan theories the
torsion becomes a dynamical field which propagates away
from the material sources. However, most of these theories
contain ghost excitations (carrying negative energies), or
tachyonic ones (having negative squared masses). The most
general ghost-free and tachyon-free (around Minkowski
spacetime) theories with propagating torsion were obtained
in parallel work by Sezgin and van Nieuwenhuizen [35,36],
and by Hayashi and Shirafuji [37–40].
The ghost-free and tachyon-free, generalized Einstein-

Cartan theories delineated in Refs. [35–40] always
contain an Einsteinlike massless spin-2 field, together with
some (generically) massive excitations coming from the
torsion sector. It was emphasized in Refs. [41–44] that a
specific subclass of such ghost-free and tachyon-free
propagating-torsion theories is similar to bimetric gravity
theories [19] in containing only3 two types of excitations:

an Einstein-like massless spin-2 excitation, and a massive
spin-2 one. The purely geometric origin of the massive
spin-2 additional field (contained among the torsion com-
ponents, rather than through a second metric) makes such
theories (dubbed “torsion bigravity” in Ref. [44]) an
attractive alternative to the usually considered bimetric
gravity models. The properties of linearized perturbations
of (torsionless) Einstein backgrounds in torsion bigravity
have been studied in Refs. [41,42]. An exact self-accel-
erating torsionfull cosmological solution of the model of
Refs. [41,42] (comprising also a massive pseudoscalar
excitation) was found in Ref. [45], and its linearized
perturbations were studied in Refs. [46–48].
The study of the properties of torsion bigravity, in the

nonlinear regime, has started only recently [44,49]. In
particular, spherically symmetric strongly self-gravitating
star models were constructed in Ref. [44]. Spherically
symmetric solutions of torsion bigravity were shown to
enjoy remarkable properties: (i) they have the same number
of degrees of freedom as their analogs in bimetric gravity
[44]; (ii) even when the (microscopic) spin-density source
of torsion vanishes, macroscopic torsion fields are indi-
rectly generated by the usual, Einstein-like energy-momen-
tum tensor Tμν, and (iii) one can construct an all-order
weak-field perturbation expansion where no denominators
involving the mass κ of the spin-2 field ever appear [49]
(absence of a Vainshtein radius [50]).
Here, we continue the investigation of strong-field sol-

utions of torsion bigravity by looking for (spherically
symmetric) BH solutions. We already know from previous
works [37,41,42] that the vacuum BH solutions of GR are
also exact (torsionless) solutions of torsion bigravity. The
issue at stake iswhether, besides theGRBHs, there also exist
(at least in some parameter range) BHs endowed with
massive torsion hair. The existence of asymptotically flat
hairyBHs in bimetric gravity [21,23] suggest they could also
exist in torsion bigravity (at least if κrh is sufficiently small).
Bimetric gravity also exhibits (for unrestricted values of κrh)
hairy BHs with regular horizons, but with nonflat (anti–de-
Sitter-like) asymptotics [20]. We might therefore expect to
find similar solutions within torsion bigravity.

II. ACTION OF TORSION BIGRAVITY

The action of torsion bigravity, here considered without
coupling to matter, reads

STBG½eiμ; Aijμ� ¼
Z

d4x
ffiffiffi
g

p
L; ð2:1Þ

where g≡ − det gμν, and where the Lagrangian is4

3Actually, Refs. [41–43] considered a more general model
containing also a massive pseudoscalar excitation.

4We use a mostly plus signature. Latin indices i; j; k;… ¼ 0,
1, 2, 3 (moved by the Minkowski metric ηij) denote Lorentz-
frame indices, while Greek indices μ; ν;… ¼ 0, 1, 2, 3 (moved by
the metric gμν) denote spacetime indices.
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L ¼ λ

1þ η
Rþ ηλ

1þ η
F þ ηλ

κ2

�
FðijÞFðijÞ −

1

3
F2

�
: ð2:2Þ

This action is a functional of two independent fields: (i) a
vierbein eiμ (with associated metric gμν ≡ ηijeiμejν), and
(ii) an independent metric-preserving connection Ai

jμ. The
condition to be metric-preserving is algebraically embodied
in the SO(3,1) nature of the connection: Aijμ ¼ −Ajiμ,
where Aijμ ≡ ηisAs

jμ.
The Lagrangian Eq. (2.2) is made of three5 contributions:

(i) the usual (Einstein-Hilbert) scalar curvature R≡ R½g� of
gμν; (ii) the scalar curvature F≡ F½A� of the connection
Ai

jμ; and (iii) a contribution quadratic in the Ricci tensor
Fij½A� of the connection Ai

jμ. In Cartan’s notation (with
connection one-forms Ai

j ¼ Ai
jμdxμ), the curvature two-

form of the connectionAi
j is F i

j ¼ dAi
j þAi

k ∧ Ak
j. Its

frame components are denoted Fi
jkl ≡ F i

jμνðAÞekμelν. The
corresponding Ricci tensor and scalar curvature are then
defined as FijðAÞ≡ Fk

ikj and FðAÞ≡ ηijFij. In the third
contribution to the action, Eq. (2.2), FðijÞ ≡ 1

2
ðFij þ FjiÞ

denotes the symmetric part of the Ricci tensor of A.
The torsion bigravity Lagrangian, Eq. (2.2), contains two

dimensionful parameters, λ and κ, and one dimensionless
one, η. The parameter λ is related to the usual gravitational
coupling constant G0 associated with massless spin-2
exchange via

λ ¼ 1

16πG0

; ð2:3Þ

while κ denotes the mass (or rather the inverse range) of the
massive spin-2 excitation contained in the torsion:

κ ≡m2: ð2:4Þ

The dimensionless parameter η measures the ratio between
the couplingGm of the massive spin-2 field andG0, namely
η ¼ 3

4
Gm
G0
. (See Refs. [42,44] for more details.) As the

coupling constant λ enters the action (2.1), (2.2) as an
overall mutiplicative factor, it will drop out of the vacuum
field equations.
The vierbein eiμ defines a unique torsionless (and metric-

preserving, ωijμ ¼ −ωjiμ) connection ωi
j ≡ ωi

jμdxμ, via
the usual Cartan equation dθi þ ωi

j ∧ θj ¼ 0, where θi ≡
eiμdxμ is the coframe. The difference between the affine
connection Ai

jμ and the torsionless (Levi-Civita) connec-
tion ωi

jμðeÞ is called the contorsion tensor

Ki
jμ ≡ Ai

jμ − ωi
jμðeÞ: ð2:5Þ

The frame components Ki
jk ≡ ekμKi

jμ of the contorsion
tensor are in one-to-one relation with the frame components
of the torsion tensor Ti½jk� ¼ −Ti½kj� via the relation Ti½jk� ¼
Kijk − Kikj [with inverse Kijk ¼ 1

2
ðTi½jk� þ Tj½ki� − Tk½ij�Þ].

III. STATIC SPHERICALLY SYMMETRIC
METRICS AND CONNECTIONS

In the present paper, we look for static spherically
symmetric BH solutions of torsion bigravity. As discussed
in Ref. [44], the geometrical structure of static spherically
symmetric solutions is described by four radial variables.
Two variables, ΦðrÞ and ΛðrÞ, describe the spacetime
metric in a Schwarzschildlike coordinate system. Namely,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3:1Þ

This metric naturally defines a corresponding coframe6

θî ¼ eîμdxμ as

θ0̂ ¼ eΦdt; θ1̂ ¼ eΛdr;

θ2̂ ¼ rdθ; θ3̂ ¼ r sin θdϕ: ð3:2Þ

The most general (static, spherically symmetric, parity-
preserving) torsionful connection in such a spacetime is
described by two additional radial functions, VðrÞ and
WðrÞ, parametrizing the following frame components of
the connection Aî

ĵ k̂:

VðrÞ≡ A1̂
0̂ 0̂ ¼ þA0̂

1̂ 0̂;

WðrÞ≡ A1̂
2̂ 2̂ ¼ A1̂

3̂ 3̂ ¼ −A2̂
1̂ 2̂ ¼ −A3̂

1̂ 3̂: ð3:3Þ

Besides the components Eqs. (3.3), a general spherically
symmetric connection has also nonvanishing components
coming directly from the use of a polar-type frame (with a
Schwarzschild-like radial coordinate):

A2̂
3̂ 3̂ ¼ −A3̂

2̂ 3̂ ¼ −r−1 cot θ: ð3:4Þ

The latter components are universal, and therefore coincide
with the corresponding frame components of the Levi-
Civita connection ωî

ĵ k̂. By contrast, the frame components

of ωî
ĵ k̂ corresponding to the nontrivial components

Eqs. (3.3) read

ω1̂
0̂ 0̂ ¼ ω0̂

1̂ 0̂ ¼ Φ0e−Λ;

ω1̂
2̂ 2̂ ¼ ω1̂

3̂ 3̂ ¼ −r−1e−Λ: ð3:5Þ

As a consequence, the contorsion tensor has only two
nonvanishing frame components, namely

5A fourth contribution, c34F½ij�F½ij�, can be added, but does not
contribute in the spherically symmetric sector considered here. 6For clarity, we sometimes add a hat on frame indices.
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K1̂
0̂ 0̂ ¼ K0̂

1̂ 0̂ ¼ V − e−ΛΦ0;

K1̂
2̂ 2̂ ¼ K1̂

3̂ 3̂ ¼ W þ r−1e−Λ: ð3:6Þ

The four radial variables ΦðrÞ, ΛðrÞ, VðrÞ, andWðrÞ, fully
describe the geometric structure of a general static, spheri-
cally symmetric Einstein-Cartan spacetime.

IV. STATIC, SPHERICALLY SYMMETRIC
VACUUM FIELD EQUATIONS

The general field equations of torsion bigravity are linear
in the second-order derivatives of eiμ and Ai

jμ. [See, e.g.,
Refs. [42,46,48] for the explicit form of these general field
equations.] Here, we consider spherically symmetric, static
vacuum solutions of torsion bigravity. It was proven in
Ref. [44], that the corresponding field equations are similar
to the field equations of spherically symmetric ghost-free
bimetric gravity [19] in that its general exterior spherically
symmetric solution only involves three physically relevant
integration constants. This was proven by showing that the
field equations for the four variables ΦðrÞ, ΛðrÞ, VðrÞ, and
WðrÞ (several of which involve second derivatives) could
be reduced to a system of three first-order ordinary
differential equations (ODEs) for three variables.
Let us recall that a similar result holds in ghost-free

bimetric gravity. Namely, it was shown [20] that the field
equations of ghost-free bimetric gravity are essentially
encoded in a system of three first-order ODEs for the
three variables NðrÞ, YðrÞ, and UðrÞ. [Here, NðrÞ denotes
e−ΛðrÞ ¼ 1=

ffiffiffiffiffiffi
grr

p
, while YðrÞ and UðrÞ denote two varia-

bles parametrizing the second metric fμν.] See Eqs. (5.7) of
Ref. [20]. After finding a solution of these three ODEs, one
can algebraically compute the ratio f00=g00, as well as the
variable (where a prime denotes a radial derivative d=dr)

FðrÞ≡Φ0ðrÞ; ð4:1Þ

from which one obtainsΦðrÞ ¼ 1
2
lnð−g00Þ by a quadrature,

ΦðrÞ ¼
Z

drFðrÞ þ const: ð4:2Þ

Therefore, the general exterior spherically symmetric
solution of bimetric gravity is parametrized by the three
integration constants involved in solving the system of
three first-order ODEs for NðrÞ, YðrÞ, andUðrÞ. The fourth
integration constant involved in the quadrature (4.2) is
physically irrelevant because it can be absorbed in a
rescaling of the coordinate time t.
Torsion bigravity leads to a similar situation. The field

equations of torsion bigravity obtained by varying the
action (2.2), considered as a functional ofΦðrÞ,ΛðrÞ, VðrÞ,
and WðrÞ, originally lead to four equations involving both
the first derivatives, Φ0ðrÞ, Λ0ðrÞ, V 0ðrÞ, W0ðrÞ, and the
second derivatives Φ00ðrÞ, V 00ðrÞ, andW00ðrÞ. However, this

system can be simplified, and reduced to a system of first-
order ODEs by introducing as auxiliary variables suitable
combinations of the first derivatives Φ0ðrÞ, V 0ðrÞ, and
W0ðrÞ. More precisely, it was found in Refs. [44,49] that
the only source of second derivatives in the field equations
is the presence in the Lagrangian (2.2) of the square of the
quantity

