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Spherically symmetric configurations of the noninteracting massive complex scalar field, representing
nonrotating boson stars, are considered within the framework of the modified torsion based fðTÞ gravity,
with fðTÞ ¼ T þ αT2=2. We find that with sufficiently large negative value of α the mass of the boson
stars can be made arbitrarily large. This is in contrast to general relativity where an upper bound,
Mmax ∼M2

Planck=m, to the mass of the boson stars built from the noninteracting scalar field exists and where
the masses of boson stars in the astrophysical regime can be obtained only with the introduction of the
scalar field self-interaction. With sufficiently large negative α we also find negative gravitational binding
energy for all masses, which can be seen as an indication of the stability of such configurations. In its
positive regime, α can not be made arbitrarily large as a phase transition in the stress-energy components
of the fðTÞ-fluid develops. This phenomenon has already been reported to occur in polytropic stars
constructed within the fðTÞ gravity theory.
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I. INTRODUCTION

Recent cosmological observations [1,2], as well as the
ever open quest for the complete quantum theory of gravity
[3,4], motivate the research in the field of modified theories
of gravity. One of the common ways to modify general
relativity (GR) is to allow for a nonlinear function f of the
scalar curvature R in the Einstein-Hilbert action. The
resulting modified theories of gravity based on curvature
are known as fðRÞ gravity theories [5–7]. They have been
successfully applied from cosmological settings [8–10] to
high curvature gravity regimes [11–13]. However, it is well
known that a theory of gravity equivalent to general
relativity (GR) can be formulated in terms of torsion
instead of curvature [14]. This theory replaces the scalar
curvature of the Einstein-Hilbert action by the torsion scalar
T; it uses the tetrad field as the dynamical degree of
freedom and is known as the teleparallel equivalent of GR
(TEGR). In the same spirit as the fðRÞ gravity theories
modify the curvature-based GR, a nonlinear function f can
be used to modify the action of TEGR. The resulting
theories of gravity, known as fðTÞ gravity theories, have
recently gained considerable attention. While most of
applications of the fðTÞ gravity are in the field of
cosmology [15–26], the applications dealing with the static
spherical symmetry are somewhat less in number [27–34].
An important problem found in the early formulations
of fðTÞ gravity was the lack of Lorentz invariance in the
sense that the equations of motion were not invariant
with respect to the particular choice of the tetrad fields,
regardless of the latter satisfying the expected metric

compatibility condition. This problem was pointed out
and investigated by many authors [35–42] and is still not
fully understood [43,44]. In this work we will rely on the
covariant formulation of fðTÞ gravity as proposed by
Krššák and Saridakis [40]. As the particular form of f
we will use fðTÞ ¼ T þ αT2=2, since this form of f
guarantees the correct GR-limit when the parameter α → 0.
Static spherically symmetric vacuum solutions in fðTÞ

gravity have been considered in [45–47], while the sol-
utions involving the polytropic fluid and Yang-Mills field
have been considered in [48,49]. In this work we will
construct static spherically symmetric self-gravitating con-
figurations of the noninteracting complex scalar field. Our
motivation to study this matter model comes in one part
from its relative simplicity, while in the other part it comes
from the fact that scalar field is the key component of the
standard Λ cold dark matter model of cosmology. It is
therefore interesting to explore objects that could be
constructed of self-gravitating scalar fields in the primor-
dial or in any other cosmological epoch. The self-gravi-
tating configurations of the scalar field are in GR
commonly referred to as boson stars [50,51]. The maximal
mass of a boson star formed by the noninteracting scalar
field is in GR estimated to be Mmax ∼M2

Planck=m, where m
is the scalar field mass, the estimate being based on the
assumption that the scalar field is confined within a radius
comparable to the Compton wavelength and that it is bound
by the uncertainty principle and gravity [51,52]. Such
configurations are sometimes called miniboson stars [53].
Boson stars that have masses that are in the astrophysical
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regime can in GR be obtained only with the introduction of
the scalar field self-interaction [54].
In this work we will numerically construct boson stars in

fðTÞ ¼ T þ αT2=2 gravity. We will first inspect the global
parameters of the solutions, such as the gravitational mass
and the particle number, and compare these to the corre-
sponding values in GR. We will also inspect the radial
profiles of the energy density and the principal pressures, as
these may reveal features that are specific to the fðTÞ
gravity theory. The paper is organized as follows: in Sec. II
we introduce the fðTÞ gravity action and derive the field
equations specific to the scalar field in the static spherical
symmetry. In Sec. III we discuss the boundary conditions
and our numerical procedure. In Sec. IV we compute the
gravitational mass and the particle number for boson stars
in fðTÞ gravity with positive and negative values of the
parameter α, and we compare these to the GR-case. In
Sec. V we investigate a specific feature that develops in the
radial profiles of the energy density and the principal
pressures as α reaches a critical value in its positive regime.
We conclude the paper in Sec. VI. We use natural units
c ¼ 1 ¼ ℏ throughout the paper so thatG ¼ 1=M2

Planck, and
we use the metric signature ημν ¼ diagð1;−1;−1;−1Þ.

