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We present and analyze a class of exact spacetimes which describe accelerating black holes with a
Newman-Unti-Tamburino (NUT) parameter. First, by two independent methods we verify that the intricate
metric found by Chng, Mann, and Stelea in 2006 indeed solves Einstein’s vacuum field equations of
general relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic
structure. As it turns out, it is actually of algebraically general type I with four distinct principal null
directions. It explains why this class of solutions has not been (and could not be) found within the large
Plebański–Demiański family of type D spacetimes. Then we transform the solution into a much more
convenient metric form which explicitly depends on three physical parameters: massm, acceleration α, and
the NUT parameter l. These parameters can independently be set to zero, recovering thus the well-known
spacetimes in standard coordinates, namely the C-metric, the Taub–NUT metric, the Schwarzschild metric,
and flat Minkowski space in spherical coordinates. Using this new metric, we investigate main physical and
geometrical properties of such accelerating NUT black holes. In particular, we localize and study four
Killing horizons (two black-hole plus two acceleration horizons) and carefully investigate the curvature.
Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT
parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This
leads to a complete understanding of the global structure of the spacetimes: each accelerating NUT black
hole is a “throat” which connects “our universe” with a “parallel universe.” Moreover, the analytic
extension of the boost-rotation metric form reveals that there is a pair of such black holes (with four
asymptotically flat regions). They uniformly accelerate in opposite directions due to the action of rotating
cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly
related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.
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I. INTRODUCTION

Exact solutions of Einstein’s general relativity play an
important role in understanding strong gravity. Among the
first and most fundamental such spacetimes, which were
found, investigated and understood, were black holes. They
exhibit many key features of the relativistic concept of
gravity with surprising applications in modern astrophys-
ics. It is now clear that rotating black holes reside in the
hearts of almost all galaxies, and that binary black hole
systems in the last stage of their evolution are the strongest
sources of gravitational waves in our Universe.
In 1976, Plebański and Demiański [1] presented a nice

form of a complete class of exact spacetimes of algebraic
type D (including a double aligned non-null electromag-
netic field and any cosmological constant), first obtained by
Debever [2] in 1971. This class involves various black
holes, possibly charged, rotating and accelerating. In
particular, this large family of solutions contains the

well-known Schwarzschild (1915), Reissner–Nordström
(1916–1918), Schwarzschild–de Sitter (1918), Kerr
(1963), Taub–NUT (1963) or Kerr–Newman (1965) black
holes, and also the C-metric (1918, 1962) which was
physically interpreted by Kinnersley–Walker (1970) as
uniformly accelerating pair of black holes.
Unfortunately, these interesting types of black holes—

and their combinations—had to be obtained from the
general Plebański–Demiański metric by special limiting
procedures (degenerate transformations), see Sec. 21.1.2 of
the classic compendium [3] for more details. Moreover, it
was traditionally believed that the constant coefficients of
the two related Plebański–Demiański quartic metric func-
tions directly encode the physical parameters of the
spacetimes.
In 2003, Hong and Teo [4,5] came with a simple but very

important idea of employing the coordinate freedom
to rewrite the C-metric in a new form such that its two
quartic (cubic in the uncharged case) metric functions
are factorized to simple roots. This novel approach enor-
mously simplified the associated calculations and—more
importantly—the physical analysis of the C-metric because
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the roots themselves localize the axes of symmetry and
position of horizons.
Inspired by these works of Hong and Teo, with Jerry

Griffiths we applied their novel idea to the complete family
of Plebański–Demiański spacetimes [1]. This “new look”
enabled us to derive an alternative form of this family of
type D black hole solutions, convenient for physical and
geometrical interpretation, see [6–8] and Ch. 16 of [9] for
summarizing review. This form of the metric reads

ds2 ¼ 1

Ω2

�
−
Q
ϱ2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dφ

�
2

þ ϱ2

Q
dr2

þ ϱ2

P
dθ2 þ P

ϱ2
sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2

�
;

ð1Þ

where P¼ 1− a3 cosθ− a4 cos2 θ, Q¼ ðω2kþ e2 þ g2Þ−
2mrþ ϵr2 − 2αnω−1r3 − ðα2kþ 1

3
ΛÞr4, Ω¼ 1− αðlþ

a cosθÞω−1r, ϱ2 ¼ r2 þ ðlþ a cos θÞ2, and a3; a4; ϵ; n; k
are uniquely determined constants. The free parameters of
the solutions have a direct physical meaning, namely the
mass m, electric and magnetic charges e and g, Kerr-like
rotation a, Newman-Unti-Tamburino (NUT)-like param-
eter l, acceleration α, and the cosmological constant Λ. All
the particular subclasses of the Plebański–Demiański black
holes can be easily obtained from (1) by simply setting
these physical parameters to zero.
At first sight, it would seem possible to obtain an

exact vacuum solution for accelerating black holes with
a NUT parameter simply by keeping α, m, l and setting
a ¼ e ¼ g ¼ Λ ¼ 0. However, in [6] we explicitly dem-
onstrated that in such a special case the constant α is a
redundant parameter which can be removed by a specific
coordinate transformation. In other words, the case α, m, l
is just the “static” black hole with a NUT parameter l. Thus
we argued convincingly in [6] that the solution which
would combine the Taub–NUT metric with the C-metric is
not included in the Plebański–Demiański family of black
holes, despite the fact that a more general solution which
describes accelerating and rotating black holes with NUT
parameter is included in it (indeed, in the metric (1) it is
possible to keep α, a, l, m all nonvanishing). This led us in
2005 to a “private conjecture” that the genuine accelerating
Taub–NUT metric (without the Kerr-like rotation a) need
not exist at all.
Quite surprisingly, such a solution was found next year

in 2006 by Chng, Mann, and Stelea [10] by applying a
sequence of several mathematical generating techniques. It
was presented in the following form1

ds̄2 ¼ −
ðy2 − 1ÞFðyÞ
α2ðx − yÞ2

c2δ
H̄ðx; yÞ

×

�
dt̄þ 1

c

�ð1 − x2ÞFðxÞ
α2ðx − yÞ2 þ 2Mx

α

�
dφ

�
2

þ H̄ðx; yÞ
α2ðx − yÞ2

�
ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
; ð2Þ

where

FðxÞ ¼ 1þ 2αMx; ð3Þ

FðyÞ ¼ 1þ 2αMy; ð4Þ

H̄ðx; yÞ ¼ 1

2
þ δ

2

�ðy2 − 1ÞFðyÞ
α2ðx − yÞ2

�
2

; ð5Þ

see Eq. (35) in [10]. This metric explicitly contains four
parameters, namely M, α, c, and δ. The authors of [10]
argued that the parameter δ is related to the NUT parameter
in the limiting case when the acceleration vanishes. And,
complementarily, when this parameter is set to zero, the
C-metric can be obtained. It is thus natural to interpret
the metric (2)–(5) as an exact spacetime with uniformly
accelerating black hole and a specific twist described by the
NUT parameter. This very interesting suggestion surely
deserves a deeper analysis. To our knowledge, during the
last 15 years this has not yet been done, and it is the main
purpose of this paper.
First, in Sec. II we will remove the redundant parameter

c, simplifying the original metric of [10] to the form in
which the twist can be set to zero (leading to the standard
C-metric). Using it, in subsequent Sec. III we will confirm
that the metric (2)–(5) is indeed a vacuum solution of
Einstein’s field equations (we will do this by two inde-
pendent methods, based on the general results summarized
in Appendices A and B). In Sec. IV we will calculate the
NP scalars ΨA in a suitable null frame and determine the
algebraic type of the Weyl tensor. Since it will turn out to
be algebraically general with four distinct principal null
directions, it cannot belong to the class of type D
Plebański–Demiański spacetimes (1). Then, in Sec. V
we will present a new metric form of the solution which
is much better suited for a geometrical and physical
interpretation of this class of black holes. When its three
parameters l, α, and m are set to zero, standard form of
the C-metric, the Taub–NUT metric, the Schwarzschild
metric and eventually Minkowski space are directly
obtained. Specific properties of this family of accelerating
NUT black holes are investigated in Sec. VI. In particular,
we study horizons, curvature singularities, asymptotically
flat regions, global structure of these spacetimes, and

1We have only replaced the acceleration parameter A by α, and
the mass parameter m by M, and the constant C by c.
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specific nonregularity of the two axes of symmetry, cor-
responding to rotating cosmic strings or struts (surrounded
by regions with closed timelike curves) which are the
physical source of acceleration of the pair of black holes.

II. REMOVING THE DEGENERACY
AND INITIAL COMMENTS

We immediately observe that the original metric (2)
does not admit setting c ¼ 0 and δ ¼ 0. The metric
degenerates and its investigation is thus complicated. In
fact, the constant c is redundant. To solve these problems,
we found convenient to perform a transformation of the
time coordinate

τ ¼ 2λðα2c t̄ − φÞ; ð6Þ
where the new real parameter λ ≥ 0 is defined as

λ ≡
ffiffiffi
δ

p

α2
: ð7Þ

Rescaling trivially the metric (2) by a constant conformal
factor, ds̄2 → ds2 ≡ 2ds̄2, we obtain a better representation
of the solution

ds2 ¼ −
ðy2 − 1ÞFðyÞ

α2ðx − yÞ2Hðx; yÞ
�
dτ þ 2λFðxÞ 1 − 2xyþ y2

ðx − yÞ2 dφ

�
2

þ Hðx; yÞ
α2ðx − yÞ2

�
ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
; ð8Þ

where the function H ≡ 2H̄ takes the form

Hðx; yÞ ¼ 1þ λ2
ðy2 − 1Þ2F2ðyÞ

ðx − yÞ4 ; ð9Þ

and FðxÞ ¼ 1þ 2αMx, FðyÞ ¼ 1þ 2αMy are the linear
functions (3) and (4), respectively. Without loss of general-
ity, we may assume α ≥ 0.
It is now possible to set λ ¼ 0, in which case H ¼ 1, and

the new metric reduces to a diagonal line element

ds2 ¼ 1

α2ðx − yÞ2
�
−ðy2 − 1ÞFðyÞdτ2 þ ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
: ð10Þ

This is the usual form of the C-metric, see e.g. Eqs. (14.3),
(14.4) in [9] with the identification GðxÞ ≡ ð1 − x2ÞFðxÞ,
y → −y and m ≡M. In such a special case, the metric
represents a spacetime with pair of Schwarzschild-like
black holes of mass M ≥ 0 and uniform acceleration α
caused by cosmic strings or struts.

The full metric (8) with a generic λ is clearly a one-
parameter generalization of this C-metric. Additional off-
diagonal metric component dτdφ also occurs, indicating
that the parameter λ is related to an inherent twist/rotation
effect in the spacetime. It will be explicitly demonstrated in
Sec. V that this parameter is directly proportional to the
genuine NUT parameter l.
Preliminary physical interpretation of (8) can now also

be done using similar arguments as those for the C-metric,
as summarized in Ch. 14 of [9]. In particular, we can
comment on the character of coordinate singularities. In
order to keep the correct metric signature of (8) and obtain
the usual black-hole interpretation of the spacetime, it is
necessary to require ð1 − x2ÞFðxÞ ≥ 0. In view of the roots,
this restricts the range of the spatial coordinate to x ∈
½−1; 1� and puts the constraint 0 ≤ 2αM < 1. The coor-
dinate singularities at x ¼ �1 are the two poles (axes).
On the other hand, the admitted zeros of the function
ðy2 − 1ÞFðyÞ represent the horizons, and FðyÞ can be both
positive and negative. More arguments on this will be given
in Sec. VI, where it will also be demonstrated that the
singularity of the metric (8) at x ¼ y corresponds to
asymptotically flat conformal infinity I.

III. CHECKING THE VACUUM EQUATIONS

Next, it is desirable to verify that the metric (8) with (3),
(4), (9) is an exact solution of vacuum Einstein’s field
equations.
With trivial identification τ ≡ t, this metric clearly

belongs to the generic class of stationary axially symmetric
metrics

ds2 ¼ gttdt2 þ 2gtφdtdφþ gφφdφ2 þ gxxdx2 þ gyydy2;

ð11Þ

in which all the functions are independent of the temporal
coordinate t and angular coordinate φ. Indeed, the explicit
metric coefficients of the spacetime (8) are

gtt ¼ −
ðy2 − 1ÞFðyÞ

α2ðx − yÞ2Hðx; yÞ ;

gtφ ¼ −2λ
ðy2 − 1ÞFðyÞFðxÞð1 − 2xyþ y2Þ

α2ðx − yÞ4Hðx; yÞ ;

gφφ ¼ −4λ2
ðy2 − 1ÞFðyÞF2ðxÞð1 − 2xyþ y2Þ2

α2ðx − yÞ6Hðx; yÞ

þHðx; yÞð1 − x2ÞFðxÞ
α2ðx − yÞ2 ;

gxx ¼
Hðx; yÞ

α2ðx − yÞ2ð1 − x2ÞFðxÞ ;

gyy ¼
Hðx; yÞ

α2ðx − yÞ2ðy2 − 1ÞFðyÞ : ð12Þ
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Interestingly, the subdeterminant

D ≡ gttgφφ − g2tφ < 0; ð13Þ

turns out to be very simple, namely

D ¼ −
ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞ

α4ðx − yÞ4 : ð14Þ

Using the expressions (11)–(14), we need to evaluate the
Riemann and Ricci curvature tensors. Unfortunately, stan-
dard computer algebra systems did not provide us the
results (even after several hours of calculation on a standard
desktop PC) when we attempted to perform a direct
calculation starting from (12). Therefore, we had to employ
a more sophisticated approach. Actually, we developed two
independent methods.

