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2Physics Department, University of Buenos Aires and IFIBA-CONICET,
Ciudad Universitaria, pabellón 1, 1428 Buenos Aires, Argentina

3Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile

(Received 1 July 2020; accepted 20 September 2020; published 7 October 2020)

Holography relates the quasinormal mode frequencies of AdS black holes to the pole structure of the
dual field theory propagator. These modes thus provide the timescale for the approach to thermal
equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium
can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed
boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an
additional degree of freedom. We solve the scalar field response on such background analytically and
nonperturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence
of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a
massive 3D gravity theory, which admits a one-parameter family deformation of Banados-Teitelboim-
Zanelli (BTZ) solution and enables us to solve the problem analytically. The theory also admits an AdS3
soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a
double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically;
we study its properties in relation to those of the AdS3 vacuum.
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I. INTRODUCTION

Three-dimensional gravity [1] has proven to be a fruitful
arena to investigate different aspects of the AdS=CFT
correspondence [2] that, in other setups, could hardly be
addressed. Such is the case of the microscopic computation
of nonsupersymmetric black hole entropy [3] or the study
of possible resolutions of the information loss paradox [4].
Gravity inD ¼ 3 dimensions has also shown to be useful to
explore generalization of the holographic correspondence
to other scenarios, including de-Sitter space [5], warped
deformations of AdS space [6], and asymptotically flat
spaces [7]. It has also provided manageable toy models to
investigate holography in higher-spin theories [8,9], in
higher-derivative theories [10], and in nonrelativistic the-
ories [11]. Exact results in quantum gravity like the
computation of the partition function of pure Einstein
theory [12,13], cf. [14], are also an example of how far
the application of AdS=CFT to 3D gravity can lead us:
There has been speculation about solving the theory

holographically even at finite central charge c [15,16],
the regime in which the gravity theory is highly quantum.
One of the features of AdS=CFT that can be addressed in

3D with more details than in higher dimensions is the
problem of relaxing the boundary conditions: Different
boundary conditions in AdS generically lead to different
dual CFTs, with different field content and different
unitarity properties [17]. Nevertheless, some features of
these different CFTs may be shared among them, as they
may be associated to particular aspects of the bulk theory
that are indistinguishable. This enables one to speculate
about the possibility of finding a consistent geometric dual
description for a broader class of CFTs.
In this paper, we will study the so-called new massive

gravity (NMG) [18], which is a parity-even theory of 3D
gravity that has very interesting properties. In particular, it
contains a rich phase space of black holes, including black
holes with a softly decaying hair in AdS3 [19,20]. The hair
parameter, which will be denoted b, controls the asymptotic
boundary conditions of AdS3 space, switching between the
standard Brown-Henneaux AdS3 boundary condition [21]
when b ¼ 0 and a weakened AdS3 asymptotic [19] when
b ≠ 0. Whether or not NMG in AdS3 admits a holographic
description is unclear, and we will make some remarks
about it at the end of the paper. Still, it is interesting to
explore what would be the effects of performing the type of
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computations one is usually involved with in AdS=CFT
for a model like this, with local degrees of freedom
and with relaxed falling-off. This will enable us to study
how some properties of the dual CFT2, if it exists, change
when the asymptotic AdS3 boundary conditions get
relaxed. Specifically, we will focus our attention on the
quasinormal modes (QNM) computation on the hairy black
hole background.
Black holes in AdS holographically correspond to a state

of the dual field theory that is approximately thermal, and
the decay of the field in the black hole background
corresponds, in the boundary, to the decay of perturbations
of such thermal state. Quasinormal modes then provide
the timescale for the approach to thermal equilibrium. This
means that the quantization conditions coming from the
QNM computation in the AdS3 black hole geometry are in
correspondence with the pole structure of the propagator in
the dual CFT2 at finite temperature. More precisely, the
retarded Green function in the momentum space can be
obtained from the relative coefficient of two independent
solutions of a probe field on the black hole background,
after the appropriate boundary conditions have been
imposed. In the 3D case this can be computed explicitly
[22], for example for the BTZ black hole [23], which obeys
the standard boundary conditions in AdS3. Here, by
explicitly computing the QNM of the hairy black hole,
we will investigate how the pole structure of the boundary
retarded propagator gets modified in the presence of a
gravitational hair that distorts the asymptotical boundary
conditions in AdS3.
Here, we will compute the QNM of the hairy black hole

explicitly and show that it deviates from the structure of the
BTZ black hole. As we will see, special features of the
QNM spectrum in the BTZ black hole, like the property of
having equispaced imaginary part, get affected in the
presence of low decaying gravitational modes. We will
also solve analytically the NM frequencies on the so-called
AdS3 soliton, which may also be connected to the QNM of
the hairy black hole as both geometries are related by a
double Wick rotation. The paper is organized as follows: In
Sec. II, we introduce the hairy black hole solution of
massive 3D gravity we consider. In Sec. III, we study the
causal structure and the stability conditions of the solutions.
In Sec. IV, we compute the QNM spectrum of a scalar
probe in the hairy black hole background and perform a
comparative analysis with the usual AdS3 black hole
computation. In Sec. V, we consider the AdS3 soliton
background, for which we also compute the normal modes
analytically. Section VI contains our final remarks.