II. FIELD EQUATIONS IN STATIC SPHERICAL
SYMMETRY IN f ðTÞ

The fðTÞ gravity theory action can be written as

S ¼
Z �

fðTÞ
16πG

þ Lmatter

�
h d4x; ð1Þ

where f is in general a nonlinear function of the torsion
scalar T, h is the determinant of the tetrad haμ, and Lmatter is
the Lagrangian density due to matter fields. We use latin
symbols for the tetrad indices, and greek symbols for the
spacetime indices. The tetrad satisfies the metric compat-
ibility condition haμhbνgμν ¼ ηab, where gμν is the space-
time metric tensor and ηab is the metric of Minkowski. If
fðTÞ ¼ T, the variation of the action (1) with respect to the
tetrad gives field equations that are equivalent to those of
general relativity (GR), and the resulting theory of gravity
is known as the teleparallel equivalent of GR (TEGR). If f
is nonlinear in T, the field equation resulting from the
variation of (1) with respect to the tetrad can be written as

h−1haμ∂σ

�
h
dfðTÞ
dT

Saνσ
�
−
dfðTÞ
dT

TαβμSαβν þ
1

2
fðTÞδμν

þ dfðTÞ
dT

Saανhbμωa
bα ¼ 8πGT μ

ν; ð2Þ

where

T a
μ ¼ −

1

h
δðhLmatterÞ

δhaμ
¼ −

∂Lmatter

∂haμ − haμLmatter ð3Þ

is the standard stress–energy tensor and

Tα
βγ ¼ haαð∂βhaγ − ∂γhaβÞ þ haαωa

bβhbγ − haαωa
bγhbβ

ð4Þ

is the torsion tensor. The quantity ωa
bα is the inertial spin

connection which is, in the covariant formulation of fðTÞ
gravity proposed by Krššák and Saridakis [40], determined
from the requirement that the torsion tensor vanishes in the
flat space limit of the metric. The tensors,

Kαβγ ¼
1

2
ðTαγβ þ Tβαγ þ TγαβÞ ð5Þ

and

Sαβγ ¼ Kβγα þ gαβTσγ
σ − gαγTσβ

σ ð6Þ

are known as the contorsion tensor and the modified torsion
tensor respectively. The torsion scalar,

T ¼ TαβγSαβγ; ð7Þ

is then defined as the contraction of the torsion tensor with
the modified torsion tensor.
In order to study the most simple form of fðTÞ we chose

to work with

fðTÞ ¼ T þ α

2
T2; ð8Þ

where the parameter α is allowed to have both positive
and negative values. In the limit α → 0 the resulting fðTÞ
gravity theory reduces to TEGR, implying the equivalence
of the resulting field equations with those of GR. For
nonzero α, terms proportional to α appear in the field
equation (2), and for sufficiently small values of α, the
solutions to the field equations are expected to differ
continuously from their GR counterparts. The departure
of the solutions from the well-known GR solutions is
expected to reveal features of fðTÞ gravity theory which we
aim to study in this paper. The form (8) can also be seen as
the lowest two terms in the power expansion of a more
general nonlinear fðTÞ having the correct GR-limit
as α → 0.
In order to facilitate the comparison of the solutions

obtained within fðTÞ gravity to those of GR, it is
convenient to write the field equations in the form that
allows for the “GR-picture interpretation.” The field equa-
tions can be written as

Gμ
ν ¼ 8πGTeffμ

ν ¼ 8πGðTμν þ T̃μ
νÞ; ð9Þ

where Gμ
ν on the lhs is the Einstein’s tensor of GR, while

on the rhs we introduce the effective stress-energy tensor
Teffμ

ν as the sum of the matter stress-energy tensor (3)
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and T̃μ
ν (denoted with the tilde) which consists of terms

proportional to α. The tensor T̃μ
ν can therefore be inter-

preted as the stress-energy introduced by the nonlinearity of
fðTÞ or the stress-energy of the “fðTÞ-fluid.”
As we intend to work in static spherical symmetry, we

