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Cataldo has found all rigidly rotating self-gravitating perfect fluid solutions in 2þ 1 dimensions with a
negative cosmological constant Λ, for a density that is specified a priori as a function of a certain radial
coordinate. We rewrite these solutions in standard polar-radial coordinates, for an arbitrary barotropic
equation of state pðρÞ. For any given equation of state, we find the two-parameter family of solutions with a
regular center and finite totalmassM and angularmomentum J (rigidly rotating stars). For analytic equations
of state, the solution is analytic except at the surface, but including at the center. Defining the dimensionless

spin J̃ ≔
ffiffiffiffiffiffiffi
−Λ

p
J, there is precisely one solution for each ðJ̃; MÞ in the region jJ̃j − 1 < M < jJ̃j, which

consists of parts of the point-particle region M < −jJ̃j and overspinning regions jJ̃j > jMj. In an adjacent
compact part of the black-hole region jJ̃j < M (whose extent depends on the equation of state), there are
precisely two solutions for each ðJ̃; MÞ. Hence, exterior solutions exist in all three classes of Bañados,
Teitelboim, and Zanelli solution (black hole, point particle, and overspinning), but not all possible values of
ðJ̃; MÞ can be realized as stars. Regardless of the values of J̃ and M, the causal structure of all stars for all
equations of state is that of anti–de Sitter space, without horizons or closed timelike curves.

DOI: 10.1103/PhysRevD.102.084023

I. INTRODUCTION

Classical Einstein gravity in 2þ 1 spacetime dimensions
may appear to be dynamically trivial because in 2þ 1
dimensions the Weyl tensor is identically zero. This means
that the full Riemann tensor is determined by the Ricci
tensor and so by the stress-energy tensor of the matter.
Hence, there are no gravitational waves, and the vacuum
solution is locally unique: Minkowski in the absence of a
cosmological constant Λ, de Sitter for Λ > 0, and anti–de
Sitter for Λ < 0.
However, in 1992, Bañados, Teitelboim, and Zanelli [1]

(from now on, BTZ) noticed that 2þ 1-dimensional
vacuum Einstein gravity with Λ < 0 admits rotating
black-hole solutions that are in close analogy with the
family of Kerr solutions in 3þ 1 dimensions. They can be
found easily by solving an axistationary ansatz for the
metric, but their existence was unexpected because the
metric has to be locally that of the 2þ 1-dimensional anti–
de Sitter solution (from now on, AdS3). In fact, these
metrics can be derived as highly nontrivial identifications
of AdS3 under an isometry [2].
We define the cosmological length scale

l ≔ ð−ΛÞ−1
2 ð1Þ

and the dimensionless spin

J̃ ≔
J
l
: ð2Þ

The gravitational massM is already dimensionless in 2þ 1
dimensions. A key difference to axistationary vacuum
solutions in 3þ 1 dimensions is the existence of a mass
gap: while AdS3 is given by the BTZ solution with
parameters M ¼ −1 and J̃ ¼ 0, only the BTZ solutions
with M > 0 and jJ̃j < M represent black holes. Solutions
with −1 < M < 0 and jJ̃j < −M represent point particles,
similar to those for Λ ¼ 0 described in [3]. The status of
those with jJ̃j> jMj, which we call “overspinning,” remains
unclear.
The relevance of the BTZ solutions goes beyond vacuum

because, roughly speaking, the vacuum exterior of any
rotating isolated object must be a BTZ solution, even if the
object itself is neither stationary nor axisymmetric.
More precisely, consider a region of spacetime with a

timelike world tube removed. We can make this region
simply connected by making a cut from the world tube to
the outer boundary of the region. In the resulting simply
connected region, the spacetime must be AdS3. However,
when we make the region multiply connected again by
identifying the two sides of the cut, this identification is
parametrized by an isometry of AdS3. The isometry group
of AdS3 is six-dimensional, but it was shown in [2] that the
gauge-invariant part of the identification is characterized by
only two parameters ðJ̃;MÞ, parametrizing precisely the
BTZ solutions. A region of spacetime with several world
tubes removed requires one identification around each
world tube, and so is described by a pair ðJ̃i;MiÞ for each
world tube representing a compact object.
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By contrast, in 3þ 1 dimensions, the exterior of a rotating
object is not in general the Kerr solution, even if the object is
axisymmetric and stationary. The argument we have just
given does not apply because inmore than 2þ 1 dimensions
a vacuum spacetime need not be Minkowski even locally.
Put more physically, compact objects in 3þ 1 dimensions
canmake not only their mass and spin, but also their internal
structure felt in their vacuum exteriors through tidal forces
and gravitational waves.
Perhaps the simplest example of axistationary matter

solutions are rotating perfect fluid stars. In this paper, we
examine if rigidly rotating perfect fluid stars exist in 2þ 1
dimensions for reasonable equations of state. Here we
define a star to be a perfect fluid solution with a regular
center and finite mass and spin. We allow both for stars
which have a surface at finite radius and are surrounded by
vacuum, and stars which fill all of space but whose density
falls off sufficiently rapidly. Given the existence of three
different classes of BTZ solutions, we ask if point-particle,
black-hole, and overspinning BTZ solutions can all be
realized as exterior or asymptotic spacetimes of rigidly
rotating perfect fluid stars.
Hence, in this paper, we solve the Einstein-fluid

equations

Gab þ Λgab ¼ 8πTab ð3Þ

with Λ ≤ 0 and the perfect-fluid stress-energy tensor

Tab ¼ ðρþ pÞuaub þ pgab; ð4Þ

making an ansatz of stationarity and axisymmetry. The
vector field ua is tangential to the fluid worldlines, with
uaua ¼ −1, and p and ρ are the pressure and total energy
density measured in the fluid rest frame. We formally
assume a barotropic equation of state p ¼ pðρÞ given
a priori. However, as we consider only axistationary
solutions, where all variables depend only on the radial
coordinate r, any solution with a given barotropic equation
of state could also a posteriori be a interpreted as a solution
of a two-parameter equation of state p ¼ pðρ; sÞ (where s
is, e.g., the specific entropy), together with a given
stratification s ¼ sðρÞ. We set c ¼ G ¼ 1 throughout.
Cruz and Zanelli [4] have shown that static perfect fluid

solution require a nonpositive cosmological constant Λ ≤ 0
and also studied in more detail the case of constant energy
density. In [5], the special cases of a polytropic equation of
state with and without cosmological constant were also
studied in [5,6]. In [7], García and Campuzano derived all
static circularly symmetric spacetimes with Λ ≤ 0. Rigidly
rotating configurations were also studied [8,9]. Cataldo
[10] has found all axistationary rigidly rotating perfect fluid
solutions in 2þ 1 spacetime dimensions with Λ < 0. The
total energy density ρ is specified a priori as a function of
the radial coordinate ρðr̄Þ. The metric and pðr̄Þ are then

given explicitly in terms of ρðr̄Þ and four parameters C, D,
E, and ω0. The equation of state pðρÞ is implied only
a posteriori by comparing pðr̄Þ and ρðr̄Þ. We summarize
these results in Sec. II A below, followed by a list of
questions that remained open: how does one find the
general solution if not ρðr̄Þ but the equation of state
pðρÞ is given a priori? Which solutions have a regular
center? Which solutions have a vacuum exterior solution,
and what is its form? What are the BTZ mass and angular
momentum of such starlike solutions?
To answer these questions, we translate Cataldo’s sol-

ution into the standard 2þ 1 form in terms of a lapse, shift
and two-metric, introduce an area radius coordinate,
identify Cataldo’s radial coordinate r̄with a certain integral
over the equation of state, and identify the subset of
solutions with a regular center, which as expected have
only two free parameters (not four). We give expressions
for M and J̃ in terms of these two parameters and certain
integrals involving only the equation of state.
Our solutions for a general equation of state are in implicit

form. They can be made explicit by evaluating an integral,
inverting the resulting function, and evaluating another
integral. As already obtained by Cataldo, this can be done
for the linear equation of state p ¼ κρ and the “polytropic”
equation of state p ¼ Kρk. As a further example, we also
consider the equation of state p ¼ κðρ − ρsÞ for ρs > 0.

