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We propose a class of theories that can limit scalars constructed from the extrinsic curvature. Applied to
cosmology, this framework allows us to control not only the Hubble parameter but also anisotropies
without the problem of Ostrogradsky ghost, which is in sharp contrast to the case of limiting spacetime
curvature scalars. Our theory can be viewed as a generalization of mimetic and cuscuton theories (thus
clarifying their relation), which are known to possess a structure that limits only the Hubble parameter on
homogeneous and isotropic backgrounds. As an application of our framework, we construct a model where
both anisotropies and the Hubble parameter are kept finite at any stage in the evolution of the universe in the
diagonal Bianchi type I setup. The universe starts from a constant-anisotropy phase and recovers Einstein
gravity at low energies. We also show that the cosmological solution is stable against a wide class of
perturbation wave numbers, though instabilities may remain for arbitrary initial conditions.
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I. INTRODUCTION

Singularities in the universe [1–3] have been recognized
as a problem that demonstrates the failure to describe the
Universe in classical Einstein gravity. As is well known, a
decelerating and expanding universe inevitably has an
initial big bang singularity. Even in an inflationary uni-
verse, there is a hard-to-avoid initial singularity [4–6].
Since classical Einstein gravity should be a low-energy
effective theory of some more fundamental theory of
quantum gravity, the presence of singularities is expected
to be an artifact of the classical theory, and they should be
removed if the effects of quantum gravity are taken into
consideration. This has been the hypothesis behind the
proposed limiting curvature conjecture: there exists a
fundamental energy scale, which bounds all physical
quantities [7–9]. The idea of the existence of a fundamental
energy scale (or length scale [10]) is similar to the speed
of light in special relativity and the Planck constant in
quantum mechanics. This hypothesis has motivated studies
of, e.g., a black hole geometry with finite curvature
invariants [11–14]. Such a nonsingular black hole solution
was first proposed by Bardeen [15], which is now known to
be a stable solution of Einstein gravity with nonlinear
electrodynamics [16–18].

The purpose of the present paper is to propose a new
framework to realize the hypothesis of limiting curvature
dynamically. Such a theory can be regarded as a candidate
of a low-energy effective theory of some unknown theory
of quantum gravity.1 A dynamical realization of the
hypothesis, called the limiting curvature theory, was first
proposed by Refs. [31,32] in the context of cosmology. The
theory was then applied not only to avoid the initial
singularity of the Universe [33–35] but also to remove
the singularity appearing inside black hole horizons
[36–38]. In the original proposals [31,32], the authors
introduced two scalar fields with a specific potential to limit
two spacetime curvature invariants which reduce to the
Hubble parameter and its time derivative for a homo-
geneous and isotropic universe. They found nonsingular
solutions approaching the de Sitter spacetime at past
infinity in the homogeneous and isotropic setup.
Regarding the stability, it was shown in Ref. [35] that
the solutions with the curvature invariants of the original
proposals are unstable. A stable solution was obtained in
the same paper with another choice for the curvature
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1In fact, it is known that limiting curvature can be a valid
effective-field-theory description of different quantum gravity
proposals, such as loop quantum cosmology (LQC), Hořava-
Lifshitz gravity, group field theory, etc. As an example, current
models of limiting curvature mimetic gravity exactly yield
the cosmological background equations of LQC (see, e.g.,
Refs. [19–26], as well as Refs. [27–30] in other quantum gravity
contexts).
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invariants (though bounding the same quantities in the
homogeneous and isotropic limit), where the potential and
the initial conditions for the scalar fields were fine-tuned.
As such, the limiting curvature theory generically exhibits
instabilities, which may be associated with the
Ostrogradsky ghost [39] due to the presence of higher-
order curvature invariants. It should be noted that the
assumption that the spacetime is homogeneous and iso-
tropic might be too strong. Indeed, if anisotropies exist,
they give a non-negligible contribution to the Friedmann
equations. Yet, anisotropies typically tend to diverge in the
approach to a spacetime singularity. Moreover, in a
collapsing universe, anisotropies are believed to behave
chaotically, which is known as the Belinsky-Khalatnikov-
Lifshitz (BKL) instability [40]. Accordingly, the stability
against deviations from perfect isotropy is rather nontrivial,
and some solutions that are typically stable against
inhomogeneities can become unstable when introducing
anisotropies (e.g., [35,41,42]).
The original limiting curvature theory [31,32] is not the

only way to realize the limiting curvature hypothesis. It was
pointed out that mimetic gravity [43–45] and cuscuton
gravity [46,47] have a structure that limits the Hubble
parameter, and hence they possess nonsingular cosmologi-
cal and black hole solutions [48–52]. One of the critical
differences between mimetic and cuscuton theories (and
extensions thereof) is the number of degrees of freedom;
mimetic gravity has 3 degrees of freedom (e.g., [53–55]),
while cuscuton gravity has only 2 degrees of freedom on a
cosmological background (e.g., [56–61]). In mimetic grav-
ity, the authors of Ref. [48] studied an anisotropic universe
and found a nonsingular Kasner solution.2 However, it is
expected that this solution is unstable since we know that
cosmological solutions are unstable in a large class of
mimetic gravity [28,55,63–66]. On the other hand, cos-
mological solutions in cuscuton gravity and its extensions
can be stable [47,59,67,68], implying that one can construct
stable nonsingular solutions in cuscuton theories [51,52].
What we propose in the present paper is that mimetic

and cuscuton theories can be understood in a unified
framework by reformulating them as limiting curvature
theories with respect to the trace of the extrinsic curvature
rather than spacetime curvature invariants. In addition, we
provide a wider class of theories that can limit desired
spatial scalar quantities constructed from the extrinsic
curvature. We mention that this model reduces to the
framework of spatially covariant theories proposed in
Ref. [69] (further studied in Refs. [61,70–74]) after
eliminating the auxiliary scalar fields by using their
equations of motion. As an important application of our

theory, we explore a nonsingular universe with anisotro-
pies. For this purpose, we limit the trace and traceless parts
of the extrinsic curvature, which makes both the Hubble
parameter and the anisotropies finite.
Our paper is organized as follows. In Sec. II, we give a

general picture of the proposed limiting extrinsic curvature
theory. In Sec. III, we show how to interpret mimetic
gravity and cuscuton gravity in the language of limiting
extrinsic curvature theory. Also, we demonstrate the
similarity between mimetic and cuscuton models by
comparing the covariant equations of motion and how
the Hubble parameter is kept finite on a homogeneous
spacetime. In Sec. IV, we study a model where anisotropies
are also bounded, which can be regarded as an extension of
cuscuton gravity. Based on this model, we construct a
Bianchi I spacetime solution with finite Hubble parameter
and anisotropies. We also examine the stability of the
cosmological solution. Section V is devoted to the con-
clusions and discussion.

