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In this work, we make the first step to derive nonradial pulsation equations in extra dimensions and
investigate how the f- and p1-mode frequencies of strange quark stars, within the Cowling approximation,
change with the number of dimensions. In this regard, the study is performed by solving numerically the
nonradial pulsation equations, adjusted for a d-dimensional spacetime (d ≥ 4). We connect the interior to a
Schwarzschild-Tangherlini exterior metric and analyze the f- and p1- mode frequencies. We found that the
frequencies could become higher than those found in four-dimensional spacetime. The f-mode frequency
is essentially constant and only for large gravitational radius values grows monotonically and fast with the
gravitational radius. In a gravitational radius range, where f-mode frequencies are constant, they increase
for spacetime dimensions 4 ≤ d ≤ 6 and decrease for d ≥ 7. Regarding p1-mode frequencies they are
always larger for higher dimensions and decay monotonically with the increase of the gravitational radius.
In extra dimensions, as it happens for four-dimensional spacetime, we found p1-mode frequencies are
always larger than the f-modes ones. In the Newtonian gravity, for a homogeneous star in d dimensions, we
observe that the f-mode eigenfrequencies are constant and given by the relation ω2 ¼ lMGd=Rd−1, where l
represents the spherical harmonic index, MGd is the total star mass and R the stellar radius. For some
gravitational radius interval, we show that a homogeneous star in Newtonian gravity is a good
approximation to investigate the f-mode frequency of strange stars in the relativistic frame. In each
dimension considered, we find that the f-mode frequencies of strange stars are essentially constant since
they depend on the average star energy density that is almost constant as a function of the total star mass.
Moreover, for a fixed energy density, we also find that the f-mode frequency changes with the volume of
the unitary sphere in the d − 1 dimension, which attains its maximum value at d ¼ 6. In neutron stars in
four dimensions, where the average energy density of the star increases with the central energy density, the
f-mode frequencies will increase with the star mass. Thus, the possibility to measure in gravitational wave
detectors the f-mode oscillation frequency coming from compact stars with different pulsar masses and
observe almost constant frequency values, for d ¼ 4, in the range f ∼ 2–3 ½kHz� with M ≤ 1.8 M⊙, it
would be a good sign of the existence of strange quark stars that still lack an astronomical confirmation.
Finally, if the f-mode frequencies are still constant and different from the range values of d ¼ 4 for larger
total masses, it would be evidence that quarks can propagate in extra spacetime dimensions and strange
quark stars in d dimension could exist.

DOI: 10.1103/PhysRevD.102.084014

I. INTRODUCTION

The observation carried out by the LIGO and Virgo
collaborations, the gravitational waves (GWs) from a
binary black hole merger [1–3], turns out to be consistent
with that foretold from general relativity theory. Shortly
after this measurement, GWs coming from a merging

neutron star pair were also detected [4]. The latter event,
together with its electromagnetic counterpart [5], has
paved a new route on fundamental physics to explore the
astrophysical observation.
A few years after Einstein’s theory of gravity was

established and influenced by the idea of a generalized
theory of gravitation—which, in principle, would unify
gravitational and the electromagnetic force—Kaluza [6]
and Klein [7] argued that extra dimensions could be the
route toward a unified theory of gravitation. Many decades
after this proposal and motivated by the idea that GWs
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could assist to prove the existence of extra dimensions,
there has been a great deal of interest in the physics
community for studying various astrophysical phenomena
in extra dimensions.
Within this gravity theory context, aiming to understand

the extra-dimensional spacetime effect of some phenomena
on compact objects research, several theoretical investiga-
tions have been carried out. For instance, the implications
of spacetime dimension on static equilibrium configura-
tions [8–10], radial stability [11], compactness [12–14] and
gravitational collapse [15–18] of compact stars have been
widely investigated.
In particular, Refs. [8,9] investigated the equilibrium

configurations in higher-dimensional spacetime, by solving
the stellar structure equations. Thus, considering a hyper-
sphere composed by an incompressible fluid, it has been
found that the extra dimensions increase the total mass of
compact objects. In this regard, in Ref. [10] a comparative
analysis of boson and Dirac stars in a d-dimensional
spacetime has been investigated. There, the authors found
that the solutions of gravitating matter systems depend on
the number of dimensions.
Inspired in the aforementioned works, within the radial

perturbation approach, Ref. [11] investigated the stability
of compact fluid spheres in an extra-dimensional space-
time. Considering a hypersphere composed of a perfect
fluid that follows the MIT bag model equation of state
(EOS), it has been shown that extra dimension affects the
radial stability of these objects. For a range of central
energy densities and total masses, it is shown that the radial
stability of strange stars increases with the dimension.
Strange quark stars are a possible structure for compact
stars but quite different from neutron stars since they are
essentially self-bound stars, can have smaller radii, and for
bare quark stars, they present a sharp surface where the
energy density is not zero. In the MIT quark model, this
energy density at the star surface is directly related to the
bag constant (the deconfinement energy). These compact
objects and their radial stability have been studied [19,20],
and also anisotropic pressures and charge effects were
investigated [21–23]. As mentioned in [11], the stability of
these stars in a higher-dimensional spacetime could be
associated with the fact that the deconfinement density
energy is present. These all stable equilibrium solutions are
far from reaching the Buchdahl limit [24] for a d-dimen-
sional spacetime [12–14]. Thus, it is important to inves-
tigate the fluid pulsation modes of these d-dimensional
strange stars, and see how their frequencies change when
the spacetime dimensions increase.
The Buchdahl bound for the d-dimensional case states

that the radius-mass ratio, i.e., the reason between R and
MGd=ðd − 3Þ, of a compact object follows the inequality
ðd−3ÞRd−3=MGd ≥ ðd−1Þ2=2ðd−2Þ [12–14]. Certainly,
a compact object that violates this bound would result in a
gravitational collapse. The end outcome of a gravitational