II. GENERAL EQUATION OF STATE

A. Rigidly rotating axistationary perfect
fluid solutions

Cataldo [10] found axisymmetric, stationary, rigidly
rotating perfect fluid solutions of the Einstein equations
in comoving coordinates, defined by ua ∝ ð∂tÞa, for a
certain choice of radial coordinate, in the form

ds2 ¼ −ðr̄dt̄þ ωdθÞ2 þ h−1dr̄2 þ hdθ2; ð5Þ

where

ωðr̄Þ ≔ ω0

r̄
þ Er̄; ð6Þ

hðr̄Þ ≔ C − Λr̄2 þDr̄þ ω2
0

r̄2
þ 16πf̄ðr̄Þ; ð7Þ

f̄ðr̄Þ ≔
Z

r̄

r̄0

r̄0ρðr̄0Þdr̄0 − r̄
Z

r̄

r̄0

ρðr̄0Þdr̄0; ð8Þ

pðr̄Þ ≔ D
16πr̄

−
1

r̄

Z
r̄

r̄0

ρðr̄0Þdr̄0: ð9Þ

Here r̄0 is an arbitrary integration limit. (In solutions with a
regular center, we will later choose it to correspond to the
center.) These solutions are parametrized by the function
ρðr̄Þ and the constants ω0, E, C, andD. (We denote the time
and radial coordinates of [10] by t̄ and r̄ to distinguish them
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from rescaled coordinates t and r that we introduce below,
and the area radius, which we will denote by R.)
At this point, it appears that the density ρ has to be

specified as a function of the radial coordinate r̄, which
only afterward implies an equation of state pðρÞ through
the expression (9) for pðr̄Þ. This issue was partly addressed
in [10] by deriving explicit solutions for two simple
barotropic equations of state, but it remained unclear if
and how solutions can be obtained for an arbitrary equation
of state pðρÞ given a priori.
It also remained unclear which solutions have a regular

center. This issue was partly addressed in [10] by giving
explicit solutions with a regular center for the above-
mentioned equations of state. There was, however, no
systematic construction of all solutions with a regular
center for an arbitrary given equation of state in terms of
precisely two free parameters that control the mass and spin
of the star. Also lacking was a criterion on the equation of
state for a solution with a regular center to either have a
vacuum exterior, or to be asymptotically AdS3 with finite
BTZ mass M and spin J.
In the remainder of this paper, we resolve all these

questions.

B. The equation of state

We first clarify the role of the equation of state.
Differentiating (9), we obtain

r̄
dp
dr̄

þ pþ ρ ¼ 0: ð10Þ

Solving this separable ordinary differential equation by
integration, we find

ln
r̄
r̄0

¼ −
Z

pðr̄Þ

p0

dp
pþ ρðpÞ ¼ −

Z
ρðr̄Þ

ρ0

p0ðρÞdρ
pðρÞ þ ρ

; ð11Þ

where ρ0 ≔ ρðr̄0Þ is the density at r̄0 and p0 ≔ pðρ0Þ the
corresponding pressure, given by the equation of state
pðρÞ. For stars, we will later choose r̄0 as the value of r̄ at
the regular center, so that p0 is the central pressure.
Unless stated otherwise, we assume throughout that the

equation of state pðρÞ is at least continuous and piecewise
continuously differentiable, with 0 ≤ p0ðρÞ < 1, and where
p0ðρÞ ¼ 0 is allowed only at p ¼ 0. As a consequence, the
sound speed

ffiffiffiffiffiffiffiffiffiffiffi
p0ðρÞp

is real and less than the speed of light,
and the inverse equation of state ρðpÞ also exists as a
continuous function that is piecewise once differentiable for
p > 0. We allow for the possibility that pðρsÞ ¼ 0 for
some ρs ≥ 0.
In obtaining (10) by differentiating (9), we have lost

the constant D. To find its value, we evaluate (9) at r̄0,
obtaining

D ¼ 16πr̄0p0: ð12Þ

C. Standard form of the metric

For further analysis, we rearrange the metric in the usual
2þ 1 form, and with the two-metric expressed in terms of
an area radius R, that is, as

ds2 ¼ −ᾱ2dt̄2 þ a2
�
dR
dr̄

�
2

dr̄2 þ R2ðdθ þ β̄dt̄Þ2; ð13Þ

where a, ᾱ, β̄, and R are all functions of r̄. Hence ᾱ is the
lapse, β̄ the shift in the angular direction, both with respect
to the time coordinate t̄, gθθ ¼ R2 defines the area radius R
as the length of the Killing vector ∂θ (and hence R is a
scalar), and gRR ¼ a2 if we use R as the radial coordinate.
We read off

R2 ¼ h − ω2; ð14Þ

β̄ ¼ −
r̄ω
R2

; ð15Þ

ᾱ2 ¼ r̄2 þ R2β̄2; ð16Þ

a2 ¼ 1

ðdRdr̄Þ2h
¼ 4R2

ðdR2

dr̄ Þ2h
ð17Þ

as functions of r̄. We see that t̄ and r̄ have nonstandard
dimensions, namely, length−1 and length2, respectively. We
use r̄0 to define a length scale

s ≔
ffiffiffiffiffi
r̄0

p ð18Þ

and then define

t ≔ s2 t̄; r ≔
r̄
s
; ð19Þ

which have the usual dimension length. We correspond-
ingly rescale the lapse and shift as

α ≔
ᾱ

s2
; β ≔

β̄

s2
: ð20Þ

The metric now takes the form

ds2 ¼ −α2dt2 þ a2
�
dR
dr

�
2

dr2 þ R2ðdθ þ βdtÞ2: ð21Þ

We introduce the dimensionless cosmological constant
and spin parameters

λ ≔ s
ffiffiffiffiffiffiffi
−Λ

p
≥ 0; ð22Þ

Ω ≔
ω0

s3
; ð23Þ
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and their combination