II. GENERAL SETUP FOR LIMITING
EXTRINSIC CURVATURE

We propose a framework of limiting extrinsic curvature
theories from an analogy with the limiting spacetime
curvature theory proposed in Refs. [31,32]. The original
limiting curvature models are based on a Lagrangian density,

L ¼ ðterms independent of χkÞ þ
Xn
k¼1

χkIkðRμ
νρσ; gμν;∇μÞ

− Vðχ1; χ2;…; χnÞ; ð1Þ

where the Ik’s are some scalar curvature invariants con-
structed from the Riemann tensor Rμ

νρσ, the metric tensor
gμν, and its associated covariant derivative ∇μ. Here, the χk’s
are auxiliary scalar fields, whose role is to bound the
curvature invariants Ik. From the variation of χk, we obtain
a set of equations of motion, which act as constraint
equations:

Ik ¼ Vχkðχ1; χ2;…; χnÞ ≔
∂V
∂χk : ð2Þ

Indeed, by choosing the potential V so that all of its first
derivatives are finite for any configuration of χk, the
curvature invariants Ik remain finite (see the Appendix for
a detailed discussion). Our proposal is to extend the idea of
the limiting curvature theories (1) by employing the extrinsic
curvature tensor Kμν. Thus, we deal with a Lagrangian,

L ¼ ðterms independent of χkÞ þ
Xn
k¼1

χkIkðKμν; hμν; DμÞ

− Vðχ1; χ2;…; χnÞ; ð3Þ

2Even if singularities are avoided in one anisotropic spacetime,
it does not mean singularity resolution is achievable in any
arbitrary anisotropic spacetime. For example, mimetic gravity
cannot avoid the divergence of anisotropies in an anisotropic
Kantowski-Sachs universe [62].

SAKAKIHARA, YOSHIDA, TAKAHASHI, and QUINTIN PHYS. REV. D 102, 084004 (2020)

084004-2



where now the Ik’s are some spatial scalars constructed from
the extrinsic curvature Kμν, the induced metric hμν, and the
spatial covariant derivative Dμ with respect to a given
spacelike foliation Σt. By introducing the unit normal vector
to Σt (let us call it nμ), we can express the induced metric and
the extrinsic curvature as

hμν ¼ gμν þ nμnν;

Kμν ¼ hμρ∇ρnν ¼ ∇μnν þ nμnρ∇ρnν; ð4Þ
where nμnμ ¼ −1 and where spacetime indices are raised or
lowered with the spacetime metric tensor.
In order to write the action of limiting extrinsic curva-

ture, we need to specify the foliation Σt, i.e., the configu-
ration of the timelike normal vector nμ. One way to achieve
this is to assume that the theory breaks general covariance,
and thus the spacetime foliation Σt is chosen from the
beginning. This is the case of spatially covariant gravity
[61,69–74]. Another way is to characterize the foliation by
a dynamical field. For example, if we regard nμ as the
gradient of some scalar field, nμ ¼ −∇μϕ, we can say that
this is a theory limiting the extrinsic curvature with respect
to constant-ϕ slices. Since nμ has to be a unit vector, we
need to impose an additional constraint, ∇μϕ∇μϕ ¼ −1,
by hand. Similarly, we can regard nμ itself as a dynamical
vector field Aμ, which is normalized according to
AμAμ ¼ −1.3 This means that Aμ here is nothing but the
aether field [75–80]. We focus on these two character-
izations of a spacetime foliation,

nμ ¼
�−∇μϕ with ∇μϕ∇μϕ ¼ −1;

Aμ with AμAμ ¼ −1:
ð5Þ

Adding the Einstein-Hilbert term, the actions of interest can
be written explicitly as

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λð∇μϕ∇μϕþ 1Þ

þ
Xn
k¼1

χkIkðKϕ
μν; h

ϕ
μν; D

ϕ
μ Þ − Vðχ1; χ2;…; χnÞ

�
ð6aÞ

for nμ ¼ −∇μϕ and

SA ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ

þ
Xn
k¼1

χkIkðKA
μν; hAμν; DA

μ Þ − Vðχ1; χ2;…; χnÞ
�

ð6bÞ

for nμ ¼ Aμ. Here, the superscripts ϕ and A onKμν, hμν, and
Dμ mean that these quantities are defined with respect to
constant-ϕ hypersurfaces and those normal to Aμ, respec-
tively. The role of the term proportional to λ in the
Lagrangian densities is to enforce the constraints
∇μϕ∇μϕ ¼ −1 and AμAμ ¼ −1. As such, λ is a
Lagrange multiplier. The above actions thus represent
the general framework of limiting extrinsic curvature
theories that we propose in this paper. As we will see in
the next section, Sϕ and SA can be regarded as extensions of
mimetic and cuscuton gravity, respectively. Hence, in what
follows, we refer to models constructed in the form of Sϕ as
“mimetic-type” theories and to those constructed in the
form of SA as “cuscuton-type” theories.
Let us apply this framework to nonsingular cosmology.

We first focus on a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime,

gμνdxμdxν ¼ −NðtÞ2dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð7Þ

where aðtÞ is the scale factor and NðtÞ is the lapse function.
The Hubble parameter H is defined by H ≔ _a=ðNaÞ, with
a dot denoting the time derivative. The question is then
what should be chosen for the scalar functions Ik to avoid
divergence in the Hubble parameter H. The simplest
example would be the case where we limit the trace of
the extrinsic curvature, K ¼ Kμ

μ, which corresponds to the
Hubble parameter as

KjFLRW ¼ 3H: ð8Þ

Since the trace of the extrinsic curvature in general satisfies
K ¼ Kμ

μ ≈∇μnμ, where the symbol ≈ represents equality
under the condition nμnμ ¼ −1, let us fix n ¼ 1 (i.e.,
we bound a single extrinsic curvature invariant) and take
I1 ¼ ∇μnμ for our purpose. Depending on the choice of the
normal vector, we find two types of theories:

Sϕ;H¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþλð∇μϕ∇μϕþ1Þ−χ□ϕ−VðχÞ

�

ð9aÞ

for nμ ¼ −∇μϕ, where□ ≔ gμν∇μ∇ν is the d’Alembertian;
and

SA;H¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RþλðAμAμþ1Þþχ∇μAμ−VðχÞ

�

ð9bÞ

for nμ ¼ Aμ. In the next section, we will see that the former
action is equivalent to mimetic gravity with an extension,
while the latter is equivalent to cuscuton gravity.

3To avoid imposing such constraints, one could instead regard
nμ as an automatically normalized vector such as nμ ¼
−∇μϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇νϕ∇νϕ

p
or nμ ¼ Aμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−AνAν

p
. Each case may define

yet another class of limiting extrinsic curvature theories.
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Anisotropies are also problematic when we seek a model
avoiding the initial singularity of the Universe. This is
because anisotropies dominate the universe at early times
since their energy density scales as a−6. To avoid such a
divergence of anisotropies, in addition to limiting the
Hubble parameter, we also limit anisotropies by making
use of the mechanism of limiting extrinsic curvature. Here,
we consider the diagonal Bianchi I spacetime,

gμνdxμdxν ¼ −NðtÞ2dt2 þ aðtÞ2ðe2βþðtÞþ2
ffiffi
3

p
β−ðtÞdx2

þ e2βþðtÞ−2
ffiffi
3

p
β−ðtÞdy2 þ e−4βþðtÞdz2Þ: ð10Þ

The following combination of the extrinsic curvature
characterizes the overall anisotropy:

Kμ
νKν

μ −
1

3
K2 ¼ 6Σ2; ð11Þ

where Σ2 ≔ σ2þ þ σ2− and σ� ≔ _β�=N. We shall call Σ ≔ffiffiffiffiffi
Σ2

p
the anisotropy parameter. Thus, a model with limiting

Hubble parameter and limiting anisotropy parameter can be
obtained by fixing n ¼ 2 (i.e., we bound two extrinsic
curvature invariants) and choosing I1 and I2 as follows,4

I1 ¼ K2 ≈ ð∇μnμÞ2;

