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For an ordinary charged system, it has been shown that by using the “complexity equals action” (CA)
conjecture, the late-time growth rate of the holographic complexity is given by a difference between the
value of ΦHQþΩHJ on the inner and outer horizons. In this paper, we study the influence of the chiral
anomaly on the complexity of the boundary quantum system. To be specific, we evaluate the complexity
equals action holographic complexity of the charged supersymmetric black holes whose bulk action is
modified by an additional Chern-Simons term of the electromagnetic fields. As a result, the late-time
growth rate of the complexity will be corrected by some additional terms on the inner and outer horizons
rather than the ordinary charged black holes. Our work implies that the late-time growth rate of the
complexity can carry the information of the chiral anomaly for the boundary system.
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I. INTRODUCTION

In recent years, there has been a growing interest in
the idea that applies the quantum information theory into
the gravitational theory in the context of the AdS=CFT
correspondence. One of the most famous topics in this
direction is the holographic entanglement entropy.
However, it has been claimed that the holographic entan-
glement entropy is not enough to describe the degrees of
freedom inside the horizon of the black hole, where the
geometry becomes nonstationary. As a result, the quantum
circuit complexity of the boundary quantum system, which
is defined by the minimal number of elementary gates
required to construct a target state for a referent state, has
been proposed to describe the information inside the black
hole horizon [1,2]. From the holographic viewpoint, Brown
et al. suggested that the circuit complexity of the boundary
quantum system is given by some classical quantities in the
bulk gravitational system, which is called “holographic
complexity.” Then, there are two main conjectures which
are proposed to construct this duality. The first one is the
“complexity equals volume” (CV) conjecture [2,3] and
the second one is the “complexity equals action” (CA)
conjecture [4,5]. These conjectures have attracted a

large number of researchers to study both holographic
complexity and circuit complexity in quantum field
theory [6–68].
In the present work, we only consider the CA conjecture,

which claims that the circuit complexity of the quantum
state jψðtL; tRÞi in the boundary system is given by the on-
shell bulk gravitational action IWDW within the Wheeler-
DeWitt (WDW) patch, which is enclosed by the past and
future light sheets sent into the bulk spacetime from the
time slices tL and tR, i.e., we have

CAðjψðtL; tRÞiÞ≡ IWDW

πℏ
: ð1Þ

As argued in Ref. [4], there is a bound of the complexity
growth rate at the late times

dC
dt

≤
2M
πℏ

; ð2Þ

which is thought as the Lloyd’s bound of the boundary
quantum system from the viewpoint of the AdS=CFT
correspondence [69].
For the rotating and charged black holes with multiple

horizons, a series of works [7–13] has shown that the late-
time CA complexity growth rate can be expressed as

lim
t→∞

dCA

dt
¼ 1

πℏ
½ðM −ΦðþÞ

H Q −ΩðþÞ
H JÞ

− ðM −Φð−Þ
H Q −Ωð−Þ

H JÞ�; ð3Þ

where Q and J are the electric charge and angular

momentum of the black holes, Ωð�Þ
H and Φð�Þ

H are the
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angular velocity associated with the inner and outer
horizons, respectively, and the index fð�Þg presents the
quantities evaluated at the “outer” or “inner” horizon.
However, all of the above results are obtained in the
ordinary charged boundary system. How will things look
when we consider an anomalous quantum system? How
will be know whether the complexity can carry the
information of the anomaly for the boundary system? In
this paper, we would like to consider the influence of the
chiral anomaly on the complexity. In order to make the
boundary system chiral anomaly, it is convenient to
introduce an additional Chern-Simons term of the electro-
magnetic field to the bulk action from the perspective of the
AdS=CFT correspondence [70]. Then, based on the inflow
mechanism, the gauge invariance in the bulk gravitational
theory will cause the boundary quantum system chiral
anomaly [70]. Therefore, to study the complexity of the
boundary chiral system from the viewpoint of holography,
we need a black hole solution in the Einstein-Maxwell-
Chern-Simons theory. For simplicity, in this paper, we only
consider the minimal gauged five-dimensional supergrav-
ity, which is a special case of the Einstein-Maxwell-Chern-
Simons theory. The charged rotating black hole solutions in
this theory were obtained in [71–74].
The remaining of this paper is organized as follows. In

Sec. II, we first review the geometry in the charged
supersymmetric black holes and enumerate some basic
thermodynamical quantities. In Sec. III, we evaluate the
time dependence and the late-time result of the complexity
growth rate using the CA conjecture. Finally, the con-
clusion and discussion are presented in Sec. IV.