A. Method A

It turned out much more convenient first to analytically
derive explicit expressions for the Christoffel symbols and
subsequently the corresponding components of the curva-
ture tensors of the generic stationary axisymmetric metric
(11). These results are summarized in Appendix A.
Moreover, instead of using standard textbook definitions

of the Riemann and Ricci tensors, we employed their
alternative (and equivalent) versions (A8), (A10). The main
advantage of this approach is that the second derivatives of
the metric are all involved explicitly in the simplest possible
way. It is not necessary to differentiate the Christoffel
symbols which also contain the inverse metric and thus
their first derivatives unnecessarily complicate the evalu-
ation of the curvature.
In the second step, we then substituted the explicit metric

functions (12), (14) into the general expressions (A5), (A9),
and (A11). With a usual PC, such a symbolic-algebra
computational process using MATHEMATICA lasted only
around 40 seconds. The result of this computation con-
firmed that all the Ricci tensor components (A11) are zero.
The metric (8) is thus indeed a vacuum solution in
Einstein’s gravity theory.

B. Method B

To verify this result (and fasten the computation), we
also employed an alternative method based on the “con-
formal trick.” Its main idea is that, by multiplying the
physical metric (8) by a suitable conformal factor Ω2, the
metric components of the related unphysical metric become
polynomial expressions. Their differentiation and combi-
nation, which are necessary to evaluate the curvature
tensors, are performed much faster. Specifically, we intro-
duced an unphysical metric g̃ab via the conformal relation

g̃ab ¼ Ω2gab; ð15Þ

where

Ω2 ≡ α2ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞðx − yÞ6H̃ðx; yÞ; ð16Þ
and

H̃ðx; yÞ ≡ ðx − yÞ4Hðx; yÞ ¼ ðx − yÞ4 þ λ2ðy2 − 1Þ2F2ðyÞ:
ð17Þ

The metric functions g̃ab are then only polynomials of
x and y,

g̃tt ¼ −ð1 − x2ÞFðxÞðy2 − 1Þ2F2ðyÞðx − yÞ8;
g̃tφ ¼ −2λð1 − x2ÞF2ðxÞðy2 − 1Þ2F2ðyÞ

× ð1 − 2xyþ y2Þðx − yÞ6;
g̃φφ ¼ −4λ2ð1 − x2ÞF3ðxÞðy2 − 1Þ2F2ðyÞ

× ð1 − 2xyþ y2Þ2ðx − yÞ4
þ ð1 − x2Þ2F2ðxÞðy2 − 1ÞFðyÞH̃2ðx; yÞ;

g̃xx ¼ ðy2 − 1ÞFðyÞH̃2ðx; yÞ;
g̃yy ¼ ð1 − x2ÞFðxÞH̃2ðx; yÞ: ð18Þ

Using the expressions summarized in Appendix A, we first
computed the Christoffel symbols Γ̃a

bc and the Ricci tensor
components R̃ab for this conformal metric g̃ab (it also has
the stationary axisymmetric form (11), only the tilde
symbol is added everywhere). Then we employed the
expressions (B4)–(B6) derived in Appendix B to calculate
the Ricci tensor components Rab of the physical metric gab,
which is (12). The computer algebra manipulation using
MATHEMATICA again verified that Rab ¼ 0, confirming that
the metric is a vacuum solution of Einstein’s equations. In
fact, the conformal Method B is faster than Method A: the
computation took only 15 seconds.

IV. DETERMINING THE ALGEBRAIC
TYPE OF THE SPACETIME

It is now necessary to determine the algebraic type of the
spacetime which is given by the algebraic structure of the
Weyl tensor. The standard procedure is to evaluate all its ten
components [3,9]

Ψ0 ≡ Cabcdkambkcmd;

Ψ1 ≡ Cabcdkalbkcmd;

Ψ2 ≡ Cabcdkambm̄cld;

Ψ3 ≡ Cabcdlakblcm̄d;

Ψ4 ≡ Cabcdlam̄blcm̄d; ð19Þ

in properly normalized null tetrad fk; l;m; m̄g. We adopt
the most natural tetrad for the metric (11) in the coordinates
ðt;φ; x; yÞ, namely

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 102, 084024 (2020)

084024-4



k ≡
1ffiffiffi
2

p
�

1ffiffiffiffiffiffiffiffi−gtt
p ∂t þ

1ffiffiffiffiffiffigyy
p ∂y

�
;

l ≡
1ffiffiffi
2

p
�

1ffiffiffiffiffiffiffiffi−gtt
p ∂t −

1ffiffiffiffiffiffigyy
p ∂y

�
;

m ≡
1ffiffiffi
2

p
� ffiffiffiffiffi

gtt
D

r
∂φ þ

gtφffiffiffiffiffiffiffiffiffi
Dgtt

p ∂t −
iffiffiffiffiffiffi
gxx

p ∂x

�
; ð20Þ

with D given by (13). All the scalar products vanish,
except for

k · l ¼ −1; m · m̄ ¼ 1: ð21Þ

For vacuum solutions, the Ricci tensor and Ricci scalar
vanish. The Weyl tensor is thus identical to the Riemann
curvature tensor, and in expressions (19) we can replace
Cabcd by Rabcd. In view of the vanishing components of the
null tetrad vectors (20) and the vanishing components of the
Riemann tensor (A9) of the metric (11), summarized in
Appendix A, the following formulas for the Weyl scalars
can be derived

Ψ0 ¼
1

4

�
1

Dgyy

�
g2tφ
gtt

Rtyty − 2gtφRtyφy þ gttRφyφy

�
−
1

D
Rtφtφ

þ 1

gxx

�
1

gtt
Rtxtx −

1

gyy
Rxyxy

��

−
i
2

1ffiffiffiffiffiffiffi
−D

p 1ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p

�
gtφ
gtt

Rtxty −Rtφxy −Rtxφy

�
;

Ψ1 ¼
1

2

�
1ffiffiffiffiffiffiffi

−D
p

gyy

�
Rtyφy −

gtφ
gtt

Rtyty

�
−

i
gtt

ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p Rtxty

�
;

Ψ2 ¼
1

4

�
1

Dgyy

�
g2tφ
gtt

Rtyty − 2gtφRtyφy þ gttRφyφy

�
þ 1

D
Rtφtφ

þ 1

gxx

�
1

gtt
Rtxtx þ

1

gyy
Rxyxy

��

−
i
2

1ffiffiffiffiffiffiffi
−D

p 1ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p

�
gtφ
gtt

Rtxty þRtφxy −Rtxφy

�
;

Ψ3 ¼ Ψ1;

Ψ4 ¼ Ψ0: ð22Þ

Notice that, interestingly, the long expressions for Ψ0 and
Ψ2 are very similar. In fact, they only differ in signs of
three terms.
Now, by substituting the explicit components (12) of the

metric and the corresponding Riemann tensor (A9) into
(22), the computer algebra system MAPLE rendered the
following Weyl scalars:

Ψ0 ¼ Ψ4 ¼ −3α2λð1 − x2ÞFðxÞðy2 − 1ÞFðyÞΞðx; yÞ;
Ψ1 ¼ Ψ3 ¼ −3α2λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2ÞFðxÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 − 1ÞFðyÞ

q

× Σðx; yÞΞðx; yÞ;
Ψ2 ¼ ½α2λΠðx; yÞ þ iα3Mðx − yÞ5�Ξðx; yÞ; ð23Þ

where the functions Ξ, Σ, and Π are defined as

Ξðx; yÞ ¼ ðH − 4Þ ffiffiffiffiffiffiffiffiffiffiffiffi
H − 1

p þ ið4 − 3HÞ
ðx − yÞ2H3

;

Σðx; yÞ ¼ xy − 1 − αMxð1 − 3y2Þ − αMyð1þ y2Þ;
Πðx; yÞ ¼ 2Σ2ðx; yÞ − ½ð1 − x2ÞFðxÞ − αMðx − yÞ3�

× ðy2 − 1ÞFðyÞ; ð24Þ

with H ≡Hðx; yÞ given by (9), and FðxÞ, FðyÞ by (3), (4).
Surprisingly, the key function Ξðx; yÞ which factorizes all
the Weyl scalars can be written in an explicit and compact
form as

Ξ ¼ iðx − yÞ4
½ðx − yÞ2 − λiðy2 − 1Þð1þ 2αMyÞ�3 : ð25Þ

From these curvature scalars, we then computed the
scalar invariants I and J, defined as

I ≡Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; J≡

								

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

								
; ð26Þ

and using MAPLE we verified that the equality I3 ¼ 27J2

does not hold. This means (see [3,9]) that the metric (8) is
algebraically general, that is of type I.
Consequently, the accelerating NUT metric (8) cannot

be included in the Plebański–Demiański family because
this is of algebraic type D.
Of course, this conclusion is only valid when λ ≠ 0.

In the case of vanishing λ, implying H ¼ 1 and thus
Ξ ¼ i=ðx − yÞ2, the only nontrivial Weyl scalar remains
Ψ2 ¼ −Mα3ðx − yÞ3. Such spacetime is of algebraic type
D, with double degenerate principal null directions k and l.
In fact, it is the C-metric (10) which belongs to the
Plebański–Demiański class.
Deeper analysis of the algebraic structure will be

presented in Secs. VI B and VI C.

A. The principal null directions

Actually, it is possible to determine four principal null
directions (PNDs) of the Weyl tensor, and to prove
explicitly that they are all distinct.
As usual [3,9], we employ the dependence of the Weyl

scalars (19) on the choice of the null tetrad, namely their
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transformation properties under a null rotation which keeps
l fixed,

k0 ¼ kþ Km̄þ K̄mþ KK̄l; l0 ¼ l; m0 ¼ mþ Kl;

ð27Þ

where K is a complex parameter. The component Ψ0 then
transforms to

Ψ0
0 ¼ Ψ0 þ 4KΨ1 þ 6K2Ψ2 þ 4K3Ψ3 þ K4Ψ4: ð28Þ

The condition for k0 to be a principal null direction is
Ψ0

0 ¼ 0, which is equivalent

Ψ0 þ 4KΨ1 þ 6K2Ψ2 þ 4K3Ψ3 þ K4Ψ4 ¼ 0: ð29Þ

Since this is a quartic expression in K, there are exactly
four complex roots Ki (i ¼ 1, 2, 3, 4) to this equation. Each
Ki corresponds via (27) to the principal null direction k0i.
In the case of the metric (8), theWeyl scalars with respect

to the null tetrad (20) are (23). Due to the special property
Ψ4 ¼ Ψ0 and Ψ3 ¼ Ψ1, the key algebraic equation (29)
simplifies to

Ψ0

�
K2 þ 1

K2

�
þ 4Ψ1

�
K þ 1

K

�
þ 6Ψ2 ¼ 0; ð30Þ

(K must be nonvanishing in (29) because Ψ0 ≠ 0). It is
convenient to introduce a new parameter

κ ≡ K þ 1

K
; ð31Þ

so that (30) reduces to the quadratic equation in κ,

Ψ0κ
2 þ 4Ψ1κ þ 2ð3Ψ2 −Ψ0Þ ¼ 0; ð32Þ

with two solutions

κ1;2 ¼
−2Ψ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ψ2

1 − 2Ψ0ð3Ψ2 −Ψ0Þ
p

Ψ0

: ð33Þ

Finally, we find the roots Ki by solving (31), that is the
quadratic equation K2 − κK þ 1 ¼ 0:

Ki ¼
κ �

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 4

p

2
; ð34Þ

where κ ¼ κ1 and κ ¼ κ2. Indeed, we have thus obtained
four explicit complex roots Ki corresponding to four
distinct PNDs k0i, which can be expressed using (27).

