
 

Maxwell equations in a curved spacetime: Spin optics approximation
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We study propagation of high-frequency electromagnetic waves in a curved spacetime. We demonstrate
how a modification of the standard geometric optics allows one to include the helicity dependent
corrections into the equations of motion of circularly polarized beams of radiation. As a result, polarized
light rays are still null but not geodesic curves. To achieve these results we construct null frames associated
with a set of (nongeodesic) null rays and use these frames for a description of the high-frequency wave
propagation. We call this approach spin optics approximation. It is completely covariant and it can be used
in an arbitrary time-dependent gravitational field.
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I. INTRODUCTION

Short wave (or high-frequency) approach is a powerful
method of construction of approximate solutions of linear
differential equations with spatially varying coefficients. In
application to the linear partial differential equations it
allows one to find their asymptotic solutions by reducing
this problem to studying Hamiltonian dynamical systems.
This method is widely used in different areas of physics and
has different (historically motivated) names. In quantum
mechanics this method is known as a quasiclassical or
Wentzel-Kramers-Brillouin (WKB) approximation. In
wave optics this method is known as a geometric optics
approximation. It takes its origin with the paper by Debay
in 1911 [1] and was developed in many subsequent
publications (see e.g., [2] and references therein).
The main idea of this approach is to search for a solution

Φ of the wave equation in the form Φ ≈ f exp iS, where the
phase function S rapidly changes, while the field amplitude
f is a slowly varying function. This means that ∇S ∼ ω,
whereω is a characteristic large frequency. Substituting this
ansatz into the field equations and keeping the terms of the
lowest order in 1=ω one obtains a first order partial
differential equation of the form Hð∇S; xÞ ¼ 0 known as
an eikonal equation. This equation can be identified with
the Hamilton-Jacobi equation. Putting P ¼ ∇S one reduces
the problem to the study of the corresponding dynamical
system with Hamiltonian HðP; xÞ. In the application to the
standard optics, the equation S ¼ const determines a wave
front and the vectors P orthogonal to the wave front are
tangent to the light rays. In the phase space a beam of such
null rays forms a Lagrangian submanifold (for details see
e.g., a remarkable book [3]).

Geometric optics approximation for obtaining high-
frequency asymptotic solutions of Maxwell equations in
a curved spacetime has been discussed in a number of
publications starting with the papers [4–7]. A remarkable
summary of the geometric optics in a curved spacetime can
be found in [8] (see also more recent papers [9–11] and
references therein). In a curved spacetime in the leading
order of the geometric optics approximation, light rays are
null geodesics and the wave polarization vector is parallel-
propagated along the rays. For a beam of light the square of
its amplitude is inverse proportional to the area of the cross
section of the beam. Parallel transport of the polarization
vector of the electromagnetic wave results in the gravita-
tional Faraday rotation effect [12–16]. Similar Faraday
rotation effect exists also for polarized high-frequency
gravitational waves propagating in a curved spacetime
[17]. This effect is an analog of the well-known electro-
magnetic Faraday effect for light propagating in magneto-
active media [18–20].
Gravitational Faraday effect is one of the manifestations

of action of gravimagnetic forces on a particle with spin or
spin-curvature interaction. Its dual is an effect of the helicity
dependence of themotion of circularly polarized light beams
in the gravitational field of a spinning object [21–23]. This is
an analog of a so-called opticalMagnus effect [24,25], that is
polarization dependence of light propagation in an inho-
mogeneous optical media. This effect sometime is also
called the Hall effect of light [26]. Comprehensive discus-
sions of this subject and numerous references can be found
in recent reviews [27,28].
There are many publications in which different

approaches to the gravitational spin Hall effect were
proposed. They can be divided into three main groups.
(i) Adaptation of the Mathisson-Papapertou-Dixon equa-
tions for the motion of massive particles with spin to the
massless case (see e.g., [29–32]); (ii) using the methods of*vfrolov@ualberta.ca
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quantum mechanics, such as Foldy-Wouthuysen transfor-
mation and Berry phases [33]; (iii) spin optics or modified
geometric optics [34–37]. In the latter approach the
standard geometric optics eikonal function is modified
by including into it a specially chosen helicity dependent
correction. This correction contains extra factor ω−1 and
hence is suppressed at very high frequencies. However, at
finite frequency and for travel of polarized rays at large
distances they can modify the ray propagation and become
important. Comprehensive discussion and comparison of
different approaches to the gravitational spin Hall effect can
be found in a recent review [38].
Let us emphasize that development of the high-fre-

quency approximation for propagation of the field with
spin in a curved background has a well-known problem.
For a many-component field there is an ambiguity: one can
make a phase rotation of the multicomponent prefactor
amplitude and compensate this by the change of the phase
function S [39–41]. A similar problem arises in the
application of the WKB approximation to an equation
for a particle with spin moving in an inhomogeneous
magnetic field. Since the spin is proportional to ℏ, in the
WKB limit ℏ → 0 the spin contribution to the motion
formally vanishes [42]. However, in such a version of the
Stern-Gerlach experiment an observer registers a deflection
of particles with different orientation of the spin by fixing
points where the particles struck a detector screen. A key
role in the adaptation of the WKB approximation to such a
case is understanding that besides the length scale l
connected with the inhomogeneity of the magnetic field
there is another length parameter, a distance to the screen L,
which can be much larger than l. To catch hold of this
effect one should first diagonalize the corresponding Pauli
equation, and then “enhance” the spin dependent terms by
including them into the eikonal function [43].
A similar basic idea was used in the spin optics approach

[34,35]. For Maxwell theory it is possible to split the wave
solutions into right- and left-handed circularly polarized
modes. The electromagnetic field with right- and left-hand
polarization can be identified with self- and anti-self-dual
solutions of the Maxwell equations, respectively. In spin
optics, one uses the WKB ansatz for each of these solutions
and does not require that the eikonal functions are the same
for both types of waves. Instead of this, one includes into
the eikonal function the first order high-frequency correc-
tion which is sensitive to the helicity. This method, called
spin optics approximation, was developed in [34,35] for
polarized light propagation in a stationary spacetime.
During some period of time it remained unclear how to
spread this approach to a case when the gravitational field is
not stationary. Recently this problem was solved. This
remarkable breakthrough was achieved in [44]. In the
present paper we present a slightly different approach to
this problem.
We assume that a high-frequency self- or anti-self-dual