I2 ¼ Kμ
νKν

μ −
1

3
K2 ≈∇μnν∇νnμ −

1

3
ð∇μnμÞ2; ð12Þ

where the symbol ≈ represents again the equality under the
condition nμnμ ¼ −1. Hence, we have two versions of this
limiting anisotropy construction as

Sϕ;Σ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λð∇μϕ∇μϕþ 1Þ

− χ1□ϕþ χ2
�
∇μ∇νϕ∇ν∇μϕ −

1

3
ð□ϕÞ2

�

− Vðχ1; χ2Þ
�

ð13aÞ

for nμ ¼ −∇μϕ and

SA;Σ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ

þ χ1ð∇μAμÞ2 þ χ2
�
∇μAν∇νAμ −

1

3
ð∇μAμÞ2

�

− Vðχ1; χ2Þ
�

ð13bÞ

for nμ ¼ Aμ, as before. To see the explicit relation between
our theories and mimetic/cuscuton models, we discuss both
mimetic- and cuscuton-type theories in Sec. III. However,
since we know that a large class of mimetic gravity,
including the model (13a), is plagued by ghost/gradient
instabilities [28,55,63–66],5 we focus on the cuscuton-type
theory (13b) in Sec. IV.

III. LIMITING K MODELS

In this section, we investigate properties of the theories
described by (9), which can limit the trace of the extrinsic
curvature K. In Sec. III A, we demonstrate that the actions
(9a) and (9b) are respectively equivalent to those of
mimetic and cuscuton gravity. Then, we derive the covar-
iant equations of motion from the actions (9) in Sec. III B.
Finally, we investigate cosmological solutions in Sec. III C.

A. Relation to mimetic and cuscuton models

The limiting K models are useful to avoid the initial
divergence of the Hubble parameter. Here, we show the
equivalence of the limiting K models we proposed in the
previous section with mimetic and cuscuton gravity.

1. Mimetic gravity

First, let us focus on the action (9a), which we reprint
below for convenience:

Sϕ;H ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λð∇μϕ∇μϕþ 1Þ

− χ□ϕ − VðχÞ
�
:

Let us assume ∂2V=∂χ2 ≠ 0 so that the equation of motion,

1ffiffiffiffiffiffi−gp δSϕ;H

δχ
¼ −□ϕ −

∂V
∂χ ¼ 0; ð14Þ

can be solved for χ, namely, χ ¼ χð□ϕÞ. Then, eliminating
the auxiliary field χ from the action, we obtain

Sϕ;H ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λð∇μϕ∇μϕþ 1Þ þ fð□ϕÞ

�
:

ð15Þ

4In order to make H and Σ finite, we could instead consider a
theory limiting only Kμ

νKν
μ since Kμ

νKν
μ ¼ 3H2 þ 6Σ2 and

since H2 and Σ2 are both positive semidefinite. One might think
that this model is simpler and sufficient to avoid the divergence of
both the Hubble parameter and anisotropies at the same time.
However, as far as we investigated, it is impossible to find a
theory of this type that recovers Einstein gravity at low energies
and that has a homogeneous nonsingular spacetime solution in
the asymptotic past.

5Inclusion of higher-order curvature invariants, moreover, leads
to the appearance of Ostrogradsky ghosts (see also Ref. [55]).
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Here, f is the Legendre transformation of V defined by

fð□ϕÞ ≔ −χð□ϕÞ□ϕ − Vðχð□ϕÞÞ: ð16Þ

This is nothing but mimetic gravity with an fð□ϕÞ
extension [48,49] (a model of this form was first studied
in Ref. [44]).

2. Cuscuton gravity

Next, let us focus on the action (9b),

SA;H ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ

þ χ∇μAμ − VðχÞ
�
:

We take the variation of the action with respect to Aμ and
obtain

Aμ ¼
1

2λ
∇μχ: ð17Þ

By taking into account the normalization of the vector field,
which is obtained by variation with respect to λ,

AμAμ þ 1 ¼ 0; ð18Þ

we find6

λ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇μχ∇μχ

q
; ð19Þ

and therefore

Aμ ¼
�∇μχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇νχ∇νχ

p ; ð20Þ

where the � sign is in the same order. If we substitute this
expression into the action, we get

SA;H ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇μχ∇μχ

q
− VðχÞ

�
: ð21Þ

This is nothing but cuscuton gravity7 with an arbitrary
potential [46,47]. Let us mention that the relation
between the above action for cuscuton gravity and the
limiting extrinsic curvature action (9b) was already
observed in Refs. [27,81,82] (in addition to the link with

Hořava-Lifshitz gravity and the Einstein-aether theory).
However, the link to a wider class of limiting extrinsic
curvature theories and the correspondence with mimetic
gravity were not realized at the time.

B. Covariant equations of motion

We saw that both mimetic gravity and cuscuton gravity
can be understood as a kind of limiting extrinsic curvature
theory. They actually have a similar structure at the level of
their equations of motion. To see the similarities and the
differences, here we show the covariant equations of
motion for the mimetic-type and the cuscuton-type limiting
K models.
The equations of motion for the mimetic-type model (9a)

with respect to λ, χ, and ϕ are

∇μϕ∇μϕþ 1 ¼ 0; ð22aÞ

−□ϕ −
∂V
∂χ ¼ 0; ð22bÞ

−∇μð2λ∇μϕþ∇μχÞ ¼ 0; ð22cÞ

respectively. The second equation implies that the trace of
the extrinsic curvature, K ¼ −□ϕ, can be bounded if we
choose a potential whose derivative, ∂V=∂χ, does not
diverge at any value of χ. We can integrate the last
equation (22c) by introducing a divergenceless vector uμ
(i.e., ∇μuμ ¼ 0, so uμ is akin to an integration constant) as

λ ¼ 1

2
ð∇μχ þ uμÞ∇μϕ: ð23Þ

Taking into account these equations, we find the equation
of motion for gravity,

Gμν ≔ Rμν −
1

2
gμνR

¼ 1

M2
Pl

fTμν þ gμν½∇ρχ∇ρϕ − VðχÞ� − 2∇ðμχ∇νÞϕ

−∇μϕ∇νϕð∇ρχ þ uρÞ∇ρϕg; ð24Þ

where round brackets in the spacetime indices denote
symmetrization, i.e., ∇ðμχ∇νÞϕ≔ ð∇μχ∇νϕþ∇νχ∇μϕÞ=2.
Here,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSmatter

δgμν
ð25Þ

is the energy-momentum tensor of any additional matter,
which is assumed to be minimally coupled to gravity.
On the other hand, the equations of motion for the

cuscuton-type model (9b) with respect to λ, χ, and Aμ are

6By construction, Aμ is ensured to be timelike, as seen from
(18). Thus from (17), ∇μχ is also necessarily timelike. Con-
sequently,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇μχ∇μχ

p
always yields a real number in this setup.