use spherical coordinates xμ ¼ ðt; r; ϑ;φÞ and write the
tetrad field as

haμ ¼ diagðeΦðrÞ; eΛðrÞ; r; r sin θÞ; ð10Þ

which through the metric compatibility condition implies
the static spherically symmetric metric,

gμν ¼ haμhbνηab ¼ diagðe2ΦðrÞ;−e2ΛðrÞ;−r2;−r2sin2ϑÞ:
ð11Þ

The flat space limit of the above metric is obtained by
letting the metric profile functions ΦðrÞ → 0 and
ΛðrÞ → 0. The condition that the components of the torsion
tensor vanish in the flat space limit allows one to construct
the spin connection ωa

bα. If a local Lorentz transformation
ΛðxÞ which satisfies ηab ¼ ηcdΛc

aΛd
b, then the tetrad and

the spin connection transform as [43]

h0aμ ¼ Λa
bhbμ; ω0a

bμ ¼ Λa
cω

c
dμΛb

d þ Λa
c∂μΛb

c:

ð12Þ

In order to get the flat space spin connection in the
corresponding tetrad, one must satisfy the condition,

ωa
μb ¼ Λa

c∂μΛb
c: ð13Þ

For our tetrad its nonzero components are found to be
ωr̂

ϑ̂ϑ ¼ −ωϑ̂
r̂ϑ ¼ −1, ωr̂

φ̂φ¼−ωφ̂
r̂φ¼−sinϑ, and ωϑ̂

φ̂φ ¼
−ωφ̂

ϑ̂φ ¼ − cos ϑ (coordinate labels are used as indices
and the orthonormal ones are denoted with the hat
symbol) [55]. The resulting torsion scalar is

T ¼ 2e−2ΛðrÞðeΛðrÞ − 1ÞðeΛðrÞ − 2rΦ0ðrÞ − 1Þ
r2

; ð14Þ

where prime denotes differentiation with respect to r.
The matter Lagrangian for the noninteracting (free)

complex scalar field ϕ is

Lmatter ¼
1

2
gμνð∂μϕ

�∂νϕþ ∂μϕ∂νϕ
�Þ −m2ϕ�ϕ; ð15Þ

where ∂μ ¼ ∂=∂xμ and m is the field mass. According
to (3), the stress-energy tensor of the scalar field is

Tνμ ¼ ∂νϕ
�∂μϕþ ∂νϕ∂μϕ� − δμνð∂σϕ�∂σϕ −m2ϕ�ϕÞ:

ð16Þ

For the scalar field we use the standard time-stationary
harmonic ansatz compatible with the assumed static
spherical symmetry,

ϕðr; tÞ ¼ ϕðrÞe−iωt; ð17Þ

where from here on ϕðrÞ denotes a real profile function
depending on the radial coordinate only. The constant ω
can be interpreted as the energy of the quantum of the scalar
field. The above field ansatz avoids the instability problems
given by the Derric’s Theorem [56], while for the other
methods see e.g., [57,58].
In order to write down the field equations of fðTÞ gravity

theory in the GR-picture (9), we start with the well-known
components of the Einstein tensor,

Gt
t ¼ r−2ð1 − e−2Λð1 − 2rΛ0ÞÞ; ð18Þ

Gr
r ¼ r−2ð1 − e−2Λð1þ 2rΦ0ÞÞ; ð19Þ

Gϑ
ϑ ¼ Gφ

φ ¼ r−1e−2ΛððΛ0 −Φ0Þð1þ rΦ0Þ − rΦ00Þ; ð20Þ

and proceed to the components of the stress-energy tensor
T̃μ

ν of the fðTÞ-fluid which can be given by

8πGT̃t
t ¼ −αr−4e−4ΛðeΛ − 1Þ

× ððeΛ − 1ÞððeΛ − 5ÞðeΛ − 1Þ− 4r2ð2Φ00 þΦ02ÞÞ
þ 4rΛ0ð3ðeΛ − 1Þþ 2ðeΛ − 3ÞrΦ0ÞÞ ð21Þ