V. A NEW CONVENIENT FORM OF THE METRIC

The metric (2) can be put in an alternative form which is
suitable for its physical interpretation, in particular for

determining the meaning of its three free parameters. This
is achieved by performing the coordinate transformation

x ¼ − cos θ; y ¼ −
1

αðr − r−Þ
; t̄ ¼ rþ − r−

2αlc
t:

ð35Þ

We introduce the NUT parameter l as

l ≡ λrþ ¼
ffiffiffi
δ

p

α2
rþ; ð36Þ

using the definition (7), and a new real mass parameter m
via the relation

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − l2

p
: ð37Þ

Specific combinations of m and l can conveniently be
defined and denoted as

rþ ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
;

r− ≡m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; ð38Þ

so that rþ is always positive while r− is always negative.
Actually, it will soon be seen that these constants describe
the location of two Taub–NUT horizons. From these
definitions, important identities immediately follow,
namely

rþ þ r− ¼ 2m;

rþ − r− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
¼ 2M ≥ 0;

rþr− ¼ −l2;

rþðrþ − r−Þ ¼ r2þ þ l2: ð39Þ

The original metric (2) with (3)–(5) then becomes

ds̄2 ¼ 1

Ω2

�
−
ðrþ − r−Þ2

2r2þ
ð1 − α2ðr − r−Þ2Þ

FðyÞ
Hðx; yÞ

×

�
dt − 2l

�
cos θ − α

ðr − r−Þ2FðxÞsin2θ
ðrþ − r−ÞΩ2

�
dφ

�
2

þ 1

2
ðr − r−Þ2Hðx; yÞ

×

�
dr2

FðyÞðr − r−Þ2ð1 − α2ðr − r−Þ2Þ

þ dθ2

FðxÞ þ FðxÞsin2θdφ2

��
; ð40Þ

where Ω ≡ 1 − αðr − r−Þ cos θ. Of course, the metric func-
tions FðxÞ, FðyÞ, and Hðx; yÞ ≡ 2H̄, given by (3), (4), and
(9), respectively, must be expressed in terms of the new
coordinates r and θ. It is useful to relabel them as
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FðxÞ → PðθÞ ¼ 1 − αðrþ − r−Þ cos θ;
FðyÞ → FðrÞ ¼ r − rþ

r − r−
;

Hðx; yÞ → Hðr; θÞ ¼ 1þ l2

r2þ

ðr − rþÞ2
ðr − r−Þ2

×
½1 − α2ðr − r−Þ2�2

½1 − αðr − r−Þ cos θ�4
: ð41Þ

Notice that H is always positive. Finally, it is natural to
introduce two new functions replacing FðrÞ and Hðr; θÞ,
namely

QðrÞ ≡ FðrÞðr − r−Þ2ð1 − α2ðr − r−Þ2Þ;
R2ðr; θÞ ≡ rþ

rþ − r−
ðr − r−Þ2Hðr; θÞ; ð42Þ

and to perform a trivial rescaling of the whole metric by a
constant conformal factor as

ds2 ≡
2rþ

rþ − r−
ds̄2: ð43Þ

Thus, the exact solution found in [10] simplifies consid-
erably to a new convenient form of the metric

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dt − 2lðcos θ − αT sin2θÞdφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð44Þ

where

Ωðr;θÞ ¼ 1− αðr− r−Þ cosθ;
PðθÞ ¼ 1− αðrþ − r−Þ cosθ;
QðrÞ ¼ ðr− rþÞðr− r−Þð1− αðr− r−ÞÞð1þ αðr− r−ÞÞ;

T ðr;θÞ ¼ ðr− r−Þ2P
ðrþ − r−ÞΩ2

;

R2ðr;θÞ ¼ 1

r2þ þ l2

�
r2þðr− r−Þ2 þ l2ðr− rþÞ2

×
½1− α2ðr− r−Þ2�2

½1− αðr− r−Þcosθ�4
�
: ð45Þ

This new metric form can be used for investigation of
geometric properties of the spacetime and for its physical
interpretation. It explicitly contains 3 free parameters,
namely m, l and α [the first two uniquely determining
the constants rþ and r− via the relations (38)]. They can
independently be set to any value. In particular, it is
possible to set them to zero, thus immediately obtaining
important special subclasses of the spacetime metric (44).
This is the main advantage of (44) if compared to the
original form (2) in which, in particular, it is not possible to

set α ¼ 0, and also the NUT parameter is not explicitly
identified.
Let us now investigate the spacetime, based on the new

form of its metric (44), (45).

A. The case l = 0: The C-metric
(accelerating black holes)

For l ¼ 0 the constants (38) become

rþ ¼ 2m; r− ¼ 0; ð46Þ

so that the metric functions (45) reduce considerably to

Ωðr; θÞ ¼ 1 − αr cos θ;

PðθÞ ¼ 1 − 2αm cos θ;

QðrÞ ¼ rðr − 2mÞð1 − αrÞð1þ αrÞ;
R2ðr; θÞ ¼ r2: ð47Þ

The metric (44) thus simplifies to a diagonal line element

ds2 ¼ 1

ð1 − αr cos θÞ2

×

�
−Qdt2 þ dr2

Q
þ r2

�
dθ2

P
þ Psin2θdφ2

��
; ð48Þ

where

P ¼ 1 − 2αm cos θ;

Q ≡
Q
R2

¼
�
1 −

2m
r

�
ð1 − αrÞð1þ αrÞ: ð49Þ

This is exactly the C-metric expressed in spherical-type
coordinates, see Eqs. (14.6) and (14.7) in [9]. As has been
thoroughly described in Ch. 14 of [9], this metric represents
the spacetime with a pair of Schwarzschild-like black holes
of mass m which uniformly accelerate due to the tension of
cosmic strings (or struts) located along the half-axes of
symmetry at θ ¼ 0 and/or θ ¼ π. Their acceleration is
determined by the parameter α. This gives the physical
interpretation to the two constant parameters of the solution.

B. The case α= 0: The Taub–NUT metric
(twisting black holes)

Complementarily, it is possible to directly set α ¼ 0 in
the metric (44). In such a case the functions (45), using the
identities (39), reduce to simple quadratics

Ωðr; θÞ ¼ 1;

PðθÞ ¼ 1;

QðrÞ ¼ ðr − rþÞðr − r−Þ ≡ r2 − 2mr − l2;

R2ðr; θÞ ¼ r2 þ l2: ð50Þ
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The metric (44) remains nondiagonal, but has a compact
explicit form

ds2 ¼ −fðdt − 2l cos θdφÞ2 þ dr2

f

þ ðr2 þ l2Þðdθ2 þ sin2 θdφ2Þ; ð51Þ
where

f ≡
Q
R2

¼ r2 − 2mr − l2

r2 þ l2
: ð52Þ

It is exactly the standard Taub-NUT metric, see Eqs. (12.1)
and (12.2) in [9]. As summarized in Ch. 12 of [9], this
metric is interpreted as a spacetime with black hole of mass
m and NUT twist parameter l. There are horizons located at
r ¼ rþ and r ¼ r−, but there is no curvature singularity at
r ¼ 0. Whenever the NUT parameter l is nonvanishing,
there is an internal twist in the geometry, related to spinning
cosmic strings located along the axes θ ¼ 0 and/or θ ¼ π.
In the vicinity of these “torsion singularities” there appear
closed timelike curves.

C. The case α= 0 and l = 0: Schwarzschild black hole

By simultaneously setting both the acceleration α and the
NUT parameter l to zero, we immediately obtain the
standard spherically symmetric metric

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð53Þ
As is well known (see, e.g., Ch. 8 of [9]), it represents the
spherically symmetric Schwarzschild black hole of mass m
in asymptotically flat space. There is no acceleration and no
twist, the axes are regular (there are no cosmic strings,
struts, or torsion singularities).

D. The case α= 0 and l = 0 and m= 0:
Minkowski flat space

By setting α ¼ 0 ¼ m in (48), (49) which implies
P ¼ 1 ¼ Q, or by setting l ¼ 0 ¼ m in (51), (52) which
implies f ¼ 1, or by setting m ¼ 0 in (53), we obtain

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð54Þ
This is obviously the flat metric in spherical coordinates
(Eq. (3.2) in [9]).
Since all such subcases are directly obtained as special

cases, it is indeed natural to interpret the general metric
(44), (45) as a three-parameter family of exact spacetimes
with uniformly accelerating black holes with the twist NUT
parameter.
The structure of the new family of spacetimes which

represent accelerating NUT black holes is shown in Fig. 1.
Previously known spacetimes are obtained in their classic

form by simply setting the acceleration α, the NUT
parameter l, or the mass m to zero. With these settings,
algebraically general solution of Einstein’s vacuum equa-
tions reduces to type D.

VI. PHYSICAL INTERPRETATION OF
THE NEW METRIC FORM

A. Position of the horizons

The metric (44) is very convenient for investigation of
horizons. In these coordinates, ∂t is one of the Killing vectors
(the second is ∂φ). Its norm is −Q=ðΩRÞ2, so that t is a
temporal coordinate in the regionswhereQðrÞ > 0,while it is
a spatial coordinate in the regions where QðrÞ < 0. These
regions are separated by the Killing horizons localized at
QðrÞ ¼ 0. The formof themetric functionQ is given by (45),
which is clearly a quartic factorized into four roots. There are
thus four Killing horizons, located at

Hþ
b ∶ r ¼ rþb ≡ rþ > 0;

H−
b∶ r ¼ r−b ≡ r− < 0;

Hþ
a ∶ r ¼ rþa ≡ r− þ α−1;

H−
a∶ r ¼ r−a ≡ r− − α−1; ð55Þ

FIG. 1. Schematic structure of the complete family of accel-
erating black holes with a NUT parameter. This 3-parameter class
of vacuum solutions to Einstein’s field equations is of general
algebraic type I, reducing to double degenerate type D whenever
the acceleration α or the NUT parameter l (or both) vanish. By
setting any of the three independent parameters α, l,m to zero, the
well-known classes (namely the NUT solution, the C-metric,
Schwarzschild black hole and Minkowski flat space) are obtained
directly in their usual forms, whose equation numbers are also
indicated in the diagram.
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(see Fig. 4)where r� are defined by (38). Recall also (39), that
is rþ − r− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0 (unless m ¼ 0 ¼ l, in which

case rþ ¼ 0 ¼ r−).
The horizons Hþ

b ;H
−
b at rþb ; r

−
b are two black-hole

horizons. Interestingly, they are located at the same values
rþ; r− of the radial coordinate r as the two horizons in the
standard (nonaccelerating) Taub–NUT metric, see (50).
The horizons Hþ

a ;H−
a at rþa ; r−a are two acceleration

horizons. Their presence is the consequence of the fact that
the black hole accelerates whenever the parameter α is
nonzero. They generalize the acceleration horizons
þα−1;−α−1 present in the C-metric, see (49).
These pairs of roots are clearly ordered as rþb > r−b and

rþa > r−a (naturally assuming that the acceleration param-
eter α is positive). Their mutual relations, however, depend
on the specific values of the three physical parameters m, l,
α. Concentrating on the physically most plausible case
when the acceleration is small, the value of α−1 is very
large, and rþa becomes bigger than rþb . This condition
rþa > rþb explicitly reads

α <
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð56Þ

For such a small acceleration of the black hole, the ordering
of its four horizons is

r−a < r−b < 0 < rþb < rþa : ð57Þ

The first two horizons H−
a and H−

b (acceleration and
black-hole, respectively) are in the region r < 0, while the
remaining two horizons Hþ

b and Hþ
a (black-hole and

acceleration, respectively) are in the region r > 0. Such
a situation can be naturally understood as the Taub-NUT
spacetime with usual two “inner” black hole horizons H�

b ,
which are here surrounded by two additional “outer”
acceleration horizons H�

a (one in the region r > 0 and
the second in the region r < 0).
Evaluating QðrÞ, generally given by (45), at r ¼ 0 we

obtain using (39)

Qðr ¼ 0Þ ¼ rþr−ð1 − α2r2−Þ ¼ −l2ð1 − α2r2−Þ: ð58Þ

From the condition (56) and (38) it follows that

1 − α2r2− >
2m2 þ 3l2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

4ðm2 þ l2Þ > 0; ð59Þ

so that Qðr ¼ 0Þ < 0. It implies Q < 0 for any
r ∈ ðr−b ; rþb Þ. We conclude that the coordinate t is temporal
in the regions ðrþb ; rþa Þ and ðr−a ; r−b Þ, that is between the
black-hole and acceleration horizons, while it is spatial in
the complementary three regions of the radial coordinate r.

Moreover, when the condition (56) is satisfied, the metric
coefficient PðθÞ in (44) is always positive. Indeed,

Pmin ¼ Pðθ ¼ 0Þ ¼ 1 − αðrþ − r−Þ
¼ 1 − 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0: ð60Þ

Of course, for other choices of the physical parameters,
different number and different ordering of the horizons can
be achieved. They also may coincide, thus becoming
degenerate horizons. In particular, in the limit of vanishing
acceleration α → 0, the two outer acceleration horizons
disappear (formally via the limits rþa → þ∞, r−a → −∞),
and only two Taub-NUT black hole horizons Hþ

b ;H
−
b

remain. On the other hand, for vanishing NUT parameter
l → 0, one of the black-hole horizon disappears (formally
via the limit r−b ≡ r− → 0), while the second becomes
rþb ≡ rþ → 2m. There is just one black-hole horizon at
2m surrounded by two acceleration horizons located at
�α−1, which is exactly the case of the C-metric with a
curvature singularity at r ¼ 0.

B. Curvature of the spacetime, algebraic structure,
and regularity

1. The Weyl scalars

We now employ the Weyl scalarsΨA given by (23), (24),
(25) to discuss the algebraic properties of the spacetime,
including the subcases l ¼ 0 and α ¼ 0, the location of
physical curvature singularities and its global structure.
These scalars correspond to the metric (8) with coor-

dinates x, y, and it is thus natural to denote them as ΨðxyÞ
A .

It will also be convenient to express these curvature scalars

as ΨðrθÞ
A for the metric form (44) with coordinates r, θ.