π̄ ¼ 1

κ2

�
∇V þ∇W þ VW þW2 −

1

r2

�
; ð4:3Þ

where ∇V and ∇W are shorthand notations for the
following combinations of first-order derivatives:

∇V ≡ e−Φ−ΛðeΦVÞ0 ¼ e−ΛðV 0 þΦ0VÞ; ð4:4Þ

∇W ≡ e−Λ
ðrWÞ0
r

¼ e−Λ
�
W0 þW

r

�
: ð4:5Þ

Similarly to the transformation from a usual quadratic-in-
velocities LagrangianLðq; _qÞ¼ 1

2
m _q2þAðqÞ _qþBðqÞ (lead-

ing to second-order equations of motion) to its Hamiltonian
versionLnewðq; p; _qÞ ¼ p _q − 1

2m ðp − AðqÞÞ2 þ BðqÞ (lead-
ing to first-order equations of motion), one can use the
auxiliary,momentumlike variable π̄, Eq. (4.3), to reformulate
torsion bigravity as a first-order system for the five variables

ΦðrÞ; LðrÞ≡ eΛðrÞ; VðrÞ;WðrÞ; π̄ðrÞ: ð4:6Þ
Note that, henceforth, we work with the variable

LðrÞ≡ eΛðrÞ ¼ ffiffiffiffiffiffi
grr

p
; ð4:7Þ

instead ofΛðrÞ. See Secs. III and IVofRef. [49] for details on
the construction of the so-obtained first-order actionZ

drLnewðΦðrÞ;LðrÞ;VðrÞ;WðrÞ; π̄ðrÞ;Φ0ðrÞ;V 0ðrÞ;W0ðrÞÞ

ð4:8Þ
and for the explicit form of the corresponding five first-order
field equations

EΦ ¼ 0; EL ¼ 0; EV ¼ 0; EW ¼ 0; Eπ̄ ¼ 0; ð4:9Þ
where EΦ ≡ e−ΦδLnew=δΦ, etc.
The five field equations (4.9) have several remarkable

features. A first feature of these five field equations (due to
the multiplication of each field equation by a factor e−Φ) is
that all the explicit occurrences ofΦðrÞ disappear, so that the
field equations only involve the variable FðrÞ≡Φ0ðrÞ,
Eq. (4.1). A second simple feature is that [after multiplying
them by suitable powers of LðrÞ] the five field equations are
polynomials in the four variables LðrÞ; VðrÞ;WðrÞ; π̄ðrÞ,
and are linear inΦ0ðrÞ ¼ FðrÞ; L0ðrÞ; V 0ðrÞ;W0ðrÞ; π̄0ðrÞ. A
third feature of the field equations (discovered inRef. [49]) is
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that, when formulating them in terms of the variable π̄,
defined as in Eq. (4.3), they admit a well-defined massless
limit κ → 0. [This feature will allow us below to construct
BH solutions in the κ → 0 limit.]
In addition, the most important feature of the field

equations (4.9) is encapsulated in the following facts.
First, the variational equation linked to LðrÞ, defined as

EL ≡ −
3ð1þ ηÞ

2λ
L2e−Φ

δLnew

δL
; ð4:10Þ

is linear in F ¼ Φ0ðrÞ, and polynomial in LðrÞ; VðrÞ;
WðrÞ; π̄ðrÞ. Second, the linear combination

EV−W ≡ EV − EW ≡ 3ð1þ ηÞ
4ληr

e−Φ
�
δLnew

δV
−
δLnew

δW

�

ð4:11Þ
is also linear in F ¼ Φ0ðrÞ, and polynomial in LðrÞ;
VðrÞ;WðrÞ; π̄ðrÞ. We can use the two algebraic equations,

ELðF; L; V;W; π̄Þ ¼ 0;

EV−WðF; L; V;W; π̄Þ ¼ 0; ð4:12Þ
to (algebraically) solve for two variables among the five
variables F; L; V;W; π̄. [Note that FðrÞ is considered as an
auxiliary variable to be solved for. The value of the metric
function ΦðrÞ is then obtained as a further step, via the
quadrature (4.2).] Then, after replacing the two chosen
variables (together with their first derivatives) in the
remaining three independent field equations among
Eqs. (4.9), say EΦ ¼ 0, EV ¼ 0, Eπ̄ ¼ 0, one ends up with
a system of three ODEs for the remaining three variables.
Alternatively, by completing the three equations EΦ ¼ 0,
EV ¼ 0, Eπ̄ ¼ 0 by the derivatives of the two algebraic
constraints (4.12), we could get a system of five first-order
ODEs in the five variables F; L; V;W; π̄, which is linear in
their derivatives F0ðrÞ; L0ðrÞ; V 0ðrÞ;W0ðrÞ; π̄0ðrÞ. The radial
evolution defined by the latter system would then preserve
the vanishing of the two constraints (4.12), which must be
imposed on the initial conditions.
The explicit forms of the two algebraic constraints (4.12)

read

AE1 ≡ EV−W ¼ 6þ 3rF − 3rLV þ 6rLW

þ π̄ð1þ ηÞ½−1þ rF − rLðV þWÞ�;
AE2 ≡ EL ¼ 3þ 6rF þ 3r2ηL2WðW − 2VÞ

þ L2ð1þ ηÞ½−3þ 2ηπ̄ þ κ2r2ηπ̄2

− 2r2ηπ̄VW − 2r2ηπ̄W2�: ð4:13Þ
In previous works [44,49] we used the two algebraic
constraints (4.13) to eliminate the variables F and
L ¼ eΛ, thereby ending up with a system of three first-
order ODEs for the three variables V, W, π̄. In the present
work, we found more convenient to use the two constraints

(4.13) to eliminate F and V. This leads to a simpler system
of three ODEs for L,W, π̄ because the two equations EV−W
and EL are easily seen to be linear in F and V.
At the end of the day, we have rational expressions for F

and V in terms of L, W, π̄, say,

F ¼ FsolðL;W; π̄; r; η; κ2Þ;
V ¼ VsolðL;W; π̄; r; η; κ2Þ; ð4:14Þ

and a system of three ODEs for L, W, π̄, say

L0 ¼ DLðL;W; π̄; r; η; κ2Þ;
W0 ¼ DWðL;W; π̄; r; η; κ2Þ;
π̄0 ¼ Dπ̄ðL;W; π̄; r; η; κ2Þ: ð4:15Þ

The right-hand sides of the ODEs (4.15) are rational
functions of their main arguments L, W, π̄, as well as of
r; η; κ2. [The same holds for FsolðL;W; π̄; r; η; κ2Þ and
VsolðL;W; π̄; r; η; κ2Þ.] The explicit expressions of Fsol,
Vsol, DL, DW, and Dπ̄ are given in the Appendix.
We shall further discuss below the mathematical nature

of the rational ODE system (4.15). Let us only mention at
this stage that it is parallel to the (rational) system of three
first-order ODEs for NðrÞ, YðrÞ, and UðrÞ obtained in
ghost-free bimetric gravity [20]. As emphasized in
Ref. [44], this suggests that torsion bigravity is free of
the Boulware-Deser ghost [51]. Indeed, studies of generic,
ghostfull theories of massive gravity [52] have shown that
the Boulware-Deser ghost is visible in spherically sym-
metric solutions via the presence of a supplementary
integration constant (which would correspond to a fourth
integration constant in our torsion bigravity context).

V. BOUNDARY CONDITIONS AT THE
HORIZON OF A BLACK HOLE

We are interested in BH solutions. Torsion bigravity is a
geometric framework that generalizes GR only by allowing
for the presence of an additional tensor field in spacetime,
namely the torsion tensor, T (with coordinate components
Tλ½μν�), or, equivalently, the contorsion tensor, K (with
coordinate components Kλ

μν). Therefore, the boundary
conditions to be imposed consist of two elements:
(i) one must require the existence of a regular event horizon
(i.e., a smooth, null hypersurface whose spatial sections
have a finite area), and (ii) the contorsion tensorK must be
intrinsically regular on the event horizon. In our simple,
static spherically symmetric context, the first condition
amounts to requiring that there be a value rh of the areal
radial coordinate r such that there exist smooth Taylor-
Maclaurin expansions of the type
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−g00ðrÞ ¼ e2Φ ¼ a1ðr − rhÞ þ a2ðr − rhÞ2 þ � � �
1

grrðrÞ
¼ e−2Λ ¼ 1

L2
¼ b1ðr − rhÞ þ b2ðr − rhÞ2 þ � � �

ð5:1Þ
The condition on −g00ðrÞ implies a corresponding expan-
sion for FðrÞ ¼ Φ0ðrÞ of the form

FðrÞ ¼ 1

2ðr − rhÞ
�
1þ a2

a1
ðr − rhÞ þ � � �

�
: ð5:2Þ

Given a metric satisfying the boundary conditions (5.1) we
need to express the condition that the tensor field K be
regular on the horizon. Our set of ODEs (4.15) was
formulated in terms of the components Aî

ĵ k̂ of the con-

nectionAwith respect to the particular coframe θî ¼ eîμdxμ

defined in Eq. (3.2). The latter frame is singular on the
horizon because it is constructed by diagonalizing themetric
in the singular, Schwarzschild type coordinates t; r; θ;ϕ.
With respect to this frame, the only nonvanishing compo-
nents of the contorsion tensor K≡A − ω are the two
components listed in Eq. (3.6). The latter components are
components of the intrinsically regular tensor field K with
respect to the singular frame θî. We can derive the behavior
of the components ofKwith respect to such a singular frame
by writing the transformation between the singular frame θî

and some horizon-regular frame, say θīreg. The latter trans-
formation can be obtained in two steps: (i) constructing a
particular horizon-regular coordinate system, and (ii) defin-
ing a regular coframe within the latter horizon-regular
coordinate system. A convenient solution to step (i) is to
construct an (ingoing) Eddington-Finkelstein type coordi-
nate system, say t̄; r̄; θ̄; ϕ̄, with t̄ ¼ tþ r�, r̄ ¼ r, θ̄ ¼ θ,
ϕ̄ ¼ ϕ, where r� ¼

R
dreΛ−Φ. It is then easy to construct a

particular coframe, say θ0̄reg, θ1̄reg, θ2̄reg, θ3̄reg from the regular
metric components ḡμ̄ ν̄ in the t̄; r̄; θ̄; ϕ̄ coordinate system.
One then finds that the transformation between the original
(singular) coframe θî and the regular one θīreg is a Lorentz
boost in the t − r 2-plane, say

θ0̄reg ¼ γðrÞðθ0̂ þ vðrÞθ1̂Þ;
θ1̄reg ¼ γðrÞðvðrÞθ0̂ þ θ1̂Þ;
θ2̄reg ¼ θ2̂;

θ3̄reg ¼ θ3̂; ð5:3Þ

where γðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðrÞ

p . For instance, the construction we

sketched yields the specific values

γðrÞ ¼ L2ðrÞ þ 1

2LðrÞ ; vðrÞ ¼ L2ðrÞ − 1

L2ðrÞ þ 1
; ð5:4Þ

wherewe recall thatL2 ¼ grr ¼ e2Λ. The important point in
the transformation (5.3) is that,while it is regular in the θ − ϕ
2-plane, it is a boost in the t − r 2-plane that becomes infinite
as one approaches the horizon [where LðrÞ → þ∞]. More
precisely, γðrÞ ≈ 1

2
LðrÞ → þ∞ as r → rh.

The frame transformation (5.3) directly implies corre-
sponding transformations of the frame components of
the contorsion tensor K. Note that θ0̄reg ∧ θ1̄reg ¼ θ0̂ ∧ θ1̂,
which implies that any antisymmetric pair of indices in
the t–r plane is left invariant. We then find (using the
antisymmetry of Kijk on ij and the vanishing of K1̂ 0̂ 1̂)