II. GEOMETRY OF THE FIVE-DIMENSIONAL
CHARGED SUPERSYMMETRIC BLACK HOLES

In this paper, we focus on the five-dimensional minimal
gauge supergravity with the bulk action

Ibulk ¼
Z
M
ϵ

�
Rþ 12

L2
−
1

4
F
�

þ 1

3
ffiffiffi
3

p
Z
M
F ∧ F ∧ A; ð4Þ

where F ¼ dA is the electromagnetic strength tensor, R is
the Ricci Scalar, ϵ is the volume element of the metric gab,
L is the cosmological radius, and we denote F ¼ FabFab.
Varying the action, the equations of motion read

Rab −
1

2
Rgab −

6

L2
gab ¼

1

2

�
Fa

cFbc −
gab
4

F
�
;

∇aFab ¼ 1

4
ffiffiffi
3

p ϵbcdefFcdFef: ð5Þ

Generally, the black hole solutions in this gravitational
theory carry two angular momenta. For simplicity, in this

following, we only focus on the special case which has two
equal angular momenta. The solution is given by [72]

ds2 ¼ −
f
h
dt2 þ dr2

f
þ r2

4
ðσ21 þ σ22Þ þ

r2h
4

ðσ3 −WdtÞ2;

A ¼ −
ffiffiffi
3

p
q

r2

�
dt −

j
2
σ3

�
; ð6Þ

in which σ1, σ2, σ3 are the usual left-invariant one-fore of
the three-sphere and they are given by

σ1 ¼ − sinψdθ þ cosψ sin θdϕ;

σ2 ¼ cosψdθ þ sinψ sin θdϕ;

σ3 ¼ dψ þ cos θdϕ; ð7Þ

and

f ¼ 1þ r2

L2
−
2mð1 − ηÞ

r2
þ q2

r4

�
1 −

j2

L2
þ 2L2mχ

q2

�
;

W ¼ 2j½ð2m − qÞr2 − q2�
r6h

;

h ¼ 1 −
j2q2

r6
þ 2j2ðm − qÞ

r4
ð8Þ

with the quantity

η ¼ j2ðm − qÞ
mL2

: ð9Þ

The electric charge and angular momenta of the black hole
are defined by

Q ¼
Z
S∞

�
⋆F −

1ffiffiffi
3

p F ∧ A

�
; J ¼

Z
S∞

⋆dφ; ð10Þ

where

φa ¼
� ∂
∂ψ

�
a

ð11Þ

is the axial Killing vector field and S∞ is a three-sphere at
asymptotic infinity. For the charged supersymmetric black
hole solution in Eq. (6), the energy, electric charge, and
angular momentum are given by

M ¼ 3Ω3m
4

�
1þ η

3

�
;

Q ¼
ffiffiffi
3

p
Ω3q
4

;

J ¼ Ω3jð2m − qÞ
4

; ð12Þ

in which Ω3 ¼ 16π2 is the volume of the unit three-sphere
with the line element
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dΩ2
3 ¼ dθ2 þ sin2 θdϕ2 þ cos2 θdψ2: ð13Þ

As mentioned in the Introduction, in the present work,
we only consider the spacetime solution which describes a
black hole with two Killing horizons. The inner and outer
horizon is determined by fðr�Þ ¼ 0. From the line element
of this solution, we can see that if there are some regions
outside the horizon such that hðrÞ ≤ 0, there will exist some
naked closed timelike curves lying outside the horizon.
Then, the causality of this spacetime will be destroyed.
Moreover, if hðrÞ < 0 between the inner and outer horizon,
the sign of the metric will become ð−;−;−;þ;þÞ, which is
unphysical and cannot be used to describe a spacetime
geometry. Taking these into account, in the following, we
only focus on the black hole geometry where hðrÞ > 0
outside the inner horizon. In this case, the Killing vector
fields which generates the inner and outer horizon are
given by

kað�Þ ¼
� ∂
∂t
�

a
þ Ωð�Þ

H

� ∂
∂ψ

�
a

ð14Þ

in which Ωð�Þ
H ¼ Wðr�Þ presents the angular velocities of

the inner and outer horizons. The corresponding temper-
ature, entropy, and electric potential are given by