8πGT̃r
r ¼ −αr−4e−4ΛðeΛ − 1ÞðeΛ − 2rΦ0 − 1Þ

× ððeΛ − 1ÞðeΛ þ 3Þ þ 2ðeΛ − 3ÞrΦ0Þ ð22Þ

8πGT̃ϑ
ϑ¼8πGT̃φ

φ¼αr−4e−4ΛððeΛ−1ÞððeΛþ3ÞðeΛ−1Þ2
þ2rðΦ0ðeΛ−2e2Λ−4r2Φ00 þ1Þ−2r2Φ03

þ3ðeΛ−1ÞrΦ00 þ3ðeΛ−1ÞrΦ02ÞÞ
þ2rΛ0ðrΦ0ð2ð2eΛ−3ÞrΦ0

−3ðeΛ−3ÞðeΛ−1ÞÞ−3ðeΛ−1Þ2ÞÞ: ð23Þ

Finally, the stress-energy components due to the scalar field
are given by

Tt t ¼ e−2Λϕ02 þ ϕ2ðm2 þ e−2Φω2Þ ¼ ρ; ð24Þ

Tr
r ¼ −e−2Λϕ02 þ ϕ2ðm2 − e−2Φω2Þ ¼ −p; ð25Þ

Tϑϑ ¼ Tφφ ¼ e−2Λϕ02 þ ϕ2ðm2 − e−2Φω2Þ ¼ −q; ð26Þ

and can be interpreted in terms of the energy density ρ, the
radial pressure p and the transverse pressure q of the
boson fluid.
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The variation of the action (1) with respect to the scalar
field gives the field equation∇μ∇μϕ −m2ϕ ¼ 0, where ∇μ

is the partial derivative involving the Levi-Civita connec-
tion, and which can be written out as

rϕðω2e−2Φ −m2Þ þ e−2Λðϕ0ð−rΛ0 þ rΦ0 þ 2Þ þ rϕ00Þ ¼ 0:

ð27Þ

The above differential equation, which has the same
structure as in GR, together with the three independent
differential equations that follow from (9) and whose parts
are given by (18)–(26), complete the set of equations to be
satisfied by the tetrad profile functions ΦðrÞ and ΛðrÞ and
the scalar field profile function ϕðrÞ.

III. BOUNDARY CONDITIONS AND THE
NUMERICAL PROCEDURE

In order for the solutions to the field equations derived in
the preceding section to represent nonrotating boson stars,
they must be global and must satisfy certain boundary
conditions. As r → ∞, one expects the energy density and
the pressures of the boson fluid to vanish and the spacetime
metric to approach that of the static spherically symmetric
vacuum of the gravity theory that is being considered. As
can be seen from (24)–(26), vanishing of the stress-energy
components of the boson fluid implies ϕ → 0 and ϕ0 → 0.
The static spherically symmetric vacuum in fðTÞ gravity
with f given by (8) is asymptotically flat [47] so the
boundary conditions on the metric profile functions are
Φ → 0 and Λ → 0. At r ¼ 0, in GR one requires ortho-
normal components of the Riemann tensor to be finite,
which leads to the boundary conditions Λð0Þ ¼ 0,
Φ0ð0Þ ¼ 0, and Λ0ð0Þ ¼ 0. These conditions apply also
in the case of fðTÞ gravity with f given by (8), which can
be shown by expanding the field equations (9) in powers of
r near r ¼ 0. One finds the conditions,

αe−4Λð0ÞðeΛð0Þ − 1Þ3ðeΛð0Þ − 5Þr−4 þOðr−3Þ ¼ 0; ð28Þ

αe−4Λð0ÞðeΛð0Þ − 1Þ3ðeΛð0Þ þ 3Þr−4 þOðr−3Þ ¼ 0; ð29Þ

where the leading terms are due to the nonlinearity of f.
The above conditions are satisfied at r ¼ 0 if Λð0Þ ¼ 0,
which is exactly one of the condition known form GR.
Plugging Λð0Þ ¼ 0 into higher-order terms of the same
power expansion, as well as into the power expansion of the
field equation (27), one finds the conditions,

4Λ0ð0Þð1þ 2αΛ0ð0ÞðΛ0ð0Þ − 2Φ0ð0ÞÞÞr−1 þOðr0Þ ¼ 0;

ð30Þ

ðΛ0ð0Þ −Φ0ð0ÞÞð1þ 2αΛ0ð0ÞðΛ0ð0Þ − 2Φ0ð0ÞÞÞr−1
þOðr0Þ ¼ 0; ð31Þ

ϕ0ð0Þr−1 þOðr0Þ ¼ 0; ð32Þ

that are satisfied if Λ0ð0Þ ¼ 0, Φ0ð0Þ ¼ 0 and ϕ0ð0Þ ¼ 0,
which are equivalent to the boundary conditions known
from GR. Interestingly, another solution to the above
conditions exists as a consequence of introducing the T2