II. THE SETUP

We consider the three-dimensional parity-even massive
gravity theory known as new massive gravity (NMG) [18].
This theory, which exhibits many attractive features, is
defined by the action

S ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − 2λþ 1

m2
K

�
; ð1Þ

where

K ¼ RμνRμν −
3

8
R2: ð2Þ

Newton’s constant gives the 3D Planck length lP ¼ G;
hereafter we set the convention lP ¼ 1=4. λ is the cosmo-
logical constant, and m is a mass parameter associated to
the graviton mass: In fact, this theory propagates a massive
spin-2 field that, at linearized level, is described by the
Fierz-Pauli theory. The field equations derived from this
action read

Gμν þ λgμν −
1

2m2
Kμν ¼ 0; ð3Þ

where Kμν is a symmetric rank-2 tensor, quadratic in the
curvature and of fourth order in the metric, whose trace
coincides with K. Field equations (3) admit very interesting
black hole solutions with different asymptotics. This is one
of the reasons why NMG is attractive to investigate
AdS=CFT correspondence and its ramifications.
For generic values of the couplings, NMG theory has

two maximally symmetric solutions, with two different
effective cosmological constants. These two vacua, how-
ever, coincide when λ ¼ m2, and the curvature radius of the
AdS3 solution in this case reads l2 ¼ − 1

2m2. Also at this
particular point, the family of stationary asymptotically
AdS3 black hole solutions gets enhanced and admits a one-
parameter generalization of the BTZ geometry. This can be
thought of as the black holes in AdS3 admitting a low
decaying gravitational hair. The theory also admits other
static asymptotically AdS3; among them, an AdS3 soliton
[19]; see below.
The metric of the static hairy black hole is given by

ds2 ¼ −ðr2 þ br − μÞdt2 þ dr2

ðr2 þ br − μÞ þ r2dϕ2; ð4Þ

where we have set l ¼ 1. The range for the coordinates
here is taken to be −∞ < t < ∞, 0 ≤ ϕ ≤ π, 0 ≤ r < ∞.
The parameter b ∈ R can be regarded as a gravitational
hair, and μ is an integration constant related to the Abbott-
Deser-Tekin (ADT) mass [24,25]; see (9) below. The
functional relation between these two parameters and the
event and Cauchy horizons, rþ and r− respectively, is given
by

b ¼ −ðrþ þ r−Þ; μ ¼ −rþr−: ð5Þ

Equivalently,
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rþ ¼ 1

2

�
−bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4μ

q �
; ð6Þ

r− ¼ 1

2

�
−b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4μ

q �
: ð7Þ

Notice that the inner Cauchy horizon exists provided b < 0

and − b2
4
< μ < 0. Alternatively, we can think of b as a

control parameter that allows us to depart from the BTZ
black hole geometry. This interpretation will be useful in
order to interpret the results that we will present below. It is
important to emphasize that the black hole described by (4)
is asymptotically AdS3 in a way that is weaker than the
standard asymptotic of, say, the BTZ solution [19]; for
example, the next-to-leading behavior of the gtt component
of the metric is of order OðrÞ. Besides, unlike BTZ,
spacetime (4) with b ≠ 0 has nonconstant scalar curvature;
namely

R ¼ −6 −
2b
r
: ð8Þ

Actually, the curvature diverges at r ¼ 0. Figure 1 sum-
marizes the black hole causal structures as a function of the
parameter b and the corresponding ADT mass M, where

M ¼ μþ b2

4
: ð9Þ

Here we are using G ¼ 1=4. Throughout this paper we will
use either μ or M, depending on which gives a clearer
physical picture, and even for simplicity in some expres-
sions we will use both with the understanding that
μ ¼ μðMÞ.
Now, let us say a few words about another solution we

mentioned before, the one to which we referred as the AdS3
soliton: Its metric can be written as

ds2 ¼ −ðaþ cosh ρÞ2dt2 þ dρ2 þ sinh2 ρdϕ2; ð10Þ

where −∞ < t < ∞, 0 ≤ ϕ ≤ π, 0 ≤ ρ < ∞, and where
a > −1. The latter choice for the range of a ensures that the
solution is regular: The Ricci scalar associated to geometry
(10) reads

Rsol ¼ −
2aþ 6 cosh ρ
aþ cosh ρ

: ð11Þ

The parameter a can be thought of as a measure of how
much this geometry deviates from global AdS3, the latter
space corresponding to a ¼ 0. This gravitational soliton is
related to the hairy black hole (4) through a double Wick
rotation [19], and in Sec. V we will make use of this local
equivalence to relate the QNM calculation in both geom-
etries, after the corresponding boundary conditions are
properly identified.