solution of the Maxwell equations is associated with the

congruence of null rays which, in a general case, is not
geodesic. In Sec. II we introduce the notion of F-transport
which allows one to determine a null frame associated with
a given set of null rays. In Sec. III we write Maxwell
equations by using their high-frequency decomposition and
obtain a set of truncated equations by keeping zero and first
order terms in this system. We also use the null frames
constructed in Sec. II to derive constraints on the field that
follow from the property of its self- or anti-self-duality. In
Sec. IV we reproduce the results of the standard geometric
optics approximation for the obtained truncated system of
equations. The spin optics approach to the problem of the
high-frequency polarized light propagation in a curved
spacetime is developed in Sec. V. In this section we derive
the corresponding equations of motion for polarized light
rays. These equations determine the acceleration of the
world lines of null rays and hence specify the choice of the
null ray congruence. The ray equations together with
equations for null frame propagation along null rays give
a complete self-consistent set of equations. In Sec. VI we
discuss an effective action for polarized light rays and
compare Lagrangian and Hamiltonian formulations for this
problem. Finally, Sec. VI contains a brief summary of the
obtained results and their discussion. In this paper we use
the signs convention adopted in [8]. In particular, the
metric has the signature ð−;þ;þ;þÞ. In the description
of vectors and tensors, we use both their coordinate and
coordinate-free forms. In the latter case we denote these
objects by boldface letters. For example, a scalar product of
two vectors a and b is ða; bÞ ¼ gμνaμbν. We also denote
a2 ¼ ða; aÞ.

II. NULL TETRADS AND
POLARIZATION TENSORS

A. Null tetrads

Let us consider a congruence of null curves which later
will be identified with trajectories of a massless particle
with the spin. Let l be tangent vectors to these null curves,
and we denote

wμ ¼ lνlμ;ν: ð1Þ

Since l2 ¼ 0 one has

ðl;wÞ ¼ lμwμ ¼ 0: ð2Þ

Let us consider integral lines xμðλÞ of l

dxμðλÞ
dλ

¼ lμ: ð3Þ

We complement the vector field l by three other null
fields n, m, and m̄ and require that the following normali-
zation conditions are satisfied:
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ðl; nÞ ¼ −1; ðm; m̄Þ ¼ 1; ð4Þ

while all other scalar products of these vectors vanish. We
also assume that this frame has a right-handed orientation.
In what follows we shall widely use this (complex) null
tetrad fl;m; m̄;ng.
For a fixed congruence of null rays there exists a

following freedom in the choice of the vectors of the null
tetrad:
(1) l → Al, n → A−1n;
(2) l→l,m→mþal, m̄→m̄þ āl, n→nþāmþam̄þaāl;
(3) m → eiφm, m̄ → e−iφm̄.

Here a is a complex function, and A and φ are two real
functions. The first of these transformations reflects a
freedom of the choice of the parametrization along null
rays. Under this transformation, the vector w changes as
follows:

w → A2wþ A∇lAl: ð5Þ

The vector w is invariant under the transformations 2 and 3.
We demonstrate now how one can reduce the freedom of

the transformations 1–3 and construct a special null frame
associated with a given congruence of null rays. Consider a
null ray xμðλÞ and choose a vector n on this curve such that
at λ ¼ λ0 it obeys the relations

n2jλ0 ¼ 0; ðn; lÞjλ0 ¼ −1: ð6Þ

We define its transport along the ray by the following
equation:

∇ln ¼ ðw; nÞn: ð7Þ

Then one has

d
dλ

n2 ¼ 2ðw; nÞn2; ð8Þ

d
dλ

½ðn; lÞ þ 1� ¼ ðw; nÞ½ðn; lÞ þ 1�: ð9Þ

Both of these equations are of the form dz=dλ ¼ ðw; nÞz. A
solution of such an equation which vanishes at λ0 is
identically zero along the ray. This means that if one
imposes conditions (6) at the initial value λ ¼ λ0, then this
vector n has the property n2 ¼ 0 and ðn; lÞ ¼ −1 valid
everywhere on the ray.
We use this vector to define a following tensor:

Vμ
ν ¼ wμnν − nμwν: ð10Þ

We introduce operator D acting on a tensor field Aμ…
ν…

along the ray by the following relation:

DAμ…
ν…¼∇lA

μ…
ν…þVμ

λA
λ…
ν…þ�� �−Vλ

νA
μ…
λ…þ…: ð11Þ

Here ∇l is a covariant derivative along the vector field l.
The operator D when applied to a product of two tensors
satisfies the Leibniz rule. It is easy to check that Dg ¼ 0
and the scalar product of any two vectors a and b is constant
along the ray provided Da ¼ Db ¼ 0. The operator D may
be considered as a modification of the Fermi derivative
adapted to the case of null curves. We say that a tensor is
F-propagated along the ray if its D-derivative vanishes. In
particular, for a F-propagated vector z one has

∇lz ¼ ðw; zÞn − ðn; zÞw: ð12Þ

By construction the vector l is F-propagated along the ray.
We choose complex null vectors m and m̄ to be

F-transported along the ray and such that at the initial
point of the ray λ0 they obey the relations

ðm; lÞjλ0 ¼ ðm̄; lÞjλ0 ¼ ðm; nÞjλ0 ¼ ðm̄; nÞjλ0 ¼ 0;

ðm;mÞjλ0 ¼ ðm̄; m̄Þjλ0 ¼ 0; ðm; m̄Þjλ0 ¼ 1: ð13Þ

Since F-transport preserves the scalar product, a so-defined
null frame ðl;m; m̄; nÞ obeys the normalization conditions
(4) along the ray and satisfies the equations

∇ln ¼ ðw; nÞn;
∇lm ¼ ðw;mÞn;
∇lm̄ ¼ ðw; m̄Þn: ð14Þ

Let us emphasize that after imposing the F-transport
requirement on the null frame, the freedom 2 and 3 in
its choice is reduced by the conditions ∇la ¼ ∇lφ ¼ 0.
Equations (14) can be further simplified. Namely, one

can always choose the function A in (5) so that ðw; nÞ ¼ 0.
The only ambiguity which is left in the transformation 1 is
A ¼ const along the rays. This condition fixes the choice of
the parameter λ along the ray up to its possible rescaling
λ → A−1λ, where A is constant. In what follows we always
use this parametrization and call it canonical. In the
canonical parametrization the vector n is parallel trans-
ported along the null rays, ∇ln ¼ 0, and the vector w is of
the form

w ¼ −κ̄m − κm̄; κ ¼ −mμlνlμ;ν: ð15Þ

Let us summarize: In the canonical parametrization the
F-transported null tetrad vectors obey the equations

∇ln ¼ 0; ∇lm ¼ −κn; ∇lm̄ ¼ −κ̄n; ð16Þ

and the remaining freedom of the tetrad transformation 1-3
is reduced to such transformations performed on the null
tetrad vectors at some initial moment of time. We call a
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so-defined F-propagated tetrad a null frame associated
with the congruence of null rays.