K1̄ 0̄ 0̄
reg ¼ γK1̂ 0̂ 0̂ þ γvK1̂ 0̂ 1̂ ¼ γK1̂ 0̂ 0̂: ð5:5Þ

Therefore, we conclude that, near the horizon,

K1̂ 0̂ 0̂ðrÞ ¼ K1̄ 0̄ 0̄
reg ðrÞ
γðrÞ ; ð5:6Þ

where K1̄ 0̄ 0̄
reg ðrÞ is a smooth function of r on the horizon,

while 1
γðrÞ ≈

2
LðrÞ goes to zero like

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
. We can refor-

mulate this boundary condition as

LðrÞK1̂ 0̂ 0̂ðrÞ ¼ f1ðrÞ; ð5:7Þ
where f1ðrÞ denotes a smooth function of r having a Taylor
expansion of the type f1ðrÞ ¼ f10 þ f11ðr − rhÞ þ � � �.
A similar reasoning for the other nonvanishing contor-

sion component K1̂ 2̂ 2̂ (= K1̂ 3̂ 3̂) yields

LðrÞK1̂ 2̂ 2̂ðrÞ ¼ f2ðrÞ; ð5:8Þ

where f2ðrÞ denotes another horizon-smooth function.
Using the explicit expressions Eqs. (3.6) for the frame

components of the contorsion then yields horizon boundary
conditions for the connection components VðrÞ and WðrÞ,
namely

LðrÞK1̂ 0̂ 0̂ðrÞ ¼ VðrÞLðrÞ − FðrÞ ¼ f1ðrÞ;

LðrÞK1̂ 2̂ 2̂ðrÞ ¼ WðrÞLðrÞ þ 1

r
¼ f2ðrÞ: ð5:9Þ

Concerning our auxiliary variable π̄ðrÞ, it can be shown
from the expression7 (4.3) that κ2π̄ðrÞ is the following
linear combination of frame components of the curvature
tensor F of A:

κ2π̄ ¼ F0̂ 1̂ 0̂ 1̂ þ F1̂ 2̂ 1̂ 2̂ − F0̂ 2̂ 0̂ 2̂ − F2̂ 3̂ 2̂ 3̂

¼ F0̂ 1̂ 0̂ 1̂ þ F2̂ 2̂ − 2F2̂ 3̂ 2̂ 3̂: ð5:10Þ

7We note in passing that Eq. (4.3) is similar to the Hamilton
equation p ¼ m _q. It is a definition of π̄ in the original, second-
order Lagrangian formulation, but becomes one of the field
equations in the first-order Hamiltonian-like formulation we use
now.
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The second expression shows that π̄ is invariant under the
boost (5.3). We conclude that π̄ðrÞ ¼ π̄regðrÞ, so that our
third horizon boundary condition is simply

π̄ðrÞ ¼ f3ðrÞ; ð5:11Þ

where f3ðrÞ denotes a third horizon-smooth function.

VI. BLACK HOLES WITHOUT TORSION HAIR

The structure of the field equations of torsion bigravity is
such that any torsionless (Kμ

νλ ¼ 0) Ricci-flat [RμνðgÞ ¼ 0]
spacetime is an exact, vacuum solution of torsion bigravity
[37]. In particular, all the vacuum BH solutions of GR (i.e.,
Kerr BHs, and therefore Schwarzschild BHs in absence of
angular momentum) are also exact solutions of torsion
bigravity. In the spherically symmetric case that we con-
sider here, this means that the family of Schwarzschild
solutions defines a one-parameter family of torsionless
BHs in torsion bigravity, with parameter rh ¼ 2GMS, the
areal radius of the Schwarzschild BH.
Denoting (uniformly for all the BH solutions we shall

construct) by rh the areal radius
8 of the BH solution we are

considering, the spacetime geometry of the Schwarzschild
family of BHs is described by

−g00 ¼ e2ΦS ¼ 1 −
rh
r
;

grr ¼ e2ΛS ¼ L2
S ¼

1

1 − rh
r

;

K1̂
0̂ 0̂ ¼ 0;

K1̂
2̂ 2̂ ¼ 0: ð6:1Þ

In view of Eqs. (3.6), (4.1), the values of the variablesΦ, F,
L, V, W, and π̄ describing the Schwarzschild solution read

ΦSðrÞ ¼ þ 1

2
ln

�
1 −

rh
r

�
;

FSðrÞ ¼ þ 1

2

rh
rðr − rhÞ

;

LSðrÞ ¼
�
1 −

rh
r

�
−1=2

;

VSðrÞ ¼
FSðrÞ
LSðrÞ

¼ 1

2

rh
r2

�
1 −

rh
r

�
−1=2

;

WSðrÞ ¼ −
1

rLSðrÞ
¼ −

1

r

�
1 −

rh
r

�
1=2

;

π̄SðrÞ ¼ −3
rh
κ2r3

: ð6:2Þ

VII. CONSTRUCTING LOCAL BLACK HOLES
WITH TORSION HAIR

A. Schwarzschild-normalized
torsion-bigravity variables

We have discussed above the horizon boundary con-
ditions (5.9) that any putative (non-Schwarzschild) BH
solution of torsion bigravity should satisfy. It is useful to
reformulate the conditions (5.9) in terms of the following
Schwarzschild-normalized versions of our variables F, L,
V, W, π̄, say f̃, l̃, ṽ, w̃, π̃, such that

F≡ FSf̃;L≡ LSl̃;V ≡ VSṽ;W ≡WSw̃; π̄ ≡ π̄Sπ̃: ð7:1Þ

It is then easily checked that the horizon boundary
conditions derived above are equivalent to requiring that

l̃ðrÞ; w̃ðrÞ; π̃ðrÞ are horizon-smooth; ð7:2Þ

while f̃ðrÞ and ṽðrÞ are also horizon-smooth, but, in
addition, satisfy the conditions

f̃ðrhÞ ¼ 1; and ṽðrhÞ ¼
1

l̃ðrhÞ
: ð7:3Þ

B. Constructing local BH solutions near the horizon

We have shown in Sec. IV that the field equations of
torsion bigravity can be reduced [modulo the subsequent
quadrature (4.2)] to the system (4.15) of three first-order
ODEs. Our first task towards constructing BH solutions in
torsion bigravity is to analyze the structure of local
solutions of the ODEs (4.15) satisfying the horizon
boundary conditions (7.2). For doing this analysis, it is
convenient to reformulate the ODEs (4.15) in terms of
the Schwarzschild-normalized variables l̃ðrÞ, w̃ðrÞ, π̃ðrÞ.
Actually, as π̄ðrÞ is already horizon-regular, we can
equivalently work with the three variables

l̃ðrÞ≡ LðrÞ
LSðrÞ

; w̃ðrÞ≡ WðrÞ
WSðrÞ

; π̄ðrÞ: ð7:4Þ

In terms of these variables we have three first-order ODEs
of the type

l̃0 ¼ Dl̃ðl̃; w̃; π̄; r; rh; η; κ2Þ;
w̃0 ¼ Dw̃ðl̃; w̃; π̄; r; rh; η; κ2Þ;

π̄0 ¼ Dπ̄ðl̃; w̃; π̄; r; rh; η; κ2Þ; ð7:5Þ

where the (new) right-hand sides now explicitly depend on
the horizon radius rh [because of the replacements (7.4)].
See Appendix A for the explicit form of the right-hand
sides of Eq. (7.5).

8Note that we shall not introduce any conventional Schwarzs-
child mass, such as rh=ð2G0Þ with G0 defined in Eq. (2.3),
corresponding to rh.
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The boundary conditions for the system (7.5) is simply
the regularity of the three variables l̃ðrÞ, w̃ðrÞ, π̄ðrÞ at
r ¼ rh. However, one finds that the first two right-hand
sides Dl̃ and Dw̃ contain singular factors 1

r−rh
near the

horizon, while the third right-hand side Dπ̄ is a smooth
function of r near r ¼ rh. Requiring that the looked-for
solution l̃ðrÞ, w̃ðrÞ, π̄ðrÞ be smooth around r ¼ rh then
imposes strong constraints on the values of the Taylor-
expansion coefficients of l̃ðrÞ, w̃ðrÞ, and π̄ðrÞ.
Similarly to what holds for BH solutions in bimetric

gravity [20,21], we found that general BH solutions are
parametrized by a single parameter. This unique parameter
can be taken to be the horizon value of π̄ðrÞ, say

π̄0 ≡ π̄ðrhÞ; ð7:6Þ
or, equivalently (at least when κ ≠ 0),

π̃0 ≡ π̃ðrhÞ ¼
π̄0

π̄SðrhÞ
¼ −

κ2r2h
3

π̄0: ð7:7Þ

Let us note in passing that both π̄0 and π̃0 are dimensionless
parameters. We recall that κ is an inverse length, so that the
product κrh is dimensionless. We also note that the value
π̃0 ¼ 1 corresponds (by definition) to a Schwarzschild BH.
A given value of π̄0 determines the full Taylor expan-

sions of the three functions l̃ðrÞ, w̃ðrÞ, π̄ðrÞ around r ¼ rh.
For instance, the horizon values l̃0 ¼ l̃ðrhÞ and w̃0 ¼ w̃ðrhÞ
are determined by multiplying the first two equations (7.5)
by r − rh and taking the r → rh limit. This yields first the
following rational expression for the value of l̃20:

l̃20 ¼
Nl̃0

Dl̃0

; ð7:8Þ

where

Nl̃0
¼ 3½−9þ π̄20ηð1þ ηÞ�; ð7:9Þ

and

Dl̃0
¼ −27 − η½27þ 9ðκ̂2 − 1Þπ̄0 − 3κ̂2π̄20 þ κ̂2π̄30�
þ η2π̄0½9þ 3ð2þ κ̂2Þπ̄0 þ κ̂2π̄20�
þ 2η3π̄20ð3þ κ̂2π̄0Þ: ð7:10Þ

Here, we used the shorthand notation

κ̂ ≡ κrh: ð7:11Þ
One similarly gets a rational expression for the product of
horizon values l̃0w̃0 of the form

l̃0w̃0 ¼
Nlw0

Dlw0

ð7:12Þ

where Nlw0
and Dlw0

are polynomials in π̄0, κ̂, and η.

We have extended this computation to the next order in
the Taylor expansions of the functions l̃ðrÞ, w̃ðrÞ, and π̄ðrÞ,
namely

l̃ðrÞ ¼ l̃0 þ l̃1ðr − rhÞ þO½ðr − rhÞ2�;
w̃ðrÞ ¼ w̃0 þ w̃1ðr − rhÞ þO½ðr − rhÞ2�;
π̄ðrÞ ¼ π̄0 þ π̄1ðr − rhÞ þO½ðr − rhÞ2�; ð7:13Þ

i.e., we have determined the values of l̃1, w̃1, and π̄1 as
functions of π̄0.
From the mathematical point of view, the first-order

system (7.5) is of the (nonlinear) Fuchsian type, with a pole
singularity ∝ ðr − rhÞ−1 of the right-hand sides. It is easily
proven that, choosing any value of the single parameter π̄0
such that the right-hand side of Eq. (7.8) is positive (as
needed for getting a real value for l̃0), there exist unique,
formal Taylor expansions extending Eqs. (7.13) to an
arbitrary order ðr − rhÞn. In view of the analyticity (in
all variables) of the Eqs. (7.5), we expect these formal
expansions to have a finite radius of convergence, and
thereby to determine a unique local solution of torsion
bigravity, having a regular horizon, and regular values for
the torsion variables.
If we take the special value

π̄0 ¼ −
3

κ̂2
: i:e:; π̃0 ¼ 1; ð7:14Þ

we do find that the corresponding values of l̃0 (with l̃0 > 0)
and w̃0 are uniquely determined to be l̃0 ¼ 1 and w̃0 ¼ 1,
and that all the higher horizon derivatives of π̃ðrÞ, l̃ðrÞ, and
w̃ðrÞ (starting with l̃1, w̃1, and π̃1) are uniquely determined
to vanish. We thereby recover that the special value (7.14)
generates the Schwarzschild solution as a BH solution of
torsion bigravity, namely l̃ðrÞ ¼ 1, w̃ðrÞ ¼ 1, π̃ðrÞ ¼ 1, in
our Scharzschild-rescaled variables.
We did not succeed in so constructing another closed-

form BH solution of torsion bigravity. We then resorted to
using numerical integration.