Sð�Þ ¼ Ω3πr3�
ffiffiffiffiffiffiffiffiffiffiffiffi
hðr�Þ

p
2

;

Tð�Þ ¼ f0ðr�Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffi
hðr�Þ

p ; Φð�Þ
H ¼

ffiffiffi
3

p
qð2 − aΩð�Þ

H Þ
2r2�

: ð15Þ

III. COMPLEXITY GROWTH RATE IN CA
CONJECTURE

In this section, we would like to evaluate the growth rate
of the holographic complexity for the above charged
supersymmetric black holes based on the CA conjecture.
That is to say, we need to evaluate the on-shell action within
the WDW patch. As suggested by Lehner et al. in [6], the
total on-shell action should include not only the bulk action
but the surface terms, joint terms, and counterterms as well.
Here the surface terms and joint terms are introduced to
make the variational principle well posed when the bulk
region has a nonsmooth boundary. The counterterms are
added to make the total action invariant under the repar-
ametrization of the null generator on the null segment.
According to [6], the total action can be expressed as

I ¼ Ibulk þ 2

Z
B
d4x

ffiffiffiffiffiffi
jhj

p
K � 2

Z
S
d3θ

ffiffiffi
σ

p
η

þ 2

Z
N
dλd3θ

ffiffiffi
γ

p
κ þ 2

Z
N
dλd3θ

ffiffiffi
γ

p
Θ ln ðlctΘÞ; ð16Þ

where B and N are the non-null and null segments of the
boundary ∂M separately, and S is a three-dimensional joint

of the nonsmooth boundary. Here, hab and K are the
induced metric and the trace of the extrinsic curvature on
the non-null surface B, η is a transformation parameter on
the joint S, γab is the induced metric on the cross section of
the null segment N, λ is the parameter of the null generator
ka on the null segment, the parameter κ is given by
ka∇akb ¼ κkb and it measures the failure of λ to be an
affine parameter, Θ ¼ ∇aka is the expansion scalar of the
null generator, and lct is some arbitrary constant parameter.
In Fig. 1, we show the change of the WDW patch in the

charged supersymmetric black holes which has two Killing
horizons. Considering that the spacetime is invariant under
the shift transformation tR → tR − δt, tL → tL þ δt, with-
out loss of generality, we fix the left boundary time tL ¼ 0
and only vary the right boundary time tR ¼ t of the WDW
patch. Since we only focus on the growth rate of the action
within the WDW patch, we can neglect the higher-order
term OðδtÞ of δt. From Fig. 1, we can see that the bulk

region δMð�Þ
m can be generated by the horizon Killing

vector kað�Þ through the null segment Nð�Þ
m under the first-

order approximation of δt (Generally, it can be generated by
the Killing vector kað�Þ þ Cφa with any constant C because

the null segment Nð�Þ
m is invariant under the axial trans-

formation). Moreover, we shall choose λ to be the affine
parameter of the null generators. As a result, the surface
term vanishes on all null segments. With these in mind, the
change of the total action is given by

δIWDW ¼ I
δMð−Þ

m
− I

δMðþÞ
m

þ δI
Sð−Þm

− δI
SðþÞ
m

þ δIct: ð17Þ

A. Bulk contributions

We start by evaluating the contributions from the bulk
action in the region δMð�Þ

m . Because the calculations are

same for δMð−Þ
m and δMðþÞ

m , we will neglect the index (�)
for all the quantities. From the equations of motion, we can
further obtain

R ¼ 1

12
F −

20

L2
;

Rab ¼
1

2
Fa

cFbc − gab

�
F
12

þ 4

L2

�
: ð18Þ

Then, the bulk contribution from the region δMð�Þ
m gives

IδMm
¼ −

�
8

L2
þ F

6

�Z
δM

ffiffiffiffiffiffi
−g

p
d5xþ 1

3
ffiffiffi
3

p
Z
δM

F ∧ F ∧ A

¼ −δt
�
8

L2
þ F

6

�Z
N
⋆ξþ δt

3
ffiffiffi
3

p
Z
N
ξ · ðF ∧ F ∧ AÞ:

ð19Þ
Considering the facts that ka is a Killing vector and the sum
of cyclic permutations of the last three indices in Ra

bcd
vanishes, we have the following identity:
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∇a∇akb ¼ −Rb
aka