B. Polarization tensors

We denote by e a unit volume four-form

e ¼ il ∧ m ∧ m̄ ∧ n: ð17Þ

Its coordinate form is eμνλρ ¼ i4!l½μmνm̄λnρ�. If ω is a rank
p-form then by using this tensor one can define a Hodge
dual (4 − p)-form ⋆ω. In particular, if a two-form ω has
coordinates ωμν, then ð⋆ωÞμν ¼ 1

2
eμνλρωλρ.

We introduce the following three two-forms πðaÞ, a ¼ 0,
1, 2 by relations

πð0Þ ¼ m̄∧ n; πð1Þ ¼−ðl ∧ n−m∧ m̄Þ; πð2Þ ¼ l ∧m:

ð18Þ
In the coordinate form the components of these two-forms
are

πð0Þμν ¼ 2m̄½μnν�; πð2Þμν ¼ 2l½μmν�;

πð1Þμν ¼ 2ð−l½μnν� þm½μm̄ν�Þ: ð19Þ

We denote by π̄ðaÞ two-forms obtained from πðaÞ by their
complex conjugation. These forms πðaÞ and π̄ðaÞ obey the
property

⋆πðaÞ ¼ iπðaÞ; ⋆π̄ðaÞ ¼ −iπ̄ðaÞ: ð20Þ

In other words, the forms πðaÞ are self-dual, while π̄ðaÞ are
anti-self-dual. We call these objects polarization tensors.
Let z be a vector, then we denote by πðaÞ · z a vector

with components πðaÞμνzν. Then the action of the polari-
zation tensors on the null-tetrad vectors can be written in
the form

πð0Þ ·

0
BBB@

l

m

m̄

n

1
CCCA ¼

0
BBB@

−m̄
−n
0

0

1
CCCA;

πð1Þ ·

0
BBB@

l

m

m̄

n

1
CCCA ¼

0
BBB@

l

m

−m̄
−n

1
CCCA;

πð2Þ ·

0
BBB@

l

m

m̄

n

1
CCCA ¼

0
BBB@

0

0

l

m

1
CCCA: ð21Þ

We define a contraction a ∘ b of 2 two-forms a and b as

a ∘ b ¼ b ∘ a ¼ 1

2
aμνbμν: ð22Þ

It is easy to check that

π̄ðaÞ ∘ πðbÞ ¼ 0; ð23Þ

πðaÞ ∘ πðbÞ ¼ π̄ðaÞ ∘ π̄ðbÞ ¼ δa0δ
b
2 þ δa2δ

b
0 − 2δa1δ

b
1: ð24Þ

It is convenient to combine πðaÞ and π̄ðaÞ into a unique set of
two-forms πsðaÞ by specifying its components as

πþ1ðaÞ ¼ πðaÞ; π−1ðaÞ ¼ π̄ðaÞ: ð25Þ

We call s ¼ �1 a helicity parameter. The forms πsðaÞ form
a basis in a six-dimensional linear space of two-forms.

III. SELF-DUAL AND ANTI-SELF-DUAL
SOLUTIONS OF MAXWELL EQUATIONS

A. Field equations

In the absence of currents the Maxwell equations for the
electromagnetic field F have the following standard form:

dF ¼ δF ¼ 0; ð26Þ

where a co-derivative δ is defined as δ ¼ ⋆d⋆. We denote

F s ¼ 1

2
½F − isð⋆FÞ�; ð27Þ

where s ¼ �1. In the four-dimensional spacetime with the
Lorentz signature, the Hodge duality operator has the
property ⋆⋆F ¼ −F, so that ⋆F s ¼ isF s. Hence, the field
Fþ1 is self-dual, while F−1 is anti-self-dual.
We consider F s as two independent complex fields and

identify the parameter s with the helicity of the field. These
fields obey the equations

dF ¼ δF ¼ 0: ð28Þ

Using relations (23) one can show that the field F s

obeys the relations

F s ∘ π−sðaÞ ¼ 0; ð29Þ

and it can be presented in the form

F s ¼
X3
a¼1

Φs
aπsðaÞ: ð30Þ

Using relations (24) one gets
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πsðbÞ ∘ F s ¼ Φs
0δ

b
2 þΦs

2δ
b
0 − 2Φs

1δ
b
1: ð31Þ

Hence

Φs
0 ¼ πsð2Þ ∘ F s; Φs

2 ¼ πsð0Þ ∘ F s; ð32Þ

Φs
1 ¼ −

1

2
πsð1Þ ∘ F s: ð33Þ

If F is a self-dual field then its complex components,

Φ0 ¼ F μνlμmν; Φ2 ¼ F μνm̄μnν;

Φ1 ¼
1

2
F μνðlμnν þ m̄μmνÞ; ð34Þ

coincide with the standard complex tetrad components of
the electromagnetic field introduced by Teukolsky in his
paper [45].
We denote by As a complex vector potential such that

F s ¼ dAs; ð35Þ

and use the gauge freedom to impose the Lorentz condition

δAs ¼ 0: ð36Þ

B. High-frequency expansion

We write a complex potential A in the form

A ¼ a expðiSÞ: ð37Þ

To simplify the expressions we skip the helicity index s
both in the amplitude a and in the phase function S. We
restore this parameter in the final results. We assume that
real function S is a “fast changing” phase and write its
gradient as

S;μ ¼ ωpμ: ð38Þ

Since our goal is to construct asymptotic solutions of the
Maxwell equations in the high-frequency approximation,
we assume that the frequencyω is large. In what follows we
shall use 1=ω expansion. In fact, if l is a characteristic scale
involved in the problem (such as the curvature of the wave
front, the size and duration of the radiation beam and the
radius of the spacetime curvature) then the small dimen-
sionless parameter of expansion is ðωlÞ−1.1
The amplitude a is a “slowly changing” complex vector.

The following gauge transformation

ãμ ¼ aμ þΨ;μ; Ψ ¼ 1

ω
ψ expðiSÞ; ð39Þ

preserves the form of (37) and one has

ãμ ¼ aμ þ ipμψ þ 1

ω
ψ ;μ: ð40Þ

The Lorentz gauge condition A ;μ
μ ¼ 0 implies

pμaμ −
i
ω
a ;μ
μ ¼ 0: ð41Þ

The gauge transformation (39) preserves this condition
provided the following relation is valid:

−p2ψ þ i
ω
½2p ;μ

μ ψ þ pμψ ;μ� þ
1

ω2
ψ ;μ
;μ ¼ 0: ð42Þ

The field strength F is

F μν ¼ iωZμνeiS; Zμν ¼ Bμν −
i
ω
Cμν; ð43Þ

Bμν ¼ pμaν − pνaμ; Cμν ¼ aν;μ − aμ;ν: ð44Þ

One can show that

F μν
;ν ¼ −ω2jμeiS; ð45Þ

jμ ¼ Bμνpν −
i
ω
½Bμν

;ν þ Cμνpν� − 1

ω2
Cμν;ν: ð46Þ

The potential (37) satisfies Maxwell equations if jμ ¼ 0.
Finally, let us discuss conditions imposed on the field by

the requirement that it is self- or anti-self-dual. For a self-
dual field these conditions are

Zμνmμnν ¼ 0; for a ¼ 0; ð47Þ

Zμνð−lμnν þ m̄μmνÞ ¼ 0; for a ¼ 1; ð48Þ

Zμνlμm̄ν ¼ 0; for a ¼ 2: ð49Þ

For anti-self-dual fields, similar conditions can be obtained
from these relations if one changes m ↔ m̄ keeping Z
unchanged. In other words, if one found a self-dual solution
of the form (43), then by taking a complex conjugation of
Z in this solution one gets an anti-self-dual solution.
Relations (43)–(44) imply that this operation is equivalent
to change a ↔ ā and ω → −ω in relations (43)–(44). In
particular, this means that when one uses the high-fre-
quency expansion of the field equations, only the terms of
the odd power in ω are sensitive to the state of polarization
of the field.