collapse depends on the initial conditions imposed, its final
stage could be either a naked singularity or a black hole
[15–18]. It is worth mentioning that the influence of extra
dimension on some black hole properties have been also
investigated; see, e.g., [25–32].
Although the influence of the extra dimensions was

addressed in the aforementioned contexts, it is of interest to
see, within the Cowling approximation, how these could
influence the fluid pulsation modes from stable strange
stars in higher-dimensional spacetime (review [11]). In our
knowledge, it is the first time that the nonradial pulsation
equation in d spacetime dimensions is obtained, in the
Cowling approximation, and solved numerically. For this
purpose, we numerically integrate the hydrostatic equilib-
rium equations [33,34] and the nonradial pulsation equa-
tions [35,36], properly modified to include the extra
dimensions.
We regard this paper as follows: The general relativistic

formulation in higher-dimensional spacetime is shown in
Sec. II; moreover, the steps to follow to obtain both the
stellar structure and the nonradial oscillation equations and
the equation of state are displayed. The influence of the
spacetime dimension on the f- and p1-mode frequencies
(f and p1 mode for short) are presented in Sec. III.
Additionally, in this section, there is also presented the
oscillation spectrum in the Newtonian limit. We conclude
and make some final remarks in Sec. IV. The units in which
c ¼ 1 ¼ G4, with c and G4 being respectively the speed of
light and the four-dimensional gravitational constant, is
adopted through the paper.

II. GENERAL RELATIVISTIC FORMULATION IN
HIGH DIMENSIONS

A. Field equation

The nonradial oscillations of neutron stars in higher
dimensions within the Cowling approximation are inves-
tigated in the framework of general relativity. For a frame-
work in high spacetime dimensions,d ≥ 4, the Einstein field
equation can be represented through the equality [37]

Rμν −
1

2
gμνR ¼ d − 2

d − 3
Sd−2GdTμν: ð1Þ

The left side of Eq. (1) contains the Ricci tensor Rμν, the
Ricci scalar R and the metric tensor gμν. In turn, the right-
hand side bears the universal constant Gd, in d ¼ 4 it
represents to the Newton’s gravitational constant, and
the area of unitary hypersphere Sd−2 ¼ 2πðd−1Þ=2=
Γððd − 1Þ=2Þ, with Γ being the usual gamma function
and the factor ðd − 2ÞSd−2=ðd − 3Þ corresponds to the 8π
term in four dimensions. Moreover, Tμν depicts the perfect
fluid energy-momentum tensor given by

Tμν ¼ ðρd þ pdÞUμUν þ pdgμν; ð2Þ
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where ρd and pd are respectively the energy density and the
fluid pressure and Uμ is the velocity of the fluid in a d-
dimensional spacetime, where UμUμ ¼ −1.
All aforementioned Greek indices previously defined μ,

ν, etc., run from 0 to d − 1, with 0 representing the time,
and the d − 1 the spacelike coordinates.

B. Static structure equations for a
higher-dimensional spacetime

To describe the static perfect fluid hypersphere, the
higher-dimensional spacetime is assumed to be of the
form [11]

ds2 ¼ −e2νdt2 þ e2λdr2 þ r2
Xd−2

i¼1

�Yi−1

j¼1

sin2 θj

�
dθ2i ; ð3Þ

where the functions ν ¼ νðrÞ and λ ¼ λðrÞ depend on the
radial coordinate r only.
To analyze the stellar equilibrium configurations of

compact objects, the stellar structure equations in d
dimensions must be resolved. These equations could be
expressed through the equalities,

dm
dr

¼ Sd−2ρdrd−2; ð4Þ

dpd

dr
¼ −ðpd þ ρdÞGd

�
Sd−2pdr
ðd − 3Þ þ m

rd−2

�
e2λ; ð5Þ

dν
dr

¼ −
1

ðpd þ ρdÞ
dpd

dr
; ð6Þ

where the metric function e2λ takes the form

e2λ ¼
�
1 −

2mGd

ðd − 3Þrd−3
�

−1
: ð7Þ

Function m denotes the gravitational mass within the
hypersphere of radius r. Equation (5) is the Tolman-
Oppeheimer-Volkoff modified from its original form
[33,34] to introduce the effects of the extra dimensions [11].
The higher-dimensional static structure equations are

integrated along the radial coordinate, from the center to the
surface of the object. In the center of the hypersphere, we
adopt the conditions

mð0Þ ¼ 0; λð0Þ ¼ 0; νð0Þ ¼ νc;

pdð0ÞGd ¼ pcdGd and ρdð0ÞGd ¼ ρcdGd: ð8Þ

The surface of the object r ¼ R is reached when

pdðr ¼ RÞGd ¼ 0: ð9Þ

The parameters pcGd and ρcGd stand for the central
pressure and the central energy density, respectively.
It is important to mention that, at the object surface, the

interior line element matches to the Schwarzschild-
Tangherlini vacuum exterior solution [38,39]:

e2νðRÞ ¼ 1

e2λðRÞ
¼ 1 −

2MGd

ðd − 3Þrd−3 ; ð10Þ

whereMGd=ðd − 3Þ represents the total mass of the object.