III. CAUSAL STRUCTURES AND STABILITY

Let us study the scalar field response on the hairy black
hole background (4). Consider a massive, nonminimally
coupled scalar probe on that geometry, then, the corre-
sponding equation of motion is given by

ð□ −m2 − ξRÞΦ ¼ 0: ð12Þ

We use ingoing Eddington-Finkelstein coordinates, v ¼
tþ r� with dr� ¼ fðrÞ−1dr and fðrÞ ¼ r2 þ br − μ, and
we consider the separable ansatz

Φðv; r;ϕÞ ¼ r−
1
2ΨðrÞe−iωveinϕ;

where ω represents the frequency associated to the null
direction v, and n is the quantized angular momentum. This
yields

FIG. 1. Spectrum of hairy black holes in NMG.
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d
dr

�
fðrÞ dΨ

dr
ðrÞ

�
− 2iω

dΨ
dr

ðrÞ − VðrÞΨðrÞ ¼ 0; ð13Þ

with the effective potential having the form

VðrÞ ¼ m2 þ ð1 − 8ξÞðbþ 3rÞ
4r

þ 1

4r2
ð4n2 þ μÞ: ð14Þ

This potential simplifies when ξ ¼ 1=8, which in the
massless case leads to the conformally coupled scalar
probe, and enables for an explicit integration of the
QNM. Hereafter, for simplicity, we will focus on this value
of the nonminimal coupling ξ. In this case, one is left with a
potential that does not depend on the hair parameter b
explicitly; however, there is an implicit dependence as the
possible values of μ compatible with the existence of an
event horizon are actually b dependent. As shown in [26],
having demanded regularity of the solution at the horizon,
and Dirichlet boundary condition at infinity implies that
ImðωÞ < 0, provided the effective potential is positive
definite in the domain of outer communications. In fact,

Z
∞

rþ
drðfðrÞjΨ0j2 þ VðrÞjΨj2Þ ¼ −

jωj2jΨðrþÞj2
Imω

: ð15Þ

Notice that, as usual, the angular momentum of the scalar
field, n, contributes to the stability of the perturbation. For
m2 ≥ 0, the stability of the s-wave is guaranteed if μ ≥ 0.
The spaces described by metric (4) can be characterized

in terms of their ADT massM and the value of the intensity
of the hair b. In such case, and for a suitable normaliza-
tion of Newton’s constant, the lapse function reads
(see also [27])

fðrÞ ¼
�
rþ b

2

�
2

−M: ð16Þ

Figure 1 depicts all possible causal structures in terms ofM
and b. The proof of stability that we have given above
applies to all the black holes that lie from the half-parabola
4M ¼ b2 with b < 0 to the right. These black holes are
characterized by possessing a single horizon. For black
holes in the complementary region, the previous stability
analysis is not conclusive. The equation for the QNM in all
these backgrounds can be solved in closed form, and below
we study the spectra for different values of M and b.

IV. QUASINORMAL FREQUENCIES

Both the hairy black hole and the AdS3 soliton can be
shown to be conformally flat. Therefore, it is natural to
study the dynamics of a conformally coupled scalar field as
a probe. The corresponding field equation is

�
□ −

1

8
R

�
Φ ¼ 0: ð17Þ

Let us be reminded of the fact that the Ricci scalar of these
metrics is not constant, and therefore the conformal coupling
does not simply represent an effective mass, but a rather
complicated function that can even change its sign in the
bulk. R does approach a finite value at infinity, though: near
infinity, − 1

8
R → m2 ¼ − 3

4
, and this means that the asymp-

totic effective mass is above the Breitenlohner-Freedman
(BF) bound. This leads to the two possible asymptotic
behaviors r−Δ� withΔþ ¼ 3=2 andΔ− ¼ 1=2. Both of these
branches are actually normalizable; however, since here we
are interested in boundary conditions such that the coef-
ficient in front of the branch that goes like r−1=2 is set to zero.
Notice that these boundary conditions are AdS3 invariant.
As usual, we consider a separation ansatz

Φ ∼ e−iωtþinϕHðrÞ; ð18Þ

and we begin by considering the scalar probe on the black
hole geometry. It is convenient to define a new coordinate x
such that

r ¼ rþr−ð1 − xÞ
r− − rþx

; ð19Þ

which maps rþ < r < þ∞ to 0 < x < r−
rþ
. Notice that this

change of coordinates is valid for both possible signs of r−,
i.e., both in presence and in absence of the inner Cauchy
horizon, provided r− ≠ 0. It turns out that the case r− ¼ 0
has to be analyzed separately; and the same happens with
the extremal case rþ ¼ r−.
Let us first study the solution near the horizon:

The equation for HðzÞ can be easily integrated in terms
of the hypergeometric functions 2F1 (hereafter denoted F),
and, after imposing an ingoing boundary condition at the
horizon, one is left with

HðzÞ∼ ð2bð1−x2Þ
ffiffiffiffiffi
M

p
þð1þx2Þb2

þ2μð1þxÞ2Þ14x −iω
2
ffiffiffi
M

p ð1−xÞ− inffiffi
μ

p
Fða1;b1;c1;xÞ; ð20Þ

where the symbol∼means up to a constant of integration and

a1 ¼
−2inþ ffiffiffi

μ
p

2
ffiffiffi
μ

p ; b1 ¼
ðμ − 2inÞ ffiffiffiffiffi

M
p

− 2iω
ffiffiffi
μ

p
2

ffiffiffiffiffiffiffi
μM

p ;

c1 ¼
ffiffiffiffiffi
M

p
− iωffiffiffiffiffi
M

p : ð21Þ

The expansion near infinity, on the other hand, reads

HðzÞ∼
�
r−
rþ

−x

�1
2

�
AþB

�
r−
rþ

−x

�
þO

��
r−
rþ

−x

�
2
��

;

ð22Þ

CHERNICOFF, GIRIBET, OLIVA, and STUARDO PHYS. REV. D 102, 084017 (2020)

