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The ten-parameter, quadratic Poincaré gauge theory of gravity is a plausible alternative to general
relativity. We show that the rich background cosmology of the gauge theory is described by a noncanonical
biscalar-tensor theory in the Jordan frame: the metrical analogue. This provides a unified framework for
future investigation by the broader community. For many parameter choices, the noncanonical term reduces
to a Cuscuton field of the form

ffiffiffiffiffiffiffiffiffiffiffi
jXϕϕj

p
. The Einstein–Cartan–Kibble–Sciama theory maps to a pure

quadratic cuscuton, whereas the teleparallel theory maps to the Einstein–Hilbert Lagrangian. We apply the
metrical analogue to novel unitary and power-counting-renormalizable cases of Poincaré gauge theory.
These theories support the concordance ΛCDM background cosmology up to an optional, effective dark
radiation component, we explain this behavior in terms of a stalled cuscuton. We also obtain two dark
energy solutions from one of these cases: accelerated expansion from a negative bare cosmological
constant whose magnitude is screened, and emergent dark energy to replace vanishing bare cosmological
constant in ΛCDM.
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I. INTRODUCTION

Candidate discrepancies between the cosmic concord-
ance model (ΛCDM) [1,2] and observation [3–9] have
fuelled interest in modifications to general relativity (GR).
In order to bypass Lovelock’s theorem, scalar-tensor
theories couple various scalar fields ϕ to the metric gμν
on a curved spacetime M [10]. This approach is prevalent
in effective field theory (EFT) extensions to GR, and even
used to model inflation within ΛCDM [11]. Scalar-tensor
theories are tractable and very widely studied, and in this
sense they are self-motivating.
The EFT approach to gravity is motivated in part by the

perturbative nonrenormalizability of GR, in which the
superficial divergence of a diagram scales with the number
of loops [12]. Even at one loop, the inclusion of matter
propagators spoils the renormalizability of pure GR by
invoking quadratic curvature counterterms: such terms
cannot be absorbed into the linear curvature invariant by
rescaling [13–15]. A possible solution is to add such terms
to the Einstein–Hilbert Lagrangian a priori. This approach
culminates in the renormalizable theory of Stelle [16]. The
addition of quadratic curvature invariants motivated in the
ultraviolet (UV) should not interfere with the usual tests

passed by GR in the infrared (IR). However, they neces-
sarily result in higher derivative theories whose unitarity
may be questionable under standard quantization schemes.
For example, Stelle’s theory contains a ghost in its tree-
level graviton propagator, although recently this has been
argued not to prevent unitary at the QFT level [17].
The problematic link between quadratic curvature addi-

tions and higher derivatives may be broken by reconsid-
ering the fundamental dynamical variables of gravity. This
route was suggested already by gravitational coupling to
spinors, which requires gμν to be split into tetrad (or
vierbein) fields. Higher derivatives still persist if the (spin)
connection is expressed in terms of tetrad derivatives. The
required leap is then to treat the spin connection as a
separate dynamical field at all times, arriving at the
Poincaré gauge theory (PGT) of Kibble [18], Utiyama
[19], Sciama [20] and others. The particular interpretation
of PGT employed in this paper is set in a flat spacetime M̌,
in which the tetrad and spin connection are cast as trans-
lational and rotational gauge fields haμ and Aab

μ ≡ A½ab�
μ.