term in (8) and which appears to be Φ0ð0Þ ¼ Λ0ð0Þ=2þ
1=ð4αΛ0ð0ÞÞ. However, we will consider only the first
result as it corresponds to the GR case. The problem with
the second case is that in the limit α → 0, i.e., in the
GR-limit, Φ diverges at r → 0. This case could be
interesting in the regime where α is large, but this theory
would considerably deviate from GR and would not pass
the standard solar system tests. Summarizing the derived
boundary conditions, at r ¼ 0 we have Λ ¼ 0 and Φ0 ¼
Λ0 ¼ ϕ0 ¼ 0 for the derivatives (regularity at the origin),
while as r → ∞ we have Φ → 0, Λ → 0, and ϕ → 0
(asymptotic flatness).
A quantity of interest in any asymptotically flat solution

in GR is its gravitational or ADM mass,M, which can, in a
static spherically symmetric spacetime, be interpreted as
the mass of the central body (star). In the modified theory,
using the GR-picture it can be expressed as

M ¼ 4π

Z
∞

0

r2ρeffdr;¼ 4π

Z
∞

0

r2ðρ̃þ ρÞdr; ð33Þ

where the effective energy density ρeff is the sum of the
energy density ρ̃ ¼ T̃t

t of the fðTÞ-fluid given by (21)
and the energy density ρ of the boson fluid given by (24).
Another quantity relevant to boson stars is the particle
number, N, which is given by

N ¼
Z

j0h d3x ¼ 4π

Z
∞

0

j0eΛþΦr2dr; ð34Þ

where h ¼ det½haμ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½gμν�

p
, and j0 is the compo-

nent of the conserved Noether current implied by the Uð1Þ
symmetry, which is given by

jμ ¼ iðϕ∂μϕ� − ϕ�∂μϕÞ ¼ 2e−2Φωϕ2δμ0: ð35Þ

The mass of the boson star and the particle number are both
expected to be finite.
Due to the complexity of the field equations we proceed

to construct the solutions numerically. We introduce
dimensionless radial coordinate and variables,

r̃ ¼ mr; Ω ¼ ω

m
; α̃ ¼ αm2;

σ ¼
ffiffiffiffiffiffiffiffiffi
4πG

p
ϕ ¼

ffiffiffiffiffiffi
4π

p
ϕ=MPlanck; ð36Þ

and also the rescaled radial coordinate,
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x ¼ r̃
r̃þ 1

; ð37Þ

mapping 0 ≤ r̃ < ∞ onto 0 ≤ x < 1, which is more appro-
priate for the numerical treatment. Out of the four field
equations presented in the preceding section involving
profile functions Φ, Λ, and ϕ as unknowns, only three
must be independent one of another. It was pointed out in
[59] that if the antysimmetric part of field equations in fðTÞ
gravity are satisfied (as it is the case in the covariant
formulation) then the contracted Bianchi identities are
satisfied as well. Therefore, the usual treatment as in GR
can be exploited in establishing the number of independent
equations needed to solve the system. As the three
independent equations that are required to compute three
unknown functions, Λ, Φ and ϕ, we chose to work with
the t

t and the ϑ
ϑ-component of (9) and with the field

equation (27), as this choice allows simplest extraction
of the highest order derivatives Φ00, Λ0, and σ00. The
r
r-component of (9) is used to verify the solutions. The
value σ0 of the profile function σ at x ¼ 0 and the value of
the parameter α̃ are used to parametrize the solutions, while
the a priori unknown value of Ω (the rescaled scalar field
frequency) acquires the role of the eigenvalue of the
boundary value problem. Technically, for the chosen values
of σ0 and α̃ and a trial eigenvalue Ω we use power
expansions of the rescaled field equations at x ¼ 0 to
derive initial data at a point close to x ¼ 0 and evolve the
equations in x starting from that point. Trial value of Ω is
then fine-tuned until boundary conditions as x → 1 are
satisfied. This procedure allowed us to construct solutions
over a wide range of the parameter space. Pairs of
parameters σ0 and α̃ exist for which we could obtain
solutions having different eigenvalues Ω with zero or more
nodes in σ. Solutions with one or more nodes in σ have
been found in GR long ago [52] and are usually referred to
as excited boson stars. They are generally considered to be
unstable [60], so in this work we are considering only
solutions with no nodes in ϕ.