084017-4



where the symbol ∼ has the same interpretation as above
and

A¼F

�
a1;b1;c1;

r−
rþ

�
and B¼F0

�
a1;b1;c1;

r−
rþ

�
: ð23Þ

Notice that in the asymptotic region, ðr−rþ − xÞ ∼ r−1; there-

fore, HðxðrÞÞ actually behaves as expected, namely ∼r−Δ�

with Δþ ¼ 3=2 andΔ− ¼ 1=2. As mentioned above, this is
because the spacetime is asymptotically AdS3 and the
conformal coupling of the scalar produces an effective mass
term at infinity yielding m2

conf ¼ −3=4, which is above the
BF bound. Restricting to the case in which the scalar field
has a fast decay near infinity, namely setting to zero the
coefficient of the r−Δ− behavior, results in

F

�
a1; b1; c1;

bþ 2
ffiffiffiffiffi
M

p

b − 2
ffiffiffiffiffi
M

p
�

¼ 0: ð24Þ

This equation defines the spectrum of QNM on the hairy
black hole. Therefore, the retarded Green function in the
dual theory in momentum space reads

Gretðω; nÞ ¼ −
B
A
¼ −

F0ða1; b1; c1; r−rþÞ
Fða1; b1; c1; r−rþÞ

; ð25Þ

with a1, b1 and c1 defined in (21). That is,

Gretðω;nÞ

¼−
F0ð1

2
− inffiffiffiffiffiffiffiffiffiffiffiffi

M−b2=4
p ;1

2
− inffiffiffiffiffiffiffiffiffiffiffiffi

M−b2=4
p − iω

2
ffiffiffiffi
M

p ;1− iωffiffiffiffi
M

p ; r−rþÞ
Fð1

2
− inffiffiffiffiffiffiffiffiffiffiffiffi

M−b2=4
p ;1

2
− inffiffiffiffiffiffiffiffiffiffiffiffi

M−b2=4
p − iω

2
ffiffiffiffi
M

p ;1− iωffiffiffiffi
M

p ; r−rþÞ
: ð26Þ

The quantized quasinormal frequencies thus correspond
to the pole conditions in the retarded Green function.
In the BTZ limit, i.e., when the hair parameter b tends to
zero, one gets

F

�
−2inþ rþ

2rþ
;
rþ − 2in − 2iω

2rþ
;
2rþ − 2iω

2rþ
;−1

�

∼
Γð2 − iω

rþ
− 2in

rþ
Þ

Γð3
4
þ in

2rþ
− iω

2rþ
ÞΓð3

4
− in

2rþ
− iω

2rþ
Þ ¼ 0; ð27Þ

which, as expected, reduces to the quasinormal frequencies
of a conformally coupled scalar field on BTZ geometry
[28]; namely

ωBTZ ¼ �n − irþ

�
3

2
þ 2p

�
; ð28Þ

with the mode number being p ¼ 0; 1; 2;…. For the BTZ
black hole, the imaginary part of the frequency, being linear
in the mode number, leads to an equispaced damping

spectrum. The s-wave modes are all located on the
imaginary axis, and the imaginary part of the frequencies
is always negative, confirming the stability of the propa-
gation. Also, for BTZ the real part of the frequency is
independent of the mass MBTZ ¼ r2þ. As we show below,
this is not the case for the hairy black hole with b ≠ 0, for
which both the oscillation frequencies and the damping
depend on the mass. This is one of the features that gets
affected by the presence of the low decaying gravita-
tional hair.
In order to find the quasinormal frequencies of the hairy

black hole, we need to solve the field equation (24). Since
for b ≠ 0 this is a transcendental equation, we have to solve
it numerically: The frequencies always come in pairs with
the same damping but opposite signs for the real part.
Therefore, the plots below have to be understood as having
a specular image of the frequencies in the quadrant
Imω < 0, Reω < 0. Qualitatively different behaviors are
exhibited by the different types of black holes that appear
in Fig. 1.
Before exploring the spectra of such solutions explicitly,

it is worth rewriting the equation for the radial dependence
of the scalar field in a Schrödinger-like form:

−
d2H̃
dr2�

þ Vðrðr�ÞÞH̃ ¼ ω2H̃; ð29Þ

where H̃ðrÞ ¼ ffiffiffi
r

p
HðrÞ and the tortoise coordinate being

defined by dr� ¼ ðr − rþÞ−1ðr − r−Þ−1dr, maps rþ < r <
þ∞ to −∞ < r� < 0. The potential can be written explic-
itly in terms of r�, yielding

Vðr�Þ ¼
ð4n2 þ μÞM

ð2 ffiffiffiffiffi
M

p
cosh ðr�

ffiffiffiffiffi
M

p Þ þ b sinh ðr�
ffiffiffiffiffi
M

p ÞÞ2 ; ð30Þ

which, in the BTZ case, i.e., b ¼ 0, (30) reduces to a
Pöschl-Teller potential which vanishes on the horizon and
approaches a constant near the boundary (see e.g., [29]).
Interestingly, in the presence of the gravitational hair, b ≠ 0
introduces a deformation, which can be mapped back to the
Pöschl-Teller form by a complex shift in the radial
coordinate. It is also important to notice that when 4M ¼
b2 (μ ¼ 0) and n ¼ 0, that is, for the s-wave when the black
hole singularity is null, the problem reduces to that of a free
particle on the semi-infinite line. As shown below, these
facts have an imprint on the spectrum of the conformal
scalar probe.