C. Nonradial oscillations in the
Cowling approximation

The Cowling approximation in a four-dimensional
spacetime [35,36] is employed frequently in literature on
compact stars oscillations, e.g., Refs. [40,41]. This approxi-
mation helps to simplify equations and, by having a
relatively small influence on the solutions, the results
obtained are qualitatively correct. Indeed, the Cowling
approximation shows a discrepancy of less than 20%
and 10% to those obtained respectively by a relativistic
numerical approach for f and p1 modes [42]. This validates
its employment to investigate, for instance, the implication
of the rotation rate [43,44], crust elasticity [45] and the
internal anisotropy [46] in the fluid pulsation modes from
compact objects.
In this subsection, the f and p1 modes from strange stars

within the Cowling approximation in a d-dimensional
spacetime are investigated. For such purpose, we keep
the metric functions fixed, namely, we consider that the
metric perturbation is zero δgμν ¼ 0 [41]. The fluid
pulsation equations can be derived by considering a
variation on the Bianchi identity, δð∇μTμνÞ ¼ 0. Keeping
the metric functions fixed, we get

∇μðδTμνÞ ¼ 0; ð11Þ

with

δTμν ¼ ðδpd þ δρdÞUμUν þ ðpd þ ρdÞðδUμÞUν

þ ðpd þ ρdÞUμðδUνÞ þ δpdgμν: ð12Þ

To investigate what Eq. (11) means, it is necessary to
project it orthogonal and along to the d-velocity Uμ.
To project Eq. (11) orthogonally to the d-velocity Uμ, it

is multiplied by the orthogonal tensor Pσ
ν ¼ δσν þ UσUν.

After some algebra, we derive

ðδpd þ δρdÞUμ∇μUσ þ∇σðδpdÞ þUσUμ∇μðδpdÞ
þ ðpd þ ρdÞUμð∇μðδUσÞ −∇σðδUμÞÞ ¼ 0: ð13Þ

On the other hand, the projection of Eq. (11) along the d-
velocity field Uν yields
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∇μ½ðpd þ ρdÞδUμ� þ ðpd þ ρdÞUμ∇μUνðδUνÞ
þ Uμ∇μðδρdÞ ¼ 0: ð14Þ

For the higher-dimensional spacetime, it is convenient to
consider the Lagrangian fluid displacement vector compo-
nents ς ¼ ðςr; ςθ1 ;…; ςθd−2Þ of the form

ςr ¼ e−λ

rd−2
Q̃Ym

l ; ð15Þ

ςθi ¼ −
Z̃
r2

�Yi−1

j¼1

1

sin2 θj

� ∂Ym
l

∂θi ; ð16Þ

where i goes from 1 to d − 2. In Eqs. (15) and (16), the
functions Q̃¼Q̃ðt;rÞ and Z̃¼Z̃ðt;rÞ depend on both the
temporal t and radial coordinate r, and Ym

l ¼Ym
l ðθ1;…;

θd−2Þ represents the spherical harmonics for a higher-
dimensional spacetime. Then, the perturbations of the
velocity of the fluid in a d-dimensional spacetime, δUμ ¼
ð0; δUr; δUθ1 ;…; δUθd−2Þ, can be placed as

δUr ¼ dςr

dτ
¼ e−ν

dςr

dt
; ð17Þ

δUθi ¼ dςθi

dτ
¼ e−ν

dςθi

dt
: ð18Þ

It is important to say that Eqs. (15) and (16) are reduced to
the form used in [41] considering d ¼ 4.
Taking into account that Uσ ¼ ðe−ν; 0;…; 0Þ, the

explicit form of Eq. (13) for σ ¼ r; θ1 is, respectively,

ðpd þ ρdÞe2ðλ−νÞ
d2ςr

dt2
þ ðδρd þ δpdÞ

dν
dr

¼ −
∂δpd

∂r ; ð19Þ

ðpd þ ρdÞe−2νr2
d2ςθ1

dt2
¼ −

∂δpd

∂θ1 : ð20Þ

From Eqs. (14) and (A7), after some algebra, it is found that
δρd is given by the expression

δρd
pd þ ρd

¼ −
Q̃

pd þ ρd

dρd
dr

e−λ

rd−2
Ym
l

−
�
e−λ

rd−2
∂Q̃
∂r Ym

l þ Z̃
r2

lðlþ d − 3ÞYm
l

�
: ð21Þ

Considering that the fluid pressure depends on the energy
density pd ¼ pdðρdÞ, we have

δpd

pdþρd
¼−

Q̃
pdþρd

dpd

dr
e−λ

rd−2
Ym
l

−
dpd

dρd

�
e−λ

rd−2
∂Q̃
∂r Y

m
l þ Z̃

r2
lðlþd−3ÞYm

l

�
: ð22Þ

Since within the Cowling approximation the metric per-
turbation is neglected, the density perturbation sets to zero
δρd ¼ 0, however, the pressure perturbation δpd is not set
to zero. Qualitative correct results can be derived with this
approach, see, e.g., [35]. Using the equalities (21) and (22)
with δρd ¼ 0, Eqs. (19) and (20) can be written in the form

ðpdþρdÞ
rd−2

eλ−2ν
∂2Q̃
∂t2 −

�
dpd

dr
þdρd

dr

�
dν
dr

Q̃e−λ

rd−2

−
∂
∂r

�
pdΓ1

�
e−λ

rd−2
∂Q̃
∂r þ

Z̃
r2
lðlþd−3Þ

�
þQ̃e−λ

rd−2
dpd

dr

�

þdpd

dr

�
1þdpd

dρd

��
e−λ

rd−2
∂Q̃
∂r þ

Z̃
r2
lðlþd−3Þ

�
¼0; ð23Þ

ðpd þ ρdÞe−2ν
∂2Z̃
∂t2 þ pdΓ1

�
e−λ

rd−2
∂Q̃
∂r þ Z̃

r2
lðlþ d − 3Þ

�

þ e−λQ̃
rd−2

dpd

dr
¼ 0; ð24Þ

with Γ1 ¼ pdþρd
pd

dpd
dρd

being the adiabatic index.
Assuming a harmonic dependence on time of the

perturbative variables of the form Q̃ðt; rÞ ¼ QðrÞeiωt and
Z̃ðt;rÞ¼ZðrÞeiωt, with ω being the eigenfrequency,
Eqs. (23) and (24) can be placed in a form more appropriate
for the numerical calculation. Considering d½Eq: ð24Þ�=
dr-½Eq: ð23Þ� in Eq. (24), we get

dZ
dr

¼ 2Z
dν
dr

−
eλQ
rd−2

: ð25Þ

On the other hand, from Eqs. (24) and (25), we obtain

dQ
dr

¼ dρd
dpd

�
ω2rd−2eλ−2νZþdν

dr
Q

�
− lðlþd−3ÞeλZrd−4:

ð26Þ
It is the first time that these equations are obtained, and to
determine the oscillation spectrum of compact stars in a
spacetime in high dimensions in the Cowling approxima-
tion, it is necessary to solve Eqs. (25) and (26). These two
differential equations are reduced to those derived in [41]
for a four-dimensional spacetime.
To integrate Eqs. (25) and (26) from the center (r ¼ 0)

to the surface of the hypersphere (r ¼ R), the boundary
conditions have to be defined. In order to find a regular
solution in the center, in a similar way as realized in [41,46],
we consider that the functions Q and Z take the form

Q ¼ Crlþd−3; Z ¼ −C
rl

l
; ð27Þ

where C represents a dimensionless constant. In turn, at the
surface of the object is found

�
ω2eλ−2νZrd−2 þ dν

dr
Q

�

r¼R
¼ 0: ð28Þ
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D. Equation of state

For the fluid contained in the compact object, we
consider that both the d-dimensional energy density ρd
and pressure pd are related by a linear equation of state of
form [11]

pd ¼
ðρd − dBdÞ
ðd − 1Þ ; ð29Þ

where Bd is a constant. In four-dimensional spacetime,
Eq. (29) displays the MIT bag model EOS. It is well known
that this EOS represents a fluid composed of up, down, and
strange quarks. In [47], Witten has proposed that the
strange quark matter might be the true fundamental state
of strongly interacting matter. This conjecture is corrobo-
rated by Farhi and Jaffe [48] taking into account massless
and noninteracting quarks.
Due to the volume, the constant Bd and the functions ρd

and pd are dimension dependent units. With the aim to have
these units independent of the spacetime dimension, those
are used of the following form BdGd, ρdGd, and pdGd. In
such a form, the units of the aforementioned variables
are ½MeV=fm3�.
In this article, following [11], we consider dBdGd ¼

240 ½MeV=fm3�. It means that, for d ¼ 4, the bag constant
is B4 ¼ 60 ½MeV=fm3�. It is important to say that the bag
constant considered is within the hadronic mass spectros-
copy interval [49], 60 ≤ B4 ≤ 90 ½MeV=fm3�.

III. RESULTS

A. Numerical method

To analyze the extra dimensions’ influence in the
oscillation spectrum of compact stars, the stellar structure
equations, and the nonradial oscillation equations are
numerically solved from the center toward the surface of
the compact object.
Once defined the EOS, Eqs. (4)–(6) are solved for

different dimensions d and central energy densities
ρcdGd. The numerical solutions begin by integrating
Eqs. (4) and (5) from the center to the surface of the compact
object using the fourth order Runge-Kutta method, for a
value of d and ρcdGd.
After finding the parameters pdGd, ρdGd,mGd and λ, we

solve Eq. (6) and then the nonradial pulsation equations (25)
and (26) are integrated. The whole system of equations is
solved by using the shooting method as described:

(i) In the case of Eq. (6), the method starts taking into
account a test value of νc. If after the integration the
condition (10) is not attained, the process is repeated
until finding a νc that satisfies that condition.

(ii) The nonradial pulsation equations (25) and (26) are
numerically integrated. It begins considering the
correct coefficient of νc found, in the solution of
the stellar structure equations, for a certain value of

ρcdGd and d, l ¼ 2 and a trial value of ω2. If, at the
final of the numerical solution, the condition (28) is
not fulfilled, ω2 is corrected until satisfied in the next
integration.

The numerical method implemented in this work repro-
duces the results of Ref. [46], for the study of the f and p1

modes of a neutron star in the perfect fluid case.

B. Oscillation spectrum of relativistic strange
stars in a d-dimensional spacetime

In Fig. 1 is shown the behavior of the f-mode frequen-
cies as a function of the gravitational radius (see, e.g., [29]),

rH ¼
�
2MGd

d − 3

� 1
d−3 ½km� ð30Þ

for some different spacetime dimensions. In all cases
presented, we only consider stable compact objects against
radial perturbations, see [11]. Note in the curves that the f
mode are almost constant [50,51] and only show a fast
increase for higher values of the gravitational radius. For
d ¼ 4, we can see that the frequency shows a tiny small
decrease with the gravitational radius until it reaches its
minimum value. From this point, the frequency increases
with rH. In turn, for d > 4, the f mode is essentially
constant and for large gravitational radius values grows
monotonically with rH.
In Fig. 1 is also shown the influence of extra dimensions

in the f mode. For a gravitational radius range, we see that
the f mode increases in the dimensions 4 ≤ d ≤ 6 and
decreases in spacetime dimensions d ≥ 7 (see also top
panel of Fig. 3). Moreover, it is important to say that, for all
spacetime dimensions considered, we note that the f-mode
frequencies are in the 2.38–3.18 ½kHz� range. These limit
values of f-mode frequencies are related respectively to the

0 1 2 3 4 5 6
2.3

2.5

2.7

2.9

3.1
d=4
d=5
d=6
d=7
d=8

f f
[k

H
z]

rH [km]