Using the transformation (35) and definitions (41), (42)
we immediately derive α2ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞ ¼
PQðr − r−Þ−4 sin2 θ, with P ¼ PðθÞ and Q ¼ QðrÞ given
by (45), and similarly we express the functions Ξ, Σ, andΠ.
However, it is also necessary to properly rescale the scalars

ΨðxyÞ
A given by (23) to get ΨðrθÞ

A because the metrics (8) and
(44) are not the same: They are related by a constant
conformal factor,

gðrθÞab ¼ ω2gðxyÞab ; where ω2 ¼ rþ
rþ − r−

: ð61Þ

Indeed, gðxyÞab ¼ 2ḡab while g
ðrθÞ
ab ¼ 2

rþ
rþ−r−

ḡab, see (43). The

corresponding Weyl tensor components are related as

CðrθÞ
abcd ¼ ω2CðxyÞ

abcd, see [11]. The null tetrad (20) also needs
to be rescaled in such a way that it remains properly
normalized in the coordinates r, θ as (21). This requires
kðrθÞ ¼ ω−1kðxyÞ, lðrθÞ ¼ ω−1lðxyÞ, mðrθÞ ¼ ω−1mðxyÞ. In
view of (19), we obtain the relation
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ΨðrθÞ
A ¼ ω−2ΨðxyÞ

A : ð62Þ

Using (23)–(25) and (61)–(62), we thus calculate the Weyl
curvature scalars for the metric (44) with respect to the null
tetrad

kðrθÞ ¼ 1ffiffiffi
2

p Ω
�

Rffiffiffiffi
Q

p ∂t þ
ffiffiffiffi
Q

p

R
∂r

�
;

lðrθÞ ¼ 1ffiffiffi
2

p Ω
�

Rffiffiffiffi
Q

p ∂t −
ffiffiffiffi
Q

p
R

∂r

�
;

mðrθÞ ¼ 1ffiffiffi
2

p Ω
R

ffiffiffiffi
P

p
sin θ

ð∂φ þ 2lðcos θ − αT sin2 θÞ∂t

− iP sin θ∂θÞ: ð63Þ

It turns out that

ΨðrθÞ
0 ¼ ΨðrθÞ

4 ¼ −3iα2lPQðr − r−Þsin2θX;
ΨðrθÞ

1 ¼ ΨðrθÞ
3 ¼ 3αl

ffiffiffiffiffiffiffiffi
PQ

p
sin θSX;

ΨðrθÞ
2 ¼ ½−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 þ ilW=ðr − r−Þ�X; ð64Þ

where

Xðr; θÞ ¼ ðr2þ þ l2Þðr − r−Þ3Ω4

½rþðr − r−Þ2Ω2 − ilQ�3 ;

Sðr; θÞ ¼ ð1 − α2ðr − r−Þ2Þðr − rþÞ
− ½ðr − rþÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ð1 − α2ðr − r−Þ2Þ�Ω;

Wðr; θÞ ¼ 2S2 þ ð1 − α2ðr − r−Þ2Þðr − rþÞ
× ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω3 − α2ðr − r−Þ3Psin2θ�: ð65Þ

These functions are related to (24) via

X ≡
−iðrþ − r−Þ
α2r2þðr − r−Þ5

Ξ; S ≡ α2ðr − r−Þ3Σ;

W ≡ α4ðr − r−Þ6Π; ð66Þ

and Ω ¼ Ωðr; θÞ, P ¼ PðθÞ, and Q ¼ QðrÞ are given
by (45).
As we have already argued in Sec. IV, this class of

spacetimes with accelerating Taub–NUT black hole is
generically of type I, i.e., it is algebraically general.
However, it may degenerate. When either α ¼ 0 or
l ¼ 0, the only nontrivial curvature component is given by

ΨðrθÞ
2 ¼ ½−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 þ ilW=ðr − r−Þ�X: ð67Þ

Such spacetimes are clearly of algebraic type D, with two
double-degenerate principal null directions kðrθÞ and lðrθÞ of
the Weyl/Riemann tensor.

This is fully consistent with the fact that the case l ¼ 0

(implying rþ ¼ 2m, r− ¼ 0, see (46), and X ¼ ðrþr3Ω2Þ−1)
corresponds to the type D accelerating C-metric, for which

ΨðrθÞ
2 ¼ −

m
r3
ð1 − αr cos θÞ3; ð68Þ

see Ch. 14 in [9].
The complementary case α ¼ 0, which cannot be

directly obtained from ΨðxyÞ
A given by (23), corresponds

to the type D twisting Taub–NUT metric. It follows
from (50) that in such a case Ω ¼ 1 and QðrÞ ¼
ðr − rþÞðr − r−Þ. With the help of relation (39) we thus get

X ¼ r2þ þ l2

½rþðr − r−Þ − ilðr − rþÞ�3
¼ ðrþ − ilÞðrþ þ ilÞ

ðrþ − ilÞ3ðrþ ilÞ3 ;

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ðr − r−Þ; ð69Þ

so that

ΨðrθÞ
2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ðrþ − ilÞX ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

rþ − il
rþ þ il
ðrþ ilÞ3

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þ þ l2
ðrþ þ ilÞ2
ðrþ ilÞ3 : ð70Þ

Applying the identities

r2þ þ l2 ¼ rþðrþ − r−Þ ¼ 2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; and

ðrþ þ ilÞ2 ¼ 2rþðmþ ilÞ; ð71Þ

we finally obtain

ΨðrθÞ
2 ¼ −

mþ il
ðrþ ilÞ3 ; ð72Þ

which is the standard form of the scalar Ψ2 for the Taub–
NUT spacetime, see Ch. 12 in [9].

2. Algebraic type and regularity of the horizons

It can be immediately observed from (64) that on the
horizons (55), defined by Q ¼ 0, all the Weyl scalars
vanish except

ΨðrθÞ
2 ðat any horizon rhÞ

¼ −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þðrh − r−Þ3
�
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω3 − il

W
ðrh − r−ÞΩ2

�
:

ð73Þ

Therefore, all horizons are of algebraic type D. This is true
in a generic case with any acceleration α and any NUT
parameter l. Moreover, at these horizons the spacetime is
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regular, that is free of curvature singularities. This can be
proved as follows:

(i) At the acceleration horizons rþa ; r−a , the values are
rh − r− ¼ �α−1, so that ΩðrhÞ ¼ 1 ∓ cos θ and
WðrhÞ ¼ 2α−2ð1 ∓ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ2Ω2, implying

ΨðrθÞ
2 ðH�

a Þ ¼ 2α2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þ

× ½∓ αrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ð1 ∓ cos θÞ3

þ 2ilð1 ∓ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ2�: ð74Þ

(ii) At the positive black hole horizon rþb ≡ rþ > 0, the
value of the factor is rh − r− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
, so

that ΩðrhÞ¼ 1– 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ l2

p
cosθ¼P, WðrhÞ ¼

2ðm2 þ l2Þð1 − 4α2ðm2 þ l2ÞÞ2Ω2. Thus,

ΨðrθÞ
2 ðHþ

b Þ ¼ −
1

4r2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

× ½rþð1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
cos θÞ3

− ilð1 − 4α2ðm2 þ l2ÞÞ2�: ð75Þ

(iii) At the negative black hole horizon r−b ≡ r− < 0,
the expression (73) seems to diverge. However,
a careful analysis of the limit r → r− of (67)
shows, using X → irþð4l3ðm2 þ l2ÞÞ−1, Ω → 1

and W=ðrh−r−Þ→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þl2

p
ð1−6α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þl2

p
cosθÞ

that

ΨðrθÞ
2 ðH−

b Þ ¼ −
rþ

4l3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

× ½lð1 − 6α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
cos θÞ þ irþ�:

ð76Þ

The expressions (74)–(76) explicitly demonstrate
that at any horizon the gravitational field is finite,
without the curvature singularities.

3. Algebraic type of the axes and principal
null directions

Similarly, along both the axes θ ¼ 0 and θ ¼ π the

function sin θ vanishes, which implies that ΨðrθÞ
0 ¼ ΨðrθÞ

1 ¼
0 ¼ ΨðrθÞ

3 ¼ ΨðrθÞ
4 . This proves that the algebraic structure

of the spacetime on these axes is also of type D, with the
only curvature component (67).
Finally, let us comment on the principal null directions

(PNDs) of the curvature tensor introduced in Sec. IVA.
Using the Weyl scalars (64) we can express the key
discriminant of the equation (33) as

D ≡ 4Ψ2
1 − 2Ψ0ð3Ψ2 −Ψ0Þ

¼ −18α2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
PQ sin2 θΩ3X2Y; ð77Þ

where Yðr;θÞ¼ lð1−α2ðr−r−Þ2Þðr−rþÞþ irþðr−r−ÞΩ2.
Therefore, thereare ingeneral twodistinctrootsκ1,κ2 of(33),
andsubsequently thereare fourdistinct rootsKi of (34).They
correspond to four distinct PNDs of the Weyl tensor, con-
firming that the metric (44) is of algebraically general type I.
However, if (and only if) α ¼ 0 or l ¼ 0, the discriminant

(77) everywhere vanishes and there is only one double
root κ of (33). In such cases, there are just two roots

K1;2 ¼
κ �

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 4

p

2
; ð78Þ

corresponding to two doubly degenerate PNDs k01;2 of
type D spacetimes (the Taub–NUTmetric and theC-metric,
respectively). In particular, in this limit K1 → 0 and
K2 → ∞ which effectively corresponds to PND kðrθÞ and
PND lðrθÞ given by (63).

C. Curvature singularities and invariants

1. Investigation of possible singularities

The Weyl scalars ΨðxyÞ
A given by (23)–(25), or their

equivalent forms ΨðrθÞ
A given by (64)–(65), can be used to

study curvature singularities in the family of accelerating
NUT black holes.
By inspection we observe that all functions entering

these scalars are bounded2 except the function Xðr; θÞ, or
equivalently Ξðx; yÞ, whose denominator can be zero. This
key function appears as a joint factor in all the Weyl scalars
(64). Regions of spacetime where Xðr; θÞ → ∞ thus clearly
indicate the possible presence of a physical singularity. In
view of (65), such a curvature singularity corresponds to
the vanishing denominator of X (provided its numerator
remains nonzero), that is

rþðr − r−Þ2Ω2 − ilQ ¼ 0: ð79Þ

Both the real and imaginary parts must vanish. Since
rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0, Ω is everywhere a positive

conformal factor, and Q ¼ 0 identifies regular horizons
(as shown in previous section), the only possibility is when

l ¼ 0 and at the same time r ¼ r− ¼ 0; ð80Þ

where in the last equality we applied the relation r− ≡m −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
for l ¼ 0. The curvature singularity thus appears

only in the C-metric spacetime at the origin r ¼ 0. All other

2As will be demonstrated in Sec. VI D, a possible divergence
for r → ∞ corresponds to asymptotically flat regions.
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spacetimes in the large class of accelerating NUT black
holes are nonsingular. The presence of the NUT parameter
l (even a very small one) thus makes the spacetime regular.
This property is well known for classic Taub–NUT space-
time (see Ch. 12 in [9]), and the same property holds also in
this new class of accelerating NUT black holes.
Consequently, to describe the complete spacetime mani-
fold, it is necessary to consider the full range of the radial
coordinate r ∈ ð−∞;þ∞Þ.
To confirm these observations, we employ the scalar

curvature invariant I defined in (26). Introducing a
convenient new function Δ, defined as

Δ ≡ Ψ2 −Ψ0; ð81Þ
and using the special geometrical property of the spacetime
Ψ0 ¼ Ψ4 and Ψ1 ¼ Ψ3, this invariant is simplified to

I ¼ Ψ2
0 − 4Ψ2

1 þ 3Ψ2
2 ¼ 3Δ2 −D; ð82Þ

where the discriminant D is given by (77). Explicit
evaluation now leads to

I ¼ 3

�
r2þðm2 þ l2ÞΩ10

− 12α2l2PQsin2θS2 − 3α4l2ðr − r−Þ2P2Q2sin4θ

− l2W2=ðr − r−Þ2 − 2ilrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5W=ðr − r−Þ

�
X2:

ð83Þ

Since (as already argued) even the function W=ðr − r−Þ is
finite at the black hole horizon r−b ≡ r−, the scalar curvature
invariant I becomes unbounded only if the function
X diverges. This happens if, and only if, both the conditions
(80) hold.
Recall also that the real part of the invariant I is

proportional to the Kretschmann scalar,

K ≡ RabcdRabcd ¼ 16ReðIÞ; ð84Þ

which can thus be evaluated as

K ¼ 48fReðΨ2
2Þ − 3α2l2PQsin2θ

½4S2 þ α2ðr − r−Þ2PQsin2θ�ReðX2Þg: ð85Þ

In this form it is explicitly seen that the Kretschmann scalar
for the C-metric or the Taub–NUT black hole is simply
obtained by setting l ¼ 0 or α ¼ 0, respectively. In both
cases, it leads to

Kl or α→0 ¼ 48ReðΨ2
2Þ; ð86Þ

where Ψ2 is given by (68) or (72), in full agreement with
[12,13]. Interestingly, K ¼ 48ReðΨ2

2Þ also on the horizons
(55) where Q ¼ 0, and on the axes θ ¼ 0; π where
sin θ ¼ 0.
In the general case of accelerating NUT back holes, the

Kretschmann curvature scalar K is given by expression
(85). This explicit but somewhat complicated function of

0

2

r r
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r
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FIG. 2. The value of the Kretschmann curvature scalar (85) plotted as the function KðrÞ, where r is the radial coordinate, for θ ¼ 0, π
2
,

and π. The black-hole parameters are m ¼ 8, l ¼ 5, and α ¼ 0.025.
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FIG. 3. The Kretschmann curvature scalar (85) visualized in quasipolar coordinates as Kðx; yÞ, where x ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
sin θ,

y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
cos θ, so that r ¼ 0 is a circle of radius l. The left column corresponds to r ≥ 0, while the right column represents

r < 0. The first row plots the Kretchmann scalar for the accelerating NUT black hole with m ¼ 8, l ¼ 5 and α ¼ 0.025. It can be seen
that the curvature is everywhere finite, even in the vicinity of r ¼ 0, and it smoothly continues across r ¼ 0 from r > 0 to r < 0.
The second and third rows correspond to special cases of this metric, namely the Taub–NUT metric (with m ¼ 8, l ¼ 5, α ¼ 0) and the
C-metric (withm ¼ 8, l ¼ 0, α ¼ 0.025). The Taub–NUT metric has no divergence ofK, which is independent of θ. On the other hand,
the C-metric becomes singular as r → 0, that is at x ¼ 0 ¼ y (therefore we plot only the region r ≥ 0). The two separate cosmic strings
along the axes θ ¼ 0 and θ ¼ π are indicated as dashed curves.
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the coordinates r and θ is visualized in the two illustrative
figures.
In Fig. 2 we plot the Kretschmann scalar KðrÞ as a

function of the radial coordinate r for three fixed privileged
values of θ, namely θ ¼ 0, θ ¼ π

2
and θ ¼ π. In fact, we will

argue later that the two poles/axes at θ ¼ 0 and π
correspond to the position of (rotating) cosmic strings,
while θ ¼ π

2
is the equatorial section “perpendicular” to

them. It can be seen that for each θ there are several local
maxima and local minima. Half of these extremes are in the
region r > 0, the remaining are located in the region r < 0.
The curvature is everywhere finite, and its maximal values
are localized close to the origin r ¼ 0 inside the black hole,
that is within the shaded region r ∈ ðr−; rþÞ ≡ ðr−b ; rþb Þ.
In Fig. 3 we include the angular dependence on θ. The

left column corresponds to the region r ≥ 0, while the right
column represents the region r < 0. The first row plots the
Kretchmann scalar Kðr; θÞ for the accelerating NUT black
hole (with m ¼ 8, l ¼ 5, α ¼ 0.025), the second and third
rows correspond to special cases of this metric, namely the
Taub–NUT metric (m ¼ 8, l ¼ 5, α ¼ 0) and the C-metric
(m ¼ 8, l ¼ 0, α ¼ 0.025). From these visualizations of the
Kretschmann curvature scalar it is seen that the dependence
on both r and θ is smooth, and the curvature is everywhere
finite, except for the C-metric at r ¼ 0, in full agreement
with the condition (80). The two distinct cosmic strings
located on the axes θ ¼ 0 and θ ¼ π, respectively, are
indicated as dashed curves.