A. Black holes with a single horizon

In Sec. II we provided a general argument about the
stability of the scalar probes on black holes that applies to
those with a single horizon rþ (r− ≤ 0), which correspond
to black holes represented by points inside the parabola
4M ¼ b2 in Fig. 1. Figure 2 shows different spectra that
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depart continuously from their corresponding BTZ counter-
parts (in bullets). It is worth noticing that, due to the hair
parameter b, both the real and imaginary parts of the
frequencies do depend on the black hole mass, however,
when b vanishes Reω does not [see (28)]. Notice also that
for this family of black holes, b is bounded; in particular,
when −4M2 < b, by black hole configurations that hide a
null singularity, and when b < 4M2, by geometries with
naked singularities. There is a clear nonanalyticity of the
spectra as a function of b at the BTZ point b ¼ 0. For
negative values of the hair parameter the s-wave modes are
purely damped.

B. Black hole surrounding a null singularity

As it can be seen from Fig. 1, for negative values of the
hair parameter b, according to (6), if 4M ¼ b2 the event
horizon is located at r ¼ jbj ¼ rþ and surrounds a null
singularity located at r ¼ 0. Now, it is interesting to
notice that the s-wave of the conformal scalar probe,
namely (18) with n ¼ 0, can be integrated in terms of
radicals, leading to

RðrÞ ¼ C1ðr − rþÞ−
iω
rþr

iω
rþ−

1
2 þ C2ðr − rþÞ

iω
rþr−

iω
rþ−

1
2: ð31Þ

Imposing ingoing conditions at the event horizon requires
setting C2 ¼ 0. On the other hand, expanding the remain-
ing part as r becomes large, one can actually see that (31)
allowed r−1=2 and r−3=2 behaviors. With this in mind, one
should notice that it is impossible to impose Dirichlet
boundary conditions on this solution because in doing so, it
would require that C1 ¼ 0, and therefore RðrÞ ¼ 0. Then,
one is forced to conclude that the black holes with lapse
function fðrÞ ¼ rðr − rþÞ do not support spherically sym-
metric QNM for conformally coupled scalar fields. In other
words, spherically symmetric modes cannot be excited on
these black holes if Dirichlet boundary condition are

imposed.1 The situation changes drastically when one
introduces angular momentum. The equation for the con-
formal scalar probe in that case can be integrated and, after
imposing ingoing boundary conditions, one obtains

RðrÞ ∼ r−
1
2Iν

�
−
2n
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rþ
r

r �
; ð32Þ

where ν ¼ −2iω=rþ and where Iν stands for the modified
Bessel function of the first kind. Notice that in the asymp-
totic region, the argument of the Bessel function goes to a
finite number, where the function does not have any singular
behavior. Therefore, the asymptotic expansion of the field in
this case reads

RðrÞ ∼ r−
1
2

�
Iν

�
−
2n
rþ

�
þ I0ν

�
−
2n
rþ

�
1

r
þOðr−2Þ

�
: ð33Þ

Dirichlet boundary conditions thus imply that the frequen-
cies must be quantized according to

I−2iω=rþ

�
−
2n
rþ

�
¼ 0: ð34Þ

Figure 3 depicts the spectra for the fundamental and first
three excited modes (n ¼ 1) with the real and imaginary
parts of the frequencies as a function of the horizon radius.
We see a nonanalytic behavior for a critical value of rþ on
each curve, above which the real part of the frequencies
vanishes and the scalar field perturbations are purely
damped. Modes with higher angular momentum, n > 1,
have a similar behavior.

FIG. 2. Spectra for fundamental modes of the scalar field on the black holes with −b < 4M2 < b. The spectra on these black holes
depart continuously from the BTZ spectrum of fundamental modes ωBTZ ¼ n − 3

2

ffiffiffiffiffi
M

p
i, in bullets.

1It is interesting to notice that for a backreacting conformally
coupled scalar field, NMG does admit a black hole with the
same causal structure [30,31] and the scalar field at infinity
behaves as r−1=2.
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C. Black holes with event and Cauchy horizons

When both r− and rþ are positive, the causal structure of
these hairy black holes changes and a Cauchy horizon
appears inside the event horizon. These solutions are not
perturbatively connected to the BTZ branch. Still, the
quantization condition for the frequencies comes from
Eq. (24). Figure 4 shows an example of such spectra.
The frequencies are purely damped, regardless of the value
of the angular momentum of the scalar field.

D. The extemal case

When the hair parameter b is negative, the black hole
with μ ¼ 0 turns out to be extremal, with rþ ¼ r− ¼ jbj=2.
In this case, the conformal scalar equation can be solved in
terms of confluent hypergeometric functions, and the
branch that is analytic at the horizon, in Schwarzschild-

like coordinates, reads RðrÞ ∼ e
iω

r−rþ . The analyticity of this
branch can be checked, as usual, in terms of the coordinate

v ¼ tþ r�, which leads to a regular metric on the future
horizon. Connecting this branch with Dirichlet boundary
conditions at infinity, namely RðrÞ ∼ r−3=2, leads to the
following quantization condition:

K− n
rþ

�
−
iω
rþ

�
¼ 0; ð35Þ

where KνðxÞ is a modified Bessel function of the second
kind. It is worth mentioning that, as for the black holes
surrounding a null singularity, the case without angular
momentum does not allow to impose Dirichlet boundary
condition at infinity, while the inclusion of such allows to
find nonvanishing modes fulfilling (35), with a very
interesting structure (see Fig. 5).