μ ≔ λ2 −Ω2: ð24Þ

Note that λ ≪ 1 corresponds to the length scale s being
small compared to the cosmological length scale l, but
also, equivalently, to the cumulative effects of the cosmo-
logical constant being small over length scales of size s. We
will in general consider λ > 0, but at one point also λ ¼ 0,
interpreted as Λ ¼ 0. Otherwise, we always express λ in
terms of the two independent parameters μ and Ω.
To write all our equations in fully nondimensional form,

we introduce the dimensionless radial coordinate y and
dimensionless area radius x defined by

y ≔
r
s
; x ≔

R
s
: ð25Þ

For a given equation of state pðρÞ and reference density ρ0,
the relation between the density ρ and the dimensionless
radial coordinate y is

yðρ0; ρÞ ¼ exp

�
−
Z

ρ

ρ0

p0ðρ̃Þdρ̃
pðρ̃Þ þ ρ̃

�
; ð26Þ

or equivalently

yðp0;pÞ ¼ exp
�
−
Z

p

p0

dp̃
p̃þ ρðp̃Þ

�
; ð27Þ

where ρ0 and p0 ¼ pðρ0Þ are the density and pressure at
y ¼ 1, p0ðρÞ ≔ dp=dρ, and ρðpÞ is the inverse equation
of state; compare also Eq. (50) of [9]. We define the
dimensionless function fðyÞ ≔ s−2f̄ðr̄Þ, that is,

fðyÞ ¼ s2
�Z

y

1

ρðỹÞỹdỹ − y
Z

y

1

ρðỹÞdỹ
�
: ð28Þ

We primarily use s rather than l to adimensionalize all
other variables and parameters in order to keep the limit
Λ ¼ 0 regular. However, when we want to compare differ-
ent solutions with the same Λ < 0, it is more natural to
express the dimensionful quantities R, ρ, and p in terms of
l, using

s ¼ λl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ Ω2

q
l: ð29Þ

In particular, we have

R ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþΩ2

q
x ð30Þ

and

s2ρ ¼ ðμþ Ω2Þl2ρ: ð31Þ

D. Local mass and angular momentum

For an arbitrary time-dependent axisymmetric spacetime
in 2þ 1 spacetime dimensions, regardless of matter con-
tent, there exist two conserved currents ∇ajaðJÞ ¼ 0 and

∇ajaðMÞ ¼ 0: the conserved current due to the angular

Killing vector, and a second, more mysterious, one that
generalizes the Misner-Sharp mass that exists for spherical
symmetry in any dimension, to a conserved mass that exists
for axisymmetry in 2þ 1 dimensions only. In terms of the
metric (21), the corresponding conserved quantities are
given by

J ¼ R3 ∂β
∂r

dR
dr aα

; ð32Þ

M ¼ R2

l2
þ J2

4R2
−

1

a2
: ð33Þ

Note that these expressions hold in the axsymmetric but
time-dependent case. In the axistationary case that we
consider here, ∂β=∂r simply becomes dβ=dr. In any
vacuum region, M and J are constant with values equal
to the BTZ parameters of the same name, that is, the
Einstein equations give M;r ¼ M;t ¼ J;r ¼ J;t ¼ 0. In par-
ticular, for constant ðJ;MÞ, the polar-radial metric (21)
takes the form

c20α
2 ¼ −M þ R2

l2
þ J2

4R2
; ð34Þ

a2 ¼ 1

c20α
2
; ð35Þ

c0β ¼ −
J

2R2
þ β0: ð36Þ

We can further set c0 ¼ 1 by rescaling t by the constant
factor c0, and β0 ¼ 0 by a rigid rotation of the coordinate
system that corresponds to shifting θ by β0t. The result is
the standard form of the BTZ metric first given in [1].

E. Solutions with a regular center

We now demand that the solution has a regular center
at some value of the radial coordinate r̄. Without loss of
generality, we choose the center to be at the reference radius
r̄0, so that Rðr̄0Þ ¼ 0 and f̄ðr̄0Þ ¼ ðdf̄=dr̄Þðr̄0Þ ¼ 0. With
these conditions, (7) can be solved for the parameter C,
which is now replaced as a free parameter by r̄0.
We also demand that there is no conical singularity at the

center, aðr̄0Þ ¼ 1. However, a necessary condition for this
limit to be finite, given that Rðr̄0Þ ¼ 0 (by definition) and
ðdR2=dr̄Þðr̄0Þ ≠ 0 (by observation) is that hðr̄0Þ ¼ 0, and
hence that ωðr̄0Þ ¼ 0. This last condition can be solved for
the parameter E. Applying l’Hôpital’s rule, we then have
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lim
r̄→r̄0

a ¼ lim
r̄→r̄0

4
dR2

dr̄
dh
dr̄

¼ 4
dh
dr̄ ðr̄0Þ2

; ð37Þ

and so we need ðdh=dr̄Þðr̄0Þ ¼ 2, which can be solved for
D. The result, expressed for brevity in terms of our
dimensionless parameters μ and Ω and reference scale s, is

E ¼ −
Ω
s
; ð38Þ

C ¼ s2ðμ − 2ð1þΩ2ÞÞ; ð39Þ

D ¼ 2ð1 − μÞ: ð40Þ

For a given barotropic equation of state, the general
solution with a regular center now has two dimensionless
free parameters μ, Ω, which govern, roughly speaking,
the mass and spin of the star. This is the number of free
physical parameters one would expect after imposing
regularity at the center. Note that, for fixed Λ, s is given
in terms of μ and Ω by (29), and from (12) and (40), the
central pressure is given in terms of μ by

p0 ¼
1 − μ

8πs2
; ð41Þ

or equivalently

p0 ¼
1 − μ

8πðμþΩ2Þl2
: ð42Þ

The expression for the metric coefficients, for an
arbitrary equation of state, can be written concisely as

x2 ¼ μðy − 1Þ2 þ 2ðy − 1Þ þ 16πf; ð43Þ

α2 ¼ y2 þ Ω2ðy2 − 1Þ2
x2

; ð44Þ

a2 ¼ 4y2

ðdx2dy Þ2α2
; ð45Þ

β ¼ Ωðy2 − 1Þ
sx2

; ð46Þ

where x, a, α, and β are all functions of y. Note that y ≥ 1
with y ¼ 1 at the regular center. Recall that fðyÞ was
defined in Eq. (28), where ρðyÞ is given implicitly by
inverting the integral (26), with the integration limit ρ0 ¼
ρðp0Þ defined in terms of our free parameters μ and Ω by
Eq. (42).
Equations (26), (28), and (42)–(46) together fully specify

our solutions and can be taken as the starting point for the
analysis that follows.

For an analytic equation of state, fðyÞ is analytic with
fðyÞ ¼ Oðy − 1Þ2 near the center, and hence

x2 ¼ 2ðy − 1Þ þOðy − 1Þ2; ð47Þ

β ¼ Ω
s
þOðy − 1Þ

¼ Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþΩ2

p
l
þOðy − 1Þ ð48Þ

near the center. We note for later use that, while β is
proportional to Ω for small Ω, it remains finite everywhere
as jΩj → ∞.
We obtain a fully explicit solution in the radial coor-

dinate y if and only if the integral (26) can be evaluated for
yðρ0; ρÞ, this can then be inverted to give ρðρ0; yÞ, and if the
integral (28) can then also be evaluated. Furthermore, we
obtain a fully explicit solution in terms of the area radius R
if and only if Eq. (43) can also be inverted to give yðxÞ.
However, we do not need explicit solutions to establish

analyticity of the solution in the area radius R. In an open
interval of ρwhere the equation of state pðρÞ is analytic and
pþ ρ > 0, Eq. (26) defines y as a monotonically decreas-
ing analytic function of ρ in this interval of ρ, and so ρðyÞ
exists and is analytic in the corresponding interval of y. It
follows that f is an analytic function of y in this interval.
Hence, a, α, and β are all analytic functions of y at least for
y > 1. A closer look shows that they are analytic also at
y ¼ 1, which corresponds to x ¼ 0. Moreover, x2 is an
analytic function of y for y ≥ 1, and so implicitly ρ, p, a, α,
β are all analytic functions of x2. In other words, they are
even analytic functions of R for R ≥ 0. For typical
equations of state, analyticity breaks down at the surface
of the star where p ¼ 0.
By a standard argument, analyticity in R2 implies that if

we rewrite the metric in terms of Cartesian coordinates
X ≔ R cos θ, Y ≔ R sin θ, all coefficients of the metric in
the coordinates ðt; X; YÞ are analytic functions of X and Y
(and independent of t), including at the center X ¼ Y ¼ 0.
The expressions for the local mass and angular momen-

tum as functions of y are

M ¼ ðμþ 2Ω2Þx2 − 1

4

�
dx2

dy

�
2

−
Ω2ðy2 − 1Þ dx2dy

y
; ð49Þ

J ¼ sΩ
�
2x2 −

ðy2 − 1Þ dx2dy

y

�
; ð50Þ

or equivalently
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J̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþΩ2

q
Ω
�
2x2 −

ðy2 − 1Þ dx2dy

y

�
: ð51Þ

These are also even analytic functions of R.