C. Extending near-horizon solutions
toward large radii

Similarly to the situation in bimetric gravity [20,21],
starting from a given value of the single shooting parameter
π̄0 [restricted by the constraint that the right-hand side of
Eq. (7.8) be positive], we used the first two terms of the
Taylor expansions Eqs. (7.13) as initial conditions at r ¼
r0 ¼ rhð1þ ϵÞ for numerically integrating the system of
three ODEs (7.5). It is easily checked that the scaling
symmetry of this system of ODEs allows one to choose
units such that rh ¼ 1. Then the so-constructed numerical
solutions only depend, besides the choice of the dimen-
sionless shooting parameter π̄0, on two other dimensionless
parameters: κ̂≡ κrh (equal to κ in our units), and η.
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The problem of finding asymptotically flat BHs in
torsion bigravity is then reduced (as in bimetric gravity)
to a numerical shooting problem. Namely, to know whether
there exists, given some theory parameters κ and η, a value
of the shooting parameter π̄0 such that the integration of the
three ODEs (7.5), with initial conditions compatible with
Eqs. (7.13), defines a solution of torsion bigravity that
exists for all radii r > rh, and whose geometrical data
asymptotically behave, for large r, as

−g00ðrÞ → c20; grrðrÞ → 1;

K1̂
0̂ 0̂ → 0; K1̂

2̂ 2̂ → 0; ð7:15Þ

where c0 is a constant. The value of the constant c0 is
physically unimportant, because it can be, a posteriori,
rescaled to 1 by rescaling the time variable: tnew ¼ c0t.
In bimetric gravity Ref. [20] did not find any hairy

asymptotically flat BHs, but found that there existed, all
over the theory parameter space, either hairless codiagonal
Schwarzschild solutions, or hairy BHs having an anti–
de-Sitter-like asymptotic, namely −g00ðrÞ ∼ 1

grrðrÞ ∝ r2.
Later, Ref. [21] found, by using a shooting approach, that
asymptotically flat (codiagonal) hairy BHs existed in an
open domain of the theory parameters (restricted, in
particular, by the inequality κrh < 0.876), and for a fine-
tuned value of their shooting parameter. We did extensive
surveys of the parameter space ðκ; ηÞ of torsion bigravity,
varying the shooting parameter π̄0. Our results can be
summarized as follows:
On the one hand, when κ ≠ 0, we found two types of BH

solutions: (i) the torsionless Schwarzschild solutions,
Eq. (6.1), and (ii) non asymptotically flat BHs endowed
with torsion hair. The Schwarzschild solutions exist for all
values of the theory parameters ðκ; ηÞ, while the non
asymptotically flat hairy BHs exist in a large part of the
ðκ; ηÞ plane that will be described below. In spite of our
extensive survey, we did not find any torsion-hairy,
asymptotically flat BH when κ ≠ 0. In particular, as we
shall discuss below, when varying π̄0 around the special
value π̄S0, Eq. (7.14), corresponding to the Schwarzschild
solution, we found that all neighboring solutions became
either singular at a finite radius r, or evolved into a torsion-
hairy non asymptotically flat BH.
On the other hand, in the limit κ → 0 (or, better,

κ̂ ¼ κrh → 0), we found three types of BH solutions:
(i) the usual torsionless Schwarzschild solutions; (ii) asymp-
totically flat BHs endowed with torsion hair; and
(iii) weakly asymptotically flat9 BHs with torsion hair.
We will discuss below the structure of the torsion-hairy
asymptotically flat BHs. We leave a discussion of the
weakly asymptotically flat BHs to a future publication [53].

VIII. IMPOSSIBILITY TO ENDOW
SCHWARZSCHILD BLACK HOLES WITH

INFINITESIMAL TORSION HAIR

We recall that the proof offered by Bekenstein [9] for the
impossibility to endow BHs with any (linearized) massive
spin-2 hair had assumed that κ̂ ≫ 1. And, indeed, BHs with
massive spin-2 hair were found to exist in part of the
parameter space of bimetric gravity [21,23], but only when
κ̂ < 0.876. In fact, the possible existence of massive spin-2
hair on a BH a priori depends both on the value of κ̂, and on
the precise form of the field equations describing the
coupling of the massive spin-2 excitation to the metric
background. Here, we are considering (like Bekenstein) a
linearized spin-2 excitation in the background geometry of
a Ricci-flat BH. The consistency of linearized spin-2
excitations of a massive tensor field hμν in a generic metric
background has been studied by Buchbinder et al. [54]. If
we restrict their results to the case of a Ricci-flat back-
ground, one can conclude that consistency allows the
presence of a general coupling to curvature, which modifies
the Fierz-Pauli mass term in the following way:

ΔL ¼ −
1

2
κ2ðhμνhμν − ðhμμÞ2Þ − 1

2
sRαμβνhαβhμν; ð8:1Þ

with an arbitrary coefficient s. [Note that the term (8.1)
comes in addition to the well-known curvature coupling
term coming from the linearized vacuum Einstein equations
in harmonic coordinates □hαβ þ 2Rαμβνhμν ¼ 0.] And,
indeed, Ref. [42] has found that the massive spin-2
excitation contained in the torsion field of torsion bigravity
can be described (when linearized around a torsionless
Ricci-flat background) by a symmetric two-tensor uμν
which includes a coupling to the Weyl tensor of the type
(8.1) with10

s ¼ 1þ η: ð8:2Þ

Reference [42] argued (consistently with [54]) that such a
coupling is consistent with having only five degrees of
freedom in the massive field uμν. Note that such a coupling
is absent (i.e., s ¼ 0) in the action describing the linearized
massive spin-2 excitation of bimetric gravity. Let us also
note in passing that the massive spin-2 excitations of
bosonic open string theory have been shown to include
such a supplementary coupling, with s ¼ 1 [54].
Let us sketch how we proved an infinitesimal no-hair

theorem for the static and spherically symmetric linearized
perturbations of a Schwarzschild BH in torsion bigravity.
From the results presented above, a generic linearized
perturbation of a Schwarzschild BH is described by three
variables of the type

9Here, “weakly asymptotically flat” means that the curvature
tends to zero like r−2 at large radii r, which is not fast enough to
satisfy the usual flatness conditions (7.15).

10The prefactor s in Eq. (41) of Ref. [42] should be halved, as
indicated in Ref. [43].
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l̃ðrÞ ¼ 1þ ϵlðrÞ; w̃ðrÞ ¼ 1þ ϵwðrÞ;
π̄ðrÞ ¼ π̄SðrÞð1þ ϵpðrÞÞ: ð8:3Þ

These variables should satisfy the (linearized version of
the) system of three ODEs (7.5). We recall that the
remaining field variables F and V are algebraically related
to L, W and π̄ via the two constraints (4.13), which can be
solved as in Eqs. (4.14). When considering the linearized
perturbations of all the variables, including

FðrÞ ¼ FSðrÞð1þ ϵfðrÞÞ; VðrÞ ¼ VSðrÞð1þ ϵvðrÞÞ;
ð8:4Þ

this yields two linear constraints, AElin
1 ¼ 0, AElin

2 ¼ 0, in
the five perturbed fields fðrÞ, lðrÞ, vðrÞ, wðrÞ, pðrÞ, where
AElin

1 and AElin
2 are linear and homogeneous in fðrÞ, lðrÞ,

vðrÞ, wðrÞ, pðrÞ, say

AElin
1 ¼ Cf

1fðrÞ þ Cl
1lðrÞ þ Cv

1vðrÞ þ Cw
1wðrÞ þ Cp

1pðrÞ;
AElin

2 ¼ Cf
2fðrÞ þ Cl

2lðrÞ þ Cv
2vðrÞ þ Cw

2wðrÞ þ Cp
2pðrÞ:
ð8:5Þ

Here the coefficients Cj
i are functions of r, κ, and η. For

instance, the coefficient of fðrÞ in AElin
1 reads

Cf
1 ¼ r½3þ ð1þ ηÞπ̄SðrÞ� ¼ 3r

�
1 −

ð1þ ηÞrh
κ2r3

�
: ð8:6Þ

Using the algebraic constraints (8.5) to eliminate two field
variables introduces some denominators that depend on the
coefficients Cj

i , and therefore on r, κ, and η. In the general
presentation above of our field equations, it was convenient
to assume that the two nonlinear algebraic constraints were
solved for F and V [see Eqs. (4.14)]. At the linearized level,
solving for f and v introduces a denominator of the type

1

½3þ ηπ̄SðrÞ�½3þ ð1þ ηÞπ̄SðrÞ�
¼ 1

9½1 − ηrh
κ2r3�½1 −

ð1þηÞrh
κ2r3 �

:

ð8:7Þ

In addition, other denominators appear, after the elimina-
tion of f and v, when one solves for the derivatives of the
remaining variables lðrÞ, wðrÞ, pðrÞ. In particular, there
appears [notably in the right-hand side of l0ðrÞ] the
denominator

1

½9 − ηð1þ ηÞπ̄2SðrÞ�
¼ 1

9½1 − ηð1þηÞr2h
κ4r6

�
: ð8:8Þ

All those denominators seem to be rooted in the general fact
(discussed in Refs. [42,54]) that when a massive spin-2

excitation, coupled in the way indicated in Eq. (8.1),
propagates in a (Ricci-flat) curved background with cur-
vature tensor Rαμβν, the coupling sRαμβνhαβhμν deforms the
usual five constraints implied by the Fierz-Pauli mass term
[κ2∇νðhμν − hgμνÞ ¼ 0 ¼ κ2h] by terms involving the cur-
vature. We see in Eq. (8.1) that the coupling to curvature
intuitively consists in shifting the squared mass κ2 by terms
proportional to some eigenvalue of the linear transforma-
tion hμν ↦ Rαμβνhαβ. Using Eq. (19) of Ref. [54] (where a3
denotes − s

2
), using the torsion bigravity value s ¼ 1þ η,

and inserting the eigenvalues of the Schwarzschild curva-
ture tensor, one can indeed check that the denominator

1

½1 − ð1þηÞrh
κ2r3 �

ð8:9Þ

arises from the determinant of the spatial submatrix Φ̂i
j of

the four-by-four constraint matrix Φ̂μ
ν displayed in Eq. (19)

of Ref. [54].
We initially thought that this link between the denom-

inator (8.9) and the rank of the matrix Φ̂μ
ν governing the

four constraints replacing κ2∇νðhμν − hgμνÞ ¼ 0 would
imply the necessity of imposing a lower bound on the
spin-2 mass κ ensuring that the denominator (8.9) never
vanishes. As the maximum value of the curvature is reached
on the horizon, r ¼ rh, this would mean imposing the lower
bound

κ̂2 ≡ κ2r2h > 1þ η: ð8:10Þ

Actually, a closer study of the linearized field equations
allowed us to prove that there is no necessity to impose the
bound (8.10), because the vanishing of the corresponding
denominator (8.9) does not lead to any singularity in the
radial evolution of the field variables. This can be proven in
various ways. One way is to study the local behavior of the
solutions of the (linear) Fuchsian system (in the three
variables VðrÞ ¼ ½lðrÞ; wðrÞ; pðrÞ�)

d
dr

VðrÞ ¼ 1

r − r1
AðrÞ · VðrÞ; ð8:11Þ

arising near the radius r1 where the denominator (8.9)
vanishes, i.e., such that κ2r31 ¼ ð1þ ηÞrh. This local
Fuchsian analysis shows that VðrÞ ¼ ðlðrÞ; wðrÞ; pðrÞÞ
stays regular around r ¼ r1. A second (deeper) way of
understanding why the vanishing of the denominator (8.9),
and actually the vanishing of the more general denominator
(8.7), does not lead to any singular behavior is the
following. The denominator (8.7) arises when one chooses
to solve the two algebraic constraints (8.5) with respect to
the two variables fðrÞ and vðrÞ. However, one could
instead choose to solve these two constraints with respect
to another pair of variables. We have checked that in so
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doing, one can avoid the appearance of the denominators
entering Eq. (8.7). We have also numerically checked
that one can integrate through the value r ¼ r1 [with
κ2r31 ¼ ð1þ ηÞrh] without encountering any singularity.
However, we found that the denominator (8.8) leads to a

singular Fuchsian system for the linearized field equations.
Namely, near the radius r2 > 0 such that (8.8) vanishes,