C. Truncated equations

In what follows we use expansions of different objects in
powers of 1=ω. We use the following notation

1Detailed discussion of the high-frequency (shot wave length)
approximation can be found in [8].
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X¼n X̃ ð50Þ

to indicate that the quantities X and X̃ differ only by terms
of the order Oðω−ðnþ1ÞÞ. Suppose that some relation X ¼ 0
depends on ω and X has a high-frequency expansion

X ¼
X∞
k¼0

Xk

ωk : ð51Þ

If we keep the first (nþ 1) terms in this expansion

XðnÞ ¼
Xn
k¼0

Xk

ωk ; ð52Þ

then XðnÞ¼n 0. We call this relation a nth order truncated
form of the equation X ¼ 0.
Using expressions (44) for Bμν and Cμν, the Lorentz

condition (41) and keeping the terms up to the order 1=ω
one obtains

jμ¼1 − p2aμ þ
i
ω
ð2aμ;νpν þ pp

;νaμÞ: ð53Þ

Hence, the truncated field equations take the form

p2aμ −
2i
ω

�
aμ;νpν þ 1

2
pν

;νaμ

�
¼1 0: ð54Þ

We denote f2 ¼ ða; āÞ and write the complex amplitude
a in the form

aμ ¼ fzμ; ðz; z̄Þ ¼ 1: ð55Þ

Then the equation (54) takes the form

p2zμ −
2i
ω

�
zμ;νpν þ

�
ðq; pÞ þ 1

2
pν
;ν

�
zμ

�
¼1 0; ð56Þ

where qμ ¼ ∇μ ln f. We call this relation a first order
truncated field equation. It is sufficient for our purpose.
However, it is easy to find extra terms of the higher in 1=ω
powers in the Maxwell equations and to obtain a higher
order truncated field equation.
The Lorentz gauge condition (41) written in ff; zg

variables is

ðp; zÞ − i
ω
½ðq; zÞ þ zμ;μ� ¼ 0: ð57Þ

Let us denote

J ¼ 1

2
ðāμjμ þ aμj̄μÞ: ð58Þ

Then one has

J¼1 − f2
�
p2 −

2

ω
bμpμ

�
; ð59Þ

bμ ¼
i
2
ðz̄νzν;μ − zνz̄ν;μÞ: ð60Þ

Let us remind the reader that all of the above results were
obtained for right-handed circularly polarized high-
frequency waves. One can easily repeat the calculations
for the case of left-handed circularly polarized waves.
However, this is not necessary. Instead of this one can use
the prescription described at the end of Sec. III B. In
particular, this means that relation (59) can be used to get a
similar relation for the left circular polarization. It is
sufficient to take its complex conjugation and change
ω → −ω. Since b̄μ ¼ bμ, the only change is the sign of
the second term in the right-hand side of (59). Hence the
field equations jμ ¼ 0 in the both cases, s ¼ �1, imply

p2 −
2s
ω
bμpμ ¼1 0: ð61Þ

We call this relation a dispersion equation.
In order to develop both geometric and spin optics

approximations we use the first order truncated field and
dispersion equations, (56) and (61), and Lorentz condition
(57). We also add to them first order truncated polarization
equations (47)–(49). In this paper we restrict ourselves by
studying high-frequency solutions of the Maxwell equa-
tions in the first order approximation. However, in both
geometric and spin optics approaches one can easily derive
equations in the higher order approximation. Let us also
remark that in order to obtain the first order truncated
polarization equations (47)–(49) it is sufficient to substitute
in them instead of the tensor C its zero order approximation.

IV. GEOMETRIC OPTICS

A starting point of both geometric optics and spin
optics approximations is the same. Namely, one uses the
first order truncated field equations (56), (61) and the
Lorentz gauge condition (57). The difference between
these approaches is in the procedure used for solving
these equations. We describe the spin optics approach
in the next section. In this section we briefly remind the
reader of the main steps of the standard geometric optics
approximation.2

A. Effective Hamiltonian

We start with the first order truncated equation (61).
Equating to zero the lowest order in ω term in this equation
one gets

2Additional details of the standard geometric optics approach
to the Maxwell field propagating in a curved spacetime can be
found in [8].
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p2 ¼ 0: ð62Þ

This equation shows that p is a null vector. It also implies
that

0 ¼ ðpνpνÞμ ¼ 2pνpν;μ ¼ 2pνpμ;ν: ð63Þ

Here we used the property pμ;ν ¼ pν;μ.
Let xμðλÞ be an integral line of pμ:

_xμ ≡ dxμ

dλ
¼ pμ; ð64Þ

then

D2xμ

Dλ2
¼ 0: ð65Þ

In other words, xμ is a null geodesic and λ is an affine
parameter. We identify _x with a tangent vector l of the
congruence of null rays. Since the acceleration parameter
vanishes, κ ¼ 0, the null frame ðl;m; m̄; nÞ associated with
these rays is parallel transported along the rays. This frame
is uniquely defined provided it is fixed at some initial
moment of time.
The above results admit a slightly different but very

useful interpretation. The relation Pμ ¼ S;μ defines
momenta which are canonically conjugated to xμ. Let us
consider an eight dimensional phase space with canonical
coordinates ðxμ; PμÞ and let

Ω ¼ dPμ ∧ dxμ ð66Þ

be a canonical symplectic form in it. As usual, a summation
over the repeated indices is assumed. Let us write relation
(64) in the form

dxμ

dλ
¼ 1

ω
gμνPν: ð67Þ

One can introduce a Hamiltonian

H ¼ 1

2ω
gμνPμPν; ð68Þ

then (67) is identical with the first set of Hamiltonian
equations

dxμ

dλ
¼ ∂H

∂Pμ
: ð69Þ

Using this equation together with the second set of
Hamiltonian equations

dPμ

dλ
¼ −

∂H
∂xμ ð70Þ

one obtains3

D2xμ

Dλ2
¼ 0: ð71Þ

As expected, this equation correctly reproduces (126).
The Lagrangian L of this system is

L ¼ Pμ _xμ −H ¼ ω

2
_x2: ð72Þ

Both the Hamiltonian and the Lagrangian do not depend on
the polarization state and trajectories of massless particles
with spin (photons) in the geometric optics approximation
do not depend on their helicity.