7The Lagrangian of cuscuton gravity usually has a kinetic term
of the form �μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇μχ∇μχ

p
, but the coefficient μ2 can be

absorbed without loss of generality if we define χ̃ ≔ μ2χ.
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AμAμ þ 1 ¼ 0; ð26aÞ

∇μAμ −
∂V
∂χ ¼ 0; ð26bÞ

2λAμ −∇μχ ¼ 0; ð26cÞ

respectively. Since the trace of the extrinsic curvature is
written as K ¼ ∇μAμ, it can again be bounded by an
appropriate choice of the potential. In this case, we do not
need to integrate the last equation (26c) and simply obtain

λ ¼ −
1

2
∇μχAμ: ð27Þ

This can be applied to the equation of motion for gravity,
and we have

Gμν ¼
1

M2
Pl

fTμν þ gμν½−∇ρχAρ − VðχÞ� þ 2∇ðμχAνÞ

þ AμAν∇ρχAρg: ð28Þ

It is straightforward to see that the equations of motion
for the cuscuton-type model coincide with those for the
mimetic-type model if we replace Aμ with−∇μϕ, except for
the appearance of uμ in (24). As shown in (23), this uμ is
nothing but an integration constant originating from the
covariant derivative in (22c) for the mimetic case. This
integration constant is the origin of the matterlike contri-
bution pointed out in Ref. [43]. Note that, from the
corresponding equation (26c) for the cuscuton case, one
can determine λ without the ambiguity of an integration
constant. Given this similarity between the mimetic and
cuscuton models, it is expected that any solution in the
mimetic theory reduces to a solution in the cuscuton theory
in the limit uμ → 0. Nevertheless, the stability of the
solutions can be different due to the different number of
degrees of freedom in the two theories. It should also be
noted that the additional mode solution that uμ introduces
in the mimetic-type model makes it manifest that the theory
generally has 1 more degree of freedom compared to the
cuscuton-type model.

C. Homogeneous spacetime

We pointed out that solutions found in mimetic gravity
should also appear in the context of cuscuton gravity. Along
this line, we see that this is indeed true for the diagonal
Bianchi I universe described by the metric (10) in the
absence of the mimetic matter field. In this subsection, we
consider the vacuum case with no additional matter fields.

1. Mimetic gravity

To be consistent with a homogeneous spacetime, we
assume

χ ¼ χðtÞ; ϕ ¼ ϕðtÞ; λ ¼ λðtÞ: ð29Þ

We use the covariant equations of motion (22a), (22b), and
(24) to study the spacetime dynamics.8 In what follows, we
choose the N ¼ 1 gauge. From (22a) and (22b), we obtain

_ϕ ¼ �1; ð30aÞ

H ¼ 1

3

∂V
∂χ : ð30bÞ

It should be noted that (30b) is essential for limiting
the Hubble parameter. By choosing V in such a way that
∂V=∂χ is finite, the range of the Hubble parameter is also
restricted to a finite energy interval. In what follows, we
choose the plus branch of (30a) so that ϕ behaves as our
clock. The evolution of the Hubble parameter and the
anisotropies is determined from the modified Einstein
equation (24). The anisotropies σ� ¼ _β� can be obtained as

σ� ¼ σð0Þ�
a3

; ð31Þ

where σð0Þ� are constants determined by the initial con-
ditions. Then, the Friedmann equation is written as

H2 −
Σ2
0

a6
¼ 1

3M2
Pl

½VðχÞ − u0�; ð32Þ

with Σ2
0 ≔ ðσð0Þþ Þ2 þ ðσð0Þ− Þ2. Here, χ in the right-hand side

should be understood as a function of H through (30b).
Provided that uμ¼uμðtÞ, we have∇μuμ ¼ _u0 þ 3Hu0 ¼ 0,
namely, u0 ∝ a−3. This implies that the second term in the
right-hand side of (32) plays the role of pressureless dust as
pointed out in Ref. [43].

2. Cuscuton gravity

In the case of cuscuton gravity, we assume

χ ¼ χðtÞ; Aμ ¼ ðA0ðtÞ; 0Þ; λ ¼ λðtÞ: ð33Þ

We choose again the N ¼ 1 gauge after variation. The
equations of motion (26a) and (26b) read

A0 ¼ �1; ð34aÞ

H ¼ 1

3

∂V
∂χ ; ð34bÞ

8Instead, one can substitute (10) and (29) into the action (9a)
and then vary it with respect to relevant variables to derive field
equations. In doing so, one should choose N ¼ 1 after the
variation, as the equation of motion for N cannot be reproduced
from the other components of the field equations [83].
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and we choose the minus branch for A0 to make Aμ future
directed. The Friedmann equation is given by

H2 −
Σ2
0

a6
¼ 1

3M2
Pl

VðχÞ ð35Þ

from (28). Note that the equations of motion for the
anisotropies are the same as those in mimetic gravity,
which results in the solutions (31).
We find that both models have the limiting curvature

feature with respect to the Hubble parameter if we choose an
appropriate function for the potential. The only difference
between these two gravity theories is the existence of a
matterlike contribution coming from the integration constant
of one of the equations of motion in the mimetic theory, but
no such contribution exists in cuscuton gravity. It is obvious
that such a difference is coming from the definition of the
normal vector; the normal vector nμ is chosen to be the
derivative of a scalar field in the mimetic case, which is not
the case in cuscuton gravity. These models are successful in
limiting the Hubble parameter, but it should be noted that the
anisotropies blow up as a → 0 as one can see from (31).

IV. LIMITING ANISOTROPY MODELS

We showed that the two models that limit the trace of
the extrinsic curvature have the property of limiting the
Hubble parameter. In addition, we explicitly saw that, at the
background level, the homogeneous anisotropic universe in
mimetic gravity behaves completely in the same way as in
cuscuton gravity when themimetic dust contribution, coming
froman integration constant, is turned off.Now,we attempt to
cure the divergent behavior of the anisotropies in the early
universe by introducing a potential limiting anisotropies. In
what follows, we restrict ourselves to the cuscuton-type
limiting anisotropy model (13b) since the mimetic-type
model (13a) is in general plagued by instabilities
[28,55,63–66]. Indeed, this instability originates froma scalar
degree of freedom, which is expected to be absent in the
cuscuton-type theory on a cosmological background (e.g.,
[56,59–61]).As an example, a nonsingular homogeneous and
isotropic bouncing background inmimetic gravitywas shown
to have instabilities [63], while nonsingular bouncing back-
grounds in cuscuton gravity have shown no instability
[51,52], at the level of linear inhomogeneous perturbations.

A. Covariant equations of motion for cuscuton-type
limiting anisotropy model

We recall the cuscuton-type limiting anisotropy model
(13b), which we discuss from now on,

SA;Σ ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
þ λðAμAμ þ 1Þ þ χ1ð∇μAμÞ2

þ χ2

�
∇μAν∇νAμ −

1

3
ð∇μAμÞ2

	
− μ2Vðχ1; χ2Þ

�
;

where we rescaled the fields and the potential as
λ → M2

Plλ; χk → M2
Plχk (k ¼ 1, 2), and V → M2

Plμ
2V. The

equations of motion derived from this action are

AμAμ þ 1 ¼ 0; ð36aÞ

λAμ ¼ ∇μ

��
χ1 −

1

3
χ2

	
∇νAν

�
þ∇νðχ2∇μAνÞ; ð36bÞ

ð∇μAμÞ2 ¼ μ2Vχ1 ; ð36cÞ

∇μAν∇νAμ −
1

3
ð∇μAμÞ2 ¼ μ2Vχ2 ; ð36dÞ

where we recall the shorthand notation Vχk ≔ ∂V=∂χk
(k ¼ 1, 2), and

M2
PlGμν ¼ Tμν þ TðlimÞ

μν ; ð37Þ

where Tμν is the energy-momentum tensor of additional,

minimally coupled matter fields, and TðlimÞ
μν is the effective

energy-momentum tensor coming from the limiting-
curvature part,

TðlimÞ
μν

M2
Pl

¼ gμν

��
χ1 −

1

3
χ2

	
ð∇αAαÞ2 þ χ2ð∇αAβ∇βAαÞ

− μ2V − 2∇α

��
χ1 −

1

3
χ2

	
Aα∇βAβ

�


þ 2Aðμ∇νÞ

��
χ1 −

1

3
χ2

	
∇αAα

�

þ 2∇α½χ2∇αAðμ�AνÞ − 2∇α½χ2Aα∇ðμAνÞ�
þ 2χ2∇αAðμ½∇αAνÞ −∇νÞAα�: ð38Þ

Here, we used (36b) to eliminate λ.