F. The AdS3 and test fluid cases

For μ ¼ 1, the central pressure is zero, and so this must
correspond to the AdS3 solution. Indeed, with μ ¼ 1, the
metric takes the form

x2 ¼ y2 − 1; ð52Þ

α2 ¼ð1þ Ω2Þy2 − Ω2; ð53Þ

a2 ¼ α−2; ð54Þ

β ¼ s−1Ω≕ β0; ð55Þ

and we have M ¼ −1 and J ¼ 0. Hence, this is the AdS3
solution in a rigidly rotating coordinate system, with
constant angular velocity β0. In the vacuum solution, β0
has no physical significance and can be set to zero.
Expanding in μ − 1, to leading order, we obtain the test

fluid limit, in which a stationary, rigidly rotating, fluid
configuration is held together only by the cosmological
constant (as well as being pulled apart by rotation), but in
which its self-gravity can be ignored. The metric is that of
AdS3, but in a coordinate system that rotates with the fluid.
As in the self-gravitating case, the equation of state and
the central density ρ0 implicitly determine a function ρ ¼
ρðρ0; yÞ through Eq. (26). In the test fluid case, from (52), y
is given in terms of the area radius R, the cosmological
constant Λ, and the constant angular velocity β0 as

y2 ¼ 1þ x2 ¼ 1þ R2ð−Λ − β20Þ; ð56Þ

where we have used (22), (24) with μ ¼ 1 and (55) to
eliminate s. Hence, we have an implicit expression ρðRÞ for
any rigidly rotating test fluid solution, for arbitrary central
density ρ0 and arbitrary constant angular velocity β0 (with
respect to the Killing vector ∂t), given a cosmological
constant Λ < 0 and equation of state.

G. Starlike solutions

We now look for solutions in which either p ¼ 0 occurs
at finite radius or p → 0 and ρ → 0 sufficiently rapidly as
R → ∞ so that the solution has finiteM and J. We shall call
such solutions “stars.” Without any attempt at rigor, we
classify the possibilities by assuming that the fluid is
polytropic at low pressure, that is,

p ∼ ρk as p → 0 ð57Þ

for some k ≥ 1. We note that for k < 1, the sound speedffiffiffiffiffiffiffiffiffiffiffi
p0ðρÞp

diverges as ρ → 0. We therefore disregard this
range as unphysical.
From (42), we require μ ≤ 1 for the central pressure to be

non-negative, and from (43) we further require μ ≥ 0 for
xðyÞ to be a monotonically increasing function for all y, in
particular at large y. Stars therefore exist only with Λ < 0
and for 0 ≤ μ ≤ 1. Physically, from (24), μ > 0 means that
the Hubble acceleration is centripetal (Λ < 0) and larger
than the centrifugal acceleration due to the rigid rotation
(λ2 > Ω2). Both the Hubble and the centrifugal acceleration
depend on radius in the same way, and so this is true either
for all y or for none.

1. Stars with a surface

From (27), we see that the solution has a surface
pðy�Þ ¼ 0 at some finite coordinate radius y� and finite
area radius x� if and only if the integral

y�ðp0Þ ≔ yðp0; 0Þ ¼ exp
Z

p0

0

dp
pþ ρðpÞ ð58Þ

converges. Note that in this case y�ð0Þ ¼ 1. In the approxi-
mation (57), this is the case for k > 1. The limiting case
k ¼ ∞ can be interpreted as a fluid where ρ ¼ ρs > 0 is
finite at p ¼ 0. (One may think of such a perfect fluid as a
liquid, rather than a gas).
In the exterior y > y�, the solution must be equal to a

BTZ solution with constantM and J. To verify this, we note
that in the exterior, (28) reduces to

16πf ¼ m − 2ð1 − μÞy; ð59Þ

where we have defined the integrated fluid mass

m ≔ 16πs2
Z

y�

1

ρy dy: ð60Þ

We have identified the coefficient of y in (59) as −D by
demanding that (9) holds in the vacuum region p ¼ 0 and
have then used (40) to eliminate D.
As y ≥ 1 in the integral in (60), we have

m ≥ 16πs2
Z

y�

1

ρ dy ¼ 2ð1 − μÞ; ð61Þ

where to obtain the last equality we have evaluated (9) in
the vacuum region p ¼ 0 and used (40).
To clarify what free parameters determinem, we use (27)

to eliminate y and (41) to eliminate s in favor of the central
pressure p0 and then (42) to in turn express p0 in terms our
free parameters μ and Ω. We obtain

m ¼ 2ð1 − μÞI
�

1 − μ

8πðμþΩ2Þl2

�
; ð62Þ
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where

Iðp0Þ≔
Z

p0

0

exp

�
−2

Z
p

p0

dp̃
p̃þρðp̃Þ

�
ρðpÞ
p0

dp
pþρðpÞ: ð63Þ

So, in general,m depends on μ and Ω2, as well as of course
on the equation of state. Note that from (61), we have
Iðp0Þ ≥ 1.
To simplify the expressions that follow, we define the

auxiliary quantity

Aðμ;ΩÞ ≔ mðμ;ΩÞ þ μ − 2: ð64Þ

By definition, Að1;ΩÞ ¼ −1 in the vacuum or test fluid
case, where m ¼ 0. From (61), we have

Aþ μ ≥ 0: ð65Þ

With f given by (59), the metric coefficients in the
vacuum exterior are given by (43)–(46) as

x2 ¼ μy2 þ A; ð66Þ

α2 ¼ y2 þ Ω2ðy2 − 1Þ2
μy2 þ A

; ð67Þ

a2 ¼ 1

μ2α2
; ð68Þ

β ¼ Ωðy2 − 1Þ
sðμy2 þ AÞ : ð69Þ

Substituting (66) into the expressions (49) and (50) for
M and J, we obtain the constant values

M ¼ Mtot ≔ Aμþ 2ðAþ μÞΩ2; ð70Þ

J̃ ¼ J̃tot ≔ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ Ω2

q
ðAþ μÞΩ; ð71Þ

or equivalently

Jtot ¼ 2sðAþ μÞΩ: ð72Þ

It is then easy to verify that the exterior metric (66)–(69), is
(34)–(36), generally with c0 ≠ 1 and β0 ≠ 0.