FIG. 1. The f-mode frequency versus the gravitational radius,
for some spacetime dimensions.
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lowest and highest value found in the dimensions d ¼ 4
and d ¼ 6.
The dependence of the p1-mode frequencies with the

gravitational radius for four different spacetime dimensions
is plotted in Fig. 2. Such as it happens in four-dimensional
spacetime, in higher dimensions we found that the p1-mode
frequencies are larger than the f modes (check Ref. [52]).
Further note that the p1 mode decays monotonically with
rH, thus attaining the lowest frequencies of oscillation in
the maximum gravitational radius points. On the other
hand, for a gravitational radius interval, the p1-mode
frequencies are also affected by the increment of the
spacetime dimension. For higher dimensions larger p1

modes are derived.
The change of the f- and p1-mode frequencies with the

spacetime dimensions have respectively schemed on the
top and bottom of Fig. 3. In the figure, there are considered
five different gravitational radii, as a function of spacetime
dimensions. The results obtained, marked by circles in the
figure (review also Table I), are connected by a third and
second-order polynomial fitting curvature correlating f-
and p1-mode frequencies with the spacetime dimensions,
respectively.
In Fig. 3, in the upper panel, for the range of rH chosen,

the fitting curves that correlate the f mode with d are close
to each other. This proximity in the curves is related to the
interval chosen for the gravitational radii analyzed, where,
in each dimension, the f-mode frequency values are almost
constant and close to each other (see Fig. 1). For the
mentioned gravitational radius range, we note that there is a
universality among these curves. These can be represented
by a “universal” curve that connects all points (review
Table II). As can be noted in the figure, the f-mode
frequency grows with the spacetime dimensions until
attaining its maximum value is close to d ¼ 6, after this
point, the f mode decreases with the dimension. In the
bottom panel, in all total gravitational radii considered, we

obtain that the curves derived for the p1-mode
frequency against the number of dimensions can be
reproduced quite well by a polynomial of second order
in d. In this mode, as found in the f mode, we also observe
a universality among all curves fp1

¼ fp1
ðdÞ (check,

again, Table II).
In Table I, we can see the values of frequencies for f and

p1 modes shown in Fig. 3, for each spacetime dimension d
and five gravitational radii.
In Table II, the constants of the fitting curves that

correlate f- and p1-mode frequencies with the spacetime
dimension in Fig. 3, for each rH, are presented.

C. Oscillation spectrum of Newtonian homogeneous
stars in d spacetime dimensions

In this subsection, we analyze the oscillation spectrum of
homogeneous stars in Newtonian gravity. We consider that
the energy density ρd ¼ dBd is constant along the whole
star. In this limit, the integration of the static equilibrium
structure equations, the fluid pressure, and the mass of the
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26

31

36

41

46

51 d=4
d=5
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d=7
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f p
1[
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z]

rH [km]

FIG. 2. The p1-mode frequency as a function the gravitational
radius, for four spacetime dimensions.
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FIG. 3. The f- and p1-mode frequencies as a function of the
spacetime dimensions are plotted on the top and bottom panel,
respectively. Circles represent the frequency values calculated
with the shooting method. The curves and lines are resulting from
the polynomials fitting of third and second order. In both cases are
considered five different gravitational radii.

ARBAÑIL, LENZI, and MALHEIRO PHYS. REV. D 102, 084014 (2020)

084014-6



object within a radius r in d spacetime dimensions are,
respectively, described by

pd ¼
Sd−2Gd

2ðd − 1Þ ðdBdÞ2ðR2 − r2Þ; ð31Þ

m ¼ Sd−2
d − 1

ðdBdÞrd−1: ð32Þ

It is important to say that, within the Newtonian gravity, the
nonradial oscillations in Cowling approximation, Eqs. (23)
and (24), follow the relations

dZ
dr

¼ −
Q
rd−2

; ð33Þ
dQ
dr

¼ −Zrd−4lðlþ d − 3Þ: ð34Þ

From these equations, to obtain regular solutions in the
center, in a similar way as considered in the relativistic
case, we regard

Q ¼ C2rlþd−3; Z ¼ −C2

rl

l
; ð35Þ

with C2 being a dimensionless constant. At the object’s
surface is found

�
ω2Zrd−2 −

dpd

dr
Q
dBd

�

r¼R
¼ 0: ð36Þ

Considering Eqs. (31) and (32), this last equation yields

ω2 ¼ lMGd

Rd−1 : ð37Þ

We must point out that when l ¼ 2 for a four-dimensional
spacetime d ¼ 4, Eq. (37) is reduced to that obtained by
Emden, see, e.g., Refs. [53,54].
In addition, considering the relation (32) for r ¼ R,

Eq. (37) can be reduced to the form

ω2 ¼ ldGdBd
Sd−2
d − 1

: ð38Þ

Through Eqs. (37) and (38), the dependence of the
eigenfrequency of oscillation ω (or the f-mode frequency
of oscillation, since ff ¼ ω=2π) with the spacetime dimen-
sion can be analyzed. In that way, these two equalities are
employed to investigate the dependence of the fundamental
mode frequency with the squared root of the average
density,

ρ̄ ¼ MGd

Rd−1 ½km�−2; ð39Þ

and different spacetime dimensions. In Newtonian gravity,
we can note that the f-mode frequency is directly propor-
tional to ρ̄1=2 with the proportionality constant

ffiffi
l

p
=2π; see,

e.g., [52,55], for d ¼ 4.