κ2r32 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞ

p
rh; ð8:12Þ

the linearized field equations lead to a system of the type
(8.11) (with r1 ↦ r2) such that the local solutions contain a
polelike singularity VðrÞ ∝ ðr − r2Þ−1. Note that this will
occur only if r2 > rh, i.e., if κ̂2 ≡ κ2r2h <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞp

.
We therefore have the following dichotomy when trying

to extend a local linearized horizon solution to larger radii.
On the one hand, if κ̂2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞp

, all the static
linearized perturbations of a Schwarzschild BH become
singular at the finite radius r ¼ r2, Eq. (8.12). On the other
hand, if

κ̂2 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞ

p
; ð8:13Þ

the static linearized perturbations of a Schwarzschild BH
can be radially constructed everywhere outside the horizon,
i.e., for rh < r < þ∞.
The question then arises whether the global linearized

solutions constructed in the case (8.13) can comprise (for
some fine-tuned value of κ̂, given some value of η) some
asymptotically flat solution that would be the analog of the
onset (with zero growth time) of the instability found in
[26] (when κ̂ ¼ 0.876). The latter special asymptotically
flat perturbation mode was the seed of the existence of the
nonlinear hairy bimetric BHs found in Refs. [21,23].
We looked numerically for such solutions but all our

simulations exhibited an exponentially growing behavior at
large radii. Let us indicate how we then constructed an
analytical proof of the latter result. When inserting
Eqs. (8.3) in the torsion bigravity system (7.5), one gets
(working at linear order in ϵ) a linear system of three first-
order ODEs for the perturbed variables lðrÞ, wðrÞ, pðrÞ.
Actually, we found it convenient to work with the extended
system of four linear first-order ODEs for the variables lðrÞ,
vðrÞ, wðrÞ, pðrÞ, say

l0 ¼ Dlðl; v; w; p; r; rh; η; κ2Þ;
v0 ¼ Dvðl; v; w; p; r; rh; η; κ2Þ;
w0 ¼ Dwðl; v; w; p; r; rh; η; κ2Þ;
p0 ¼ Dpðl; v; w; p; r; rh; η; κ2Þ: ð8:14Þ

This system is homogeneous because lðrÞ ¼ vðrÞ ¼
wðrÞ ¼ pðrÞ ¼ 0 represents the known Schwarzschild
solution. In addition, it must be constrained by the two

algebraic constraints (8.5). The latter two constraints can be
decomposed into one linear constraint involving the four
variables lðrÞ, vðrÞ, wðrÞ, pðrÞ, say

AElin
3 ½lðrÞ; vðrÞ; wðrÞ; pðrÞ� ¼ 0; ð8:15Þ

and one equation determining the remaining variable fðrÞ
as a linear combination of the remaining ones, say

fðrÞ ¼ Flin
sol½lðrÞ; vðrÞ; wðrÞ; pðrÞ�: ð8:16Þ

Using some results from Ref. [42], we could explicitly
decompose the system of four ODEs (8.14) into (i) an
autonomous system of two linear first-order ODEs for two
variables, say v̄ðrÞ and w̄ðrÞ, describing the massive spin-
2 degrees of freedom; (ii) a first-order linear ODE giving
l0ðrÞ as a linear combination of lðrÞ, v̄ðrÞ, and w̄ðrÞ; and
(iii) one algebraic equation determining the remaining
variable. The starting point to construct the variables
v̄ðrÞ and w̄ðrÞ are the frame components

uij ≡ Fð1Þ
ij −

1

6
Fð1Þηij; ð8:17Þ

where Fð1Þ
ij denotes the linearized perturbation of the Ricci

tensor of the connection A. Reference [42] has shown that
the symmetric tensor uij propagates according to a Fierz-
Pauli-like equation, with mass term, and extra curvature
coupling, given by Eq. (8.1). (The latter equation is written
in terms of the coordinate components of the abstract tensor
u.) The Ricci tensor Fij involves the radial derivatives
of the connection components VðrÞ and WðrÞ, as well as
Φ0ðrÞ ¼ FðrÞ. Its first-order perturbation Fð1Þ

ij correspond-
ingly involves (in a linear manner) v0ðrÞ, w0ðrÞ, as well as
fðrÞ, lðrÞ, vðrÞ, and wðrÞ. By using the ODEs (8.14), one
can replace the derivatives v0ðrÞ, w0ðrÞ in terms of lðrÞ,
vðrÞ, wðrÞ, pðrÞ. This yields (linear) expressions for the
three independent components u0̂ 0̂, u1̂ 1̂, and u2̂ 2̂ of uij in
terms of the undifferentiated variables lðrÞ, vðrÞ,wðrÞ, pðrÞ
[which are constrained by Eq. (8.15)]. It is then found that,
as a consequence of the structure of the latter linear
expressions, the three variables u0̂ 0̂, u1̂ 1̂, and u2̂ 2̂ satisfy
one algebraic constraint, say

u0̂ 0̂ ¼ c1ðrÞu1̂ 1̂ þ c2ðrÞu2̂ 2̂; ð8:18Þ

with some r-dependent coefficients c1ðrÞ and c2ðrÞ. [The
algebraic constraint (8.18) is the torsion-gravity version of
the usual Fierz-Pauli trace constraint 0 ¼ ηijuij. In particular
the coefficients c1ðrÞ and c2ðrÞ respectively reduce to their
Minkowski values c1 ¼ 1 and c2 ¼ 2 when r → ∞.]
Using the existence of the constraint Eq. (8.18), one then

finds that it is useful to define the two combinations
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v̄ðrÞ≡ vðrÞ − ð2r − 1ÞlðrÞ;
w̄ðrÞ≡ wðrÞ þ lðrÞ: ð8:19Þ

The three Fierz-Pauli-like variables uij are then found
to be expressible as linear combinations of the two new
variables v̄ðrÞ and w̄ðrÞ. The latter two variables para-
metrize the massive spin-2 excitation contained in the
torsion. [Contrary to the original variables uij delineated
in Ref. [42], the variables v̄ðrÞ and w̄ðrÞ do not involve
derivatives of the connection.]
Starting from the definitions (8.19), it is then a straight-

forward matter, using our system of Eqs. (8.14), (8.15),
to derive the linear ODEs satisfied by v̄ðrÞ and w̄ðrÞ.
It is found that they satisfy a decoupled system of
two first-order ODEs of the type (here we set rh ¼ 1 for
simplicity)

r − 1

r
v̄0ðrÞ ¼ C22ðrÞv̄ðrÞ þ C23ðrÞw̄ðrÞ;

r − 1

r
w̄0ðrÞ ¼ C32ðrÞv̄ðrÞ þ C33ðrÞw̄ðrÞ; ð8:20Þ

while the third variable lðrÞ satisfies the differential
equation

½ðr − 1ÞlðrÞ�0 ¼ Cw̄ðrÞw̄ðrÞ; ð8:21Þ

where Cw̄ ¼ Nw̄=Dw̄ with

Nw̄ ¼ κ6r9ηð1þηÞð−1þ2rÞþηð1þηÞ3½rþ4rη−2ð1þηÞ�
þ κ8r12½4þη−2rð2þηÞ�
þ3κ4r6ð1þηÞ½1−5η−η2þ rð−1þ5ηþ2η2Þ�
− κ2r3ð1þηÞ2½−2−13η−5η2þ2rð1þ6ηþ5η2Þ�;

Dw̄ ¼ 3ð1þηÞrðκ2r3−1−ηÞ½κ4r6−ηð1þηÞ�: ð8:22Þ

Given a solution [v̄ðrÞ, w̄ðrÞ] of the two ODEs (8.20),
Eq. (8.21) then yields ðr − 1ÞlðrÞ by a simple quadrature.
This determines ðr − 1ÞlðrÞ modulo an additive integration

constant, cl, so that lðrÞ ¼ lw̄ðrÞ þ cl
r−1. It is easily checked

that the additional term δlðrÞ ¼ cl
r−1 simply corresponds to

perturbing the radius rh of the background Schwarzschild
metric by δrh ¼ 2cl. Let us also note in passing that the
coefficient Cw̄, (8.22), features both the denominator (8.8)
and the denominator (8.9). However, the latter one yields
only an apparent singularity, which does not jeopardize the
regularity of the solution.
The problem of studying static, spherically symmetric

linearized perturbations of the Schwarzschild solution is
then essentially contained in the system of two ODEs
(8.20). Note that the left-hand sides of Eqs. (8.20)
feature the derivative with respect to the tortoise radial
coordinate

r − 1

r
d
dr

¼ d
dr�

; with r� ¼
Z

dr
1 − 1=r

¼ rþ lnðr − 1Þ:

ð8:23Þ

The system (8.20) can be reduced to a second-order ODE
for w̄ by algebraically solving the second Eq. (8.20) with
respect to v̄, and replacing the resulting expression v̄ ¼
aðrÞdw̄=dr� þ bðrÞw̄ in the first Eq. (8.20). This yields an
equation of the form d2w̄=dr2� þ pðrÞdw̄=dr� þ qðrÞw̄ ¼ 0.
Then, by using the standard change of variable w̄ ¼
wn exp½− 1

2

R
dr�pðrÞ�, one gets a Schrödinger-like second-

order ODE for wnðr�Þ, namely

d2

dr2�
wnðr�Þ ¼ U½rðr�Þ�wnðr�Þ: ð8:24Þ

The potential UðrÞ entering this Schrödinger-like equation
reads

Uðr; κ; ηÞ ¼ NUðr; κ; ηÞ
DUðr; κ; ηÞ

; ð8:25Þ

with

NU ¼ −4κ10r15 þ 4κ10r16 þ 13κ12r18 − 20κ12r19 þ 8κ12r20 − 4κ14r21 þ 4κ14r22 − 25κ8r12ηþ 32κ8r13η

− 8κ8r14ηþ 42κ10r15η − 56κ10r16ηþ 16κ10r17η − 12κ12r18ηþ 12κ12r19η − 34κ6r9η2 þ 48κ6r10η2 − 16κ6r11η2

þ 231κ8r12η2 − 446κ8r13η2 þ 211κ8r14η2 þ 12κ10r15η2 − 12κ10r16η2 − 212κ4r6η3 þ 434κ4r7η3 − 219κ4r8η3

− 110κ6r9η3 þ 152κ6r10η3 − 48κ6r11η3 þ 44κ8r12η3 − 44κ8r13η3 þ 52κ2r3η4 − 80κ2r4η4 þ 32κ2r5η4 − 240κ4r6η4

þ 434κ4r7η4 − 187κ4r8η4 − 24κ6r9η4 þ 24κ6r10η4 − 20η5 þ 48rη5 − 32r2η5 þ 84κ2r3η5 − 112κ2r4η5 þ 32κ2r5η5

− 48κ4r6η5 þ 48κ4r7η5 − 20η6 þ 48rη6 − 32r2η6 þ 32κ2r3η6 − 32κ2r4η6;

DU ¼ 4r4ðκ2r3 − ηÞ2ðκ2r3 þ 2ηÞ2ðκ4r6 − η − η2Þ: ð8:26Þ
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The potential U features the dichotomy mentioned above:
when κ̂2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞp

, the denominator (8.8) present in
UðrÞ necessarily leads to a singularity for wn (and the other
variables) at the radius r2, Eq. (8.12). On the other hand,
when κ̂2 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ ηÞp

the potential U is everywhere
regular11 outside the horizon (i.e., for r > 1). Considered
as a function of r�, the potential U tends to þ 1

4
at r� ¼ −∞

(which corresponds to the horizon r ¼ 1) and to þκ2 at
r� ¼ þ∞. The regularity at the horizon is seen to imply
that wnðr�Þ should decay like ∼ exp½þ 1

2
r�� as r� → −∞.