2. Stars without a surface

If the integral (58) diverges but the integral (60) with
y� ¼ ∞ converges to a finite value of m, the star has no
surface but finite mass.
Taking the limit of MðyÞ and JðyÞ as y → ∞, we again

obtain the finite total values given by (70) and (72). The
metric is now asymptotic (rather than strictly equal) to the
BTZ metric (21) and (34)–(36).

In these stars without a sharp surface, we can never-
theless roughly identify a central region where self-gravity
of the star is important and M and jJj still increase, and an
outer region, or stellar atmosphere, where M and J are
essentially constant and the fluid is essentially a test fluid
on the BTZ spacetime with parameters Mtot and Jtot.
In our approximation (57), this happens in the marginal

case k ¼ 1; we need to also specify the constant of
proportionality, as the dimensionless parameter κ in

p ≃ κρ as p → 0 ð73Þ

for some 0 < κ < 1. The pressure and density fall off as
ρ ∼ p ∼ y−1−

1
κ, and so once again m is finite, but there is

now no surface at finite radius, and the metric is only
asymptotically BTZ, with y� ¼ ∞. The sound speed is also
less than the speed of light for 0 < κ < 1.

3. Nonstars

When not only y� but m diverges, fðyÞ grows faster than
y as y → ∞. In the approximation (57), this is the case for
1=2 ≤ k < 1, when ρ ∼ y−

1
k and f ∼ y2−ð1=kÞ as y → ∞.

However, we have already ruled out k < 1 on the grounds
that the sound speed

ffiffiffiffiffiffiffiffiffiffiffi
p0ðρÞp

diverges at the surface. The
expressions for MðyÞ and JðyÞ also diverge, and so the
spacetime is not asymptotically BTZ. Such solutions do not
describe stars. Recall again that we have already ruled out
k < 1 on the grounds of diverging sound speed.

H. The manifold of solutions

In contrast to 3þ 1 and higher dimensions, the vacuum
exterior metric, or the asymptotic metric at infinity, of a
rotating star is given by a BTZ metric. It is therefore of
interest what region in the ðJ̃;MÞ plane is covered by
possible stellar exterior solutions. Recall that for stars the
parameters μ and Ω can take any values in the strip

0 < μ ≤ 1; −∞ < Ω < ∞: ð74Þ

In the following, we suppress the suffix “tot” for brevity,
and for the rest of this section, M and J̃ always denote the
total mass and spin of the spacetime, measured at infinity.
The manifold of solutions is uniquely parametrized by

ðΩ; μÞ. However, if we are interested more in the values of
ðJ̃;MÞ, we can present the solution manifold as a hyper-
surface in ðJ̃;M; μÞ space. The case of the linear equation of
state p ¼ κρ is nongeneric in that A is a function of μ only,
but it, and in particular the value κ ¼ 1=2, can serve as a
concrete illustration of the general considerations presented
below. The solution manifold parametrized by ðΩ; μÞ for the
equation of state p ¼ ρ=2 is shown in Fig. 1. The same
solution manifold embedded in ðJ̃;M; μÞ space is shown in
Fig. 2 and the projection of this embedding down into the
ðJ̃;MÞ plane in Fig. 3. We stress that the following
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arguments hold for all equations of state that admit starlike
solutions, and so these figures apply qualitatively to all
equations of state.

1. Boundary μ= 1 of solution space

We have already seen that μ ¼ 1 at finite Ω (the thick
black line in Fig. 1) corresponds to a rotating test fluid on
the AdS3 spacetime with M ¼ −1 and J̃ ¼ 0. However,
taking the simultaneous limit μ → 1−, Ω → �∞ of (70)
and (71) such that

μ ¼ 1 −
q̃
Ω2

ð75Þ

for some fixed constant q̃ > 0, we have s → ∞ and p0 → 0
and so, for finite Ið0Þ, we obtain

m ≃ 2ð1 − μÞIð0Þ; ð76Þ

giving

Aþ μ ≃
q
Ω2

; q ≔ 2½Ið0Þ − 1�q̃; ð77Þ

and hence two 1-parameter families of solutions with

M ¼ −1þ q; J̃ ¼ �q: ð78Þ

From (65), we have that q ≥ 0. See the blue region in Fig. 1
as Ω → �∞ and the thick dashed black line in Fig. 2.
In this limit, the fluid is infinitely dilute but infinitely
extended. Note that even though Ω → ∞, the angular
velocity β is finite everywhere. The integrated fluid rest
mass m vanishes, but M > −1. Intuitively, this nontrivial
gravitational mass comes from rotational energy.
We now show, assuming an analytic equation of state for

small p > 0, that Ið0Þ ¼ 1 if the star has a surface at finite
radius. To see this, we write

Iðp0Þ ¼
Z

p0

0

y2ðp0;pÞ
ρ

p0

dp
pþ ρ

≥ 0: ð79Þ

We can bound 1 ≤ y2 ≤ y2� in the integrand, and so

1

p0

Z
p0

0

ρ

pþ ρ
dp ≤ Iðp0Þ ≤

y2⋆
p0

Z
p0

0

ρ

pþ ρ
dp: ð80Þ

From y�ð0Þ ¼ 1 (as noted above) and the squeeze theorem,
we then have

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. The nature of the asymptotic metric for starlike
solutions with the linear equation of state p ¼ ρ=2. All solutions
lie in the strip 0 < μ < 1, −∞ < Ω < ∞. The asymptotic metric
is of black-hole type in the orange (bottom) region, of point
particle type in the blue (top) region, and of overspinning type in
the green (left and right) regions. The parameter values of the two
solutions shown in Fig. 4, and which have the same ðJ̃;MÞ, are
indicated by an orange dot and a black dot. The contours of
M ¼ −1;−1=2; 0; 1=2; 1; 2; 4; 8; 16 (from top to bottom, solid)
and J̃ ¼ 0;�1=2;�1;�2;�4;�8;�16 (outward from the
center, dashed) are also shown. The crossing green lines indicate
J̃ ¼ �M. The bottom region is split into two regions by the red
line, each of which covers the same region in the ðJ̃;MÞ plane.
Solutions in the bottom half, such as the one indicated by the
black dot, are conjectured to be unstable. The green dot is at
ð0; μcÞ, and the three red dots are at ð�Ω0; 0Þ and ð0; μrÞ.

FIG. 2. Parametric plot of ðJ̃; MÞ as a function of ðμ;ΩÞ,
embedded in three dimensions as ðJ̃;M; μÞ. All dots and thick
curves correspond to those of the same color in Fig. 1. Contours
of Ω and μ are shown as thin lines. The thick red line denotes the
locus of j∂ðJ̃; MÞ=∂ðμ;ΩÞj ¼ 0, where the embedded surface is
vertical. The intersecting thick green lines denote the loci of J̃ ¼
�M at nontrivial values of μ. The bottom edge of the plot, μ ¼ 0,
is at J̃ ¼ �M, for M > 0. The top edge of the plot (dashed black
line) μ ¼ 1 is at J̃ ¼ �ðM þ 1Þ, for M ≥ −1, with M ¼ −1 only
at μ ¼ 1. The single point M ¼ −1, J̃ ¼ 0 in this plot corre-
sponds to a two-parameter family of test fluid solutions. Solutions
in the area below the red line are conjectured to be unstable. The
orange dot and the black dot represent two solutions with the
sameM and J̃ that are presumed stable and unstable, respectively.
The green dot is at ð0;Mc; μcÞ, and the three red dots are at
ð�M0;M0; 0Þ and ð0; 0; μrÞ.
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Ið0Þ ¼ lim
p0→0

1

p0

Z
p0

0

dp
1þ p

ρ

: ð81Þ

From causality, p=ρ must remain bounded as p → 0. If in
fact p=ρ → 0 as p → 0, we have Ið0Þ ¼ 1.
In the other case, where p=ρ → κ remains finite as

p → 0, the surface of the star is at infinity and so we cannot
rely on (81). However, one can see by explicit calculation
that Ið0Þ ¼ 1=ð1 − κÞ for this case, which is finite, see also
(109) below.