2. Scalar invariants and algebraic types

Let us conclude this part by returning to the scalar
curvature invariants I and J. We can express J, defined in
(26), in terms of the discriminant D and the function Δ as

J ¼ 1

2
ΔðD − 2Δ2Þ: ð87Þ

Using (82), the key expression I3 − 27J2 thus takes the
compact form

I3 − 27J2 ¼ 1

4
ð9Δ2 − 4DÞD2; ð88Þ

which is explicitly

I3 − 27J2 ¼ 9

4

�
ðrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 − il½W=ðr − r−Þ

− α2PQðr − r−Þsin2θ�Þ2

− 16α2l2PQsin2θS2
�
D2X2: ð89Þ

According to standard classification scheme for determin-
ing the algebraic type (see, e.g., page 122 of [3]), the
spacetime is of a general algebraic type I if (and only if)

I3 ≠ 27J2. This is clearly the generic case of (89), con-
firming the results of Sec. IV. Only for D ¼ 0 (or X ¼ 0
which is, however, a subcase of D ¼ 0), the spacetime
degenerates and becomes algebraically special. In particu-
lar, it follows from (77) that D ¼ 0 whenever α ¼ 0 or
l ¼ 0, and such spacetimes are actually of type D every-
where, as we have already demonstrated in previous
sections.
Zeros of the big square bracket in (89) identify alge-

braically more special regions in a given spacetime. It
requires

W ¼ α2PQðr − r−Þ2sin2θ and

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 ¼ �4αl

ffiffiffiffiffiffiffiffi
PQ

p
sin θS: ð90Þ

Clearly, this can happen only for the generic case of
accelerating NUT black holes with α ≠ 0 ≠ l. It is inter-
esting to observe from (64) that these two conditions imply

Ψ2 ¼ −
1

3
ðΨ0 � 4Ψ1Þ; ð91Þ

and thus D ¼ 4ðΨ0 �Ψ1Þ2 and Δ ¼ − 4
3
ðΨ0 � Ψ1Þ, which

now implies a specific relation D ¼ 9
4
Δ2. In such degen-

erate regions, the scalar curvature invariants take the form

I ¼ 3

4
Δ2; J ¼ 1

8
Δ3; and further

K ¼ 9

8
Ψ1Δ2; L ¼ 1

4
ðΨ0 � 3Ψ1ÞΔ

⇒ N ¼ 9

4
Ψ1ð3Ψ1 � 2Ψ0ÞΔ2; ð92Þ

confirming I3 ¼ 27J2. Therefore, using the classification
scheme, as summarized in [3], forΔ ¼ 0 ⇔ Ψ0 ¼ ∓Ψ1 the
region is of algebraic type N (because I ¼ J ¼ 0 ¼
K ¼ L), while for Δ ≠ 0 it is of type II. It degenerates
to algebraic type D if, and only if, Ψ1 ¼ 0 ≠ Ψ0 (because
I ≠ 0 ≠ J but K ¼ 0 ¼ N).

D. Description of the conformal infinity I�
and global structure

The coordinates employed in (44) are comoving in the
sense that they are adapted to the accelerating black holes.
This is clearly seen from the fixed position of the
geometrically unique horizons which are still at the same
values (55) of the radial coordinate r, despite the fact that
the black hole moves. This has many advantages, and
greatly simplifies physical and geometrical analysis of the
spacetime. However, as thoroughly discussed in the simpler
case of the C-metric (when l ¼ 0) in [9], such accelerating
comoving coordinates cannot naturally cover the whole
conformal infinity I (scri).
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1. Asymptotically flat regions

From the Weyl scalars (64), (65) it follows that asymp-
totically flat regions without any curvature, locally resem-
bling the null infinity I of Minkowski space, are reached
for Xðr; θÞ → 0. It occurs in the vicinity of Ω ≡ 1−
αðr − r−Þ cos θ ¼ 0, that is for r→ r−þ1=ðαcosθÞ. This
corresponds to the largest possible finite positivevalues of r in
the angular half-range θ ∈ ð0; π

2
Þ, but to the lowest possible

finitenegativevaluesof r for the secondhalf-rangeθ ∈ ðπ
2
; πÞ.

In the equatorial sectionθ ¼ π
2
, such asymptotically flat region

is reached both at r ¼ þ∞ and r ¼ −∞.
It is necessary to clarify these somewhat puzzling

observations. Such an understanding of the global structure
of the spacetime manifold with accelerating NUT black

holes will provide us with the complete picture summarized
in Fig. 4.
To describe and investigate the complete conformal

infinity I of spacetimes with accelerating NUT black
holes, it is much more convenient to consider the metric
form (8). Similarly as for the spherical-like coordinates, it
directly follows from expressions (23) that the correspond-
ing curvature scalars ΨA all vanish for Ξðx; yÞ ¼ 0. Such
regions are thus asymptotically flat, representing I . In view
of the explicit form of this function (25) it is clear that this
condition is equivalent to x − y ¼ 0. Therefore, the asymp-
totically flat infinity is located at

I∶ x ¼ y; ð93Þ

FIG. 4. The complete spacetime structure of the class of accelerating NUT black holes, suppressing the coordinates t and φ
(corresponding to stationary and axial symmetry). These fundamental sections are represented by (mutually equivalent) coordinates x, y
and θ, r. The black hole spacetime is localized in the shaded region x ∈ ½−1; 1� between two rotating cosmic strings at the two opposite
poles θ ¼ 0 and θ ¼ π. In the complementary (vertical) direction, the spacetime is separated by four Killing horizons at special values of
y and equivalently r, namely the two black-hole horizonsH�

b are located at r−b ¼ r−, r
þ
b ¼ rþ and two acceleration horizonsH�

a are at
rþa ¼ r− þ 1

α, r
−
a ¼ r− − 1

α. They separate different regions of the spacetimes in which the coordinate r is spatial (regions II�) or temporal
(regions I� and III). The values r ¼ 0 and r ¼∓ ∞, indicated by horizontal dashed lines, are only coordinate singularities. Conformal
infinity I, where the spacetime is asymptotically flat, is located along the diagonal line x ¼ y. There are thus two asymptotically flat
regions corresponding to our universe where r > 0 and the parallel universe where r < 0, which are connected through the region III
with the highest (but finite) curvature in the black hole interior r ∈ ðr−; rþÞ. Notice, however, that only along the equatorial section θ ¼ π

2

the corresponding two conformal infinities I� are represented by r ¼ �∞. Unlike in the C-metric or Schwarzschild black hole, with the
NUT parameter l there is no curvature singularity at r ¼ 0. It is thus obvious that there are two complete strings (not just semi-infinite
strings) at θ ¼ 0 and θ ¼ π, both connecting the two distinct universes as r ∈ ð−∞;þ∞Þ. In fact, to obtain a geodesically complete
spacetime, it is necessary to “glue the two universes” along the regular horizon H−

b at r ¼ r−b ≡ r−, both at y ¼ −∞ and y ¼ þ∞, by
identifying the corresponding parts of these lower and upper boundaries of the diagram indicated by two finely dashed line segments
between x ∈ ½−1; 1�. Thus we obtain a complete diagram of the spacetimewith accelerating NUT black holes, shown in the right part of
this figure.
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see also Fig. 4. The admitted range of the coordinate x is
x ∈ ½−1; 1� (see the subsequent section) and thus the range
of y on I is also y ∈ ½−1; 1�. Interestingly, it is exactly the
same situation as for the C-metric (10), see [9].
It can now be understood, what are the specific draw-

backs of the spherical-like coordinates r, θ of the metric
(44) to represent I . There is no problem in the equatorial
plane θ ¼ π

2
corresponding to x ¼ 0, which symmetrically

divides the spacetime into two regions between the two
axes (strings). Due to (93), the scri I in such “transverse
section” is located at y ¼ 0, and it follows from the
transformation (35) that this occurs at infinite values of r,

I at θ ¼ π

2
∶ r ¼ �∞; ð94Þ

as naïvely assumed. However, at any other section θ ¼
const., the conformal infinity I is located at finite values
of r. Indeed, (93) with (35) reads cos θ ¼ 1=½αðr − r−Þ�,
that is

I at any θ ≠
π

2
∶ r ¼ r− þ 1

α cos θ
: ð95Þ

Therefore, close to the first string at θ ¼ 0 we obtain
r → r− þ α−1 ≡ rþa , while close to the second string at
θ ¼ π we get r → r− − α−1 ≡ r−a , see (55) and Fig. 4.
Notice that this is exactly the condition for vanishing
conformal factor in the metric (44), (45),

Ωðr; θÞ ¼ 0: ð96Þ

Such a behavior is analogous to the situation in the
simpler C-metric [9]. However, in the present case of
accelerating NUT black holes, there are two distinct
asymptotically flat regions, namely Iþ which is the
conformal boundary of “our universe” in the region Iþ,
and I− which is the conformal boundary of “parallel
universe” in the region I−. In order to cover the part
θ > π

2
of Iþ in “our universe,” it is necessary to also

consider r < 0. And vice versa: to cover the part θ < π
2
of

I− in parallel universe, it is necessary to also employ r > 0.
This is surely possible, but quite cumbersome.

2. Boost-rotation metric form and its analytic extension

To further elucidate the global structure of the new
solution (44) for accelerating NUT black holes, it is useful
to express it in a form in which its boost and rotation
symmetries are explicitly manifested. This will also provide
a clear argument indicating that the analytically extended
space-time represents a pair of accelerated black-hole
sources. It is achieved by applying the transformation

ζ ¼
ffiffiffiffi
P

p

αΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − α2ðr − r−Þ2j

q
; ð97Þ

ρ ¼ sin θ
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − rþÞðr − r−Þ

p
; ð98Þ

(so that ζ, ρ ≥ 0) with t0 ¼ αt and φ unchanged. Clearly,
ζ ¼ 0 at both acceleration horizons H�

a , whereas ρ ¼ 0 at
both black-hole horizons H�

b , and also along the two
strings located at θ ¼ 0 and θ ¼ π. An application of the
transformation (97), (98) takes the metric (44) to the form

ds2 ¼ −eμζ2ðdt0 − AdφÞ2 þ eλðdζ2 þ dρ2Þ þ e−μρ2dφ2;

ð99Þ

where the functions μ, λ, and A are

eμ ¼ ðr − rþÞðr − r−Þ
R2P

;

e−λ ¼ R−2
�
ðr − rþÞðr − r−ÞP

þ ðm2 þ l2Þ½1 − α2ðr − r−Þ2�sin2θ
�
;

A ¼ 2αl

�
cos θ −

α

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p r − r−
r − rþ

Pρ2
�
: ð100Þ

Of course, these metric functions need to be rewritten in
terms of the variables ζ and ρ.
When the NUT parameter vanishes, l ¼ 0, the metric

becomes static because A ¼ 0. In fact, the remaining
functions eμ and e−λ then reduce exactly to expressions
(14.30), (14.31) in [9] for the C-metric. For m → 0, the
metric (99) further reduces to the uniformly accelerated flat
metric, since eμ → 1 and e−λ → 1, yielding

ds2 ¼ −ζ2dt02 þ dζ2 þ dρ2 þ ρ2dφ2: ð101Þ

It is equation (14.25) in [9], equivalent to the Bondi–
Rindler metric (3.14) whose coordinates are adapted to the
uniform acceleration. This weak-field limit thus provides a
reasonable justification that the black-hole sources are
indeed accelerating. Moreover, in view of (97), the accel-
eration is given by the parameter α (see also Sec. 3.5 in [9]
for more details).
Now, the metric (99) in the stationary regions II can be

analytically extended through the acceleration horizons
located at ζ ¼ 0 by transforming it to the boost-rotation
symmetric form with rotating sources (see [14–16]). In
particular, by performing the transformation3