TABLE I. Values of the f- and p1-mode frequencies for four different rH . The units of the frequencies and gravitational radii are,
respectively, [kHz] and [km].

rH ¼ 1.0 rH ¼ 1.5 rH ¼ 2.0 rH ¼ 2.5 rH ¼ 3.0

d f p1 f p1 f p1 f p1 f p1

4 2.4165 19.910 2.4039 16.789 2.3939 14.745 2.3862 13.237 2.3808 12.042
5 2.6784 29.411 2.6791 23.642 2.6843 20.141 2.6913 17.705 2.7010 15.867
6 2.7694 37.747 2.7771 29.327 2.7865 24.427 2.7982 21.126 2.8124 18.703
7 2.7438 44.856 2.7518 34.022 2.7617 37.844 2.7736 23.835 2.7880 20.913
8 2.6222 50.863 2.6291 37.905 2.6377 30.701 2.6480 26.018 2.6604 22.681
9 2.4282 55.932 2.4342 41.135 2.4409 33.022 2.4490 27.804 2.4586 24.121

TABLE II. Values of polynomial fitting parameters of the f- and p1-mode frequencies as a function of dimensional parameter
d, for four different rH . We use third and second order polynomial fitting for f and p1 mode, respectively. The units of all fitting
parameters are [kHz].

fmode p1 mode

rH af ð×10−3Þ bf ð×10−1Þ cf ef ap1 ð×10−1Þ bp1 ð×10Þ cp1 ð×10Þ
1.0 4.9380 −1.5213 1.3232 −0.7575 −5.6208 1.4495 −2.9042
1.5 5.5806 −1.6656 1.4291 −1.0034 −4.5216 1.0713 −1.8741
2.0 6.1148 −1.7890 1.5217 −1.2207 −3.7948 0.8548 −1.3270
2.5 6.6250 −1.9080 1.6118 −1.4307 −3.2789 0.7133 −0.9937
3.0 7.1370 −2.0285 1.7033 −1.6420 −2.8926 0.6133 −0.7746
Universal 6.0791 −1.7825 1.5178 −1.2108
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In Table III, the f mode of oscillations of homogeneous
stars in Newtonian approximation considering l ¼ 2, the
energy density 240 ½MeV=fm3�, and few spacetime dimen-
sions are presented. As can be seen in Table III, the higher f
mode is determined in d ¼ 6. This is easily explained since
it is well known that the volume of the unitary sphere
(Sd−2=ðd − 1Þ) has a maximum for d ¼ 6 [56] and, as
mentioned above, the eigenfrequency of f-mode oscillation
[Eq. (38)] depends on it. If we use a larger bag constant
value, consistent with hadron spectroscopy, such as
90 ½MeV=fm3� [49] for d ¼ 4, which corresponds to a
constant energy density of 360 ½MeV=fm3�, the f-mode
frequencies will increase by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
360=240

p ¼ 1.2
because they are proportional to the squared root of the
average star density that goes with B1=2

4 as we can see in
Eq. (38). Thus, the f-mode oscillation frequencies for
homogeneous stars in d dimensions are still in a narrow
range, f ∼ 2.8–3.3 ½kHz�.
From Eq. (38), we see that for a constant f-mode

frequency, the product GddBdSd−2=ðd − 1Þ is equivalent
to 4G4B4Sd−2=ðd − 1Þ (since dGdBd ¼ 4G4B4). From this
relation, we note that the value of the constant f-mode
frequency for each dimension of the homogeneous star
depends on the square root of the product B4Sd−2=ðd − 1Þ.
However, for any dimension, we can separate the dimen-
sional effect from the bag constant if we divide the constant
f-mode frequency by the squared root of Sd−2=ðd − 1Þ. In
this case, the normalized f-mode frequency will depend
essentially only in the square root of B4. Thus, if we change
the value of the bag constant in d ¼ 4, the new normalized
f-mode frequency will scale according to the square root
of the new value of the bag constant in d ¼ 4. The
dimensional effects can be separated if we calculate the
ratio between the f-mode frequency in one dimension with
the other in another dimension, which will depend only on
the square root of the ratio between their Sd−2=ðd − 1Þ
volume factors.

D. f -mode frequencies of relativistic strange stars and of
Newtonian homogeneous stars

The main difference between neutron stars and quark
stars is that for these self-bound compact stars, the average
density is almost constant with the variation of the total star

mass for several relativistic strange quarks stars, see
Fig. 4 for any dimensions, and the homogeneous density
star is a good approximation. Since the star mass grows
with the homogeneous energy density times the volume
Sd−2Rd−1=ðd − 1Þ [see Eq. (32)], the f-mode frequencies
are almost constant for any strange quark star (independent
of their mass); unlike neutron stars, where in four-dimen-
sional spacetime the f-mode frequencies scale and increase
with average star density and in particular with the stellar
mass. Moreover, for quark stars, with fixed dGdBd, f-mode
depends only on the volume of the unitary sphere
Sd−2=ðd − 1Þ. For instance, in Table III, for
dGdBd ¼ 240 ½MeV=fm3�, we find that the larger value
of the f mode is attained in d ¼ 6 (five spatial dimensions).
The f-mode frequencies, shown in Fig. 1 as a function of

the gravitational radius, are almost constant and begin to
increase only for a large gravitational radius. In four
dimensions, we note that the f-mode frequency is almost
constant up to rH ∼ 5.0 ½km� (in ∼1.7 M⊙). In larger
spacetime dimensions, similar behavior of the f mode
with the gravitational radius is found, the f mode remains
approximately constant until rH ∼ 5.6 ½km�. In addition, in
each spacetime dimension, at the almost constant f-mode
frequency interval, we note that the f-mode frequencies are
very similar to those derived for homogeneous stars in
Newtonian gravity, see Table III and Fig. 4. From this, we
can understand that the quark energy density is also almost
constant inside the star for any number of dimensions.
Additionally, for d > 6, in the almost constant f-mode
frequency interval, we see that the f mode decreases with
the spacetime dimension. This is exactly the same dimen-
sional dependence of f-mode frequencies of a homo-
geneous star in the Newtonian gravity (see, again,
Table III). This implies that the total quark star mass goes
with the volume in d − 1 dimensions and ρ̄ is constant for