B. Evolution of Bianchi I spacetime

By substituting the Bianchi I spacetime ansatz (10) into
the action (13b), we obtain a Lagrangian written in terms of
N; a; β�; λ; Aμ; χ1; χ2, from which the equations of motion
are derived. We choose the N ¼ 1 gauge and find A0 ¼ �1
from the variation with respect to λ. We take the minus
branch from here on as in the previous section. Then, the
gravitational equations of motion are

ð1 − 3χ1ÞH2 − ð1þ 2χ2ÞΣ2 ¼ ρ

3M2
Pl

þ μ2V
3

; ð39aÞ

1

a3
d
dt
½a3ð1þ 2χ2Þσ�� ¼

p�
3M2

Pl

; ð39bÞ

d
dt
½ð1− 3χ1ÞH� þ 3ð1þ 2χ2ÞΣ2 ¼ −

1

2M2
Pl

ðρþpÞ; ð39cÞ
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where we decomposed the matter energy-momentum
tensor as

Tμ
ν ¼

0
BBBBB@

−ρ
pþ pþ

3
þ p−ffiffi

3
p

pþ pþ
3
− p−ffiffi

3
p

p − 2pþ
3

1
CCCCCA
:

ð40Þ

Note that we used the equation determining λ,

λ ¼ 3χ2ðH2 þ 2Σ2Þ þ d
dt
½ðχ2 − 3χ1ÞH�: ð41Þ

Also, Eqs. (36c) and (36d) become

H2 ¼ μ2Vχ1

9
; Σ2 ¼ μ2Vχ2

6
: ð42Þ

We can thus see that if the first derivatives of the potential
are bounded, the Hubble parameter and the anisotropy
parameter are also bounded. By substituting (42) into the
Friedmann equation (39a), we obtain a constraint equation
for χ1 and χ2,

1

3
ð1 − 3χ1ÞVχ1 −

1

2
ð1þ 2χ2ÞVχ2 ¼ V þ ρ

μ2M2
Pl

: ð43Þ

We consider the vacuum case ρ ¼ p ¼ p� ¼ 0 from
now on. The equations of motion for the anisotropies
become

d
dt
½a3ð1þ 2χ2Þσ�� ¼ 0; ð44Þ

which can be integrated to yield

σ� ¼ σð0Þ�
ð1þ 2χ2Þa3

: ð45Þ

Consequently, we obtain

Σ2 ¼ Σ2
0

ð1þ 2χ2Þ2a6
: ð46Þ

As an example, let us choose the following function as the
limiting potential:

Vðχ1; χ2Þ ¼ χ1 − tanh χ1 þ χ2 − tanh χ2: ð47Þ

This function satisfies all the following requirements:
(1) guaranteeing the finiteness of the Hubble parameter
and finiteness of the anisotropy parameter at all energy
scales; and (2) recovering Einstein gravity at low energies.

We explain the explicit conditions put on the limiting
potential in the Appendix. Explicitly, the first derivatives
of the potential can be evaluated as Vχ1 ¼ tanh2χ1,
Vχ2 ¼ tanh2χ2, and therefore, they satisfy 0 ≤ Vχ1 < 1,
0 ≤ Vχ2 < 1. Thus, for this choice of potential, H2 and
Σ2 are bounded as

0 ≤ H2 <
μ2

9
; 0 ≤ Σ2 <

μ2

6
: ð48Þ

In the left panel of Fig. 1, we show the possible evolution
of the spacetime, constrained by the relation (43), on the
ðχ1; χ2Þ plane. Since ðχ1; χ2Þ ¼ ð0; 0Þ is where the con-
tribution of the limiting potential vanishes and Einstein
gravity is recovered, the path starting from the upper left
and terminating at the origin is the most desirable one.
Provided that H > 0, the time evolution is determined by

dχ1
dðμtÞ ¼

3ð1þ 2χ2ÞVχ2

ffiffiffiffiffiffiffi
Vχ1

p
6Vχ1 − ð1 − 3χ1ÞVχ1χ1

¼ ðsgnχ1Þ
3ð1þ 2χ2Þ cosh2 χ1 tanh2 χ2

−2þ 6χ1 þ 3 sinh 2χ1
; ð49aÞ

dχ2
dðμtÞ ¼ −

2ð1þ 2χ2ÞVχ2

ffiffiffiffiffiffiffi
Vχ1

p
4Vχ2 þ ð1þ 2χ2ÞVχ2χ2

¼ −
ð1þ 2χ2Þ cosh χ2 sinh χ2j tanh χ1j

1þ 2χ2 þ sinh 2χ2
; ð49bÞ

where we used Vχ1χ2 ¼ 0 in the first equality of each
equation. These equations are obtained from the time
derivative of the limiting relations (42). Along this path,
we solved the dynamics as shown in the right panel of
Fig. 1, where t ¼ 0 is characterized by χ1ðt ¼ 0Þ ¼ −1.
From the figure, we see that H2 and Σ2 are almost constant
and asymptotically reach their upper bound values for
μt < 0. Assuming β− ≡ 0 for concreteness, we can
approximate the evolution of the scale factor and the
anisotropy for μt → −∞ as

aðtÞ ≃ e
1
3
μt; βþðtÞ ≃� 1ffiffiffi

6
p μt: ð50Þ

The sign of βþ is determined by its initial condition.
Thus, the very early stage of the universe in this model is
effectively described by the metric,

gμνdxμdxν¼−dt2þe2Hxtdx2þe2Hytdy2þe2Hztdz2; ð51Þ

with

Hx ¼ Hy ¼
�
1

3
� 1ffiffiffi

6
p

	
μ; Hz ¼

�
1

3
∓ 2ffiffiffi

6
p

	
μ: ð52Þ
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Since the cosmological time t (i.e., the proper time for
comoving observers) is defined all the way to t → −∞, the
comoving timelike geodesics are past complete. Although
null geodesics are expected to be past incomplete as in the
case of the flat de Sitter universe (see Refs. [4,5]), our
formulation ensures that the past boundary is not a scalar
curvature singularity at least up to Oð∂2gÞ because the
curvature invariants R, RμνRμν, and RμνρσRμνρσ approach
constant values.

C. Stability of the anisotropic background

We examine the stability of the Bianchi I solution that we
found in the previous subsection against perturbations. We
note that because of the cuscuton-type construction of the
theory, we have only two physical degrees of freedom
corresponding to gravitational waves on an FLRW space-
time. For simplicity, we keep the rotational symmetry in the
xy plane for the background metric by setting β− ≡ 0,
namely,

gμνdxμdxν ¼ −dt2 þ aðtÞ2½e2βðtÞðdx2 þ dy2Þ þ e−4βðtÞdz2�:
ð53Þ

From here on, we write β ≔ βþ and σ ≔ _βþ. In this
case, the perturbations can be categorized into vector
perturbations and scalar perturbations, and they evolve
independently at linear order. Thus, we investigate each
type of perturbation separately.