B. Polarization vector and amplitude

Substituting Eq. (62) into (56) one gets

zμ;νpν −
�
ðq; pÞ þ 1

2
pν

;ν

�
zμ ¼0 0: ð73Þ

Multiplying this equation by z̄μ one gets

ðq; pÞ þ 1

2
pν

;ν ¼0 z̄μzμ;νpν: ð74Þ

The quantity in the right-hand side is purely imaginary.
Really

ℜðz̄μzμ;νÞ ¼
1

2
ðz̄μzμ;ν þ zμz̄μ;νÞ ¼

1

2
ðz; z̄Þ;ν ¼ 0: ð75Þ

Thus one has

ðq; pÞ þ 1

2
pν

;ν ¼ 0; ð76Þ

while Eq. (73) gives

zμ;νpν ¼ 0: ð77Þ

The Lorentz condition (57) implies

ðp; zÞ ¼0 0: ð78Þ

We use the following expansions:

f ¼1 f0 þ
1

ω
f1; zμ ¼1 zμ0 þ

1

ω
zμ1: ð79Þ

Since p ¼ l relations (76)–(78) imply

lμz0μ ¼ 0; ð80Þ

3For details see discussion in Sec. VI B.
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lνzμ0 ;ν ¼ 0; ð81Þ

lμf0;μ ¼ −
1

2
lμ;μf0: ð82Þ

This means that the normalized amplitude vector z0 is
parallel transported along the null rays and it is orthogonal
to them. Equation (82) is a standard transport equation
relating the change of the field amplitude with expansion of
the null ray congruence. In what follows we shall use a
slightly different form of this equation. We denote
q0μ ¼ ∇μ lnðf0Þ. Then (82) gives

ðq0; lÞ þ
1

2
lμ;μ ¼ 0: ð83Þ

In the leading order the polarization equation, Eq. (49) is
identically satisfied, while the other two equations, (47) and
(48), give

ðz0;mÞ ¼ ðz0; lÞ ¼ 0: ð84Þ

Hence z0 ¼ c1l þ c2m. Since ðz0; z̄0Þ ¼ 1 one has c2 ¼ eiϕ.
Under gauge transformation (40) with ψ¼0 ψ0 the zero-

order term of the complex amplitude changes as follows:

ã0μ ¼0 a0μ þ iψ0lμ: ð85Þ

Since p2 ¼ 0 the gauge transformation (39) with arbitrary
ψ0 preserves the Lorentz condition. It can be used to put
c1 ¼ 0. The parameter ϕ can be absorbed in a redefinition
of the phase function. Hence, one can put z0 ¼ m.
Collecting all the above results one can write

Aþ1 ¼ f0meiS: ð86Þ

Let us emphasize that both the equation for null rays, (71),
and the transport equations (80)–(82) do not depend on the
frequency ω. This means that in order to obtain an anti-self-
dual solution one can simply change m by m̄ in (86),

A−1 ¼ f0m̄eiS: ð87Þ

Let us emphasize that the phase functions S in both
expressions for A�1 are the same. The fields with
s ¼ þ1 and s ¼ −1 describe right- and left-handed circu-
larly polarized waves, respectively [8].

V. SPIN-OPTICS

A. Effective Hamiltonian

In the spin-optics approximation we use the same ansatz
for the complex potential (37) as earlier. However, we do
not require that the phase functions are the same for both
polarizations. We only assume that their difference is small.
It is also convenient to present the scalar amplitude f in the

form f ¼ expðqÞ. Our starting point for construction of the
spin optics approximation is again a truncated equa-
tion (61). But we proceed differently than in the geometric
optics case. First we add a b2=ω2 term to its left-hand
side. It is clear that this operation does not affect the
truncated first order equation. Next we define an effective
Hamiltonian H by the relation

H ¼ 1

2ω
ðP − sbÞ2: ð88Þ

In Sec. VI B we discuss the Hamiltonian equations for this
Hamiltonian and show that they are equivalent to the
following equations:

_xμ ¼ 1

ω
ðPμ − sbμÞ; ð89Þ

D2xμ

Dλ2
¼ s

ω
kμν _xν; ð90Þ

kμν ¼ bν;μ − bμ;ν: ð91Þ

This system of equations is invariant under the trans-
formation

b → −b; s → −s; ω → −ω; λ → −λ: ð92Þ

Since k is antisymmetric, one has dð_xÞ2=dλ ¼ 0. This
means that if _x is null at some moment of time it remains
null along the whole ray. The value of H restricted to such
rays is zero. Equation (90) shows that if k ≠ 0 these null
rays are not geodesics. For the congruence of these
null rays we write lμ ¼ _xμ and introduce the associated
null frame as it was described in Sec. II. The vectors of this
frame are F-transported along the null rays and obey
equations (16).

B. Polarization vector and amplitude

We consider first the case of right-handed circular
polarization waves. We use relation p ¼ l þ 1

ω b and write
q and z in the form

q¼1 q0 þ
1

ω
q1; z¼1 mþ 1

ω
z1: ð93Þ

It is easy to see that for this choice all zero order
truncated equations (61), (56), (57) and polarization equa-
tions (47)–(49) are satisfied. Really, the dispersion relation

implies that p2 ¼0 0, so that the leading zero order term in
(56) identically vanishes. The same is true for the Lorentz

condition (57) since ðp; zÞ ¼0 0. As for zero order truncated
polarization equations (47)–(49), it is sufficient to omit the
terms containing C in them and to use for B the following
expression:
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Bμν ¼0 lμmν − lνmμ: ð94Þ

This means that in the zero order approximation B
coincides with the polarization tensor πð2Þ determined by

Eq. (18), and hence B ∘ π̄ðaÞ¼0 0.
We consider now the first order truncated equations. Let

us substitute the truncated dispersion equation (61) into
(56). The leading term proportional to ω0 vanishes, while
the first order term gives

mμ;νlν þ ½ðq0; lÞ þ
1

2
lμ;μ þ iðl; b0Þ�mμ ¼0 0; ð95Þ

where

b0μ ¼
i
2
ðm̄νmν;μ −mνm̄ν;μÞ: ð96Þ

Multiplying this equation by m̄μ and using the property
ℜðm̄μmμ;νÞ ¼ 0 one gets a relation