IV. MASS AND PARTICLE NUMBER

In order to obtain insight into the effects that the T2 term
in (8) has on the structure of boson stars we first generate a
family of solutions that has the fixed central value of the
rescaled field profile function, σð0Þ ¼ σ0 ¼

ffiffiffiffiffiffi
4π

p
× 0.1,

while the value of α̃ ranges over positive and negative
values. For each solution we obtain the eigenvalue Ω ¼
ω=m and compute the corresponding gravitational mass M
and the particle number N of the boson star. The results of
this computation are shown in Fig. 1. With α̃ ¼ 0 we
reproduce the well-known GR solution. With α̃ going into
the negative regime the mass M and the particle number N
are increasing, while the eigenvalue Ω is decreasing. We
did not find any indication that for even larger negative
values of α̃ than the ones shown in the figure the solutions

would cease to exist or that an upper bound on the mass
would be reached. With positive values of α̃ less than a
critical value, M and N kept decreasing, while ω is
increasing. For the fixed value σ0 ¼

ffiffiffiffiffiffi
4π

p
× 0.1 that we

used, the critical value of α̃ is somewhat greater than 2, but
since the stability of the numerical solutions becomes
doubtful as one approaches the critical α̃, its precise value
could not be obtained.
The maximal mass of a stable boson star built from

noninteracting (free) scalar field in GR is known to be small,
Mmax ∼M2

Planck=m, and such boson stars are sometimes
referred to as mini boson stars [53]. However, according to
another well-known result [54], the introduction of field self-
interaction allows for solutions with masses in the astro-
physical range,M ∼ λ1=2MCh ¼ λ1=2M3

Planck=m
2
H, wheremH

is the mass of the hydrogen atom. Our result shows that with
negative α̃, even without the field self-interaction, the mass
and particle number of a boson star can become greater than
that of a mini boson star in GR.
Our second family of solutions uses the fixed value

α̃ ¼ −5 and varies the central value of the rescaled field
profile function σ0. Mass M, particle number N, and the
eigenvalueΩ ¼ ω=m, are shown as functions of σ0 in Fig. 2
with dashed lines, while the reference GR results (α̃ ¼ 0) are
shown with solid lines. In GR, boson star mass M and
particle number N increase with σ0 up to the respective
maxima, followed by “damped oscillations.” With α̃ ¼ −5
no maximum inM or N was found which can be considered
as qualitatively different behavior. This result is in line with
our earlier finding that with constant σ0 and increasing
negative value of α̃ no bound of M or N was found.
Another important feature one can observe in Fig. 2 is

that in the case of GR, at a critical value of σ0 somewhat

FIG. 1. Gravitational mass M (thick black dashed line, in units
of M2

Planckm
−1), particle number N (thin black dashed line, in

units ofM2
Planckm

−2), and energy of scalar field quantum ω (thick
gray dashed line, in units of m) in boson stars with field mass m,
no field self interaction, central field amplitude σ0 ¼

ffiffiffiffiffi
4π

p
× 0.1,

and a range of values of α̃ ¼ αm2.
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greater than the one corresponding to the maxima ofM and
N, a crossing of the M-curve and the N-curve takes place.
This implies that at the critical configuration we have
M ¼ Nm, m being the mass parameter of the scalar field.
At values of σ0 below the critical value, we haveM < Nm.
If the gravitational mass is understood as a sum of the mass
of the particles and the gravitational binding energy, this
would imply that gravitational energy is negative which
could further be understood as an indication of the stability
of the configurations. At values of σ0 greater than critical
we have M > Nm, which would imply positive gravita-
tional energy, i.e., that positive work was done in order to
bring the infinitely dispersed particles into the given
configuration. Such configurations can hardly be imagined
as stable. Interestingly, in case of α̃ ¼ −5 we have
M < Nm for all values of α̃ that we have tested, which
can be seen as an indication of stability. We provide further
discussion of the issue of stability of static spherically
symmetric solutions in fðTÞ gravity in Sec. VI.
Figure 3 shows the dependence of the mass M and the

particle number N of boson stars vs the eigenvalue Ω,
which corresponds to the rescaled energy quanta of the
scalar field. In GR case the solutions are always bounded
within some range of ω where the minimal ωmin is present
(solid lines). With α̃ ¼ −5 the energy quanta are becoming
arbitrary small, even though the stellar mass is increasing.
In the case of positive α̃ this feature is not observed and the
theory behaves like GR with the increased gravitational
constant.