1. Vector perturbations

Thanks to the rotational symmetry in the xy plane,
for a given Fourier mode of perturbation with wave vector
k we can always choose the x and y axes so that
kidxi ¼ kydyþ kzdz. The easiest way to derive the sec-
ond-order perturbed action for this mode is to assume that
all the perturbation variables depend only on ðt; y; zÞ in
position space. On this type of anisotropic background,
there are three independent vector-type perturbations for
the metric and one for the vector field. Because of the gauge
degree of freedom, ξμ¼ð0;ξx;0;0Þ, where ξx ¼ ξxðt; y; zÞ,
we can eliminate one of the variables, resulting in three
independent variables. We use this gauge degree of free-
dom to express the vector-type perturbations as

δgμν ¼

0
BBBBB@

0 δE 0 0

� 0 −a2e2β∂zh× a2e−4β∂yh×
0 � 0 0

0 � 0 0

1
CCCCCA
; ð54Þ

where the symbols � represent symmetric components, and

δAμ ¼ ð0; δAx; 0; 0Þ: ð55Þ

This choice of perturbation variables allows us to easily
take the isotropic limit. Indeed, h× corresponds to the
cross-mode tensor perturbation in the isotropic case [35].

FIG. 1. Left: phase diagram of the first-order differential equations (49a) and (49b). Only the black curves correspond to solutions of
the constraint equation (43) with ρ ¼ 0. The filled and open circles represent stable and unstable fixed points, respectively. The thicker
black curve in the upper left quadrant represents the solution that is numerically solved in the right panel. Right: numerical background
solutions corresponding to the thick black curve in the left panel. The Hubble parameter H and the anisotropy parameter Σ each reach
their limiting value in the regime μt < 0.
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By using the equations of motion for δE and δAx to
eliminate themselves, we obtain the second-order perturbed
Lagrangian in Fourier space,

δ2LV ¼ M2
Pl

2
k2a3e−4βð1þ 2χ2Þ

�
_h×;−k _h×;k

−
�

k2

ð1þ 2χ2Þa2
þ 36

e2βk2yk2z
k4

σ2
	
h×;−kh×;k

�
;

ð56Þ

where k2ðtÞ ≔ e−2βk2y þ e4βk2z . We can see that any ghost
instability is avoided if

1þ 2χ2 > 0; ð57Þ

and the same condition guarantees the absence of any
gradient instability.
We note that, in the isotropic limit (i.e., for an FLRW

background), the quadratic Lagrangian takes the form

δ2LVjFLRW ¼ M2
Pl

2
k2a3ð1þ 2χ2Þ

�
_h×;−k _h×;k

−
k2

ð1þ 2χ2Þa2
h×;−kh×;k

�
; ð58Þ

which is free of instabilities under the condition (57). In
the isotropic limit where Σ2 ∝ Vχ2 vanishes, χ2 vanishes as
well for our choice of potential (47). Therefore, the above
quadratic Lagrangian coincides with that of Einstein
gravity as expected. This is also true for any limiting
potential recovering Einstein gravity at low energies since
we require V2 ∼ χm2

2 with m2 > 1 around χ2 ¼ 0 (see the
Appendix). On the other hand, if we have some potential
minima at χ2 ≠ 0, the overall coefficient is different for the
different minima.

2. Scalar perturbations

Again, to derive the action for the mode with
kidxi ¼ kydyþ kzdz, we assume all the perturbation var-
iables depend only on ðt; y; zÞ. We have seven independent
scalar-type perturbations for the metric and three for
the vector field. Moreover, one should take into account
the perturbations of the three scalar fields, δλ, δχ1,
and δχ2. Because of the gauge degrees of freedom,
ξμ ¼ ðξ0; 0; ∂yξ; ξzÞ, we can eliminate three out of 13
scalar perturbations. These gauge degrees of freedom
enable us to express the scalar-type perturbations associ-
ated with the metric as

δgμν ¼

0
BBBBB@

−2Φ 0 að∂yBþ e2β∂zsÞ að∂zB − e−4β∂ysÞ
0 −a2ð∂2

y þ e6β∂2
zÞhþ 0 0

� 0 a2e6β∂2
zhþ −a2∂y∂zhþ

� 0 � a2e−6β∂2
yhþ

1
CCCCCA

ð59Þ

and those associated with the vector field as

δAμ ¼ ðδA0; 0; ∂yδA; δAzÞ: ð60Þ

Note that hþ amounts to the plus-mode tensor perturbation
in the isotropic case [35]. From the variation with respect to
δλ, we obtain δA0 −Φ ¼ 0. After eliminating all appear-
ances of δA0 in the action with this equation and perform-
ing an integration by parts, we can eliminate all the
derivatives on the variables other than hþ. With the
definition ψa ¼ ðΦ; B; s; δA; δAz; δχ1; δχ2Þ, we have

δ2LS ¼ A _hþ;k
_hþ;−k þ Ca _hþ;kψ

a
−k þ C�a _hþ;−kψ

a
k

þ Eahþ;kψ
a
−k þ E�

ahþ;−kψ
a
k −Mhþ;khþ;−k

þ J abψ
a
kψ

b
−k; ð61Þ

where A, Ca, Ea, M, and J ab are functions described
by the background quantities, with J ab ¼ J �

ba and

detJ ab ≠ 0. We do not write down the explicit expressions
for all these functions for now. Rather, we emphasize the
methodology, and the final expressions will be shown
below. After substituting the equations of motion for ψa

k
and ψa

−k, we obtain

δ2LS ¼ A _hþ;k
_hþ;−k − ½Mþ ðJ −1ÞabEaE�

b − _D�hþ;khþ;−k;

ð62Þ

where A ¼ A − ðJ −1ÞabCaC�b and D ¼ ðJ −1ÞabCaE�
b. Note

that here we used the fact thatD is real, found by evaluating
the explicit form of D.
At large k, the second-order perturbed Lagrangian takes

the following form:

δ2LS ¼ M2
Pl

2
a3k4ð1þ 2χ2Þ½G _hþ;k

_hþ;−k −Khþ;khþ;−k�:
ð63Þ
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The k-dependent coefficients G and K are written as

G ¼ Gn

Gd
; K ¼ k2

ð1þ 2χ2Þa2
; ð64Þ

where

Gn ¼ 6ð1þ κ2Þ2ð1þ 2χ2Þχ22H½ð3χ1 þ 2χ2Þσ2 −H _χ1�
þ f½3κ2ð3χ1 þ 2χ2Þ þ ð−2þ κ2Þ2ð−1þ 3χ1Þχ22�σ2
− 3κ2H _χ1g _χ2; ð65Þ

Gd ¼ Gn þ 3κ4½ð3χ1 þ 2χ2Þσ2 −H _χ1�χ22 _χ2: ð66Þ

Here, we defined

κðtÞ ≔
���� kykz

����e−3βðtÞ; ð67Þ

which is nothing but the ratio between the y and z
components of the physical wave vector, i.e., κðtÞ ¼
k̂yðtÞ=k̂zðtÞ. The physical wave numbers are defined in
terms of the components of k with respect to the tetrad
basis:

kidxi ¼ kydyþ kzdz

≕ k̂yðtÞðaðtÞeβðtÞdyÞ þ k̂zðtÞðaðtÞe−2βðtÞdzÞ: ð68Þ

We see that there is no gradient instability as long as the
condition (57) is satisfied, though the condition for the
absence of ghost instabilities is not obvious at this point.
On an FLRW background, the quadratic Lagrangian

for the perturbations corresponding to the plus-mode
gravitational waves is reduced to the following form:

δ2LSjFLRW ¼ M2
Pl

2
a3k4ð1þ 2χ2Þ

�
_hþ;k

_hþ;−k

−
k2

ð1þ 2χ2Þa2
hþ;khþ;−k

�
; ð69Þ

without taking the large-k limit. This expression coincides
with the one for the cross mode (58). Thus, as long as
the condition (57) is satisfied, the FLRW background is
stable against both the plus- and cross-mode tensor
perturbations up to the linear order. Once again, χ2
vanishes in the isotropic limit for our choice of potential
(47), and the quadratic perturbed action reduces to that of
Einstein gravity.
Let us go back to the anisotropic case and discuss under

which situation ghost instabilities can be avoided. For
simplicity, we focus on large-k modes. The stability is
guaranteed if G in (64) is positive. The quantity G can be
expressed in terms of κ, χ1, and χ2 by making use of the
background equations and the explicit potential form, i.e.,
G ¼ Gðκ; χ1; χ2Þ. Since the functional structure of G is quite
involved and its sign may change time to time, we study the
time evolution of G numerically. We choose the origin of
time by the condition χ1ðt ¼ 0Þ ¼ −1. In addition, we vary
the value of κ at t ¼ 0, κ0 ≔ κðt ¼ 0Þ. The numerical
results under this setup are shown in the left and right
panels of Fig. 2 for σ > 0 and σ < 0, respectively (recall
σ ¼ _β here). Let us first discuss the case with σ > 0. From
the left panel of Fig. 2, we can see that ghost instabilities are
avoidable when

κ0 ≲ 5.5 ðfor σ > 0Þ: ð70Þ

We emphasize that this condition is automatically satisfied
if we assume the initial conditions for perturbations are

FIG. 2. Left: time evolution of G for σ > 0. The behavior drastically changes near κ0 ∼ 5.5. G is always positive for small-κ0 modes
with κ0 ≲ 5.5. Right: time evolution of G for σ < 0. The behavior drastically changes near κ0 ∼ 0.15. G is always positive for large-κ0
modes with κ0 ≳ 0.15.
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provided sufficiently far in the past. This is because the
value of κðtÞ is exponentially damped as time progresses:

κðtÞ ¼ e−3βðtÞκ0 ∼ e−
3ffiffi
6

p μtκ0: ð71Þ

Hence, if we set every initial condition at a sufficiently
early time t ¼ ti < 0 (i.e., μjtij ≫ 1), the ghost-free con-
dition for the wave number at t ¼ ti can be understood as

κðtiÞ≲ e
3ffiffi
6

p μjtij × 5.5 → ∞ ðμti → −∞Þ; ð72Þ

and thus a large class of wave numbers can satisfy the
stability condition. A similar argument holds also for
σ < 0. From the right panel of Fig. 2, ghost instabilities
are avoidable when

κ0 ≳ 0.15 ðfor σ < 0Þ: ð73Þ

This condition is also naturally satisfied because now κðtÞ
grows exponentially as time progresses. Thus, the stability
condition is satisfied for a large class of wave numbers if
we set their initial conditions at a sufficiently early time:

κðtiÞ > e−
3ffiffi
6

p μjtij × 0.15 → 0 ðμti → −∞Þ: ð74Þ

V. SUMMARY AND DISCUSSION

In this work, we proposed the limiting extrinsic curvature
theory as a new class of limiting curvature theories. The
general actions of two specific models are given by (6). We
showed that mimetic gravity and cuscuton gravity are both
contained in this category, and they are actually equipped
with a mechanism limiting the Hubble parameter on a
homogeneous spacetime. However, limiting the Hubble
parameter is not enough to obtain a nonsingular universe
when the spacetime is not isotropic. In the context of the
framework developed in this work, we constructed a
minimal model limiting anisotropies by introducing an
additional limiting potential for the anisotropies. For this
model, we found a nonsingular Bianchi I solution in the
sense that there is no scalar curvature singularity. It starts
from a phase of constant Hubble parameter and constant
anisotropy parameter, and in vacuum, it ends up with
Minkowski spacetime in the asymptotic future. We derived
the stability conditions under the SOð2Þ symmetry of the
spacetime. Note that, as in cuscuton gravity, the theory in
vacuum has only 2 dynamical degrees of freedom, h× and
hþ, i.e., counterparts of the cross- and plus-mode tensor
perturbations on an isotropic spacetime, respectively. As far
as the condition 1þ 2χ2 > 0 is satisfied, where χ2 is the
auxiliary scalar field ensuring the boundedness of anisotro-
pies, both modes are free of gradient instabilities. Moreover,
ghost instabilities are absent for h×. For the hþ mode, one
can circumvent the ghost instabilities for a large class of

wave numbers if the limiting phase lasts long enough, i.e., if
we put the initial conditions for the perturbations much
before the end of the limiting phase. While this is a
reasonable assumption, ghost instabilities may remain for
arbitrary initial conditions. In other words, there remains
some small region of phase space where the model is
unstable, and as a whole, one cannot claim full stability.
Though we analyzed the vacuum case where the space-

time approaches Minkowski space, it is straightforward to
introduce a cosmological constant and/or matter fields to
the theory. In this case, our framework can be understood
as the early-time completion of the inflationary scenario
without causing any inconsistency with experimental
results in the low-energy regime. Yet, it would be interest-
ing to see how adding matter might affect the stability of the
cosmological perturbations. Another caveat is that we
studied the case where the limiting potential has the form
Vðχ1; χ2Þ ¼ V1ðχ1Þ þ V2ðχ2Þ and V1ðχÞ ¼ V2ðχÞ. If we
introduce a hierarchy between V1 and V2, we can keep the
anisotropy parameter smaller than the Hubble parameter at
all times. However, in that case, we expect instabilities to
appear in a much broader region of wave numbers for the
hþ mode, which cannot be overcome by setting the initial
conditions early.
Another limitation of the current model is that the auxiliary

fields still grow without bound in the asymptotic past.
Consequently, one must interpret the theory as an effective
field theory whose regime of validity cannot fully include the
limit χk → ∞. Determining the strong coupling scale would
thus be an interesting follow-up (in the spirit of, e.g.,
Refs. [84,85]). This may also have implications for how
and when one may set the initial conditions for perturbations
in the asymptotic past.This is certainly an issue that deserves a
closer investigation, especially in the context of an anisotropic
universe since an anisotropic spacetime is not conformally flat
and the initial state would be different from the standard
“Minkowski limit” Bunch-Davies state.
It is interesting to mention that our formalism can be

extended to include the acceleration aμ ≔ nν∇νnμ of the
spatial hypersurface. That is,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ þ χ1ð∇μAμÞ2

þ χ2∇μAν∇νAμ þ χ3Aν∇νAμAλ∇λAμ − Vðχ1; χ2; χ3Þ
�
:

ð75Þ
We can interpret this action as a nonlinear extension of
Einstein-aether theory.9 Indeed, by integrating out the
auxiliary fields, we obtain

9A subclass of Einstein-aether theory, precisely corresponding
to the original cuscuton theory, was considered in Ref. [26] to
study a nonsingular bouncing background, reproducing the
dynamics of loop quantum cosmology.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ

− fðð∇μAμÞ2;∇μAν∇νAμ; Aν∇νAμAλ∇λAμÞ
�
; ð76Þ

where f is a scalar function determined by the potential V.
A more direct relation can be seen with a potential of the
form V ¼ ðμ2=2M2

PlÞ
P

3
k¼1ðχk − ckM2

PlÞ2, where μ is a
mass scale and the ck’s are dimensionless parameters,
though this is not a limiting potential. Expanded
about E=μ ≪ 1, where E2 ∼maxfð∇μAμÞ2;∇μAν∇νAμ;
Aν∇νAμAλ∇λAμg, this action is actually reduced to
Einstein-aether theory with higher-order corrections [see
Eq. (1) in Ref. [79] for a comparison]. On the other hand,
by identifying Aμ as the unit normal vector nμ, the extrinsic
curvature is written as Kμν ¼ ∇μAν þ Aμaν, which allows
us to rewrite the above action as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ λðAμAμ þ 1Þ þ χ1K2

þ χ2Kμ
νKν

μ þ χ3aμaμ − Vðχ1; χ2; χ3Þ
�
: ð77Þ

This gives us the picture that the nonlinear extension of
Einstein-aether theory includes a theory limiting the extrinsic
curvature and the acceleration. Note that the number of
dynamical degrees of freedom is five in general in the
Einstein-aether theory, three of which disappearing when
restricting ourselves to theories without the acceleration,
corresponding to the kinetic term of the vector field [78].
Another interesting link can be made with Ref. [86],

where a Kaluza-Klein scenario was proposed within
cuscuton gravity. In this scenario, a higher-dimensional
spacetime can dynamically reduce to a four-dimensional
inflationary spacetime with stable extra dimensions. It can
thus be understood as a kind of anisotropic inflation
in higher-dimensional spacetime. As such, the limiting
anisotropy mechanism that was introduced in the present
paper may be applied to obtain nonsingular spacetimes in
higher-dimensional theories. The theory presented in the
present paper could also potentially be used to construct
general anisotropic inflationary models by having the limit-
ing anisotropy scale comparable to the inflationary energy
scale. In such a context, the anisotropies present during
inflation could leave specific imprints in the observable
cosmological perturbations, and it would be interesting to
see how these signals differ from those of “standard”
anisotropic inflation models (see, e.g., Refs. [87–93]).
Another context in which the present work may be

interesting to apply is with regard to the initial condi-
tions of the Universe. It was found in Ref. [94] that
spacetimes dominated by anisotropies in the approach to
the big bang in the very early Universe tend to have a
divergent action, indicating ill-defined path integrals and

quantum amplitudes in the context of quantum cosmology.
Accordingly, it was found that essentially only isotropic
and accelerating spacetimes could originate from the big
bang. In the present work, the “big bang” (the moment the
spatial hypersurface reaches zero volume) is pushed to
t ¼ −∞, and the presence of anisotropies would still allow
for a convergent action since they are bounded (as is the
Hubble parameter). Thus, within the model developed in
the present paper, a constant-anisotropy and constant-
Hubble parameter initial phase for the universe could be
allowed under the principle of a finite action in the past.
However, if the spacetime is extendible beyond the point
where a → 0 (as t → −∞) as explored in Ref. [5] for
homogeneous and isotropic (quasi-)de Sitter spacetimes,
then the full spacetime might have a previous contracting
phase or have a cyclic past extension, in which case the past
action could potentially diverge again. The conditions for
extendibility of a spacetime with past null boundary are not
known though when the assumption of isotropy is dropped.
Finally, an immediate follow-up to this work pertains to

nonsingular bouncing cosmology. As already mentioned, a
homogeneous and isotropic bounce is straightforward to
achieve within mimetic gravity or cuscuton gravity, and in
the latter case, linear inhomogeneities have been shown to
present no instability. Thus, the inclusion of anisotropies
in the context of the cuscuton-type models developed in
the present paper and studying their evolution through a
bounce (in a similar fashion to Ref. [95], which did the
analysis for mimetic gravity) would be very interesting. If
anisotropies are bounded in the same way as the Hubble
parameter is, then it would imply that the BKL instability in
the contracting phase (the rapid, chaotic blowup of the
anisotropies) is evaded. There would remain to also study
the evolution of perturbations to check whether or not the
linear stability about an isotropic background, shown to
hold in a cuscuton bounce, is spoiled when introducing
anisotropies in addition to inhomogeneities.
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APPENDIX: APPROPRIATE CHOICE OF
LIMITING POTENTIAL FOR RECOVERING
EINSTEIN GRAVITY AT LOW ENERGIES

Here, we mention how to choose the potential function in
limiting extrinsic curvature theories of the form

SðlimÞ ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �Xn
k¼1

χkIkðKμν; hμν; DμÞ

− μ2VðfχkgÞ
�
; ðA1Þ

such that the total action is the sum of the Einstein-Hilbert
action, the matter action, and the above limiting curvature
action. In the above, the Ik’s are functions having mass
dimension two and μ is a mass parameter characterizing the
potential. For simplicity, we assume the potential term can
be separated into n functions as VðfχkgÞ≔Vðχ1;…;χnÞ¼P

n
k¼1VkðχkÞ. We also assume that the χk’s have large

absolute values at high energies and small ones at low
energies, namely, the χk’s are expressed in terms of positive
powers of the energy scale asymptotically. To limit the
extrinsic curvature, we require the potential at high energies
to behave at most linearly, i.e., for each k, we want

VkðχkÞ ∼OðχkÞ as χk → ∞: ðA2Þ

Of course, we require that the first derivatives of the
potentials, ∂Vk=∂χk, are finite for any field values of χk
as well. On the other hand, as far as one thinks of the
limiting curvature mechanism as coming from quantum
corrections at high energies, we need to recover Einstein
gravity when the curvature is small. This means the
corrections should have a higher mass dimension than that

of Einstein gravity. If the potentials behave as power laws
for small χk, i.e.,

VkðχkÞ ∼ χmk
k as χk → 0; ðA3Þ

where the mk’s are real numbers, the curvature invariants
scale as Ik ¼ ∂Vk=∂χk ∼ μ2χmk−1

k . The correction terms in
the action then scale as

χkIk ∼ μ2Vk ∼ μ2
�
Ik
μ2

	
mk=ðmk−1Þ

: ðA4Þ

Since Ik has mass dimension two, R and Ik should be of the
same order. Correspondingly, the ratio of the quantum
corrections to the Ricci scalar is evaluated as

χkIk
R

∼
μ2Vk

R
∼
�
Ik
μ2

	
1=ðmk−1Þ

∼
�
ρmatter

μ2M2
Pl

	
1=ðmk−1Þ

; ðA5Þ

where we used Ik ∼ R ∼ ρmatter=M2
Pl. Therefore, if we

require

mk > 1 ðA6Þ

for each k, we can recover Einstein gravity at low energies
with ρmatter=ðμ2M2

PlÞ ≪ 1.
In summary, provided that the potential function V is

separable into n functions of χk, one should fix the potential
such that VkðχkÞ ∼OðχkÞ as χk → ∞ and VkðχkÞ ∼ χmk

k as
χk → 0, with mk > 1. As a concrete example, we chose a
potential function satisfying these two requirements in (47).
Indeed, for VkðχkÞ ∝ χk − tanh χk, we have VkðχkÞ ∼ χk as
χk → ∞ and VkðχkÞ ∼ χ3k as χk → 0.
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