2. Boundary μ= 0 of solution space

If Að0;ΩÞ is finite, the boundary μ ¼ 0 of solution space
corresponds to a family of solutions with

M ¼ 2Að0;ΩÞΩ2; J̃ ¼ 2Að0;ΩÞjΩjΩ: ð82Þ

Note that Að0;ΩÞ ≥ 0 from (65), and so these solutions
obeyM ≥ 0 with jJ̃j ¼ M. See the thick blue line in Figs. 1
and 2.

3. Second family of critically spinning solutions

There is a second family of solutions with jJ̃j ¼ jMj,
over a finite range of M including both positive and
negative values of M, namely,

Ω ¼ �ΩcðμÞ; ð83Þ

where ΩcðμÞ is defined by solving

A2 ¼ 4ðAþ μÞΩ2 ð84Þ
for Ω2, given μ. Along these curves, parametrized by μ, we
have

jMj ¼ jJ̃j ¼ A

�
μþ A

2

�
: ð85Þ

The range 1 > μ > 0 corresponds to the range
−1=2 < M < M0. Here

M0 ≔ 8Ω2
0; ð86Þ

where Ω0 is the positive solution of

Að0;Ω0Þ ¼ 4Ω2
0: ð87Þ

[Note that therefore Ω0 ¼ Ωcð0Þ.] See the thick green lines
in Figs. 1 and 2. The two curves intersect at M ¼ J̃ ¼ 0,
which corresponds to μ ¼ μc defined by

Aðμc; 0Þ ¼ 0: ð88Þ
This always has a solution in the range 0 ≤ μc < 1 because
Aðμ;ΩÞ is continuous with Að0;ΩÞ ≥ 0 and Að1;ΩÞ ¼ −1.
[We assume without proof that there is only one solution.]

At their upper ends, the two curves are asymptotic to μ ¼ 1

as Ω → �∞ in the ðΩ; μÞ strip, but in the ðJ̃;MÞ plane they
end at the finite points M ¼ −1=2, J̃ ¼ �1=2. At their
lower ends, they intersect μ ¼ 0 at finite jΩj ¼ Ω0, corre-
sponding to jJ̃j ¼ M ¼ M0 > 0.

4. Double cover of a region in the ðJ̃;MÞ plane
As there are two solutions forM ¼ jJ̃j for 0 ≤ M < M0,

by continuity there must be a region of the ðJ̃;MÞ plane that
is doubly covered by the manifold of solutions. As the
solutions M ¼ jJ̃j corresponding to μ ¼ 0 lie on one
boundary of the solution manifold, they also form one
boundary of the doubly covered region [in ðΩ; μÞ and
ðJ̃;MÞ, respectively]. The other boundary of the doubly
covered region in the ðJ̃;MÞ plane occurs where the
solution manifold of Fig. 2 folds over. This occurs where

���� ∂ðJ̃;MÞ
∂ðΩ; μÞ

���� ¼ 0; ð89Þ

which is equivalent to

2ðAþ μÞðμA;μ þ A − 4Ω2Þ þ ðA − 4Ω2 − 3μÞΩA;Ω ¼ 0:

ð90Þ

This implicitly defines a curve

Ω ¼ �ΩrðμÞ; 0 < μ < μr; ð91Þ

where μr is defined by ΩrðμrÞ ¼ 0, giving

μrA;μðμr; 0Þ þ Aðμr; 0Þ ¼ 0: ð92Þ

[Note thatΩrð0Þ ¼ Ω0. We assume without proof that there
is only one such curve, that is, the solution manifold is not
folded over more than double.]
In fluid parameter space ðΩ; μÞ, the doubly covered

region lies between the curves (83) for 0 < μ < μc (the
lower part of the two green curves in Fig. 1) and the curve
μ ¼ 0 for −Ω0 < Ω < Ω0 (part of the blue line). It is
divided into two halves by (91) (the red curve). All three
curves intersect at the two points μ ¼ 0, Ω ¼ �Ω0. Pairs of
points from those two halves of the doubly covered region
have the same values of M and J̃.
In BTZ parameter space ðJ̃;MÞ, the doubly covered

region lies between jJ̃j ¼ M for 0 < M < M0 (correspond-
ing to both the blue and green curves in Fig. 2), and the red
curve,

Ω ¼ �Ω̃rðMÞ; 0 < M < M0; ð93Þ

which is given implicitly by (70) and (71) with (91). The
double cover becomes clearer by comparing Fig. 2 with its
top view, Fig. 3. The corner points at μ ¼ 0,Ω ¼ �Ω0 have
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M ¼ jJ̃j ¼ M0. Hence, the maximum possibleM for given
jJ̃j < M0 is obtained on the red curve. In particular, the
maximum possible mass without rotation is given byΩ ¼ 0
and μ ¼ μr, and is

Mr ≔ Mðμr; 0Þ ¼ Aðμr; 0Þμr: ð94Þ

The red curve (91) corresponds to a curve of solutions
that have a zero mode, a static linear perturbation that
corresponds to an infinitesimal change of ðμ;ΩÞ that leaves
ðJ̃;MÞ invariant to linear order. This signals that a linear
perturbation mode changes from stable to unstable across
the red curve. This is familiar from nonrotating stars in
3þ 1 dimensions, where an extremum of the mass as a
function of central density signals a separation between
stable and unstable stars, with the less dense stars stable and
the more dense ones unstable. We conjecture that the
solutions in the doubly covered region with smaller μ (and
hence larger central density) are unstable, corresponding to
region below the red curve in Fig. 1. As their asymptotic
metrics are of black-hole type, it is possible that these
unstable solutions collapse to a black hole when perturbed
in a suitable way.
We have obtained some evidence for this conjecture by

time evolving the two solutions with the equation of state
p ¼ ρ=2 represented by orange and black dots in Fig. 1.
Adding a small perturbation of the density with either sign
to the less dense (orange) solution sets up propagating
perturbations that remain small. Adding a small density
perturbation to the denser (black) solution results in a
highly nonlinear oscillation for one sign of the perturbation,
where the central density repeatedly decreases below that of
the orange solution, while perturbing the initial density
with the opposite sign triggers prompt collapse to a
black hole.

5. Summary of Λ < 0

In summary, the manifold of solutions contains a unique
solution with given ðJ̃;MÞ in the chevron-shaped region,

jJ̃j − 1 < M < jJ̃j; ð95Þ

that is bounded by the curves (78) and (82), while in a
contiguous compact region bounded by jJ̃j ¼ M for 0 <
M < M0 and the curve (91) there are two solutions with the
same given ðJ̃;MÞ. There are no solutions with ðJ̃;MÞ
outside these two regions.