ðq0; lÞ þ
1

2
lμ;μ ¼ 0; ð97Þ

which is the same as (83). This is a transport equation
which determines the evolution of the scalar amplitude f0
along the rays. After substituting (97) into (95) one obtains
the following relation:

lνmμ;ν þ iðl; b0Þmμ ¼0 0: ð98Þ

This relation is valid because lνmμ;ν¼0 0. The last equation
directly follows from (15). The above relations show that
the first order truncated field equations are satisfied if the
dispersion relation is valid, provided the scalar amplitude of
the field obeys the transport equation (97).
It is easy to check that in the first order the Lorentz

condition (57) is satisfied. Collecting the terms propor-
tional to ω−1 in this relation one gets

ðz1; lÞ þ ðb0;mÞ − i½ðq0;mÞ þmμ
;μ� ¼0 0: ð99Þ

One can simplify this relation using the property

ðb0;mÞ − imμ
;μ ¼0 ilμnνmμ;ν: ð100Þ

Hence (99) takes the form

ðz1; lÞ ¼ i½ðq0;mÞ − lμnνmμ;ν�: ð101Þ

Let us consider now the truncated polarization equa-
tions (47)–(49). As we already mentioned, these equations
are identically valid in the zero order approximation.
Collecting the first order terms one obtains the following
relations

Q ∘ π̄ðaÞ ¼ 0; ð102Þ

where

Qμν ¼ ðbμmν − bνmμÞ þ ðlμz1ν − lνz1μÞ
− iðmν;μ −mμ;νÞ − iðqμmν − qνmμÞ: ð103Þ

Rather long but straightforward calculations show that for
a ¼ 1 and a ¼ 2 the relations (102) are identically satis-
fied, while for a ¼ 0 one obtains

ðz1;mÞ ¼0 imμnνmν;μ: ð104Þ

Let us summarize. The first order truncated equations are
satisfied if the scalar amplitude of the wave obeys the same
transport equation (97) as in the geometric optics case,
while the normalized polarization vector z has the form (93)
with a correction term z1 satisfying Eqs. (101) and (104).
These results can be adapted to the left-hand circular
polarization case, s ¼ −1. In this case one should put

z−1 ¼ m̄ −
1

ω
z̄1: ð105Þ

C. Equations of motion

The equation of motion for circularly polarized rays (90)
can be further simplified. Let us notice that the right-hand
side of this equations contains the factor ω−1. Hence
keeping the same order one can put there z ¼ m, so that

bμ ¼ im̄αmα;μ; ð106Þ

and one gets

kμν ¼ bν;μ − bμ;ν ¼ im̄αðmα;νμ −mα;μνÞ
þ iðm̄α

;μmα;ν − m̄α
;νmα;μÞ: ð107Þ

The term in the first brackets in the right-hand side contains
the commutator of the covariant derivatives and it is
proportional to the curvature

mα;νμ −mα;μν ¼ −Rμνβαmβ: ð108Þ

Thus we have

kμν ¼ −iRμναβmαm̄β þ iðm̄α
;μmα;ν − m̄α

;νmα;μÞ: ð109Þ

The right-hand side of (90) contains the factor kμνlν. For the
null frame F-transported along the null rays one has

lνmμ;ν ¼0 0, so that the term in the brackets in (109) can
be neglected. Finally, the polarized ray equation (90) takes
the following form:
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D2xμ

Dλ2
¼ −

is
ω

dxν

dλ
Rμ

ναβm
αm̄β: ð110Þ

The left-hand side of this equation is nothing but the null
ray acceleration wμ. Using relation (15) one can find the
acceleration parameter κ

κ ¼ −ðw;mÞ ¼ −
is
ω
Rμναβlμmνmαm̄β: ð111Þ

Let us remind the reader that in the derivation of the ray
equation (110) we used the special (F-transported) frame
associated with the congruence of null rays, so that the
following set of equations should also be satisfied (16):

∇ln ¼ 0; ∇lm ¼ −κn; ∇lm̄ ¼ −κ̄n; ð112Þ

This set of equations guarantees that the proper normali-
zation conditions for the null tetrad vectors are satisfied,
provided they are valid at the initial moment. By solving the
system of Eqs. (110)–(112), one obtains trajectories of the
polarized rays. Let us notice that since the rotation
m → expðiφÞm preserves a two-form m ∧ m̄, this trans-
formation also preserves the form of Eq. (110). However,
this equation is not invariant under the transformation
m → mþ al (see Sec. II A).
In conclusion of this section, let us make the following

remark. Let us denote by l the characteristic length of the
curvature radius R ∼ 1=l2. Then one can use this parameter
l to introduce dimensionless coordinates x̃μ, affine param-
eter λ̃, and the curvature R̃ as follows:

x̃μ ¼ xμ=l; λ̃ ¼ λ=l; R̃ ¼ l2R: ð113Þ

Then Eq. (110) written in these dimensionless variables
takes the form

D2x̃μ

Dλ̃2
¼ −isε

dx̃ν

dλ̃
R̃μ

ναβm
αm̄β: ð114Þ

Here ε ¼ ðωlÞ−1. This is a dimensionless ratio of the
wavelength and the characteristic scale of the problem l.
Thus the deflection of the rays from null geodesics is small,
as is expected.

VI. EFFECTIVE ACTION

A. Action and Euler-Lagrange equations

Let l be a null ray congruence and m and m̄ be two
complex null vectors which are properly normalized and
F-transported along the rays. Let us consider the following
action:

S ¼ 1

2
ω

Z
η _x2dλþ s

Z
ðb; _xÞdλ: ð115Þ

This is a relativistic version of the action discussed in [46].
The one-form b which enters the action (115) is

bμ ¼
i
2
ðm̄νmν;μ −mνm̄ν;μÞ: ð116Þ

The normalization condition ðm; m̄Þ ¼ 1 allows one to
write this quantity in the following equivalent form:

bμ ¼ im̄νmν;μ: ð117Þ

This action is a functional of the world line xμðλÞ and a
Lagrange multiplier ηðλÞ. As earlier we use the notations

_xα ¼ dxα

dλ
; _x2 ¼ gμν _xμ _xν; ðb; _xÞ ¼ bμ _xμ: ð118Þ

The action (115) is invariant under reparametrization
λ → λ0 provided η transforms as η0 ¼ dλ0

dλ η.
A variation of this action with respect to the Lagrange

multiplier η gives

_x2 ¼ 0: ð119Þ

This condition guarantees that the world lines xμðλÞ, which
enter as the argument of the action, obey a restriction (119)
and hence are null curves.
To obtain equations which arise as a result of variation of

the world line xμðλÞ it is convenient to use the method of
covariant variations which is described in [47]. Let us
perform a local variation of the world line xα → xα þ δxα.
If ϕðxÞ is a scalar field then