TABLE III. Eigenfrequency of f-mode oscillation of homo-
geneous star in Newtonian gravity for different spacetime
dimensions, l ¼ 2 and constant energy density 240 ½MeV=fm3�.

d f½kHz�
4 2.4612
5 2.6714
6 2.7590
7 2.7337
8 2.6139
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FIG. 4. The f mode for strange quark stars in the relativistic
formalism, normalized by the square root of the average density ρ̄
divided by 2π2, i.e., ðMGd=2π2Rd−1Þ0.5, as a function of the
gravitational radius.
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any d dimensions (almost constant for a self-bound quark
star in d ¼ 4). Due to the fact that the f-mode frequency is
proportional to the volume of the unitary sphere, we note
that it diminishes with the increase of the spacetime
dimension (for d > 6). Thus, for a large dimension, the
f-mode frequency tends to zero, this being the minimum
value that the frequency can attain. This result seems very
reasonable since the star pressure goes with 1=ðd − 1Þ and,
due to it decreases with the spacetime dimension, the star is
more prone to the gravitational collapse.
In Fig. 4, the f mode of stable relativistic quark stars—

normalized by the square root of the average density ρ̄
divided by 2π2, i.e., ðMGd=2π2Rd−1Þ0.5—as a function of
the gravitational radius. For each dimension considered, for
a range of rH, we see that the normalized fmode follows the
constant Newtonian frequencies. At this range of rH, we
note that Eq. (38) is a good approximation of the eigenfre-
quency squared for the relativistic case. Furthermore, it is
even more constant for higher rH and approaches the
homogeneous star limit when the dimension increases; only
for large rH a fast decrease of the f mode with the
gravitational radius is seen. These results can be understood
by analyzing the equation of state,pd ¼ðρd−dBdÞ=ðd−1Þ,
where the fluid pressure gets much smaller than the energy
density since it decreases when the spacetime dimension
increases, due to the factor 1=ðd − 1Þ. Thus, for large
spacetime dimensions, the homogeneous star becomes a
good approximation since pd ≪ ρd and to the fact that the
relationsMGd=ðd − 3ÞRd−3 [11] and Sd−2pdrd−1=ðd − 3Þm
become smaller with the growth of d. This indicates that, for
a sufficiently large dimension, the relativistic results are
similar to those ones derived from the homogeneous stars in
Newtonian gravity. From this result, as similarly happens on
homogeneous stars in Newtonian gravity, the f-mode
frequency of oscillation in relativistic quark stars could
have much lower values for d ≫ 6.

The results of our model for d ¼ 4 can be compared
with the parameters of strange star candidates. In Table IV,
we present the mass of strange star candidates and the
predicted total radius, compactness, andf-mode frequencies
using the MIT EOS with B4 ¼ 60 ½MeV=fm3�. Very differ-
ent values of star masses in the range 0.85 ≤ M=M⊙ ≤ 1.77
have f-mode oscillation frequencies essentially constant
with values in a very small rangef ∼ 2.38–2.42 ½kHz�. From
these results, we can understand that if f-mode frequencies
measured by gravitational wave astronomy are almost
constant, for very different pulsar masses, it is a good
signature to identify strange star candidates.

IV. CONCLUSIONS AND FINAL REMARKS

In this work, we investigated how the oscillation spec-
trum changes with the spacetime dimensions in the context
of general relativity. Thus, we derived for the first time the
nonradial perturbation equations for a d-dimensional
spacetime within the Cowling approximation. For the fluid,
we consider that pressure and energy density are related by
a linear EOS, the MIT bag model equation of state extended
for d dimensions. We also assumed that the interior
solutions are connected smoothly with the vacuum
Schwarzschild-Tangherlini exterior solution. We analyzed
the oscillation spectrum only for stable compact objects
against radial perturbations [11] for different gravitational
radii, rH, and spacetime dimensions, d.
By analyzing the properties of the oscillation spectrum in

strange quark stars, for a gravitational radius range and
some spacetime dimension values, it is observed that f-
mode frequencies are almost constant and only show a fast
increase for higher values of the gravitational radius, in
contrast with p1-mode frequencies that change signifi-
cantly with rH and d. From one side, for a range of
gravitational radii, we found that the minimum and
maximum f-mode frequencies were determined on the

TABLE IV. Physical parameters of detected strange star candidates derived using the MIT EOS with B4 ¼ 60 ½MeV=fm3�.
SS candidate Observed mass M=M⊙ Predicted radius [km] M=R f½kHz�
Vela X-1 1.77� 0.08 [57] 11.17þ0.01

−0.04 0.235 2.4234

4U 1608 − 52 1.74� 0.14 [58] 11.16þ0.01
−0.12 0.231 2.4164

PSR J1903þ 327 1.667� 0.021 [59] 11.11þ0.02
−0.02 0.222 2.4035

4U 1820 − 30 1.58� 0.06 [60] 11.02þ0.07
−0.07 0.212 2.3930

Cen X-3 1.49� 0.08 [57] 10.91þ0.02
−0.12 0.202 2.3863

EXO 1745 − 248 1.3� 0.2 [61] 10.58þ0.34
−0.35 0.182 2.3794

LMC X-4 1.29� 0.05 [57] 10.57þ0.12
−0.11 0.181 2.3791

SMC X-1 1.04� 0.09 [57] 9.98þ0.23
−0.25 0.154 2.3804

SAX J1808.4 − 3658 0.9� 0.3 [62] 9.73þ0.65
−0.85 0.137 2.3839

4U 1538 − 52 0.87� 0.07 [57] 9.49þ0.22
−0.12 0.136 2.3852

HER X-1 0.85� 0.15 [63] 9.42þ0.48
−0.32 0.134 2.3860
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dimensions 4 and 6, respectively. Moreover, for a range of
gravitational radii, the f-mode frequency dependence with
the number of dimensions d follows a universal curve as a
polynomial of third order in d. On the other hand, at the
same gravitational radii interval, we found that the p1-mode
frequencies grow significantly with d, and the frequency
dependence with the number of dimensions can be repro-
duced quite well with a polynomial of second order in d. As
happens in d ¼ 4, for d > 4, we found that the f-mode
frequencies are lower than those obtained for p1 mode.
Within the Cowling approximation, the nonradial