The minimal PGT extension to GR is usually taken to be
Einstein–Cartan–Kibble–Sciama (ECKS) theory [21],
which has an Einstein–Hilbert Lagrangian. ECKS theory
is dynamically equivalent to GR in the absence of fermionic
matter, but otherwise admits torsion in contact with matter
spin sources. PGT enjoys a measure of “naturalness”
because torsion is inherently allowed, though it may vanish
dynamically as in ECKS theory. In GR, torsion is artifi-
cially suppressed at the level of the covariant formulation.
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While torsion has not been directly observed, we note the
relative paucity of theories in which such an observation is
expected or even possible [22–25], among them theories
with highly nonminimal matter couplings [26]. Of greater
concern is the algebraic nature of the spin-torsion inter-
action particular to ECKS theory. For more natural
dynamical torsion, one again requires quadratic curvature
additions to the Einstein–Hilbert Lagrangian. However, it is
precisely the addition of quadratic invariants which further
challenges the position of ECKS theory as the minimal
PGT extension to GR. The teleparallel Lagrangian is a
specific linear combination of the three quadratic torsion
invariants [27]. Under the assumption of vanishing curva-
ture (which may be achieved via multiplier fields [28]), this
theory is also dynamically equivalent to GR. We note that
in the more general metric-affine gauge theory (MAGT),
a similar analogue exists for quadratic nonmetricity
invariants under the assumption of vanishing curvature
and torsion: this theory is known as coincident GR
(CGR) [29,30].
The present paper is restricted to PGT, in which, in

addition to the Einstein–Hilbert term, there are six quad-
ratic curvature invariants,1 and no reason to exclude the
further three quadratic torsion invariants. Extra quadratic
invariants may only be formed at the cost of parity-
violating Lagrangia [32]. Consequently, many authors have
considered the ten-parameter, quadratic, parity-preserving
PGT (PGTq;þ). The inhomogeneous transformation of Aab

μ

under external Lorentz rotations, all set on a flat back-
ground, bears a strong resemblance to the Yang–Mills
theories of internal isospin symmetries. In this sense, a
Lagrangian quadratic in the field strength tensors comes
somewhat more naturally to PGT than to its metrical
counterpart. Moreover, the Yang–Mills analogy seems
further to reinforce our initial guess that a perturbative
approach to renormalization could be taken. Popular
alternatives exist, and some of these have Yang–Mills
counterparts, too. For example, the asymptotic safety of
QCD [33] has helped to drive the quest for fixed points in
the renormalization group flow [34].
Building on early work by Neville [35,36], Sezgin and

van Nieuwenhuizen identified 12 cases of pure PGTq;þ
which appear unitary at the level of their linearized
Lagrangia [37,38]. In the linearized picture, propagating
haμ and Aab

μ modes are respectively termed gravitons and
rotons (or tordions). PGTq;þ admits a massless graviton of
spin-parity JP ¼ 2þ, and six rotons which may be 0�, 1� or
2�, and which have (generally nonzero) mass parameters.
While haμ and Aab

μ provide 16þ 24 degrees of freedom
(D.o.F), Poincaré gauge symmetry eliminates 2 × 10D.o.F,
and the remaining 20 D.o.F are accounted for by these
modes. Unitarity is achieved by eliminating propagator

poles with negative residues and imaginary masses. Quite
recently, 58 additional cases were discovered by Lin,
Hobson, and Lasenby [39,40]: these are not only unitary,
but also power-counting renormalizable (PCR). The
“strong” PCR criteria stipulate that the graviton propagator
should approach the UV as p−4 (in common with the
quadratic metrical theory), while the roton propagator
should tend to p−2 due to the extra momentum dependence
of its vertices [35,41]. In all but 4 of the 58 novel cases,
modes exist which violate the strong criteria: these decou-
ple in the UV and produce no divergent loops [40].
Superficially therefore, PGTq;þ does appear to reward
the expectation of simultaneous unitarity and renormaliz-
ability. However, there are several important caveats.
Principally, power counting is only a proxy for pertur-