¼
�
F
12

þ 4

L2

�
kb −

1

2
kaFacFbc: ð20Þ

For the second term, we have

kaFacFbc ¼ kaðdAÞacFbc

¼ LkAcFbc þ∇cΦFbc

¼ −∇aðΦFabÞ þΦ∇aFab

¼ −∇aðΦFabÞ þ Φ
4

ffiffiffi
3

p ϵbcdefFcdFed; ð21Þ

where we have denoted

Φð�Þ ¼ −Aaka�: ð22Þ
Then, we can get

2∇a∇akb¼
�
F
6
þ 8

L2

�
kbþ∇aðΦFabÞ− Φ

4
ffiffiffi
3

p ϵbcdefFcdFed:

ð23Þ
Using the language of differential forms, the above identity
can be expressed as

−
�
F
6
þ 8

L2

�
⋆k ¼ dð⋆dk −Φ⋆FÞ þ Φffiffiffi

3
p F ∧ F: ð24Þ

On the other hand, we have

k · ðF ∧ F ∧ AÞ ¼ 2ðk · FÞ ∧ F ∧ A −ΦF ∧ F

¼ 2dΦ ∧ F ∧ A −ΦF ∧ F

¼ 2dðΦF ∧ AÞ − 3ΦF ∧ F: ð25Þ

Summing the above results, we can further obtain

IδMm

δt
¼
Z
N
d

�
⋆dk−Φ⋆Fþ 2

3
ffiffiffi
3

p ΦF∧A

�

¼
Z
∂N

�
⋆dk−Φ⋆Fþ 2

3
ffiffiffi
3

p ΦF∧A

�

¼
Z
S∞

⋆dk−
Z
Sm

⋆dkþΦðrmÞ
Z
Sm

�
⋆F−

2

3
ffiffiffi
3

p F∧A
�

¼
Z
S∞

⋆dξþΩHJþΦðrmÞQ−χðrmÞΦðrmÞþPðrmÞ:

ð26Þ

where we have denoted

FIG. 1. A spacetime diagram of charged supersymmetric black holes with two Killing horizons. In the right panel, we show the change
of the Wheeler-DeWitt patch in this spacetime in which we fix the left boundary time tL ¼ 0 and vary the right boundary time tR ¼ t.
The dashed lines denote the cutoff surface r ¼ rΛ at asymptotic infinity to regulate the divergence near the anti–de Sitter (AdS)

boundary. In the right panel, we show that the bulk region δMð−Þ
m of the WDW patch can be generated by the Killing vector kað−Þ through

Nð−Þ
m under the first-order approximation of δt.
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χðrÞ ¼−
1

3
ffiffiffi
3

p
Z
Sr

F∧A¼Ω3q2a2

4
ffiffiffi
3

p
r4

;

Pð�ÞðrÞ ¼−
Z
Sr

⋆dk�

¼Ω3r3

32h
½4hf0 − 4fh0 þh3r2W0ðΩð�Þ

H −WÞ�; ð27Þ

in which Sr is a three-sphere with radius r. After complet-
ing all of the indexes, the bulk contributions yield

dIbulk
dt

¼
I
δMð−Þ

m

δt
−
I
δMð−Þ

m

δt

¼ ðΩð−Þ
H − ΩðþÞ

H ÞJ þ ½Φð−Þðrð−Þm Þ −ΦðþÞðrðþÞ
m Þ�Q

− ½χðrð−Þm ÞΦð−Þðrð−Þm Þ − χðrðþÞ
m ÞΦðþÞðrðþÞ

m Þ�
þ Pð−Þðrð−Þm Þ − PðþÞðrðþÞ

m Þ: ð28Þ

At the late times t ¼ tR → ∞, and we have rð�Þ
m → r�.

Then, the growth rate of the bulk action becomes

lim
t→∞

dIbulk
dt

¼ ðΩð−Þ
H J þΦð−Þ

H Q − χð−ÞH Φð−Þ
H þ Tð−ÞSð−ÞÞ

− ðΩðþÞ
H J þΦðþÞ

H Q − χðþÞ
H ΦðþÞ

H þ TðþÞSðþÞÞ;
ð29Þ

where we have denoted

χð�Þ
H ¼ χðr�Þ: ð30Þ

B. Joint contributions

We next turn to calculate the joint contributions from
meeting points Sð�Þ

m . We first focus on the joint SðþÞ
m which is

formed by the intersection of the past right and past left null
segments. From the line element (6), it is not hard to see