T ¼ �ζ sinh t0; Z ¼ �ζ cosh t0; ð102Þ

the metric becomes

3An analogous transformation in the nonstationary
regions I close to the conformal infinity I is T ¼ �ζ cosh t0,
Z ¼ �ζ sinh t0.
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ds2 ¼ −
eμ

Z2 − T2
½ðZdT − TdZÞ − AðZ2 − T2Þdφ�2

þ eλ
�ðZdZ − TdTÞ2

Z2 − T2
þ dρ2

�
þ e−μρ2dφ2: ð103Þ

Clearly, ζ2 ≡ jZ2 − T2j, so that the acceleration horizons
H�

a are now located at T ¼ �Z. They separate the domains
of types I and II. For the whole range of the coordinates T
and Z, the boost-rotation symmetric metric (103) covers all
these regions, with μ, λ, and A being specific functions of ρ
and Z2 − T2, independent of t0 and φ.
Notice, however, that the coordinates ðζ; ρÞ and equiv-

alently ðr; θÞ with the “þ” sign in (102) each cover only
half of the section t0 ¼ const corresponding to a single
domain of type II, because necessarily Z > 0. To cover
also the analytically extended regions Z < 0, a second
copy of these coordinates is required by choosing the
“−” sign in (102). This indicates that the complete
spacetime actually contains a pair of uniformly accel-
erating NUT black holes, similarly as in the case of the
C-metric (see Ch. 14 in [9] for the details). These two
black holes accelerate away from each other, and are
causally separated. The analytically extended manifold
thus contains four asymptotically flat regions, a pair of
Iþ and a pair of I−, each in our universe and in the
parallel universe.
Let us finally remark that at large values of the radial

coordinate r close to I� where Ω ¼ 0, for any fixed
value of θ the metric functions behave as R ∼ r, P is a
constant, and Ω ∼ r (the case θ ¼ π

2
must be treated

separately). It thus follows from (100) that the functions
eμ; e−λ; A remain finite in this limit, demonstrating the
correct asymptotic behavior of the boost-rotation metric
form (103). In fact, analogously to the procedure pre-
sented in [16], by a properly performed rescaling of the
coordinates and uniquely chosen linear combination of t0

and φ, for the given θ it is possible to achieve eμ; eλ → 1,
and A → 0 in the asymptotically flat regions of these
spacetimes.

E. Character of the axes θ = 0 and θ= π:
Rotating cosmic strings

We have seen in Sec. VI A that the coordinate singu-
larities given by QðrÞ ¼ 0 represent four horizons (55)
associated with the Killing vector field ∂t. There is also the
second Killing vector field ∂φ, and its degenerate points
identify the spatial axes of symmetry.
They are located at the coordinate singularities of the

function sin θ in the new metric (44), and these appear
at the poles θ ¼ 0 and θ ¼ π. Therefore, the range of the
spatial coordinate θ must be constrained to θ ∈ ½0; π�.
Via the simple relation x ¼ − cos θ this is equivalent to
the range x ∈ ½−1; 1� between the two poles x ¼ �1 of
the function ð1 − x2Þ in the original form of the metric

(8). The location of these poles is indicated in Fig. 4,
defining the boundary of the physical spacetime with
black holes (the shaded region). Expressed in terms of
the coordinates of the boost-rotation/axially symmetric
metric (103), related by (98), these poles θ ¼ 0; π
correspond to ρ ¼ 0 which naturally identifies the
corresponding two axes.
In analogy with the C-metric, such degenerate axes

represent cosmic strings or struts. Their tension is the
physical source of the acceleration of the black holes.
We have proven in Sec. VI B that the algebraic

structure of (generic) type I spacetime degenerates along
these axes to type D, with the only curvature component
Ψ2 given by (67). Subsequently, in Sec. VI C we have
demonstrated that for θ ¼ 0 and θ ¼ π the Kretschmann
scalar KðrÞ ¼ 48ReðΨ2

2Þ [see the expression (85)]
is everywhere finite, as is explicitly plotted in Figs. 2
and 3. There is thus no curvature singularity along
these axes. Instead, these are basically topological
defects associated with conical singularities given by
deficit or excess angles around the two distinct axes. In
addition, due to the nonvanishing NUT parameter l,
these cosmic strings or struts are rotating, thus intro-
ducing an internal twist to the entire spacetime with
accelerating NUT black holes. We will now analyze
them in more detail.

1. Cosmic strings or struts

We have seen that there are three explicit physical
parameters of the spacetime (44), namely the mass m,
the acceleration α, and the NUT parameter l of the black
holes [which determine the horizon parameters r� ¼ m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
, see (38) and (55)]. In fact, there is also the

fourth free parameter C, which is hidden in the range of
the angular coordinate φ ∈ ½0; 2πCÞ. It has not yet been
specified. We will demonstrate its physical meaning by
relating it to the deficit (or excess) angles of the cosmic
strings.
Let us start with investigation of the (non)regularity of

the first axis of symmetry θ ¼ 0 in (44). Consider a small
circle around it given by θ ¼ const., with the range
φ ∈ ½0; 2πCÞ, assuming fixed t and r. The invariant length
of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while its radius isR

θ
0

ffiffiffiffiffiffi
gθθ

p
dθ̃. The axis is regular if their fraction in the limit

θ → 0 is equal to 2π. In general we obtain

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð104Þ

Now, the conceptual problem is that the metric function gφφ
in (44), and thus the circumference, does not approach zero
in the limit θ → 0 due to the presence of cos θ in the first
term in the metric. This problem can be resolved by the
same procedure as for the classic Taub–NUT solution (see
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the transition between the metrics (12.1) and (12.3) in [9]):
By applying the transformation of the time coordinate4

t ¼ t0 þ 2lφ; ð105Þ
the metric (44) becomes

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dt0 þ 2l

�
2sin2

θ

2
þ αT sin2θ

�
dφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð106Þ

so that

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

�
2sin2

θ

2
þ αT sin2θ

�
2
�
;

gθθ ¼
R2

Ω2P
: ð107Þ

For very small values of θ we obtain gφφ ≈R2Pθ2=Ω2

because the terms proportional to l2 become negligible.
Evaluating the limit (104) we thus obtain

f0 ¼ 2πCð1 − αðrþ − r−ÞÞ ≡ 2πCð1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ:
ð108Þ

The axis θ ¼ 0 in the metric (106) can thus be made
regular by the choice

C ¼ C0 ≡
1

1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð109Þ

Analogously, it is possible to regularize the second axis
of symmetry θ ¼ π. Performing the complementary trans-
formation of the time coordinate

t ¼ tπ − 2lφ; ð110Þ
the metric (44) becomes

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dtπ − 2l

�
2cos2

θ

2
− αT sin2θ

�
dφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð111Þ

i.e.,

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

�
2cos2

θ

2
− αT sin2θ

�
2
�
;

gθθ ¼
R2

Ω2P
: ð112Þ

For θ → π we thus obtain gφφ ≈R2Pðπ − θÞ2=Ω2. The
radius of a small circle around the axis θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ̃.

Evaluating the fraction

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð113Þ

we obtain

fπ ¼ 2πCð1þ αðrþ − r−ÞÞ ≡ 2πCð1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ:
ð114Þ

The axis θ ¼ π in the metric (111) is thus regular for the
unique choice

C ¼ Cπ ≡
1

1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð115Þ

It is now explicitly seen that it is not possible to
regularize simultaneously both the axes because C0 ≠ Cπ

and t0 ≠ tπ ¼ t0 þ 4lφ (unless α ¼ 0 ¼ l which is just
the Schwarzschild solution, regular for the standard
choice C ¼ 1).
When the second axis of symmetry θ ¼ π is made

regular by the choice (115), there is necessarily a deficit
angle δ0 (conical singularity) along the first axis θ ¼ 0,
namely

δ0 ≡ 2π − f0 ¼
8πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p > 0: ð116Þ

The corresponding tension in this cosmic string located
along θ ¼ 0 pulls the black hole, causing its uniform
acceleration. Such string extends to the full range of the
radial coordinate r ∈ ð−∞;þ∞Þ, connecting thus our
universe with the parallel universe through the nonsingular
NUT black-hole interior, see Fig. 4. Moreover, as argued in
Sec. VI D, there is a pair of causally separated NUT black
holes accelerating away from each other by the action of
two such cosmic strings, one string in each copy Z > 0
and Z < 0.
Complementarily, when the first axis of symmetry θ ¼ 0

is made regular by the choice (109), there is necessarily an
excess angle δπ along the second axis θ ¼ π, namely

δπ ≡ 2π − fπ ¼ −
8πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p < 0: ð117Þ

This represents the cosmic strut located along θ ¼ π
between the two black holes, pushing them away from
each other in opposite spatial directions �Z.
In particular, for black holes with vanishing NUT

parameter l ¼ 0, the general results (116) and (117)
reduce to

4It leads to a closed circle instead of an open helical orbit of the
axial Killing vector around θ ¼ 0. For a recent related study of
geometrical and physical properties of symmetry axes of black
holes with NUT parameters see [17].
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δ0 ¼
8παm

1þ 2αm
and δπ ¼ −

8παm
1 − 2αm

; ð118Þ

which fully agree with the known expressions for the
C-metric, see Eqs. (14.15)–(14.17) in [9].

2. Rotation of these cosmic strings or struts

With a generic NUT parameter l, these cosmic strings/
struts are rotating. This can be seen by calculating the
angular velocity parameter ω of the metric along the two
different axes [10],

ω ≡
gtφ
gtt

: ð119Þ

For the general form of the new metric (44) we obtain
ω ¼ −2lðcos θ − αT sin2 θÞ. Evaluating it on the axis
θ ¼ 0 and the axis θ ¼ π, we immediately get

ω0 ¼ −2l and ωπ ¼ 2l; ð120Þ

respectively. Both cosmic strings/struts thus rotate. In fact,
they are contrarotating with exactly opposite angular
velocities �2l determined solely by the NUT parameter.
If the first axis of symmetry θ ¼ 0 is made regular by

considering the metric (106) with the time t0, then ω ¼
2lð2 sin2 θ

2
þ αT sin2 θÞ and the corresponding angular

velocities of the axes are

ω0 ¼ 0 and ωπ ¼ 4l; ð121Þ

On the other hand, when the second axis θ ¼ π is
regularized by switching to the metric (111) with tπ , then
ω ¼ −2lð2 cos2 θ

2
− αT sin2 θÞ and the angular velocities of

the axes are

ω0 ¼ −4l and ωπ ¼ 0: ð122Þ

Clearly, there is always a constant difference Δω ≡ ωπ −
ω0 ¼ 4l between the angular velocities of the two rotating
cosmic strings or struts, directly given by the NUT
parameter l.

F. Regions with closed timelike curves around the
rotating strings

In the vicinity of the rotating cosmic strings or struts,
which are located along θ ¼ 0 and θ ¼ π, the spacetime
with accelerating NUT black holes can serve as a specific
time machine. Indeed, similarly as in the classic Taub–NUT
solution, there are closed timelike curves.
To identify these pathological causality-violating

regions, let us again consider simple curves in the space-
time which are circles around the axes of symmetry θ ¼ 0
and θ ¼ π such that only the periodic angular coordinate
φ ∈ ½0; 2πCÞ changes, while the remaining three

coordinates t, r and θ are kept fixed. The corresponding
tangent (velocity) vectors are thus proportional to the
Killing vector field ∂φ. Its norm is determined just by
the metric coefficient gφφ, which for the general metric (44)
reads

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

ðcos θ − αT sin2θÞ2
�
:

ð123Þ

When l ¼ 0, i.e., for nonrotating cosmic strings, this
metric coefficient is always positive, so that the circles
are spacelike curves. However, with the NUT parameter
l, there are regions where gφφ < 0 in which the circles
(orbits of the axial symmetry) are closed timelike curves.
These pathological regions are explicitly given by the
condition

R4Pð1 − cos2 θÞ < 4l2Qðcos θ − αT ð1 − cos2 θÞÞ2;
ð124Þ

where the functions P, Q, T , R have been defined in
(45). Although this condition is quite difficult to be
solved analytically, some general observations can easily
be made.
In particular, the condition can not be satisfied in the

regions where QðrÞ < 0. Assuming that the acceleration
α is not too large, satisfying (56) which implies (57),
the closed timelike curves can thus only appear
between the black hole horizon Hb and the acceleration
horizon Ha, that is only in the region IIþ given by
r ∈ ðrþb ; rþa Þ or in the region II− given by r ∈ ðr−a ; r−b Þ.
On the contrary, the pathological domain can not occur
in the region III inside the black hole or close to the
conformal infinities I� which are the boundaries of the
dynamical regions I� where r is temporal because
Q < 0, see Fig. 4.
These observations are nicely confirmed by plotting the

values of the relevant function gφφðr; θÞ given by (123),
obtained numerically for various choices of the black-hole
parameters. A typical example m ¼ 0.5, l ¼ 3, α ¼ 0.05 is
presented in Fig. 5, for r > 0 (left) and r < 0 (right). The
grey curves are contour lines (isolines) of a constant value
of gφφðr; θÞ, red color depicts large positive values, while
blue color depicts negative values (dark gray domains
indicate extremely large values, both positive and negative).
Zeros of gφφ in light yellow, determining the boundary of
the pathological regions given by the condition (124), are
exactly indicated by the thick black curves. As expected,
these regions with closed timelike curves occur close to the
both axes θ ¼ 0 and θ ¼ π, were the rotating cosmic strings
at located. Such regions are indeed restricted to the
concentric domains (two annuli) between the black hole
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horizons H�
b at r�b ¼ r� and the acceleration horizons H�

a

at r�a ¼ r− � α−1.
Interestingly, for r > 0 there is another pair of symmetric

“lobes” around θ ¼ 0 near the acceleration horizon Hþ
a

(big red circle). At a given r close to rþa , these lobes
extend to surprisingly large values of θ. Similarly, there
is a “mirror” pair of such pathological regions near H−

a
and θ ¼ π for r < 0. In both cases, the lobes are
localized around such axis, along which the acceleration
horizon Ha closely approaches the conformal infinity I
at Ω ¼ 0.
In Fig. 5 we visualized the regions containing the closed

timelike curves for the accelerating black hole with a big
value of the NUT parameter l ¼ 6m ¼ 3. However, our
investigation of a large set of the parameters m, l, and α
shows that the overall picture displayed here is quite
generic.
Similarly, it is possible to investigate the regions

with closed timelike curves in the special cases when
one of the axes is regular. The case with regular axis
θ ¼ 0 is described by the metric (106), and the corre-
sponding metric function (107) gives for fixed t0 the
condition