The condition for a (linearized massive spin-2) solution
wnðr�Þ to be asymptotically flat is that it should decay like
∼ exp½−κr�� as r� → þ∞. In other words, a linearized
asymptotically flat solution would correspond to a (real)
zero-energy bound state for the Schrödinger equation with
potential Uðr�Þ. General theorems (e.g., based on mini-
mizing the energy 1

2

R
dr�½ðdwn

dr�
Þ2 þUw2

n�) guarantee that a
necessary condition for such a zero-energy bound state to
exist is that the potential UðrÞ should become (sufficiently)
negative in some domain of r (or r�). However, by a careful
study of the functional form of UðrÞ we could show that
UðrÞ remains positive on the entire r� axis.12 This proves
mathematically that a Schwarzschild BH cannot be en-
dowed with an asymptotically decaying linearized torsion
hair. Actually, Eq. (8.24) implies that the unique (normal-
ized) horizon-regular solution wnðr�Þ ≈ exp½þ 1

2
r�� (as

r� → −∞) will stay positive and convex for all values of
r� and will therefore end up being positive and exponen-
tially growing ∝ þ exp½þκr�� as r� → þ∞. This concludes
our proof of an infinitesimal no-hair theorem in torsion
bigravity.

IX. NON ASYMPTOTICALLY FLAT TORSION-
HAIRY BLACK HOLES WHEN κ̂= κrh ≠ 0

After having discussed linearized perturbations of the
Schwarzschild BH, let us now consider solutions of the full
nonlinear torsion bigravity equations possessing a regular
horizon. We described above how we looked numerically
for such solutions, by varying the sole shooting parameter
π̄0 parametrizing generic horizon-regular solutions. When
performing this shooting procedure for all values of the
theory parameter η, and considering nonzero values of
κ̂ ¼ κrh, we did not find any asymptotically flat BH
solutions. However, we found that in an open domain of
the ðη; κÞ plane, it was possible to choose an horizon
shooting parameter π̄0 leading to solutions having a non-
zero torsion, and existing in the entire domain
rh < r < þ∞, without encountering local singularities.

One does not need to fine-tune π̄0 to construct these
solutions, because their asymptotic behavior (at large r)
is actually an attractor of the system of ODEs (7.5).
Let us briefly discuss these solutions, which are analo-

gous to the non asymptotically flat, anti–de-Sitter-like BH
solutions found in Ref. [20] within bimetric gravity
theories. The latter solutions had an asymptotic behavior
at large r of the type −gtt ∼ r2 → þ∞while grr ∼ r−2 → 0.
In the case of torsion bigravity, the generic non asymp-
totically flat BH solutions have an even more dramatic
asymptotic behavior. Namely, both metric variables decay
exponentially (for large r), say

−gtt ∼ grr ∝ exp½−2cr�; ð9:1Þ

with a positive constant c. On the other hand, while

l̃ðrÞ≡ LðrÞ=LSðrÞ ∼ exp½−cr� ð9:2Þ

decays exponentially, the variable w̃ðrÞ grows exponen-
tially as the inverse of l̃ðrÞ, such that the product of these
two variables has a limit given by

l̃ w̃ ¼ −rLðrÞWðrÞ → ðl̃ w̃Þ∞ ¼ −
2

3ηþ 1
: ð9:3Þ

In addition, the variable π̄ has also a finite limit at large radii
given by

π̄ → π̄∞ ¼ þ 3

2η
: ð9:4Þ

These η-dependent analytical results for the limiting values
ðl̃ w̃Þ∞ and π̄∞ were obtained in the following way.
Assuming that l̃ðrÞ decays exponentially, one can reduce
[by setting l̃ðrÞ to zero] the system of three ODEs (7.5) to a
system of two ODEs for l̃ w̃ and π̄. Then, one finds that the
latter system of two ODEs for l̃ w̃ and π̄ is Fuchsian-like
near r ¼ ∞, i.e., it has a limiting form

r
d
dr

x≡ d
dρ

x ¼ vðxÞ: ð9:5Þ

Here ρ≡ ln r, x ¼ ðl̃ w̃; π̄Þ is a two-dimensional vector,
and vðxÞ is a two-component vector function of x. In terms
of the “time” variable ρ≡ ln r, the vectorial differential
equation (9.5) describes a (time-independent) flow in the x
plane given by the “velocity field” vðxÞ. We studied the
fixed points of this flow [i.e., the values of x where vðxÞ
vanishes], and the attractive or repulsive nature of these
fixed points when ρ → þ∞ [as determined by studying the
Jacobian matrix ∂vðxÞ=∂x at these fixed points]. The only
attractive fixed point of this asymptotic flow was found to
yield the values

11Note that UðrÞ does not contain the denominator (8.9).
12By contrast, the potential V0 [26] entering the linearized

perturbations within bimetric gravity of the Schwarzschild
solution is sufficiently negative (when κ̂ ¼ 0.876) to support a
zero-energy bound state.
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x∞ ¼ ððl̃ w̃Þ∞; π̄∞Þ ¼
�
−

2

3ηþ 1
;þ 3

2η

�
ð9:6Þ

cited above. Having found such a stable attractor for the
reduced evolution of x ¼ ðl̃ w̃; π̄Þ (which had assumed that
l̃ → 0), we then inserted the large-r asymptotic behavior of
the deviations, l̃ w̃−ðl̃ w̃Þ∞, π̄ − π̄∞, on the right-hand side
of the equation l̃0 ¼ Dl̃ðl̃; l̃ w̃; π̄Þ, and checked consistency
with the exponential asymptotics (9.2). [In so doing, we
found that the constant c measuring the asymptotic decay
of l̃, Eq. (9.2), is not a universal function of η and κ, but
depends on another integration constant, say cπ̄∞, measur-
ing the large-r decay of the deviation π̄ðrÞ − π̄∞.]
The existence of the stable attractor, Eqs. (9.1), (9.2),

(9.3), (9.4), for the large-r behavior of our system of three
ODEs (7.5), does not prove that this attractor will be
reached by the radial evolution of the one-parameter family
of horizon-regular solutions. However, our numerical
studies show that it is possible, in a large domain of the
theory space, to reach this attractor when choosing an
appropriate horizon-shooting parameter π̄0. The domain D
of the ðη; κ̂Þ plane where non asymptotically flat BHs, with
the asymptotics Eqs. (9.1), (9.2), (9.3), (9.4), exist is
illustrated in Fig. 1 (in units where rh ¼ 1 so that κ̂ ¼ κ).
The projection of the domain D on the η axis starts at

η ¼ 1
3
and then extends to larger values of η, though it seems

that when η≳ 1.65 one needs very large values of κ̂ ≡ κrh
to find such solutions. When 1

3
< η < 1.654, this region

seems to extend indefinitely in the large-κ̂ direction, i.e., to
be defined by an inequality of the type κ̂ > κ̂minðηÞ. [We
recall that our numerical integrations use units where
rh ¼ 1, so that κ̂ ≡ κrh is numerically equal to κ.
However, one should keep in mind that torsion bigravity

theories are parametrized by η and κ (with dimension of an
inverse length), while the lower boundary of the domain D
involves the dimensionless product κ̂ ≡ κrh.] From our
numerical studies it seems that for 1

3
< η ≤ 0.6 this region

starts at κ̂ ¼ 0, i.e., that κ̂minðηÞ ¼ 0. It is only for η≳ 0.7
that we could not construct solutions for very small κ so
that κ̂minðηÞ > 0. A sample of our approximate determi-
nation of the value of the lower boundary κ̂minðηÞ of the
domain D is given in Table 1. Our present numerical
investigations leave open the issue of whether the (fast-
increasing) lower bound κ̂minðηÞ is finite for all values of η
or becomes infinite at some finite η� > 1.654.
Let us also emphasize that, while we found above that

linearized perturbations of the Schwarzschild solution can
only exist for all values of r if κ̂ is larger than the lower
bound (8.13), this lower bound does not apply to nonlinear
solutions. Indeed, the curve κ̂ ¼ ðηð1þ ηÞÞ1=4 passes in the
middle of the domainD and does not constitute an obstacle
to the existence of nonlinear BH solutions.
Given [when ðη; κ̂Þ ∈ D] such a solution of the three

ODEs (7.5), one can then compute [using Eqs. (4.14)] the
other variables VðrÞ and FðrÞ ¼ Φ0ðrÞ. The quadrature
Eq. (4.2) yields also the radial evolution of ΦðrÞ, and
therefore the knowledge of −g00 ¼ exp½2Φ�. Then one can
also compute the radial evolution of the two independent
contorsion components K100 ≡ K1̂

0̂ 0̂ and K122 ≡ K1̂
2̂ 2̂

using Eqs. (3.6). It is then easily found that both K100

and K122 grow exponentially ∼ exp½þcr� [with the same
constant c entering l̃, Eq. (9.2)] at large radii.
Seen from a conventional Einsteinian perspective (see

Sec. 5 of Ref. [37]), one can consider that the contorsion
tensorK (together with its covariant derivative, entering the
rewriting of Fij in terms of g and K) defines an effective
stress-energy tensor Teff for the Einstein tensor of g:
G≡RicciðgÞ − 1

2
g. The metric of the vacuum solutions

considered here can then be considered as being jointly
generated by the “mass” 1

2
rh of the BH, together with the

torsion field K. From this point of view, it is the particular
effective equation of state of the torsion-generated Teff ∼
K2 þ∇Kþ ð∇KÞ2 which allows an exponentially grow-
ing K ∼ exp½þcr� (when measured in a frame) to generate

1

3
0.5 1. 1.5

5

10

15

20

25

30

FIG. 1. Domain D of the ðη; κ̂Þ theory parameters where non
asymptotically flat BHs, with the asymptotics Eqs. (9.1)–(9.4),
can be constructed by choosing an appropriate value of the
horizon-shooting parameter π̄0.

TABLE I. Sample of approximate values of the lower boundary
κ̂minðηÞ of the domain of existence D of non asymptotically flat
BHs in the ðη; κ̂Þ plane.

η κ̂minðηÞ
1
3
< η ≤ 0.6 0

0.7 0.05
1 0.34
1.3 1.25
1.6 9
1.642 30
1.654 120
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exponentially decaying metric tensor components g ∼
exp½−2cr� (in Schwarzschild-type coordinates). Let us
finally note that the spatial geometry defined by dl2 ¼
grrdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ with grr¼L2¼ l̃2=ð1−1=rÞ
is rather unusual: though “the sphere at infinity” (r → þ∞)
has an infinite surface 4πr2, it is located at a finite radial
distance,

Rþ∞
1 drL < ∞, from the central BH.

We illustrate in Fig. 2 the metric and torsion structure of
these solutions for the case η ¼ 1, κ̂ ¼ 1

2
, and for the horizon

parameter π̄0 ¼ 0. [Note that κ̂ ¼ 1
2
> κ̂minð1Þ ≃ 0.34, and

that the linearized bound (8.13) is significantly violated by
the values η ¼ 1, κ̂ ¼ 1

2
.] This Figure displays the four

dimensionless functions −g00, g−1rr , rhK100, and rhK122

versus r=rh (using units where rh ¼ 1). Regularity at the
horizon implies that, near r ¼ rh,−g00 ∼ g−1rr ∼ r − rh, while
K100 ∼ K122 ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
. The asymptotic behavior at large r

of the metric coefficients is −g00 ∼ grr ∼ exp½−2cr�,
with c ≈ 0.05367. That of the contorsion components is
K100 ∼ K122 ∼ exp½þcr�. The inset shows that the asymp-
totic exponential decay of grr (corresponding to a linear slope
for ln½g−1rr � ∼þ2cr) starts only for r≳ 8.