V. ENERGY DENSITY AND PRESSURE PROFILES

The first family of solutions whose mass M, particle
number N, and the eigenvalue Ω ¼ ω=m, are shown in
Fig. 1, revealed that in the positive regime of the parameter

α̃ there is a critical value beyond which the solutions could
not be obtained. As one approaches the critical value of α̃,
M and N approach zero, Ω approaches unity from below
(i.e., ω is approaching the scalar field mass parameter m),
and the solutions are becoming increasingly more difficult
to construct numerically. In order to trace down the cause of
this phenomenon we looked into the radial profiles of the
components of the stress-energy tensor. In the upper plot of
Fig. 4 the radial profile of the effective energy density, as
well as the separate contributions due to the boson fluid and
due to the fðTÞ-fluid, are shown for a solution with a close-
to-critical value of α̃. The energy density of the boson fluid
has a smooth outwardly decreasing profile that is similar to
the behavior of this quantity in the GR solutions. The
energy density due to the fðTÞ-fluid is vanishing at the
center, it is outwardly increasing up to a radially thin layer
within which it steeply drops to zero, becomes negative,
and asymptotically approaches zero (vacuum value) from
the negative regime. We will refer to this abrupt feature
involving the change of sign of the fðTÞ-fluid energy
density as the “phase transition.” The effective energy
density [the sum of the energy densities of the boson and
the fðTÞ-fluid] is everywhere positive and outwardly
decreasing, but within the thin layer within which the
phase transition of the fðTÞ-fluid takes place it has a an
abrupt step.
The lower plot of Fig. 4 shows the radial and the

transverse effective pressures as well as the separate
contributions to these quantities due to the boson fluid
and the fðTÞ-fluid. The radial and the transverse pressure
profiles of the fðTÞ-fluid vanish at the center and are
outwardly increasing up to the phase transition layer, where
the radial pressure profile smoothly becomes outwardly
decreasing, while the transverse pressure abruptly changes
sign. In the most part of the interior of the boson star the
effective pressure appears to be isotropic (up to numerical

FIG. 3. Gravitational mass M (thick lines) and particle number
N (thin lines) shown as functions of energy of scalar field
quantum ω in boson stars with field mass m, no field self
interaction, and α̃ ¼ 0 (solid lines) and α̃ ¼ −5 (dashed lines).

FIG. 2. Gravitational mass M (thick black lines), particle
number N (thin black lines), and energy of scalar field quantum
ω (thick gray lines) of boson stars with field mass m, no field
self interaction, a range of values of central field amplitude
σ0 ¼

ffiffiffiffiffi
4π

p
ϕ0, and α̃ ¼ 0 (solid lines) and α̃ ¼ −5 (dashed lines).

S. ILIJIĆ and M. SOSSICH PHYS. REV. D 102, 084019 (2020)

084019-6



noise), regardless of both fluids having manifestly aniso-
tropic pressures. Outside of the phase transition layer
effective pressure is anisotropic, as is the static spherically
symmetric vacuum solution in fðTÞ gravity theory [47].
Attempts to increase the value of α̃ beyond the value used

in Fig. 4 made the steep portions of the radial profiles of the
energy density and the transverse pressure of the fðTÞ-fluid
even steeper. It is therefore reasonable to expect that the
critical value of α̃ corresponds to a discontinuity in these
profiles. It is also obvious that such solutions can not be
obtained by the numerical procedure we use. We should
also note that qualitatively similar phase transition in the
fðTÞ-fluid was found in [48], where compact stars com-
posed of the polytropic fluid were considered. It is therefore
likely that with positive close-to-critical values of α̃ the

phase transition described above is a genuine feature of
static spherically symmetric solutions in the fðTÞ gravity
theory with f given by (8).
Another interesting observation is that ifM is the mass of

the close-to-critical (in the sense of α̃ being as large as
technically possible) configuration of the boson star in
fðTÞ, the approximate value of the radial coordinate at
which the phase transition takes place coincides with the
value at which in GR the horizon of the Schwarzschild
black hole of mass M would form. However, at this point
we have no analytical arguments supporting that above
assertion.

VI. CONCLUSION

Recently, many modified theories of gravity have arisen
from the theoretical and experimental evidence that GR
may be incomplete. In the desire to provide the funda-
mental description of the nature of spacetime, which is the
goal of any theory of gravity, new views have been opened,
in particular the concept of torsion. Thus, the modified
theories based on torsion deserve attention as their curva-
ture based counterparts do. However, a modified theory of
gravity that is to be taken seriously must explain the
complete spectrum of physical phenomena, ranging from
cosmological singularities, CMB, inflation, to high energy
physics, gravitational waves, black holes, compact objects,
etc. In this work we have explored the static spherically
symmetric self-gravitating configurations of the simplest
bosonic matter—the noninteracting complex scalar field—
within the framework of fðTÞ ¼ T þ αT2=2 torsion based
modified theory of gravity. Within GR, such solutions are
known as boson stars. In particular, when the noninteract-
ing scalar field is used, the mass of the star is bounded from
above by Mmax ∼M2