R4Pð1þ cos θÞ < 4l2Qð1 − cos θÞð1þ αT ð1þ cos θÞÞ2;
ð125Þ

while the complementary case with regular axis θ ¼ π
is described by the metric (111), and the corresponding
metric function (112) yields for fixed tπ

R4Pð1 − cos θÞ < 4l2Qð1þ cos θÞð1 − αT ð1 − cos θÞÞ2:
ð126Þ

For a direct comparison with Fig. 5, analogous visual-
izations of the pathological regions in such special cases
are shown in Fig. 6 for the same choice of the black-
hole parameters.
Finally, we can observe that the conditions (124)–(126)

for the pathological regions simplify considerably in the
absence of acceleration. Indeed, for α ¼ 0 the key functions
reduce to P ¼ 1, Q ¼ ðr − rþÞðr − r−Þ ≡ r2 − 2mr − l2

and R2 ¼ r2 þ l2, see (50), so that the above three con-
ditions (124)–(126) for the regions with closed timelike
curves become, respectively,

cos2 θ >
r2 þ l2

r2 þ l2 þ 4l2f
;

cos θ < −
r2 þ l2 − 4l2f
r2 þ l2 þ 4l2f

;

cos θ >
r2 þ l2 − 4l2f
r2 þ l2 þ 4l2f

; ð127Þ

FIG. 5. Plot of the metric function gφφ (123) for the general accelerating NUT black hole (44) with rotating cosmic strings on both axes
θ ¼ 0 and θ ¼ π. Its values are visualized in quasipolar coordinates x ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
sin θ, y ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
cos θ for r ≥ 0 (left) and r ≤ 0

(right). The gray annulus in the center of each figure localizes the black hole bordered by its horizons H�
b at rþ > 0 and r− < 0. The

acceleration horizons H�
a at rþa and r−a (big red circles) and the conformal infinity I at Ω ¼ 0 are also shown. The grey curves are

contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue (negative values). Extremely large/low
values are cut and depicted in dark gray. The thick black curves in the light yellow domain are the isolines gφφ ¼ 0 determining the
boundary of the pathological regions (124) with closed timelike curves. They occur close to both the axes θ ¼ 0 and θ ¼ π (purple
dashed lines), but also near the acceleration horizons, forming an additional symmetric pair of “lobes” around θ ¼ 0 just belowHþ

a and
around θ ¼ π just above H−

a . This plot for the choice m ¼ 0.5, l ¼ 3, α ¼ 0.05 is typical.

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 102, 084024 (2020)

084024-20



where fðrÞ ≡Q=R2, see (52). The result (127) fully agrees
with the equation for the Taub–NUT spacetime presented in
Sec. 12.1.4 of the monograph [9].

VII. CONCLUDING SUMMARY

We presented and carefully investigated a remarkable
class of spacetimes which represent accelerating black
holes with a NUT parameter. In particular:

(i) By two independent methods we verified in Sec. III
that the metric (2) found by Chng, Mann and Stelea
in 2006 is indeed an exact solution to Einstein’s
vacuum field equations.

(ii) To achieve this, we employed a modified version
(8) of the solution in which one redundant param-
eter was removed and the original metric simpli-
fied, so that the standard C-metric (10) is
immediately obtained by setting the NUT-like twist
parameter λ to zero.

(iii) Using the metric form (8), in Sec. IV we calculated
all components of the Weyl tensor in the natural null
tetrad (20), namely the NP scalars ΨA (23), and the
correspondingcurvature scalar invariants I andJ (26).

(iv) Since generically I3 ≠ 27J2, the Weyl tensor is
of algebraically general type I with four distinct

FIG. 6. The functions gφφ given by (107) and (112) for the accelerating NUT black hole metric (106) with the regular axis θ ¼ 0 (top
row) and for the metric (111) with the regular axis θ ¼ π (bottom row). The regions with closed timelike curves surround the remaining
rotating cosmic string, and there is always an additional symmetric pair of such pathological regions near the acceleration horizons.
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principal null directions, explicitly given by ex-
pressions (27) with (34), (33).

(v) It explains why this class of solutions with accel-
erating NUT black holes has not been previously
found within the large Plebański–Demiański family
of type D spacetimes.

(vi) In Sec. V we derived and introduced a new
metric form (44) of these solutions in “spheri-
cal-type” coordinates which is much more
convenient for understanding of this class of black
holes.

(vii) In particular, its metric functions (45), with r� ≡
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
given by (38), explicitly depend on

three physical parameters, namely the mass m, the
acceleration α, and the NUT parameter l.

(viii) These black-hole parameters can be separately set
to zero, recovering the well-known spacetimes in
standard coordinates, namely the C-metric (48)
when l ¼ 0, the Taub–NUT metric (51) when
α ¼ 0, the Schwarzschild metric (53), and flat
Minkowski space (54).

(ix) The structure of this complete family of accelerat-
ing NUT black holes is shown in Fig. 1. By setting
α ¼ 0 or l ¼ 0, algebraically general spacetime
reduces to the type D.

(x) Using the new metric (44), in Sec. VI we inves-
tigated main physical and geometrical properties of
this family of accelerating NUT black holes. In
particular:

(xi) In Sec. VI A we localized the position of the
horizons associated with the Killing vector field
∂t. There are two black-hole horizonsH�

b located at
r−b ≡ r− and rþb ≡ rþ plus two acceleration horizons
H�

a at rþa ≡ r− þ 1
α and r−a ≡ r− − 1

α. For small
acceleration α < 1

2
ffiffiffiffiffiffiffiffiffiffi
m2þl2

p they are ordered as

r−a < r−b < 0 < rþb < rþa , see (57).
(xii) We carefully analyzed the curvature of the spacetime

in Sec. VI B. We expressed the Weyl scalars (64) in
the new coordinates and frames. For l ¼ 0 and

α ¼ 0, only the Newtonian component ΨðrθÞ
2 re-

mains, and its special subcases (68) and (72) fully
agree with standard expressions for the C-metric and
the Taub–NUT metric, which are both of algebraic
type D.

(xiii) Evaluating these Weyl scalars on the horizons, we
proved that they are all regular (that is free of
curvature singularities), and of a double degenerate
algebraic type D.

(xiv) Using the curvature invariants, including the
Kretschmann scalar, we proved in Sec. VI C that
there are no curvature singularities whenever the
NUT parameter l is nonzero. This is visualized in
Figs. 2 and 3. Maximal (finite) values of the
curvature are inside the black hole.

(xv) Curvature singularity appears only in the C-metric
case l ¼ 0 at r ¼ 0. All other spacetimes in the
class of accelerating NUT black holes are non-
singular, and to describe their complete manifold it
is thus necessary to consider the full range of the
coordinate r ∈ ð−∞;þ∞Þ.

(xvi) There may occur special regions in a given space-
time which are of algebraic type D, II or N,
according to the values of the scalar curvature
invariants (92).

(xvii) In Sec. VI D we identified asymptotically flat
regions which correspond to the conformal infin-
ities I� given by Ω ¼ 0. These are simply given by
the condition x ¼ y in the coordinates of the metric
form (8).

(xviii) Using the spherical-like coordinates of (44), the
position of I� is given by the conditions (94) and
(95), which look less intuitive.

(xix) All these investigations lead us to a complete
understanding of the global structure of this class
of spacetimes, summarized in Fig. 4. The accel-
erating NUT black hole can be understood as a
“throat” of maximal curvature which connects our
universe located in the region r > 0with the second
(also asymptotically flat) parallel universe in the
region r < 0.

(xx) Analytic extension across the acceleration horizons,
using the boost-rotation symmetric form of the
metric (103), revealed that there is actually a pair of
such (causally separated) NUT black holes, which
together involve four asymptotically flat regions.
The two black holes uniformly accelerate in oppo-
site directions, as in the case of the C-metric
with l ¼ 0.

(xxi) We clarified in Sec. VI E that the physical
source of the acceleration of this pair of black
holes is the tension (or compression) in the
rotating cosmic strings (or struts) located along
the corresponding two axes of axial symmetry at
θ ¼ 0 and θ ¼ π.

(xxii) These strings or struts are related to the deficit or
excess angles which introduce topological defects
along the axes. However, their curvature remains
finite, and of algebraic type D.

(xxiii) In general, there are strings/struts along both the
axes, but one of the axis can be made fully
regular by a suitable choice of the constant C in
the range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is
regular in the metric form (106) with the choice
(109), whereas the second axis θ ¼ π is regular
in the form (111) with the choice (115). In the
first case, there is a cosmic strut along θ ¼ π
with the excess angle (117), while in the second
case there is a cosmic string along θ ¼ 0 with
the deficit angle (116).
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(xxiv) In addition to the deficit/excess angles, these
cosmic strings/struts located along the axes of
symmetry are characterized by their rotation param-
eter ω (angular velocity). Their values are directly
related to the NUT parameter l, see expressions
(120)–(122).

(xxv) There is always a constant difference Δω ¼ 4l
between the angular velocities of the two rotating
cosmic strings or struts. If, and only if l ¼ 0, both
the axes are nontwisting.

(xxvi) In the neighborhood of these rotating strings/struts
there occur pathological regions with closed time-
like curves. They are given by the conditions (124)–
(126) and visualized in Figs. 5 and 6.

We hope that, with these geometrical and physical
insights, the new explicit form (44) of the class of
accelerating NUT black holes can be used as an interesting
example for various types of investigations in Einstein’s
general relativity, black hole thermodynamics, quantum
gravity, or high-energy physics, for example by extending
the recent studies [18,19].
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APPENDIX A: CURVATURE OF GENERAL
STATIONARY AXISYMMETRIC SPACETIMES

Let us assume a general form of stationary axisymmetric
metric in coordinates ðt;φ; x; yÞ given by (11), that is

gμν ¼

0
BBB@

gtt gtφ 0 0

gtφ gφφ 0 0

0 0 gxx 0

0 0 0 gyy

1
CCCA; ðA1Þ

in which all the metric functions can only depend on
x and y. The inverse matrix is

gμν ¼

0
BBB@

gφφ=D −gtφ=D 0 0

−gtφ=D gtt=D 0 0

0 0 1=gxx 0

0 0 0 1=gyy

1
CCCA; ðA2Þ

where

D ≡ gttgφφ − g2tφ: ðA3Þ

The corresponding Christoffel symbols of the first kind
Γαβγ ≡ 1

2
ðgαβ;γ þ gγα;β − gβγ;αÞ are

Γttt ¼ 0; Γφtt ¼ 0; Γxtt ¼ − 1
2
gtt;x; Γytt ¼ − 1

2
gtt;y;

Γttφ ¼ 0; Γφtφ ¼ 0; Γxtφ ¼ − 1
2
gtφ;x; Γytφ ¼ − 1

2
gtφ;y;

Γttx ¼ 1
2
gtt;x; Γφtx ¼ 1

2
gtφ;x; Γxtx ¼ 0; Γytx ¼ 0;

Γtty ¼ 1
2
gtt;y; Γφty ¼ 1

2
gtφ;y; Γxty ¼ 0; Γyty ¼ 0;

Γtφφ ¼ 0; Γφφφ ¼ 0; Γxφφ ¼ − 1
2
gφφ;x; Γyφφ ¼ − 1

2
gφφ;y;

Γtφx ¼ 1
2
gtφ;x; Γφφx ¼ 1

2
gφφ;x; Γxφx ¼ 0; Γyφx ¼ 0;

Γtφy ¼ 1
2
gtφ;y; Γφφy ¼ 1

2
gφφ;y; Γxφy ¼ 0; Γyφy ¼ 0;

Γtxx ¼ 0; Γφxx ¼ 0; Γxxx ¼ 1
2
gxx;x; Γyxx ¼ − 1

2
gxx;y;

Γtxy ¼ 0; Γφxy ¼ 0; Γxxy ¼ 1
2
gxx;y; Γyxy ¼ 1

2
gyy;x;

Γtyy ¼ 0; Γφyy ¼ 0; Γxyy ¼ − 1
2
gyy;x; Γyyy ¼ 1

2
gyy;y;

ðA4Þ

and usual Christoffel symbols of the second kind Γα
βγ ≡ gασΓσβγ are thus
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Γt
tt ¼ 0; Γφ

tt ¼ 0;

Γt
tφ ¼ 0; Γφ

tφ ¼ 0;