oscillation equations in the Newtonian gravity were also
analyzed. For this framework, we investigated the
oscillation spectrum of a compact object made of homo-
geneous energy density, for such a case, it is considered
ρd ¼ dBd ¼ constant along the whole star. Such as it is
found in the four-dimensional case, for a d-dimensional
spacetime, the eigenfrequency of oscillation of a compact
object also depends on its total mass MGd and radius R.
Furthermore, since quark star mass goes with the volume in
d dimensions, such as it happens in d ¼ 4, the eigenfre-
quency squared of the f mode in the Newtonian gravity is
constant and depends only on the volume of the unitary
sphere [Sd−2=ðd − 1Þ], which has a maximum for d ¼ 6.
We prove relativistic f-mode frequencies for d ≥ 4,

which we have calculated here for the first time, are almost
constant for any strange quark star independent of their
masses if M ≤ 1.8 M⊙. From this, for the gravitational
radius range where the frequencies are essentially constant,
we can also note that quark energy density is also almost
constant inside the star for any number of dimensions.
This implies that for relativistic strange stars, for any d
dimensions, the total quark star mass still goes approx-
imately with the volume in d − 1 dimensions and the
average star density ρ̄ that is almost constant as a function
of the total mass.
It is important to stress that for neutron stars in d ¼ 4

dimensions, the star mass increases when the stellar radius
decreases and, as a consequence the average density
increases with the central density and is not constant,
which implies that f-mode frequencies increase with the
neutron star mass [40]. Thereby, the possibility of meas-
uring in gravitational wave detectors the f-mode oscillation
frequency emitted by compact stars [64–66], for different
pulsar masses, and obtaining almost constant frequency
values, for d ¼ 4, in the interval f ∼ 2–3 ½kHz� with
M ≤ 1.7 M⊙, it would be a good indication of the existence
of strange quark stars which still lack an astronomical
confirmation. Finally, if the f-mode frequencies are still
constant and larger than those values found in d ¼ 4 for a
range of larger total masses, it would be a sign that quarks
can propagate in extra spacetime dimensions and strange
quark stars in d dimension could exist.
It is worth noting that strange quark stars with crust are

also investigated in the literature [67]. The crust on the top

of such stars could be supported by strong electric fields at
the surface. On that work, it is concluded that the existence
of a crust results in large radii for small stellar masses
∼0.01 M⊙, but it does not considerably affect the radii of
quark stars with larger masses. Therefore, the existence of a
crust does not seem to have an important effect on the
quadrupole properties of the star [67,68] for quark star
masses larger than one solar mass. From these findings, our
conclusion of f-mode oscillation frequencies being almost
constant for very different quark star masses should be still
valid for strange quark stars with the crust. This could be a
good signature to confirm the existence of strange quark
stars, which still lack an astronomical confirmation, and
might be found in gravitational-wave astronomy [66].
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APPENDIX: DIVERGENCE OF THE VELOCITY

Within the Cowling approximation, the divergence of the
velocity ∇νðδUνÞ is derived through the equality

∇νðδUνÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
−jjgjjp ∂νð

ffiffiffiffiffiffiffiffiffiffiffi
−jjgjj

p
δUνÞ; ðA1Þ

with
ffiffiffiffiffiffiffiffiffiffiffi
−jjgjjp

being of the form

ffiffiffiffiffiffiffiffiffiffiffi
−jjgjj

p
¼ eλþνrd−2

Yd−3

i¼1

ðsin θiÞd−2−i: ðA2Þ

The divergence of the velocity is represented by the equality

∇νðδUνÞ¼
�
dλ
dr

þdν
dr

þd−2

r

�
δUrþ∂rðδUrÞ

þ
Xd−2

i¼1

∂θiðδUθiÞþ
Xd−3

i¼1

ðd−2− iÞ δU
θi

tanθi
: ðA3Þ

In a similar way as defined in four dimensions, for a
higher-dimensional spacetime, Eq. (3), the spherical har-
monic follows the identity [69]

ΔSd−2Y
m
l ¼ −lðlþ d − 3ÞYm

l ; ðA4Þ

where, following Ref. [70], ΔSd−2 is given by the expression

ΔSd−2 ¼
Xd−2

i¼1

Yi−1

j¼1

∂2
θi

sin2 θj
þ
Xd−3

i¼1

Yi−1

j¼1

ðd−2− iÞcotθi∂θi

sin2 θj
: ðA5Þ
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Taking into account the fluid velocity component, Eq. (18),
after some algebra Eq. (A4) is reduced to the form

Xd−2

i¼1

∂θiðδUθiÞ þ
Xd−3

i¼1

ðd − 2 − iÞ δU
θi

tan θi
¼ lðlþ d − 3Þ

r2eν
∂Z̃
∂t Y

m
l :

ðA6Þ

Replacing Eqs. (17) and (A6) in Eq. (A3), it becomes

∇νðδUνÞ ¼ e−ðλþνÞ

rd−2
∂2Q̃
∂t∂r Y

m
l þ lðlþ d − 3Þ

r2eν
∂Z̃
∂t Y

m
l :

ðA7Þ
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