Planck=m, and such stars are referred to
as the mini boson stars, while only with the introduction
of the scalar field self-interaction higher stellar masses can
be obtained.
We have derived the field equations and the boundary

conditions relevant for the boson stars in fðTÞ gravity, and
we have numerically constructed the solutions over a wide
range of values of the parameters α and the central field
amplitude ϕ0. We have found that if α is negative and
sufficiently large, the mass of the boson is increasing
with the central field amplitude ϕ0, i.e., that it is no longer
bounded as in GR. This implies that within fðTÞ with
negative α boson stars formed of noninteracting scalar field
are not necessarily mini boson stars, but may acquire
masses in the astrophysical range. The finding that the mass
is no longer bounded might also be relevant for the
discussion of the dynamical stability of boson stars in
fðTÞ, since in GR the solutions with the central field
amplitude greater than the value corresponding to the
maximal mass were in some works found to be unsta-
ble [60–63]. Another finding that might be relevant for the
discussion of the stability of boson stars in fðTÞ gravity is

FIG. 4. Radial profiles of stress-energy tensor components for
σ0 ¼

ffiffiffiffiffi
4π

p
× 0.1 and α̃ ¼ 2.048 (close-to-critical configuration).

Upper plot: effective energy density (solid line), energy density
due to boson fluid (long dashed line), and energy density due
fðTÞ-fluid (short dashed line). Lower plot: effective radial and
transverse pressures (black and gray solid lines, respectively),
radial and transverse pressures due to boson fluid (black and gray
long dashed lines), and radial and transverse pressures due to
nonlinear terms in fðTÞ (black and gray short dashed lines). All
quantities are shown relative to value of effective energy density
at r ¼ 0.
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that with sufficiently large negative α the binding energy of
the boson star, defined as the difference between its
gravitational mass M and the particle number N multiplied
by the field massm, is negative for all values of ϕ0 we have
tested. This implies that (positive) work must be applied in
order to disperse the boson fluid into individual particles
with negligible gravitational interaction, which indicates
stability. In GR, the binding energy of boson stars is
negative only for ϕ0 less than a critical value, which is
interpreted as onset of dynamical instability [63]. An
analysis that could provide conclusive answers to the
problem of stability of boson stars within fðTÞ gravity
would require perturbation of the time-dependent field
equations around the static solutions we have computed.
However, this endeavor lies outside of the scope of the
present work, and we leave it for a future project. With α in
the positive regime, we have found that the solutions can be
obtained only up to a critical value of α. In an attempt to
trace down the cause of this phenomenon we have adopted
the “GR-picture” where the features of the fðTÞ gravity
theory are viewed as the presence of the stress energy tensor
of a quantity that we refer to as the “fðTÞ-fluid,” which
together with the stress energy tensor of the scalar field
constitutes effective stress energy on the rhs of the Einstein
equation. As we approached the critical positive value of α,
we could observe the development of abrupt sign changes
in the energy density and the transverse pressure of the
fðTÞ-fluid, eventually becoming steplike.
The most important findings of this work—existence of

stable boson stars in fðTÞ ¼ T þ αT2=2 gravity with a
negative αwith masses greater than those achievable in GR,
and the occurrence of the phase transition in the pressure of
the fðTÞ-fluid with a positive α—agree with the findings of
our earlier work [48] where compact objects were modeled

using the perfect fluid governed by the polytropic equation
of state. The most important difference between the
compact objects considered there and the boson stars
considered here is that compact objects have a sharply
defined surface radius R beyond which the energy density
and the pressure of the polytropic fluid vanishes, while in
the case of boson stars the boson fluid takes up all space
and the surface radius is not a meaningful quantity. At the
surface of the compact objects, the standard conditions for
joining the exterior vacuum metric are satisfied, but as the
spherically symmetric vacuum solution for fðTÞ gravity is
at present not available in closed form, we could not
reliably access the gravitational mass M of the compact
object. Therefore, rather than computing the binding
energy to access the stability properties like we did in
this work with boson stars, in [48] we inspected the
relation between the particle number and the surface
radius, which mimics the well-known mass-to-radius
method used in GR. We find it remarkable, however,
that the two different matter models and two different
approaches to stability yielded the same conclusion,
namely, that negative α in fðTÞ ¼ T þ αT2=2 has a
stabilizing effect on the static spherically symmetric
self-gravitating structures (stars).
We can conclude that the structure of boson stars formed

of noninteracting complex scalar field minimally coupled
to fðTÞ ¼ T þ αT2=2 gravity is vastly different from its
GR counterpart. We believe that further research that could
include perturbative analysis of spherically symmetric
time-dependent field equations (stellar pulsations) or
axially symmetric solutions (rotating boson stars) could
reveal further interesting features specific to torsion based
fðTÞ gravity.
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