FIG. 3. Spectra for the scalar field on the black hole with a null singularity, with n ¼ 1. Blue color depicts the fundamental modes, and
yellow, green and blue correspond to the first, second and third harmonics, respectively.

FIG. 4. Example spectra from black holes with Cauchy
horizons as a function the hair parameter. The real part vanishes
even when there is angular momentum on the scalar field.

FIG. 5. Spectra for the extremal black holes with rþ ¼ 0.1, for
different values of the angular momentum of the scalar probe. As
rþ increases the higher overtones near the vertical axis stop being
valid modes and eventually, above a critical value of rþ all the
modes for a given n are forbidden. Such critical value for n ¼ 1 is
near rþ ∼ 0.66. It is possible to check that the effective mass
induced by the nonminimal coupling in the near horizon AdS2
geometry is equal to the two-dimensional BF bound.

QUASINORMAL MODES AND BLACK HOLE HAIRS IN AdS PHYS. REV. D 102, 084017 (2020)

084017-7



For a given n > 0, one has the fundamental as well as a
finite number of overtones. As the radius of the horizon
increases, the number of allowed overtones is diminished
until a critical radius of the black hole horizon above which,
again, it is impossible to fulfill the boundary conditions.
Following the same approach as we did to obtain

Eq. (30), the potential for the Schrödinger equation in this
case takes the simpler form of a shifted centrifugal
potential,

Vðr�Þ ¼
1

4

ð4n2 − r2þÞ
ðrþr� − 1Þ2 ; ð36Þ

with −∞ < r� < 0. One can check that this expression can
be obtained by taking the M → 0 limit in (30).

V. NORMAL MODES ON THE SOLITON

As mentioned earlier, besides the black holes presented
above, NMG also admits static asymptotically AdS3
solutions which represent AdS3 solitons. In what follows,
we will study the response of the conformal scalar probe on
the geometry given by (10).
Let us consider the separable ansatz

Φ ∼ e−iωtþinϕRðρÞ; ð37Þ

and define the change of coordinate given by

x ¼
�
a − 1

aþ 1

�
cosh ρ − 1

cosh ρþ 1
; ð38Þ

which maps 0 < ρ < þ∞ to 0 < x < a−1
aþ1

. This change of
coordinates is not valid if a ¼ 1, so we will study this case
separately. The branch that respects regularity at the origin
leads to (up to an integration constant)

RðxÞ ∼ xn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 1Þaþ xþ 1

p
ð1 − xÞ

ωffiffiffiffiffiffi
1−a2

p
Fða2; b2; c2; xÞ;

ð39Þ

with

a2¼
2ωþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p ; b2¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p
þ2ωþ2n

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p ;

c2¼ 1þn: ð40Þ

The behavior at the boundary (i.e., ρ going to infinity) up to
a constant of integration is given by

RðxÞ ∼
�
a − 1

aþ 1
− x

�
1=2

�
Ãþ B̃

�
a − 1

aþ 1
− x

��
; ð41Þ

where

Ã¼F

�
a2;b2;c2;

a−1

aþ1

�
and B̃¼F0

�
a2;b2;c2;

a−1

aþ1

�
:

ð42Þ

The Dirichlet boundary condition implies

F

�
1

2
þ ωffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p ;

1

2
þ ωffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p þ n; 1þ n;

a − 1

aþ 1

�
¼ 0:

ð43Þ

This equation provides the normal frequencies of the
conformal scalar on the soliton as a function of the
parameter a and being an algebraic transcendental equation
it has to be solved numerically. Notice that in the AdS3
limit, one has a ¼ 0, and therefore

F

�
1

2
þ ω;

1

2
þ ωþ n; 1þ n;−1

�

∼
Γð2þ 2ωþ nÞ

Γð3
4
þ ω

2
þ n

2
ÞΓð3

4
− ω

2
þ n

2
Þ ¼ 0; ð44Þ

which leads to the correct, fully resonant spectrum for a
conformal scalar probe on AdS.
In order to study the special case a ¼ 1, it is convenient

to define the following change of coordinate:

z ¼ coshðρÞ − 1

coshðρÞ þ 1
; ð45Þ

which maps 0 < ρ < ∞ to 0 < z < 1. The branch that
respects regularity at the origin reads

RðzÞ ∼ ffiffiffiffiffiffiffiffiffiffi
1 − z

p
Jnð

ffiffiffi
z

p
ωÞ; ð46Þ

where Jn is the Bessel function of the first kind. The
corresponding asymptotic expansion at infinity (i.e.,
ρ → ∞) takes the form

RðzÞ ∼ ð1 − zÞ1=2½Āþ B̄ð1 − zÞ�; ð47Þ

where

Ā ¼ JnðωÞ and B̄ ¼ J0nðωÞ: ð48Þ

Then, imposing the Dirichlet boundary condition leads to

JnðωÞ ¼ 0; ð49Þ

which means that, when a ¼ 1, the normal frequencies are
simply given by ω ¼ αn;p where αn;p is the pth zero of the
nth Bessel function. The quantization condition therefore
leads to the results shown in Fig. 6.
It is worth noticing that when rewriting the radial

equation for the soliton in a Schrödinger-like form, the
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potential takes a remarkably simple expression. Namely,
the equation reads