Γt
tx ¼ 1

2
ðgφφgtt;x − gtφgtφ;xÞ=D; Γφ

tx ¼ 1
2
ðgttgtφ;x − gtφgtt;xÞ=D;

Γt
ty ¼ 1

2
ðgφφgtt;y − gtφgtφ;yÞ=D; Γφ

ty ¼ 1
2
ðgttgtφ;y − gtφgtt;yÞ=D;

Γt
φφ ¼ 0; Γφ

φφ ¼ 0;

Γt
φx ¼ 1

2
ðgφφgtφ;x − gtφgφφ;xÞ=D; Γφ

φx ¼ 1
2
ðgttgφφ;x − gtφgtφ;xÞ=D;

Γt
φy ¼ 1

2
ðgφφgtφ;y − gtφgφφ;yÞ=D; Γφ

φy ¼ 1
2
ðgttgφφ;y − gtφgtφ;yÞ=D;

Γt
xx ¼ 0; Γφ

xx ¼ 0;

Γt
xy ¼ 0; Γφ

xy ¼ 0;

Γt
yy ¼ 0; Γφ

yy ¼ 0;

ðA5Þ

Γx
tt ¼ − 1

2
gtt;x=gxx; Γy

tt ¼ − 1
2
gtt;y=gyy;

Γx
tφ ¼ − 1

2
gtφ;x=gxx; Γy

tφ ¼ − 1
2
gtφ;y=gyy;

Γx
tx ¼ 0; Γy

tx ¼ 0;

Γx
ty ¼ 0; Γy

ty ¼ 0;

Γx
φφ ¼ − 1

2
gφφ;x=gxx; Γy

φφ ¼ − 1
2
gφφ;y=gyy;

Γx
φx ¼ 0; Γy

φx ¼ 0;

Γx
φy ¼ 0; Γy

φy ¼ 0;

Γx
xx ¼ 1

2
gxx;x=gxx; Γy

xx ¼ − 1
2
gxx;y=gyy;

Γx
xy ¼ 1

2
gxx;y=gxx; Γy

xy ¼ 1
2
gyy;x=gyy;

Γx
yy ¼ − 1

2
gyy;x=gxx; Γy

yy ¼ 1
2
gyy;y=gyy

: ðA6Þ

Now, we compute the Riemann curvature tensor. However, instead of using the usual definition

Rμ
νκλ ≡ Γμ

νλ;κ − Γμ
νκ;λ þ Γμ

ρκΓρ
νλ − Γμ

ρλΓρ
νκ; ðA7Þ

for our purposes we found that it is much more convenient to employ the equivalent expression

Rμνκλ ¼
1

2
ðgμλ;κν þ gκν;μλ − gμκ;νλ − gνλ;μκÞ þ ΓσμλΓσ

νκ − ΓσμκΓσ
νλ: ðA8Þ

Its advantage is that there is no need to differentiate the complicated Christoffel symbols of the second kind. This greatly
simplifies subsequent computer algebra manipulations. Direct evaluation using (A4) and (A5) leads to
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Rtφtφ ¼ 1

4

�
g2tφ;x − gtt;xgφφ;x

gxx
þ g2tφ;y − gtt;ygφφ;y

gyy

�
;

Rtφtx ¼ 0;

Rtφty ¼ 0;

Rtφφx ¼ 0;

Rtφφy ¼ 0;

Rtφxy ¼
1

4ðgttgφφ − g2tφÞ
�
gttðgtφ;ygφφ;x − gtφ;xgφφ;yÞ − gtφðgtt;ygφφ;x − gtt;xgφφ;yÞ þ gφφðgtt;ygtφ;x − gtt;xgtφ;yÞ

�
;

Rtxtx ¼ −
1

2
gtt;xx þ

1

4

�
gttg2tφ;x − 2gtφgtt;xgtφ;x þ gφφg2tt;x

gttgφφ − g2tφ
þ gtt;xgxx;x

gxx
−
gtt;ygxx;y

gyy

�
;

Rtxty ¼ −
1

2
gtt;xy þ

1

4

�
gttgtφ;xgtφ;y − gtφðgtt;xgtφ;y þ gtφ;xgtt;yÞ þ gφφgtt;xgtt;y

gttgφφ − g2tφ
þ gtt;xgxx;y

gxx
þ gtt;ygyy;x

gyy

�
;

Rtxφx ¼ −
1

2
gtφ;xx þ

1

4

�
gttgtφ;xgφφ;x − gtφðg2tφ;x þ gtt;xgφφ;xÞ þ gφφgtt;xgtφ;x

gttgφφ − g2tφ
þ gtφ;xgxx;x

gxx
−
gtφ;ygxx;y

gyy

�
;

Rtxφy ¼ −
1

2
gtφ;xy þ

1

4

�
gttgtφ;ygφφ;x − gtφðgtφ;xgtφ;y þ gtt;ygφφ;xÞ þ gφφgtt;ygtφ;x

gttgφφ − g2tφ
þ gtφ;xgxx;y

gxx
þ gtφ;ygyy;x

gyy

�
;

Rtxxy ¼ 0;

Rtyty ¼ −
1

2
gtt;yy þ

1

4

�
gttg2tφ;y − 2gtφgtt;ygtφ;y þ gφφg2tt;y

gttgφφ − g2tφ
−
gtt;xgyy;x

gxx
þ gtt;ygyy;y

gyy

�
;

Rtyφx ¼ Rtxφy − Rtφxy;

Rtyφy ¼ −
1

2
gtφ;yy þ

1

4

�
gttgtφ;ygφφ;y − gtφðg2tφ;y þ gtt;ygφφ;yÞ þ gφφgtt;ygtφ;y

gttgφφ − g2tφ
−
gtφ;xgyy;x

gxx
þ gtφ;ygyy;y

gyy

�
;

Rtyxy ¼ 0;

Rφxφx ¼ −
1

2
gφφ;xx þ

1

4

�
gttg2φφ;x − 2gtφgtφ;xgφφ;x þ gφφg2tφ;x

gttgφφ − g2tφ
þ gφφ;xgxx;x

gxx
−
gφφ;ygxx;y

gyy

�
;

Rφxφy ¼ −
1

2
gφφ;xy þ

1

4

�
gttgφφ;xgφφ;y − gtφðgtφ;xgφφ;y þ gφφ;xgtφ;yÞ þ gφφgtφ;xgtφ;y

gttgφφ − g2tφ
þ gφφ;xgxx;y

gxx
þ gφφ;ygyy;x

gyy

�
;

Rφxxy ¼ 0;

Rφyφy ¼ −
1

2
gφφ;yy þ

1

4

�
gttg2φφ;y − 2gtφgtφ;ygφφ;y þ gφφg2tφ;y

gttgφφ − g2tφ
−
gφφ;xgyy;x

gxx
þ gφφ;ygyy;y

gyy

�
;

Rφyxy ¼ 0;

Rxyxy ¼ −
1

2
ðgxx;yy þ gyy;xxÞ þ

1

4

�
g2xx;y þ gxx;xgyy;x

gxx
þ g2yy;x þ gxx;ygyy;y

gyy

�
: ðA9Þ

Finally, we employ a general expression for the Ricci tensor,

Rνλ ≡ gμκRμνκλ ¼
1

2
gμκðgμλ;κν þ gκν;μλ − gμκ;νλ − gνλ;μκÞ þ gμκΓσμλΓσ

νκ − gμκΓσμκΓσ
νλ; ðA10Þ
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which yields the following nontrivial components for the Ricci tensor of the metric (A1):

Rtt ¼ −
1

2

�
gtt;xx
gxx

þ gtt;yy
gyy

�
− 2ðΓx

tφΓφ
tx þ Γy

tφΓφ
tyÞ

− Γx
ttðΓt

tx − Γφ
φx þ Γx

xx − Γy
xyÞ − Γy

ttðΓt
ty − Γφ

φy − Γx
xy þ Γy

yyÞ;

Rtφ ¼ −
1

2

�
gtφ;xx
gxx

þ gtφ;yy
gyy

�
− Γx

ttΓt
φx − Γy

ttΓt
φy − Γφ

txΓx
φφ − Γφ

tyΓy
φφ − Γx

tφðΓx
xx − Γy

xyÞ þ Γy
tφðΓx

xy − Γy
yyÞ;

Rφφ ¼ −
1

2

�
gφφ;xx
gxx

þ gφφ;yy
gyy

�
− 2ðΓx

tφΓt
φx þ Γy

tφΓt
φyÞ

− Γx
φφð−Γt

tx þ Γφ
φx þ Γx

xx − Γy
xyÞ − Γy

φφð−Γt
ty þ Γφ

φy − Γx
xy þ Γy

yyÞ;

Rxx ¼ −
1

2

�
gφφgtt;xx − 2gtφgtφ;xx þ gttgφφ;xx

gttgφφ − g2tφ
þ gyy;xx þ gxx;yy

gyy

�
þ ðΓt

txÞ2 þ 2Γφ
txΓt

φx þ ðΓφ
φxÞ2

þ Γx
xxðΓt

tx þ Γφ
φxÞ þ Γy

xyðΓx
xx þ Γy

xyÞ þ Γy
xxðΓt

ty þ Γφ
φy − Γx

xy − Γy
yyÞ;

Rxy ¼ −
1

2

�
gφφgtt;xy − 2gtφgtφ;xy þ gttgφφ;xy

gttgφφ − g2tφ

�
þ Γt

txΓt
ty þ Γφ

txΓt
φy þ Γφ

tyΓt
φx þ Γφ

φxΓφ
φy

þ Γx
xyðΓt

tx þ Γφ
φxÞ þ Γy

xyðΓt
ty þ Γφ

φyÞ þ Γx
xyΓy

xy − Γx
yyΓy

xx;

Ryy ¼ −
1

2

�
gφφgtt;yy − 2gtφgtφ;yy þ gttgφφ;yy

gttgφφ − g2tφ
þ gxx;yy þ gyy;xx

gxx

�
þ ðΓt

tyÞ2 þ 2Γφ
tyΓt

φy þ ðΓφ
φyÞ2

þ Γy
yyðΓt

ty þ Γφ
φyÞ þ Γx

xyðΓx
xy þ Γy

yyÞ þ Γx
yyðΓt

tx þ Γφ
φx − Γx

xx − Γy
xyÞ: ðA11Þ

APPENDIX B: RICCI TENSORS OF
CONFORMALLY RELATED METRICS

For the conformally related metrics (15),

g̃ab ¼ Ω2gab; ðB1Þ

the corresponding Ricci tensors are connected as (see,
e.g., [11])

R̃ab ¼ Rab − 2Ω−1∇a∇bΩ −Ω−1gabgcd∇c∇dΩ

þ 4Ω−2∇aΩ∇bΩ −Ω−2gabgcd∇cΩ∇dΩ: ðB2Þ

This implies relation between the physical and unphysical
Ricci tensors Rab and R̃ab, respectively,

Rab ¼ R̃ab þ
1

Ω2
½ðg̃abg̃cd þ 2δcaδ

d
bÞðΩ;cd − Γ̃e

cdΩ;eÞΩ
− 3g̃abg̃cdΩ;cΩ;d�: ðB3Þ

For the metric (15), (18), the conformal factor (16) is
independent of φ and t, so that the resulting metric is again
stationary and axisymmetric, in which case the relations
(B3) simplify to

Rtt ¼ R̃tt þ
Φ
Ω
g̃tt −

2

Ω
ðΓ̃x

ttΩ;x þ Γ̃y
ttΩ;yÞ;

Rtφ ¼ R̃tφ þ
Φ
Ω
g̃tφ −

2

Ω
ðΓ̃x

tφΩ;x þ Γ̃y
tφΩ;yÞ;

Rφφ ¼ R̃φφ þ
Φ
Ω
g̃φφ −

2

Ω
ðΓ̃x

φφΩ;x þ Γ̃y
φφΩ;yÞ;

Rxx ¼ R̃xx þ
Φ
Ω
g̃xx þ

2

Ω
ðΩ;xx − Γ̃x

xxΩ;x − Γ̃y
xxΩ;yÞ;

Rxy ¼ R̃xy þ
Φ
Ω
g̃xy þ

2

Ω
ðΩ;xy − Γ̃x

xyΩ;x − Γ̃y
xyΩ;yÞ;

Ryy ¼ R̃yy þ
Φ
Ω
g̃yy þ

2

Ω
ðΩ;yy − Γ̃x

yyΩ;x − Γ̃y
yyΩ;yÞ;

ðB4Þ

where

Φ ≡ −
1

D̃
½ðg̃φφΓ̃x

tt − 2g̃tφΓ̃x
tφ þ g̃ttΓ̃x

φφÞΩ;x

þ ðg̃φφΓ̃y
tt − 2g̃tφΓ̃y

tφ þ g̃ttΓ̃y
φφÞΩ;y�

þ 1

g̃xx
ðΩxx − Γ̃x

xxΩ;x − Γ̃y
;xxΩ;yÞ

þ 1

g̃yy
ðΩyy − Γ̃x

;yyΩ;x − Γ̃y
yyΩ;yÞ −

3

Ω

�
Ω2

;x

g̃xx
þΩ2

;y

g̃yy

�
;

ðB5Þ
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and the determinant for the metric (18) reads

D̃ ≡ g̃ttg̃φφ − g̃2tφ ¼ Ω4D

¼ −ðx − yÞ8ð1 − x2Þ3F3ðxÞðy2 − 1Þ3F3ðyÞH̃2ðx; yÞ: ðB6Þ
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