δϕðxÞ ¼ ϕ;αδxα: ð120Þ

One also has _ϕ ¼ ϕ;α _xα.
Let v be a tensor field and vðxðλÞÞ is its restriction on the

ray xαðλÞ. Following DeWitt [47] and using his notations
we define a covariant variation of tensor v as follows:

δ̄v ¼ v;αδxα: ð121Þ

In particular, the covariant variation of the metric tensor
vanishes, δ̄g ¼ 0. Covariant variations obey the Leibniz
rule when applied to factors in a product. Using the relation

δ̄ð_x2Þ ¼ 2_xα
Dδxα

Dλ
; ð122Þ

one gets

Z
ηδ̄ð_x2Þdλ ¼ −2

Z
D
Dλ

�
η
Dxα
Dλ

�
δxαdλ: ð123Þ

Let us calculate the covariant variation of the second
term of the action (115):
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δ̄

Z
bμ _xμdλ ¼

Z
½ðδ̄bμÞ_xμ þ bαδ̄ð_xαÞ�dλ;

¼
Z

½bμ;α − bα;μ�_xμδxαdλ

¼
Z

kαμ _xμδxαdλ: ð124Þ

Here we used the properties

δ̄ð_xαÞ ¼ dδxα

dλ
;

d
dλ

bα ¼ bα;μ _xμ ð125Þ

and performed an integration by parts. Combining these
results one obtains the equation

D
Dλ

�
η
Dxμ

Dλ

�
¼ s

ω
kμν _xν: ð126Þ

Using the freedom in the choice of the parameter λ, we can
put η ¼ 1. Then λ becomes the canonical parameter and
Eq. (126) coincides with (90).

B. Hamiltonian equations

The Hamiltonian is defined as

H ¼ _xμPμ − L; ð127Þ

where

Pμ ¼
∂L
∂ _xμ ¼ ω_xμ þ sbμ: ð128Þ

Thus one has

H ¼ 1

2ω
ðP − sbÞ2 ≡ 1

2ω
gαβðPα − sbαÞðPβ − sbβÞ: ð129Þ

The Hamiltonian equations are of the form

_xμ ¼ ∂H
∂Pμ

¼ 1

ω
gμνðPν − sbνÞ; ð130Þ

_Pμ ¼ −
∂H
∂xμ ¼

s
ω
ðPν − sbνÞ ∂bν∂xμ

−
1

2ω

∂gαβ
∂xμ ðPα − sbαÞðPβ − sbβÞ: ð131Þ

Here _ameans a derivative of awith respect to the parameter
λ, _a ¼ da=dλ. Let us demonstrate that these equations
reproduce the Euler-Lagrange equations (90). Substituting
expression (128) for P into (131) one gets the following
relation:

d
dλ

ðωgμν _xν þ sbμÞ ¼
ω

2

∂gαβ
∂xμ _xα _xβ þ s

∂bν
∂xμ _x

ν: ð132Þ

To obtain this relation we used the equality

∂gαβ
∂xμ ¼ −gαλgβρ

∂gαρ
∂xμ : ð133Þ

Let us note that

dgμν
dλ

¼ ∂gμν
∂xα _xα;

dbμ
dλ

¼ ∂bμ
∂xα _x

α: ð134Þ

Using these relations and collecting terms with factors ω
and s in (132) one gets

ωgμν

�
d_xν

dλ
þ Γν

αβ _x
α _xβ

�
¼ skμν _xν; ð135Þ

where

Γν
αβ ¼

1

2
gνγðgαγ;β þ gβγ;α − gαβ;γÞ: ð136Þ

Equation (135) can be written in the form

D2xμ

Dλ2
¼ s

ω
kμν _xν; ð137Þ

kμν ¼ bν;μ − bμ;ν: ð138Þ

It is easy to see that this equation correctly reproduces
the polarized rays equation (90) with k defined
in (109).
The phase function SðxÞ which enters the field ansatz

(37) can be found as a solution of the Hamilton-Jacobi
equation

Hð∇S; xÞ ¼ 1

2ω
gμνðS;μ − sbμÞðS;ν − sbνÞ ¼ 0: ð139Þ

The above described results can be presented in a slightly
different form. Let us introduce instead of the canonical
momenta Pμ a generalized momenta

Πμ ¼ Pμ − sbμ; ð140Þ

and define new Poisson brackets as

fxμ; xνg ¼ 0; fxμ; Pνg ¼ δμν ; fΠμ;Πμg ¼ skμν:

ð141Þ

Then it is possible to show that the Hamiltonian
equations for

H ¼ 1

ω
gμνΠμΠν ð142Þ
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with a modified symplectic form defined by rela-
tions (141) are equivalent to the original Hamiltonian
equations (130)–(131).4

C. Initial conditions

In order to solve the system of equations (110)–(112) for
polarized null rays, one needs to complement this system
with initial conditions, that is to make a choice of the null
frame ðl;m; m̄; nÞ at some initial moment of time. Let us
discuss this point.
We denote by Σ a spacelike surface and let u be a

timelike unit vector orthogonal to it. In the vicinity of Σ we
introduce synchronous (Gaussian normal) coordinates
ðτ; yiÞ in which τ ¼ 0 is an equation of Σ and the metric
is of the form

ds2 ¼ −dτ2 þ gijðτ; yiÞdyidyj; i; j ¼ 1; 2; 3: ð143Þ

We denote by hijðyiÞ ¼ gijðτ ¼ 0; yiÞ a 3-metric on surface
Σ induced by its embedding into the four-dimensional
spacetime.
Our ansatz for a high-frequency approximate solution for

a polarized beam of light is

A ¼ fm expðiSÞ: ð144Þ

Here f and S are functions of coordinates xμ in the four-
dimensional spacetime. Let us denote by f0 and S0 the
value of these quantities on Σ

f0ðyiÞ ¼ fðτ ¼ 0; yiÞ; S0ðyiÞ ¼ Sðτ ¼ 0; yiÞ: ð145Þ

For a beam of light which has finite size and finite duration
in time, the function f0 vanishes outside some finite
domain on Σ. We focus on the initial conditions which
have this property.
Equation S0 ¼ C with some constant C defines a two-

dimensional surface on Σ which can be identified with a
wave front for the light beam (see e.g., discussion in [8]). A
set of thesewave fronts for different values ofC foliatesΣ. A
three vector P⃗, Pi ¼ S0;i, is orthogonal to the wave front. It
coincides with the direction of the wave front propagation.
For a local observer uwe define a two-dimensional plane

which is orthogonal to both u and P⃗. Denote by e1 and e2
two unit mutually orthogonal vectors tangent to this plane
such that the set of vectors ðe1; e2; P⃗Þ is right-handed.
Denote m0 ¼ ðe1 þ ie2Þ=

ffiffiffi
2

p
. We assume that m0ðyiÞ

coincides with the initial value of the normalized polari-
zation vector m on Σ, that is

mμjΣ ¼ ð0; m0
i Þ: ð146Þ

The vector b is defined as

bμ ¼ im̄νmμ;μ ¼ im̄νðmν;μ − ΓνμρmρÞ; ð147Þ

where Γνμρ are four-dimensional Christoffel symbols for
the metric gμν. Since the time component of m vanishes at
Σ, it is easy to check that the spatial components of the
vector b on Σ can be written in the form

bi ¼ im̄jðmj;i − γkijmkÞ; ð148Þ

where

γkij ¼
1

2

�∂hik
∂yj þ ∂hkj

∂yi −
∂hij
∂yk

�
ð149Þ

are three-dimensional Christoffel symbols calculated for
the metric h.
Let us denote