−
d2R̃
dρ2�

þ Vðρðρ�ÞÞ R̃ ¼ ω2R̃; ð50Þ

where R̃ ¼ sinh1=2 ρR and dρ� ¼ dρ=ðaþ coshðρÞÞ, with
the potential

Vðρ�Þ ¼
1

4

ð4n2 − 1Þða2 − 1Þ
sinh2ðρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
Þ

for a > 1;

0 < ρ� <
2tanh−1½

ffiffiffiffiffiffiffi
a−1
aþ1

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − 1
p ð51Þ

Vðρ�Þ ¼
1

4

4n2 − 1

ρ2�
for a ¼ 1; 0 < ρ� < 1 ð52Þ

Vðρ�Þ ¼
1

4

ð4n2 − 1Þð1 − a2Þ
sin2ðρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ

for − 1 < a < 1;

0 < ρ� <
2tan−1½

ffiffiffiffiffiffiffi
1−a
1þa

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p : ð53Þ

Before we conclude our study for the NM of the scalar
field on (10), it is worth saying a few words regarding the
close relation between the QNM frequencies given by
Eq. (24) and those obtained from (43). As mentioned
before, the AdS3 soliton can be obtained by performing a
double Wick rotation on (4). More precisely, given

ds2¼−ðr2þbr−μÞdt2BHþ
dr2

r2þbr−μ
þ r2dϕ2

BH; ð54Þ

and defining

tBH ¼ iϕ̃; ϕBH ¼ it̃; r¼−
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þμ

r
coshρ; ð55Þ

leads to

ds2 ¼ −
�
b2

4
þ μ

��
−

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4μ

p þ cosh ρ

�
2

dt̃2

þ dρ2 þ
�
b2

4
þ μ

�
sinh2 ρdϕ̃2: ð56Þ

Notice that, since the coordinate t̃ is noncompact, the
prefactor in the gt̃ t̃ component can be absorbed. Also
important, to avoid a conical singularity at ρ ¼ 0, one
requires that the period of ϕ̃ must be defined in such way
that the corresponding prefactor can be again absorbed to
define a new angular coordinate ϕsol which goes from 0 to
2π. Therefore, identifying

a ¼ −
b

2
ffiffiffiffiffi
M

p ; ð57Þ

one obtains (10). Motivated by this result, it is sensible to
apply a double Wick rotation at the level of the spectrum in
momentum space, obtaining

ωBTZ ¼ i
ffiffiffiffiffi
M

p
nsol; ð58Þ

nBTZ ¼ i
ffiffiffiffiffi
M

p
ωsol: ð59Þ

Remarkably, these relations allow to map the equation that
defines the spectrum of the conformal scalar on the hairy
black hole (24) to the condition that defines the spectrum of
the conformal scalar probe on the soliton (43). The same
has been observed in black holes with other asymptotics,
such as Lifshitz [32], where the spectrum for a massive
scalar of both the black hole as well as the soliton obtained
by a Wick rotation can be obtained in a closed form. The
ingoing condition on the horizon naturally maps to the
regularity at the origin since ρ ¼ 0 in the soliton geometry

FIG. 6. Spectra for the scalar field on the soliton with two different values of n. The left plot corresponds to a scalar field with no
angular momentum while the plot on the right n ¼ 1.
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corresponds to r ¼ rþ ¼ − b
2
þ ffiffiffiffiffi

M
p

in the black hole
geometry. The same should happen between the planar
AdS black hole and the AdS soliton in arbitrary dimensions
[33], as well as with the rotating black branes obtained by
boosting the planar AdS black holes.

VI. FURTHER COMMENTS

In this paper we studied how the quasinormal modes in
the AdS3 black hole background get modified when a low
decaying gravitational hair is turned on. This hair satisfies a
weakened asymptotic condition in AdS3, and thus it
triggers extra degrees of freedom at the boundary. We
managed to solve the scalar field response on such back-
ground analytically and nonperturbatively in the hair
parameter, and we showed how the quasinormal mode
spectrum gets modified in the presence of the hair, relative
to the BTZ geometry. In particular, the presence of the hair
modifies the timescale for the approach to thermal equi-
librium in the dual conformal field theory, leading to a
spectrum that, unlike the standard spectrum of BTZ, does
not have equispaced dampings and introduces a depend-
ence of the black hole mass in both the real and imaginary
parts of the corresponding frequencies. For the hairy black
holes that are connected to BTZ spacetime, the presence of
the gravitational hair extends the life of the s-wave
conformal scalar probes (see Fig. 1, left panel).
There is a smooth geometry related by a double Wick

rotation with the black holes, which is parametrized by a
single integration constant that measures the departure from
global AdS3. We showed that the problem of a conformal
scalar probe on the soliton is also solvable in an exact
manner, leading to a spectrum of normal modes. For small
values of the parameter that characterizes the background,
the spectrum differs slightly from that of AdS3, and it is
therefore close to a fully resonant spectrum. It would be
interesting to study how this departure from the resonant
behavior affects the energy transfer between modes when a
self-interaction on the scalar probe or the backreaction on the
geometry is turned on. This energy transfer is enhanced in
AdS due to the equispaced property of the spectrum and it
leads to the initial departure from AdS in the turbulent
cascade that ends in black hole formation in higher dimen-
sions [34,35].
We proved the stability of the propagation of a probe