ðk1Þa ¼ ðdvÞa þ
1

f̃ðrÞ ðdrÞa;

ðk2Þa ¼ ðdvÞa −
1

f̃ðrÞ ðdrÞa ð31Þ

with

f̃ðrÞ ¼ fðrÞffiffiffiffiffiffiffiffiffi
hðrÞp ð32Þ

are the affinely null generator of the past right and past left
null segments separately. The null hypersurfaces in Kerr-
Newman-(A)dS spacetimes have also been studied in
[75,76]. The transformation parameter of this joint is given
by η ¼ lnðjk1 · k2j=2Þ [6]. Using the above null generators,
we can further obtain

k1 · k2 ¼ −
2hðrÞ
fðrÞ : ð33Þ

Then, the joint contribution from SðþÞ
m is given by

I
SðþÞ
m

¼ −
Ωr3

ffiffiffi
h

p

4
ln ½−f=h�

����
r¼rðþÞ

m

: ð34Þ

From Eq. (31), we can see that these two segments are
determined by tþ r⋆ðrÞ ¼ tR and t − r⋆ðrÞ ¼ tL ¼ 0. Here
r⋆ðrÞ is the tortoise coordinate and it is defined by

r⋆ðrÞ ¼ −
Z

∞

r

dr

f̃ðrÞ ; ð35Þ

where this range of integration is chosen to indicate that the
coordinate satisfies the boundary condition

lim
r→∞

r⋆ðrÞ ¼ 0: ð36Þ

According to [11], it can be written as

r⋆ðrÞ ¼ lnðjr − rþj=rÞ
gðrþÞðrþ − r−Þ

−
lnðjr − r−j=rÞ
gðr−Þðrþ − r−Þ

−
1

rþ − r−

Z
∞

r
GðrÞdr; ð37Þ

with

gðrÞ ¼ f̃ðrÞ
ðr − rþÞðr − r−Þ

;

GðrÞ ¼ gðrþÞr − gðrÞrþ
gðrþÞgðrÞrðr − rþÞ

−
gðr−Þr − gðrÞr−

gðr−ÞgðrÞrðr − r−Þ
: ð38Þ

From the above discussion, the radius of the meeting point

SðþÞ
m can be further obtained,

r⋆ðrðþÞ
m Þ ¼ −

t
2
: ð39Þ

Then, the change rate of this dynamical point can be read off

drðþÞ
m

dt
¼ −

1

2
f̃ðrðþÞ

m Þ: ð40Þ

The time derivative of the joint action can be expressed by

dI
SðþÞ
m

dt
¼ Ω3r3ðhf0 − fh0Þ

8h
þΩ3r2ð6hþ rh0Þf ln½−f=h�

16h

����
rðþÞ
m

:

ð41Þ

With a similar calculation, we can also obtain the contribu-

tion from the joint Sð−Þm and the growth rate of the joint
contribution is given by
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dIjoint
dt

¼ Ω3r3ðhf0 − fh0Þ
8h

þΩ3r2ð6hþ rh0Þf ln½−f=h�
16h

����
rðþÞ
m

rð−Þm

;

ð42Þ

where we have used the relation

r⋆ðrð−Þm Þ ¼ t
2
: ð43Þ

At the late times, we have

lim
t→∞

dIjoint
dt

¼ TðþÞSðþÞ − Tð−ÞSð−Þ: ð44Þ

We can see that this term will cancel the TS term in the bulk
contributions.

C. Counterterm contributions

Finally, we are going to evaluate the counterterm con-
tributions. We first consider the past right null segment.
From Eq. (31), the expansion of the null generator on this
segment gives

Θ ¼ 6hþ rh0

2r
ffiffiffi
h

p : ð45Þ

Then, the counterterm of the past right null segment can be
shown as

IðprÞct ¼ Ω3

8

Z
rΛðλÞ

rðþÞ
m ðλÞ

dλr2ð6hþ rh0Þ ln
�ð6hþ rh0Þlct

2r
ffiffiffi
h

p
�����

r¼rðλÞ
:

ð46Þ

Here λ is the affine parameter of the null generator
ka1 ¼ ð∂=∂λÞa. Together with Eq. (31), we can find that
r0ðλÞ ¼ ffiffiffi

h
p

, which implies that dλ ¼ dr=
ffiffiffi
h

p
. Then, we

have

IðprÞct ¼ Ω3

8

Z
rΛ

rðþÞ
m

dr
r2ð6hþ rh0Þffiffiffi

h
p ln

�ð6hþ rh0Þlct

2r
ffiffiffi
h

p
�
: ð47Þ

Using Eq. (39), we can further obtain

dIðprÞct

dt
¼ Ω3r2ð6hþ rh0Þf

16h
ln

�ð6hþ rh0Þlct

2r
ffiffiffi
h

p
�����

rðþÞ
m

: ð48Þ

Again, we can obtain the counterterm contributions from
other segments and the final result is given by

dIct
dt

¼ Ω3r2ð6hþ rh0Þf
8h

ln

�ð6hþ rh0Þlct

2r
ffiffiffi
h

p
�����

rðþÞ
m

rð−Þm

: ð49Þ

D. Complexity growth rate

Summing all the previous results and using the CA
conjecture in Eq. (1), one can further obtain

πℏ
dCA

dt
¼ ðΩð−Þ

H −ΩðþÞ
H ÞJþ ½Φð−Þðrð−Þm Þ−ΦðþÞðrðþÞ

m Þ�Q

− χðrð−Þm ÞΦð−Þðrð−Þm Þ þ χðrðþÞ
m ÞΦðþÞðrðþÞ

m Þ
þ P̃ð−Þðrð−Þm Þ− P̃ðþÞðrðþÞ

m Þ

−
�
Ω3r2ð6hþ rh0Þf

16h
ln

�
−
ð6hþ rh0Þ2fl2

ct

4r2h2

��
rð−Þm

rðþÞ
m

;

ð50Þ

where we have denoted

P̃ð�ÞðrÞ ¼ Ω3h2r5W0

32
ðΩð�Þ

H −WÞ: ð51Þ

In Fig. 2, we show the time dependence of the CA
complexity growth rate in the charged supersymmetric
black holes. This figure shows a similar behavior with the
case of the Reissner-Nordström (RN)-AdS black holes
where the late-time value is approached above.
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FIG. 2. Plots show the time dependence of the complexity growth rate. In the left panel, we vary the charge parameter q and fixm ¼ 1,
L ¼ 1, lct ¼ 0.5, a ¼ 0.1. In the right panel, we vary the angular momenta parameter a and fix m ¼ 1, L ¼ 1, lct ¼ 0.5, q ¼ 0.5.
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Finally, we consider the late-time limit of the complexity
growth rate. From Eq. (50), it is easy to get

lim
t→∞

dCA

dt
¼ 1

πℏ
½ðΩð−Þ

H J þΦð−Þ
H Q − χð−ÞH Φð−Þ

H Þ

− ðΩðþÞ
H J þΦðþÞ

H Q − χðþÞ
H ΦðþÞ

H Þ�: ð52Þ

The above results show the difference from the ordinary
charged system as shown in Eq. (3). Here the late-time
growth rate will be corrected by some additional terms
which are evaluated on the inner and outer horizons,

i.e., χðþÞ
H ΦðþÞ

H − χð−ÞH Φð−Þ
H .

IV. CONCLUSION AND DISCUSSION

In this paper, we considered the five-dimensional min-
imal gauged supergravity, which is a special case of the
Einstein-Maxwell-Chern-Simons theory. From the perspec-
tive of AdS=CFT, the dual bound system of this bulk
gravity is a real anomaly. To study the influence of the
chiral anomaly of the boundary system to the complexity,
we evaluated the growth rate of the holographic complexity
in charged and rotating supersymmetric black holes by
using the CA conjecture. As a result, we found that the time
dependence of the complexity growth rate shares similar
behavior as the cases of the RN black holes. However, the

late-time rate is different from the result (3) of the ordinary
charged system. Here it is corrected by an additional term
χHΦH which is evaluated on the inner and outer horizons.
These imply that the late-time growth rate of the complex-
ity carries some information of the chiral anomaly for the
boundary quantum system. Moreover, from the above
calculations, it is not hard to verify that the additional

corrections αðχðþÞ
H ΦðþÞ

H − χð−ÞH Φð−Þ
H Þ will also appear in a

general Einstein-Maxwell-Chern-Simons gravity, which
includes a general Chern-Simons term

ICS ¼
α

2
ffiffiffi
3

p
Z
M
F ∧ F ∧ A; ð53Þ

with a coupling constant α. Our work strongly implies that
the anomaly of the boundary will play an important role in
complexity.
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