νμ ¼ ð0; νiÞ; νi ¼ S0;i þ sbi; ð150Þ

lμ ¼ uμ þ
1

ðν2Þ1=2 νμ; nμ ¼ uμ −
1

2
lμ: ð151Þ

The four-dimensional vectors l and n are null and obey the
condition ðl; nÞ ¼ −1. They, as well as the complex null
vectorsm and m̄, are defined on Σ. Thus for a given value of
the phase function S0 on Σ we constructed a null frame on
this initial surface. We use this choice as the initial
conditions for the set of equations (110), (112). We also
choose the canonical parameter λ for the null ray to vanish
at the initial time (on Σ). Since S;μ ¼ ωlμ þ sbμ one has

ω ¼ −uμS;μ: ð152Þ

That is, the parameter ω is nothing but the frequency of the
wave as measured by the observer u at the initial moment of
time. Let us remind the reader that the canonical parameter
λ is defined up to its rescaling λ → Cλ where C ¼ const
along the ray. The condition (152) fixes this ambiguity.
There is still freedom connected with an ambiguity of

choice of the vector m at the initial moment of time,
mμ → eiφðyiÞmμ. This transformation generates the follow-
ing change of three-vector bi → bi − φ;i, and it can be
absorbed in the redefinition of the initial phase of the beam
S0 → S0 þ sφ. As we already mentioned, Eq. (110) is
invariant under this transformation.
Let us finally find the phase function SðxμÞ which enters

the high-frequency field ansatz (37). One has

dS
dλ

≡ dSðxμðλÞÞ
dλ

¼ S;μ _xμ: ð153Þ4For discussion of this subject and further references see
e.g., [48,49].

VALERI P. FROLOV PHYS. REV. D 102, 084013 (2020)

084013-12



Since S;μ ¼ Pμ one can use (128) and write

dS
dλ

¼ ω_x2 þ sðb; _xÞ: ð154Þ

Along the null ray _x2 ¼ 0. Using the equations ofF-transport
(16) one can also conclude that lμm̄νmν;μ ¼ 0, so that the
second term in the right-hand side of (154) vanishes as well.
ThusdS=dλ ¼ 0. Thismeans that the phase function SðxμÞ is
constant along null ray trajectories. By solving the ray
equations one can find coordinates xμ of a point on the
trajectory which starts at a point yi on Σ and reaches xμ at the
value of the canonical parameter equal to λ, xμ ¼ xμðλ; yiÞ.
Taking the inverse of these relations one gets

λ ¼ λðxμÞ; yi ¼ yiðxμÞ: ð155Þ

Since S is constant along the rays one obtains

SðxμÞ ¼ S0ðyiðxμÞÞ: ð156Þ

This means that after the integration of the polarized ray
equations one can restore the phase function in the field
ansatz (37) by using its initial value S0, and hence to obtain
a required high-frequency approximate solution of the
Maxwell equations in a curved spacetime.

VII. DISCUSSION

Let us summarize the obtained results. In order to describe
propagation of a high-frequency monochromatic beam of
circularly polarized light in a curved spacetime, one needs
first to find a solution of the set of ordinary differential
equations (110)–(112). A choice of a beam is specified by
imposing initial conditions on the null rays at some moment
of time. After fixing a null frame associated with this beam at
the initial time its propagation along the null rays is
determined by Eq. (112). Equation (110) shows that in the
presence of curvature the motion of a circularly polarized
photons is nongeodesic. A trajectory of such a photon
depends both on its helicity and frequency. A linearly
polarized light can be presented as a superposition of the
right- and left-handed circularly polarized states with equal
amplitudes. This means that a beam of light which is initially
linearly polarized during its propagation in the gravitational
field can split into two spatially separated circularly polarized
beams with the opposite states of the helicity.
Another consequence of Eq. (110) is the following.

Suppose a distant observer registers time when a burst of
a circularly polarized light emitted at some point reaches the
point of the observation. In the limit ω → ∞ the motion of
such photons is geodesic. However, if the frequency ω is
finite this is not anymore true. At the same time polarized

photons still propagate with the speed of light. It is well
known that it takes longer time for such photons to reach the
point of observation. This statement is known as a gener-
alized Fermat principle [50–53]. This effect of a time delay
for circularly polarized photons in a gravitational field is
another important consequence of the spin optics equa-
tion (110). Let us emphasize that this time delay depends
bothon their frequency andhelicity. This opens an interesting
principal opportunity for the observation of this effect.
Equation (110) is obtained in the spin optics approxi-

mation for the propagation of the high-frequency electro-
magnetic waves in the curved spacetime so that the helicity
parameter s which enters it has values �1. However, the
form of this equation suggests that it should be valid for
other massless fields with spin, in particular, for propaga-
tion of the gravitational waves. It is interesting to develop
the spin optics approach to this case. As we mentioned in
the Introduction there are several different approaches for
studying the motion of massless particles with spin in a
curved spacetime. It will be interesting to compare the spin-
optics approximation developed in this paper with them. In
particular, it is interesting to find out how different are the
results for the propagation of the massless particle with spin
in the Robertson-Walker expanding universe in the
Souriau-Saturnini formalism [29,30] obtained in [54] and
in the spin optics. It is also interesting to apply the spin-
optics formalism to the polarized photon scattering by a
rotating black hole and compare the results with [34,35].
It should be emphasized that we often refer to spin optics

in application to the polarized light propagation. But
certainly this approach is applicable to all kinds of the
electromagnetic waves including radio waves. The only
limitation is that the corresponding wavelength is much
smaller than the characteristic length scale of the problem.
It is interesting to search for possible observable polariza-
tion depended effects for electromagnetic and gravitational
waves propagation in the cosmological and black hole
backgrounds. In particular, it is well known that geodesic
equations in the Kerr geometry are completely integrable.
Is the same property valid for the polarized light equa-
tion (110)? If the presence of the curvature violates the
complete integrability of this equation then the motion of
polarized photons in the Kerr geometry may become
chaotic. In particular, this may affect the properties of a
shadow of black holes.
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