6. The case Λ= 0

We now consider the limit where the length scale s
remains finite but Λ → 0. Then λ2 ¼ μþ Ω2 ¼ 0, so in this
limit μ ¼ Ω ¼ 0. Therefore, no rigidly rotating stars can
exist. Intuitively, only the cosmological contraction due to
Λ < 0 can balance the centrifugal acceleration of rigid
rotation, while the curvature generated by stress energy
cannot. Setting Ω ¼ 0, replacing ðμþΩ2Þl2 with s2, and
then setting μ ¼ 0, we obtain

m ¼ 2I

�
1

8πs2

�
: ð96Þ

Equations (26) and (28) still hold, and so do (43)–(46) and
(49), reduced to

x2 ¼ 2ðy − 1Þ þ 16πf; ð97Þ

α2 ¼ y2; ð98Þ

M ¼ −
1

a2
¼ −

1

4

�
dx2

dy

�
2

; ð99Þ

with β ¼ 0 and J ¼ 0. They define an analytic interior
solution for analytic equation of state, with in particular a
regular center. However, in the vacuum exterior to this
interior solution, (97) with (59) gives x2 ¼ m − 2, which is
constant, so from (99)M ¼ 0. This means that a diverges at
the surface, but the metric expressed in terms of y remains
regular, and in the exterior, it is

ds2 ¼ −y2dt2 þ s2
�

dy2

m − 2
þ ðm − 2Þdθ2

�
ð100Þ

for y� < y < ∞. The spatial geometry is a cylinder; see also
Eq. (79) of [9]. If y⋆ is finite, we do not consider such a
solution as a star.

I. Causal structure

If we apply the standard compactification of AdS3,
namely,

FIG. 3. A top view, suppressing the dimension μ, of the plot in
Fig. 2. All dots and curves are as described in Fig. 2. Note that the
orange dot lies on top of, and so hides, the black one.
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R ¼ l tan
ψ

l
ð101Þ

to the BTZ metric in its standard form (21) and (34)–(36)
with c0 ¼ 1 and β0 ¼ 0, we obtain

ds2 ¼ 1

cos2 ψ
l

�
−F dt2 þ G−1dψ2

þ l2sin2
ψ

l
ðdθ þHdtÞ2

�
; ð102Þ

where F ¼ G and

G ¼ 1 − ðM þ 1Þcos2 ψ
l
þ J2cos4 ψ

l

4sin2 ψ
l

; ð103Þ

H ¼ J cos2 ψ
l

2 sin2 ψ
l

: ð104Þ

This is conformal to a metric (the one in the large square
brackets) that is regular everywhere, or in the black-hole
case everywhere outside the event horizon, but always
including at ψ=l ¼ π=2, which is therefore revealed as a
timelike conformal boundary. In our starlike solutions,
F ≠ G and H are different functions from those given
above, but they are finite and nonzero for 0 ≤ ψ=l ≤ π=2.
For the BTZ metrics corresponding to black holes, the

familiar Penrose diagram [2] is a different one, being a
square that is compact in the time as well as the radial
direction. At first sight, this seems to contradict the above
conformal picture for a star, in which the conformal metric
has an infinite range of t. The apparent contradiction is
resolved by noticing that the black-hole conformal diagram
contains at its top and right corner a point representing
timelike infinity where the curve representing the future
branch of the event horizon meets the curve representing
the timelike conformal boundary. If we now cover up the
black-hole region with a star, the timelike curve represent-
ing the surface of the star and the timelike conformal
boundary meet at the same point in the conformal diagram.
Both have infinite proper length and are tangential to the
stationary Killing vector. Moreover, a radial light ray
reflected at both curves travels between them an infinity
number of times before reaching the point in the conformal
diagram where they meet. Hence, there must be a con-
formal transformation where these two curves remain
parallel and have infinite coordinate length in the resulting
Penrose diagram, as derived above.
A second question about the causal structure is if the

spacetime admits closed timelike curves. It is obvious
that closed timelike curves exist if there is a region where
the metric coefficient gθθ ¼ R2 is negative. Conversely,
Bañados et al. [2] have proved that the BTZ metrics do not
contain closed timelike curves if there is no region with
R2 < 0, or if such regions are excluded. The proof only

relies on the signature of the metric coefficients, not their
form, and so generalizes to metrics of the form (13), as long
as a2 and α2 remain positive. Hence, as a2, α2, and R2 are
manifestly non-negative in our starlike solutions, they do
not contain closed timelike curves. (The examples of
solutions with closed timelike curves given by Cataldo
[10] can therefore not be starlike, that is, have both a regular
center and be asymptotically BTZ.)

III. SIMPLE EQUATIONS OF STATE

A. Ultrarelativistic linear equation of state p= κρ

In the following, we concentrate on solutions with the
ultrarelativistic (linear) equation of state p ¼ κρ, assuming
the physical range 0 < κ < 1 of the equation of state
parameter, which gives a real speed of sound smaller than
the speed of light. (With the value κ ¼ 1=2 in particular,
this equation of state can be interpreted as a gas of massless
particles without internal degrees of freedom.) We have
already seen above that starlike solutions with this equation
of state have no surface at finite radius but are asymptoti-
cally BTZ. From (26), we have

ρðρ0; yÞ ¼ ρ0y−
1þκ
κ ; ð105Þ

and hence from (28)

8πfðyÞ ¼ ð1 − μÞ
�
ð1 − yÞ þ κ

1 − κ

�
1 − y−

1−κ
κ

��
: ð106Þ

Of the metric coefficients, we here write out only

x2 ¼ μðy2 − 1Þ þ 2κð1 − μÞ
1 − κ

�
1 − y−

1−κ
κ

�
: ð107Þ

The other metric coefficients are given by (44)–(46).
In the test fluid case μ ¼ 1, we have x2 ¼ y2 − 1, and so

the density in terms of the area radius takes the simple form

ρ ¼ ρ0½1þ R2ð−Λ − β20Þ�−
1þκ
2κ ; ð108Þ

where the central density ρ0 is arbitrary (but assumed so
small that self-gravity can be neglected) and β0 is the
constant angular velocity.
Integrating (105), we have

m ¼ 2
1 − μ

1 − κ
⇔ Iðp0Þ ¼

1

1 − κ
ð109Þ

and so

A ¼ 2κ − ð1þ κÞμ
1 − κ

: ð110Þ

For this particular equation of state, Iðp0Þ is constant, and
so m and A depend on μ only but (untypically) not on Ω.
The total mass and spin at infinity are
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Mtot ¼
−ð1þ κÞμ2 þ 2κμð1 − 2Ω2Þ þ 4κΩ2

1 − κ
; ð111Þ

J̃tot ¼
4κð1 − μÞΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ Ω2

p
1 − κ

: ð112Þ

The loci of J̃tot ¼ �Mtot are the two intersecting critical
curves Ω ¼ �ΩcðμÞ with

ΩcðμÞ ¼
2κ − ð1þ κÞμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κð1 − κÞð1 − μÞp : ð113Þ

They cross at

μc ¼
2κ

1þ κ
; ð114Þ

which is inside the strip for all 0 < κ < 1, and they intersect
the edge μ ¼ 0 of the strip at

Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

2ð1 − κÞ
r

: ð115Þ

Hence, for all physical values of κ, the strip contains
regions corresponding to point-particle, black-hole, and
overspinning values of the pair ðJ̃;MÞ, as we have already
shown in general.
The parameter space 0 < μ < 1, −∞ < Ω < ∞ of sol-

utions is shown in Fig. 1 for κ ¼ 1=2, together with contour
lines of M and J̃, the lines jJ̃j ¼ jMj, color coding of the
asymptotic metric as black hole, point particle, or over-
spinning, and the curve that divides the black-hole region of
parameter space into two halves that cover the correspond-
ing region of ðJ̃;MÞ space twice. This second curve is
given by