X. ASYMPTOTICALLY FLAT TORSION-HAIRY
BLACK HOLES IN THE LIMIT κ̂= κrh → 0

Although the results of the last two sections would tend
to indicate that there do not exist asymptotically flat BHs
endowed with torsion hair,13 we actually discovered that the
limiting sector of the ðη; κÞ theory space where κ → 0 does
allow for the existence of a two-parameter family of
torsion-hairy asymptotically flat BHs.
Let us first recall that the limit κ → 0 is of direct physical

interest (and was actually the motivation of Refs. [41,42]
for studying generalized Einstein-Cartan theories). Indeed

the limit κ → 0 physically corresponds to the hope that a
value of κ of cosmological scale, i.e., κ ∼H0 where H0 ∼
10−28 cm−1 (leading to κrh ∼ 10−22 for a 3 M⊙ BH) might
define an interesting infrared modification of Einsteinian
gravity. This hope was recently rekindled by the discovery
[49] that the formal κ → 0 limit of torsion bigravity leads to
well-defined field equations that can be perturbatively
solved to all orders without encountering the usual small
denominators ∼κ−2 that enter both ghostfree massive
gravity theories [18] and their bimetric gravity generaliza-
tions [19].
Taking the limit κ → 0 in our system of ODEs,

Eqs. (4.15) or, equivalently, Eqs. (7.5), leads to a well-
defined14 system of three ODEs which admits horizon-
regular solutions satisfying the usual boundary conditions
[say, when using the formulation (7.5), the regularity of the
three variables l̃ðrÞ, w̃ðrÞ, π̄ðrÞ at r ¼ rh].
One can again parametrize general local, horizon-regular

solutions by varying the sole parameter π̄0, submitted to the
constraint of leading to a positive l̃20, Eq. (7.8). Here, it is
important to use as shooting parameter π̄0 rather than
π̃0 ≡ π̄0=π̄SðrhÞ, because π̄SðrhÞ ¼ −3=ðκrhÞ2 so that the
horizon parameter π̃S0 ¼ 1, leading to a Schwarzschild BH,
corresponds to π̄S0 ¼ −3=ðκrhÞ2. In other words, in the
formal κ → 0 limit (or better κ̂ ≡ κrh → 0) a Schwarzschild
solution is obtained by choosing a divergently large
(negative) value of π̄0. By contrast, when working with
the κ → 0 limit of our equations, we explored all the finite
values of π̄0 (with the constraint l̃20 > 0).
Before describing the structure of the asymptotically flat

BH solutions existing in the κ → 0 limit, let us further
clarify the physical meaning of the latter formal limit. Let
us note first that the large-r behavior of the κ ¼ 0 reduction
of the system (7.5) is significantly different from the large-r
behavior of its general κ ≠ 0 version. Indeed, it is easily
seen on the explicit formulas giving Eqs. (7.5) (see
Appendix A) that all the powers of κ2 come accompanied
by a corresponding power of r2. In other words, the system
(7.5) crucially features the length scale κ−1 and changes
character between the region r ≪ κ−1 and the region
r ≫ κ−1. Taking first (as we do here) the limit κ → 0,
and then the limit r → ∞, corresponds to studying the
asymptotics of the theory at large astrophysical distances
from a BH (rastro ≫ rh) when considering, say, a cosmo-
logical-scale value κ ∼H0 (with rastro ≪ κ−1 ∼H−1

0 ). (Such
a limit is often considered when studying solutions in
massive gravity and bimetric gravity.) This shows that the
BH solutions we are now discussing could be of potential
astrophysical relevance.
Similarly to what happened for the non asymptotically

flat BH solutions discussed in Sec. IX, the existence (when
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FIG. 2. The metric fields, −g00 (blue) and g−1rr (magenta), and
the adimensionalized torsion fields, rhK100 (orange) and rhK122

(red), of a member of the two-parameter family of non asymp-
totically flat torsion-hairy BHs are displayed for the case η ¼ 1,
κ̂ ¼ 0.5 and π̄0 ¼ 0. The inset displays ln½g−1rr � to show the
asymptotic exponential decay of grr.

13We recall that there always exist nonhairy asymptotically flat
BH solutions in torsion bigravity, namely all the Ricci-flat
Einsteinian BHs are exact solutions of the theory.

14For being able to obtain a well-defined κ → 0 limit it is
important to use as variable π̄ rather than π̃ ¼ π̄=π̄S ¼ − 1

3
κ2r3π̄.
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κ̂ ¼ 0) of a continuous family15 of asymptotically flat BH
solutions is linked with the existence of stable attractors in
the r → þ∞ limit of the first-order system (7.5) (reduced
by taking κ̂ ¼ 0). The r → þ∞ asymptotics of the latter
system leads again to a Fuchsian-type system, of the same
form as in Sec. IX, say (denoting again ρ≡ ln r)

r
d
dr

X≡ d
dρ

X ¼ VðXÞ; ð10:1Þ

but with the important difference that now

X ¼ ðl̃; w̃; π̄Þ ð10:2Þ

is a three-dimensional vector, andVðXÞ is a three-component
vector function of X. The three-component vector function
VðXÞ is drastically different from the two-component vector
function vðxÞ that entered Eq. (9.5), which was obtained by
first setting l̃ ¼ 0 and then considering the r → þ∞ limit of
the κ ≠ 0 system (7.5).
As before, the asymptotic system (10.1) describes a time-

independent flow, with time variable ρ≡ ln r → þ∞, and
velocity field VðXÞ. This flow now takes place in the three-
dimensional space of X ¼ ðl̃; w̃; π̄Þ. We studied the fixed
points of this flow [i.e., the values of X where VðXÞ
vanishes], and the attractive or repulsive nature of these
fixed points when ρ → þ∞ [as determined by studying the
Jacobian matrix ∂VðXÞ=∂X at these fixed points]. We will
leave to a future publication [53] a detailed analysis of all
the fixed points of the flow VðXÞ, and of their nature.
For the time being, let us only mention that, among

several attractive fixed points, we found a unique one that
leads to an asymptotically flat geometrical structure. In
terms of the “position vector”X ¼ ðl̃; w̃; π̄Þ this stable fixed
point (at ρ ¼ þ∞) of the flow (10.1) is given by

X∞ ¼ ðl̃∞; w̃∞; π̄∞Þ ¼
�
1;−1;þ 6

ηþ 1

�
: ð10:3Þ

The value l̃∞ ¼ 1 corresponds to ðgrrÞ∞ ¼ L2
∞ ¼ 1, i.e., it

corresponds to an asymptotically flat spatial metric. By
taking into account the way the vector XðρÞ approaches its
limit X∞ as ρ → þ∞, we could prove [using Eqs. (4.14)]
that FðrÞ ¼ Φ0ðrÞ ¼ Oðr−3=2Þ at large r, so that the
temporal metric −g00ðrÞ ¼ expð2ΦÞ tends to a constant
as r → ∞. The value of the constant −ðg00Þ∞ ¼ expð2Φ∞Þ
can be normalized to unity by appropriately rescaling t
(i.e., by a posteriori choosing an adequate value of
the arbitrary integration constant arising in the quadrature

ΦðrÞ ¼ R
drFðrÞ þ cst.). One also find that [using

Eqs. (3.6)] the frame components K100 and K122 of the
contorsion both decay in a power-law fashion as r → ∞
(with some additional oscillatory behavior that will be
discussed in Ref. [53]). More precisely, K100 ¼ Oð 1

r3=2
Þ,

while K122 ¼ Oð1rÞ. As already mentioned, the fact that
these solutions are stable attractors of our system of ODEs
means that, for a given value of η, and after having scaled rh
to one, we can construct a one-parameter family of torsion-
hairy BHs by varying the horizon shooting parameter π̄0.
For instance, in the case where η ¼ 0.01 we found that we
can vary π̄0 between −29 and þ5, and so generate a
continuous family of asymptotically flat BH solutions.
When varying π̄0 the values of the torsion fields corre-
spondingly vary by large amounts.
One specific member of this one-parameter family of BH

solutions (corresponding to the choice π̄0 ¼ −5) is dis-
played in Fig. 3. This figure displays the four dimensionless
functions −g00, g−1rr , rhK100, and rhK122 versus r=rh (using
units where rh ¼ 1). Regularity at the horizon implies that
all those functions vanish there (either linearly or in a
square-root manner). Note that (because of our choice of a,
phenomenologically required [44], small value for η) the
metric functions are close to the Schwarzschild one,
−gS00 ¼ ½gSrr�−1 ¼ 1 − rh=r, which is indicated as an
hyphenated curve for comparison. At large radii both
grrðrÞ and −g00ðrÞ (which we have appropriately rescaled)
tend to 1, while K100 and K122 both decay in a power-law
fashion: K100 ¼ Oð 1

r3=2
Þ and K122 ¼ Oð1rÞ. The torsion

fields constitute the torsion hair of the BH and show an
interesting geometric deviation of order unity from an
Einsteinian geometric structure.
Let us briefly discuss the various possible observable

signatures of the torsion hair of BHs. One should first
emphasize that Ref. [38] has shown that test bodies follow

g rr 1
g 00

g 00S

4 6 8 10
r

0.5

1.0

1.5

FIG. 3. The metric fields, −g00 (upper right curve, blue) and g−1rr
(intermediate upper right curve, magenta), and the adimension-
alized torsion fields, rhK100 (orange) and rhK122 (red), of a
member of the two-parameter family of asymptotically flat
torsion-hairy BHs that exist in the κ → 0 limit are illustrated
for the case η ¼ 0.01 and π̄0 ¼ −5. While the metric structure of
this BH is close to the Schwarzschild one (hyphenated curve), its
torsion structure exhibits a deviation of order unity from a purely
Einsteinian structure.

15For a given η, this family is parametrized by an arbitrary
value of rh, and by a value of π̄0 that can continuously vary in
some η-dependent interval. Varying the value of rh corresponds to
a trivial scaling of the solution, while varying π̄0 corresponds to a
nontrivial continuous change of the torsion hair of the BH.

VASILISA NIKIFOROVA and THIBAULT DAMOUR PHYS. REV. D 102, 084027 (2020)

084027-16



geodesics, rather than autoparallels, of torsion bigravity.16

Therefore, the gravitational phenomenology of torsion
fields discussed in Refs. [55,56], and based on the
dynamics of torsion-modified autoparallels, is not appli-
cable to our context. But, as exhibited in Fig. 3, the metric
structure of torsion-hairy BHs does differ from that of
Schwarzschild BHs, and leads therefore to different pre-
dictions for the motion of bodies around such BHs, as well
as for the dynamics of binary BHs. We leave a quantitative
discussion of such effects, and notably of possible mod-
ifications of the GR effects recently observed around the
galactic-center massive BH [57,58], to Ref. [53].

XI. CONCLUSIONS

We studied static, spherically symmetric black hole
solutions in torsion bigravity theories. These Einstein-
Cartan-type theories (with propagating torsion) contain
only two excitations: an Einstein-like massless spin-2
one and a massive spin-2 one. The parameter space for
the vacuum solutions of torsion bigravity comprises the
inverse range κ of the massive spin-2 excitation, and the
dimensionless ratio η between the coupling of the massive
spin-2 field and the coupling of the massless one.
We found three broad classes of BH solutions. First, the