scalar on the hairy black holes for an arbitrary mass of the
scalar m2 when the black hole possesses a single event
horizon, and later computed the exact spectrum in the
massless, conformally coupled case, which requires a
nonminimal coupling with the scalar curvature.2 The
integrability in this case is intrinsically related to the fact
that both the hairy black holes and the soliton are

conformally flat geometries, which is behind of the exact
solvability of a massless fermion [37]. The conformal
factor that maps the hairy asymptotically AdS black holes
and solitons to flat space has a singular behavior in the
asymptotic region. This implies that even though the
spacetime is conformally flat, and the solutions of a
conformally coupled source on the hairy black holes could
be obtained from their integration on flat space, a nontrivial
spectrum emerges due to the presence of the new timelike
AdS boundary introduced by the singular conformal factor.
It would also be interesting to see whether more general

(Robin) boundary conditions allow to obtain s-wave modes
for the black hole surrounding a null singularity as well as
in the extremal case. As we showed, such s-wave modes are
absent when one restricts the scalar probe to behave as rΔþ

near infinity, but since the conformal coupling with the
curvature effectively induces a mass term at infinity that is
within the unitarity window, one may explore more general
boundary conditions.
Before concluding, we would like to make some com-

ments about the possibility of giving a holographic inter-
pretation for our quasinormal mode computation. While
one could be tempted to answer that this is the case as bulk
quasinormal modes typically provide the timescale for the
approach to thermal equilibrium in the dual CFT, there are
special features of NMG that can be seen as obstructions for
such interpretation: This is related to the so-called bulk/
boundary unitarity clash, namely the fact that the sign of G
for which the bulk excitation has positive energy is the one
for which the central charge of the dual CFT2 is negative,
cf. [38–40].
As mentioned in the Introduction, the fact that quite

different CFTs may share some features—e.g., log gravity
versus chiral cravity [17]—enables one to speculate about
the possibility of finding a consistent geometric dual
description for a broader class of CFTs, probably including
nonunitary ones [41]. While the consistency of the holo-
graphic picture within the context of nonunitary CFT is
certainly unclear as it seems to imply the breakdown of some
crucial features of the AdS=CFT dictionary, such as the
identification of the bulk and boundary Hamiltonians, there
is still the possibility that some features of nonunitary3 CFTs
could be reproduced from holography inspired computa-
tions. The possibility of describing nonunitary CFTs geo-
metrically is particularly interesting as inD ¼ 2 dimensions
there exist nonunitary conformal models that are of impor-
tance in physics [42–46]. As a matter of fact, 3D gravity has
already been considered as dual to nonunitary CFTs: In
[47–50], bulk computations in NMG have been shown to
reproduce the correct form of stress-tensor correlation
functions of a logarithmic CFT [51], which is nonunitary.
Here we have also studied NMG, although focusing on a

2For the rotating, asymptotically flat hairy black holes in
NMG, the quasinormal modes for a massless scalar probe were
obtained in an exact manner in [36].

3Holographic realizations of nonunitary CFTs have been con-
sidered, for instance, in the context of dS=CFT correspondence.
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different point of the parameter space. If a dual description of
it actually exists, something that is actually not clear, then it
is possible to specify some properties of suchCFT2; namely:

(i) Its central charge would be given by c ¼ 3l=G,
where l is the AdS3 radius and G is the 3D Planck
length. In other words, c for this CFTwould be twice
the central charge of the CFT2 that is dual to pure
Einstein gravity [21], with the factor of 2 being due
to the massive graviton contribution.

(ii) The field content of such CFTwould also differ from
that of the CFT2 that is dual to GR, the reason being
that the boundary conditions we considered in this
paper present a weaker falloff near the boundary,
implying a different normalization condition for the
fields.

(iii) We have mentioned above that, as other theories of
its sort, NMG suffers from the so-called bulk/
boundary unitarity clash, meaning that the sign of
G for which the bulk excitation have positive energy
is the one for which the central charge of the dual
CFT2 is negative. This implies that for a well-
defined bulk theory with local degrees of freedom,
the dual CFT will be nonunitary, cf. [38–40].

(iv) The holographic dictionary still suffices to reproduce
some features of the dual CFT: the Cardy formula
exactly reproduces the entropy of the hairy black
holes in the bulk [52]. This is analogous to what
happens inEinstein gravity, where the entropy ofBTZ
black holes can be written as the Cardy formula of a
CFT2 with a Brown-Henneaux central charge [3].
However, since the hairy black holes have nonconst-
ant curvature, the CFT2 derivation of their entropy is
even more remarkable, as it cannot be deduced from
the usual arguments of [53,54], cf. [55].

(v) Related to the previous item, the asymptotic iso-
metries with relaxed boundary conditions form two
copies of Virasoro algebra, and the associated
Noether charges yield the right central charge, c.
This shows that local conformal symmetry is com-
patible with the relaxed boundary conditions [19].

(vi) We have shown that the quantization conditions that
follow from the QNM computation get modified by
the presence of the gravitational hair. In other words,
if a holographic interpretation of this theory is
possible, then the relaxed boundary conditions plus
the backreaction of the hair on the black hole
geometry change the quantization condition that
would holographically correspond to the pole struc-
ture of the dual theory propagator.

Still, it is not clear that NMG theory at this point of the
parameter space admits a holographic interpretation. This
deserves further investigation.
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