Ω2
rðμÞ ¼

1þ κ

2ð1 − κÞ ðμr − μÞ; μr ≔
κ

1þ κ
ð116Þ

for 0 < μ < μr. We can deparametrize this curve to obtain
J2 as a function of M involving only square roots, but the
result is messy.
Solutions of black-hole type exist only forM < M0 with

M0 ¼ 8Ω4
0 ¼

2κ2

ð1 − κÞ2 : ð117Þ

The maximum possible mass without rotation is

Mr ¼ AðμrÞμr ¼
κ2

1 − κ2
: ð118Þ

The manifold of solution is shown embedded in
ðJ̃;M; μÞ space in Fig. 2 to show the double cover
more clearly, using the same color coding. A top view,

suppressing the μ direction and thus hiding the double
cover, is given in Fig. 3.
In all these figures, we have marked a specific pair of

solutions with black-hole class asymptotic metrics, both of
which have the same total mass M ¼ 0.38 and angular
momentum J̃ ¼ 0.24, but which have different parameter
values ðΩ; μÞ ≃ ð0.154; 0.242Þ and (0.153, 0.392). These
solutions themselves are illustrated in Fig. 4 by plottingM,
J̃ and l2ρ as functions of R=l.

B. Modified linear equation of state p= κðρ − ρsÞ
A simple equation of state that admits solutions with a

surface at finite radius is the inhomogeneous linear one,

p ¼ κðρ − ρsÞ ð119Þ

for 0 < κ < 1 and ρs ≥ 0. Obviously, this reduces to the
previous example for ρs ¼ 0. Proceeding as before, we find

ρ ¼ ρ0y−
1þκ
κ þ κρs

1þ κ

�
1 − y−

1þκ
κ

�
: ð120Þ

We then obtain

1 2 3 4

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

FIG. 4. An example of two starlike solutions with the equation
of state p ¼ ρ=2. Both have M ¼ 0.38 and J̃ ¼ 0.24, but
different central densities. We plot l2ρ (solid), M (dashed),
and J̃ (dotted) against R=l. The less compact solution, with
ðΩ; μÞ ≃ ð0.154; 0.242Þ and lower central density (stable in
nonlinear numerical time evolutions) is plotted in orange, and
the more compact one with ðΩ; μÞ ≃ ð0.153; 0.392Þ and higher
density (numerically found to be unstable) in blue.
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x2 ¼ μ̃ðy2 − 1Þ þ 2κð1 − μ̃Þ
1 − κ

�
1 − y−

1−κ
κ

�
; ð121Þ

which is just (107) again, only with μ replaced by

μ̃ ≔ μ − σ; ð122Þ

where

σ ≔
κ

1þ κ
8πs2ρs ¼

κ

1þ κ
ðμþ Ω2Þ8πl2ρs: ð123Þ

The other metric components follow, and we do not give
them here. The stellar surface is now at finite radius,

y�ðρ0Þ ¼
�ð1þ κÞρ0

ρs
− κ

� κ
1þκ

: ð124Þ

Note that y�ðρsÞ ¼ 1 as expected. We have

m ¼ 2
1 − μ

1 − κ
þ 1þ κ

1 − κ
σ

�
1 −

�
1 − μþ σ

σ

� 2κ
1þκ

�
; ð125Þ

which now depends also on Ω through σðμ;ΩÞ. We do not
write down further expressions, which are complicated and
do not add new insight.

C. Polytropic equation of state p=Kρk

For

p ¼ Kρk; ð126Þ

the star has a surface at finite radius,

y�ðρ0Þ ¼ ð1þ Kρk−10 Þ k
k−1; ð127Þ

if and only if k > 1, consistent with the analysis in
Sec. II G. We find

ρðρ0; yÞ ¼ K− 1
k−1

��
y

y�ðρ0Þ
�

−k−1
k

− 1

� 1
k−1

: ð128Þ

The functions fðyÞ and hence x2ðyÞ can be expressed in
closed form in terms of hypergeometric functions, as
already noticed in [10]. The same is true for m and hence
Mtot and Jtot. We do not write down these expressions as
they do not give further insight.

IV. CONCLUSIONS

We have constructed rotating perfect fluid starlike
solutions in 2þ 1-dimensional general relativity with a

negative cosmological constant Λ < 0. We defined these to
have a regular center, and finite mass M and spin J at
infinity. (We again suppress the suffix “tot” in this section.)
We have found these solutions in standard polar-radial
coordinates ðt; R; θÞ, in terms of two free parameters μ and
Ω that control their mass and spin, and we have given
expressions for the total mass M and spin J in terms of the
two free parameters. We have thus established that starlike
solutions in 2þ 1 dimensions exist for generic equations
of state.
Furthermore, we have shown that these solutions are

analytic in suitable coordinates, including at the center, for
analytic equations of state (except at the surface, if there is a
sharp surface). We have also shown that their causal
structure is that of the AdS3 cylinder, without closed
timelike curves.
For any equation of state with 0 < p0ðρÞ < 1 and where

either p ∼ ρk with k > 1 as ρ → 0, or p ¼ 0 occurs at finite
ρ, we have shown that rotating and nonrotating stars with a
sharp surface exist. The spacetime in the vacuum exterior is
then the BTZ solution. In the limiting case where the
equation of state is linear at low density, p ≃ κρ with
0 < κ < 1 as ρ → 0, the density goes to zero only asymp-
totically, but sufficiently fast so that the spacetime is
asymptotically BTZ with finite M and J.
We stress that the necessary and sufficient criterion for

the existence of stars with a surface at finite radius and
finite M and J is simply that the integral (58) converges
at p ¼ 0. We have not assumed further constraints on
the equation of state except the causality constraint
0 < p0ðρÞ < 1 for all p > 0.
We have shown that for a generic equation of state the

ðΩ; μÞ parameter space contains exterior/asymptotic met-
rics of all three BTZ types: black hole, point particle, and
overspinning, but not for all values ðJ̃;MÞ. More precisely,
solutions for generic equations of state cover all of the
infinite region (95) of the ðJ̃;MÞ plane and a finite region
bounded by (93). In this second region, there are two
solutions for the same values of M and J̃, with the more
compact one conjectured to be unstable.
For an arbitrary barotropic equation of state p ¼ pðρÞ,

our solutions are in implicit form, involving two integrals
and one function inversion. The integrals can be solved in
closed form for the linear equation of state p ¼ κρ,
explicitly constructing the space of solutions, and we have
shown that this is possible also for two other simple
equations of state in which stars have sharp surfaces.
In spite of the local triviality of gravity, two compact

self-gravitating objects in 2þ 1 dimensions can interact
gravitationally through global effects [3] and, for Λ < 0,
even merge to form a black hole; see [11] for an explicit
construction of a spacetime representing the formation of a
spinning black hole from two massless point particles
colliding with impact parameter. However, because there
are no tidal forces or gravitational waves, unless and until
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the two objects actually touch they do not affect each
other’s local dynamics. In particular, if they start in an
axistationary state, then they remain so unless and until
they touch. This makes axistationary matter solutions even
more relevant for representing interacting compact objects
than they are in 3þ 1 dimensions.
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