Schwarzschild solution is an exact solution of torsion
bigravity that exists all over the parameter space, but has
zero torsion hair. We proved that one cannot deform a
Schwarzschild solution, at the linearized level, by adding
an infinitesimal torsion hair.
Second, when considering finite values of the range, we

found that in a large domain of parameter space (illustrated
in Fig. 1) there exist BH solutions endowed with a torsion
structure, but which are not asymptotically flat. The
geometrical structure of these torsion-hairy, but non
asymptotically flat, BHs is illustrated in Fig. 2.
Finally, and most interestingly, we found that, in the limit

of infinite range, there exist (for all values of the remaining
theory parameter η) asymptotically flat BHs endowed with
a (one-parameter-family) torsion structure. The geometrical
structure of these asymptotically flat torsion-hairy BHs is
illustrated in Fig. 3.
The latter BH solutions give an interesting example of

non-Einsteinian (but still purely geometric) BH structures.
For them to be astrophysically relevant, several conditions
must be fulfilled. First, onemust assume that the range κ−1, if
not infinite, is at least much larger than the size of the
considered black hole. To fix ideas, it would seemnatural (as
is done in most of the literature dealing with massive spin-2
fields, and as was assumed in Refs. [41,42,45]) to consider
the casewhere κ is of the order of theHubble constant. In that
case, as the range κ−1 is very large but not infinite, the
torsion-hairy BHs we constructed start mathematically

deviating from flatness at radii ∼κ−1. To check the astro-
physical relevance of our torsion-hairy BHs, one should
embed them in a cosmological solution. A second condition
would be to study the gravitational collapse of a star in
torsion bigravity, to see whether the torsion field generated
by the stress-energy tensor of the star [44] survives (without
being radiated away) the collapse and endows the formed
BH with torsion hair. A related issue would be to study the
stability of Schwarzschild BHs in torsion bigravity. If,
similarly to what was found in bimetric gravity [25,26],
Schwarzschild BHs turn out to be dynamically unstable for
small κ’s, this would suggest that they might evolve into
torsion-hairy asymptotically flat BHs. All these issues are
beyond the scope of the present paper, and we leave them to
future work.
The motivation of our present line of work is that torsion

bigravity might define a theoretically healthy alternative to
general relativity that could lead to an interesting modified
phenomenology for the physics of neutron stars, black
holes and gravitational waves. Our past work has given
some evidence that torsion bigravity has interesting theo-
retical features: notably the same number of degrees of
freedom, for spherically symmetric solutions, as ghost-free
bimetric gravity [44], and the absence of any Vainshtein
radius when considering the large-range limit κ−1 → ∞
[49]. However, more investigations are needed to establish
the physical, and astrophysical, relevance of torsion bigrav-
ity. Several of them were already mentioned in the previous
paragraph. Let us mention other issues that should be
investigated. Reference [44] established the existence of
compact torsion-hairy star solutions in the case where κ−1 is
of the order of the star radius Rs. One should study whether
such solutions also exist when κRs ≪ 1. Even in the case
where one would find that the asymptotically flat torsion-
hairy BHs discussed in Sec. X are not formed by the
collapse of stars, one should study the perturbation spec-
trum of Schwarzschild BHs within torsion bigravity.
Indeed, as was recalled in the Introduction, Ref. [13] has
emphasized that even in cases where the Schwarzschild, or
more generally, the Kerr, solutions are exact solutions of
some modified theory of gravity (as is the case of torsion
bigravity), their perturbations will generally differ from the
GR ones, and will lead to different predictions that might be
observable via gravitational-wave experiments. We leave
these problems to future work.
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APPENDIX: EXPLICIT FORM OF THE FIELD
EQUATIONS OF STATIC, SPHERICALLY

SYMMETRIC TORSION BIGRAVITY

The right-hand sides of the solutions (4.14) of the two
algebraic equations (4.13) read16Classical test rotating bodies also feel only the metric gμν.

BLACK HOLES IN TORSION BIGRAVITY PHYS. REV. D 102, 084027 (2020)

084027-17



FsolðL;W; π̄Þ ¼ f3þ 2rηL½−6þ ð1þ ηÞπ̄�W þ L2½2ηð1þ ηÞπ̄ þ κ2r2ηð1þ ηÞπ̄2−3ð1þ ηþ 3r2ηW2Þ�g=
f2r½rηLWð3þ ð1þ ηÞπ̄Þ − 3�g;

VsolðL;W; π̄Þ ¼ f9½ð1þ ηÞπ̄ − 3� þ 6rLW½ð1þ ηÞπ̄ − 6� þ L2ð3þ ð1þ ηÞπ̄Þ½−3ð1þ ηÞ þ κ2r2ηπ̄2ð1þ ηÞ
þ 3r2ηW2−2ηπ̄ð1þ ηÞðr2W2 − 1Þ�g=f2rL½3þ ð1þ ηÞπ̄�ðrηLW½3þ ð1þ ηÞπ̄� − 3Þg: ðA1Þ

The explicit forms of the right-hand sides of our reduced system of three ODEs (4.15) read

Dπ̄ðL;W; π̄Þ ¼ 3þ 3rLW þ ð1þ ηÞπ̄ðrLW − 2Þ
rð1þ ηÞ ;

DLðL;W; π̄Þ ¼ NDL

DDL
;

DWðL;W; π̄Þ ¼ NDW

DDW
; ðA2Þ

where

NDL ¼ Lf9½9 − 27ηþ 12ηð1þ ηÞπ̄ þ ηð1þ ηÞ2π̄2� þ 6rηLW½81ðη − 1Þ − 18ηð1þ ηÞπ̄ − 12ηð1þ ηÞ2π̄2 þ ηð1þ ηÞ3π̄3�
− 2rηð3þ ð1þ ηÞπ̄ÞL3W½κ2r2ηð1þ ηÞ2ð2η − 1Þπ̄3 þ 3ηð1þ ηÞ2π̄2ðκ2r2 þ 2η − 2r2ηW2Þ
þ 27ð−ð1þ ηÞ2 þ r2ðη − 1ÞηW2Þ − 9ηð1þ ηÞπ̄ð−1þ κ2r2 − ηþ r2ð1þ ηÞW2Þ�
þ 3L2½2ηð1þ ηÞ2ðηð1þ ηÞ þ κ2r2ð2η − 1ÞÞπ̄3 þ κ2r2η2ð1þ ηÞ3π̄4 − 18r2ηð1þ ηÞπ̄ðκ2 − ðη − 1ÞW2Þ
−3ηð1þ ηÞ2π̄2ð1þ κ2r2 − 3ηþ 11r2ηW2Þ þ 27ð−ð1þ ηÞ2 þ r2ηð1þ 13ηÞW2Þ�g;

DDL ¼ 6rð1þ ηÞðηð1þ ηÞπ̄2 − 9Þ½rηLWð3þ ð1þ ηÞπ̄Þ − 3�;
NDW ¼ κ2r3η2ð1þ ηÞ4L3π̄5W − 9ð1þ ηÞ2π̄2½2 − 11rηLW þ rηL3Wð1þ 3κ2r2 − 3ηþ 3r2ηW2Þ

− 2L2ð1þ 2κ2r2 − ηþ 6r2ηW2Þ� þ 81½4þ 3rð1 − 3ηÞLW þ 2r2ð−5þ ηÞηL2W2

þ rL3Wð−ð1þ ηÞ2 þ r2ð−3þ ηÞηW2Þ� þ 27ð1þ ηÞπ̄½−4þ rð−3þ ηÞLW
þ rL3Wð−1 − 2ð1þ κ2r2Þη − η2 þ r2ð−3þ ηÞηW2Þ þ 2L2ð1þ κ2r2 þ ηþ 2r2η2W2Þ�
− rηð1þ ηÞ3L2π̄4½2rð3κ2 þ ηð1þ ηÞW2Þ þ LWðκ2r2ð2 − 7ηÞ − 2ηð1þ ηÞ þ 2r2ηð1þ ηÞW2Þ�
þ 3ð1þ ηÞ2Lπ̄3½rηð1þ ηÞW − rηL2Wð1 − 3κ2r2ð−1þ ηÞ − 4η − 5η2 þ 5r2ηð1þ ηÞW2Þ
− 2Lð2ηð1þ ηÞ þ κ2r2ð−1þ 2ηÞ þ r2ηð−1þ ηþ 2η2ÞW2Þ�;

DDW ¼ 2r2ð1þ ηÞLð3þ ð1þ ηÞπ̄Þð−9þ ηð1þ ηÞπ̄2Þ½−3þ rηLð3þ ð1þ ηÞπ̄ÞW�: ðA3Þ

When rescaling the variables L andW by their Schwarzschild values, the latter system becomes the first-order system (7.5)
for the radial evolution of l̃≡ L=LS, w̃≡W=WS and π̄. The right-hand sides of Eqs. (7.5) read (when using rh ¼ 1)

Dπ̄ðl̃; w̃; π̄Þ ¼ 3 − 3l̃ w̃−ð1þ ηÞπ̄ð2þ l̃ w̃Þ
rð1þ ηÞ ;

Dl̃ðl̃; w̃; π̄Þ ¼ Nl̃

Dl̃
;

Dw̃ðl̃; w̃; π̄Þ ¼ Nw̃

Dw̃
; ðA4Þ

where

VASILISA NIKIFOROVA and THIBAULT DAMOUR PHYS. REV. D 102, 084027 (2020)

084027-18



Nl̃ ¼ l̃f9½9ðrþ 4η − 3rηÞ þ 12ðr − 1Þηð1þ ηÞπ̄ þ ðr − 2Þηð1þ ηÞ2π̄2� − 3ηl̃½27ð5þ 6rðη − 1Þ − 7ηÞ
− 9ð1þ ηÞð1þ ð−3þ 4rÞηÞπ̄ − 3ð−9þ 8rÞηð1þ ηÞ2π̄2 þ ð−1þ 2rÞηð1þ ηÞ3π̄3�w̃
þ 2ηl̃3ð3þ ð1þ ηÞπ̄Þw̃½κ2r3ηð1þ ηÞ2ð−1þ 2ηÞπ̄3 þ 3ηð1þ ηÞ2π̄2ðκ2r3 þ 2rη − 2ðr − 1Þηw̃2Þ
þ 27ð−rð1þ ηÞ2 þ ðr − 1Þðη − 1Þηw̃2Þ − 9ηð1þ ηÞπ̄ðrð−1þ κ2r2 − ηÞ þ ðr − 1Þð1þ ηÞw̃2Þ�
þ 3l̃2½2rηð1þ ηÞ2ðηð1þ ηÞ þ κ2r2ð−1þ 2ηÞÞπ̄3 þ κ2r3η2ð1þ ηÞ3π̄4
þ 18ηð1þ ηÞπ̄ð−κ2r3 þ ðr − 1Þðη − 1Þw̃2Þ − 3ηð1þ ηÞ2π̄2ðrþ κ2r3 − 3rηþ 11ðr − 1Þηw̃2Þ
þ 27ð−rð1þ ηÞ2 þ ðr − 1Þηð1þ 13ηÞw̃2Þ�l̃g;

Dl̃ ¼ 6ð1 − rÞrð1þ ηÞð−9þ ηð1þ ηÞπ̄2Þ½3þ ηl̃ð3þ ð1þ ηÞπ̄Þw̃�;
Nw̃ ¼ κ2r3η2ð1þ ηÞ4 l̃3π̄5w̃ − 9ð1þ ηÞ2π̄2½2 − 2rþ ð8 − 9rÞηl̃ w̃þηl̃3w̃ðrþ 3κ2r3 − 3rηþ 3ð−1þ rÞηw̃2Þ

þ l̃2ð2rð1þ 2κ2r2 − ηÞ þ ð−9þ 10rÞηw̃2Þ� þ 81½4 − 4rþ ð−6þ 5rþ 6η − 7rηÞl̃ w̃−ηð13 − 12rþ ηÞl̃2w̃2

þ l̃3w̃ð−rð1þ ηÞ2 þ ð−1þ rÞð−3þ ηÞηw̃2Þ� þ ηð1þ ηÞ3 l̃2π̄4f6κ2r3 þ ηð1þ ηÞw̃2 þ l̃ w̃½rð2ηð1þ ηÞ
þ κ2r2ð−2þ 7ηÞÞ − 2ð−1þ rÞηð1þ ηÞw̃2�l̃g þ 3ð1þ ηÞ2 l̃π̄3fl̃ − ð−2þ rÞηð1þ ηÞw̃
þ ηl̃2w̃ðrð−1þ 3κ2r2ð−1þ ηÞ þ 4ηþ 5η2Þ − 5ð−1þ rÞηð1þ ηÞw̃2Þ þ 2l̃½rð2ηð1þ ηÞ þ κ2r2ð−1þ 2ηÞÞ
− ð−1þ r − ηÞηð1þ ηÞw̃2�l̃g − 27ð1þ ηÞπ̄½4 − 4rþ ðrþ 4η − 3rηÞl̃ w̃þl̃3w̃ðrð1þ 2ηþ 2κ2r2ηþ η2Þ
− ð−1þ rÞð−3þ ηÞηw̃2Þ þ 2l̃2ðrð1þ κ2r2 þ ηÞ þ ηð3 − 2rþ ηÞw̃2Þ�;

Dw̃ ¼ 2ð1 − rÞrð1þ ηÞl̃ð3þ ð1þ ηÞπ̄Þð−9þ ηð1þ ηÞπ̄2Þ½3þ ηl̃ð3þ ð1þ ηÞπ̄Þw̃�: ðA5Þ
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