bative renormalizability: neither the Ward–Takahashi iden-
tities nor the primitively divergent diagrams have been
identified. Moreover, no allowance is made for matter
loops, which are already known to hinder the perturbative
approach to GR [13–15]. Most importantly, the 12 original
unitary cases and 58 novel unitary and PCR cases were
proposed by considerations in the weak field regime [42].
Yo and Nester applied the Dirac–Bergmann algorithm
(schematically) to the initial 12 cases: most of them fall
apart in the strong regime, so that strictly ghostly sectors
may become excited [43]. Their analysis also gave indi-
cations of tachyonic instability, albeit through less well
established methods [44]. This followed their earlier
(complete) implementation of the algorithm for a few cases
with only massive 0þ or 0− rotons in addition to the
massless 2þ graviton, with favorable results [45]. In fact,
not only the initial 12 cases but also the great preponder-
ance of theories in the literature feature the massless 2þ
graviton automatically by including the Einstein–Hilbert
term. This term is missing from all the 58 novel cases: as
with teleparallelism and CGR, these are exclusively quad-
ratic theories.
It is not yet clear whether the loss of the linear curvature

invariant is a “feature” or a “bug.” Of the 58 novel cases, 19
contain two massless D.o.F, of which only 17 have a
nonvanishing 2þ propagator. For these cases the massless
roton may be tentatively identified with the unique “grav-
iton” of Weinberg and Witten [46], so that the theory may
still be viable. In fact, all 58 novel cases feature vanishing
roton mass parameters, but the relevant JP sectors are
usually nonpropagating. This is another point of contrast
with the literature: vanishing mass parameters are typically
avoided due to their association with emergent gauge
symmetries, which in turn drastically complicate the
Hamiltonian constraint chain [47,48]. For this and other
reasons, we note that the 58 novel cases are (for the
moment) insulated from the earlier Hamiltonian surveys
in [43,45]: a dedicated analysis is in preparation and
will be presented in a companion paper [49]. Without
the linear curvature invariant, we also lose contact with the

1Typically only five quadratic curvature invariants are con-
sidered to be independent due to the Gauss–Bonnet identity [31].
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established IR limit of the theory. On the one hand,
we might embrace this as an unusual opportunity to
motivate the IR from the UV, since the quadratic invariants
are no longer perturbative corrections to the theory.
On the other, we may view this as a potentially fatal flaw
which necessitates disparate IR investigations into nature’s
observed spacetimes.
The present paper is concerned with the spatially flat

Friedmann–Lemaître–Robertson–Walker (FLRW) space-
time, which is a central axiom of the cosmological
constantþ cold dark matter model [1,2]. Recently, we
used the homogeneity and isotropy of the strong cosmo-
logical principle (SCP) to partition a select 33 of the 58
novel cases into phenomenological classes [50]. The Class
3C� theory reproduces the ΛCDM background. Moreover,
an early-time deviation from ΛCDM dilutes away as dark
radiation, qualitatively suited to ease the present tension
[7,51] between CMB-inferred 0.674� 0.005 [9] and
locally-observed 0.735� 0.014 [8] determinations of the
contemporary Hubble number h ¼ H0=100 km s−1 Mpc−1.
The more general Class 2A� has an additional massive 0−

D.o.F, but is hitherto unexplored. Separately, we emphasize
that the cases underlying these classes simultaneously
contain two massless (possibly 2þ) D.o.F, pass basic
Solar System tests and support the usual gravitational wave
polarizations [52]. Notwithstanding our earlier analysis, the
cosmological equations of PGTq;þ are quite cumbersome
and opaque. This has led to fruitful, but often piecewise
investigations for almost forty years (see, e.g., [53–56] or
reviews of the substantial literature [57] and in [50]).
The first aim of this paper is to develop a simple bi-

scalar-tensor theory—the metrical analogue (MA)—which
reproduces the spatially-flat background cosmology of
PGTq;þ. The general MA will be given in Eq. (14) and
provides a unified framework for future IR investigation by
the broader community. Since the MA is free of both
torsion and quadratic curvature invariants, we find that it
offers a refreshingly clear statement of the IR. Just as haμ is
in some sense the square root of gμν, the MA contains a

noncanonical kinetic term of the form
ffiffiffiffiffiffiffiffiffiffiffi
jXϕϕj

p
, where

Xϕϕ ≡ 1
2
gμν∂μϕ∂νϕ. Such fields are known in cosmology

as Cuscutons [58]: they provide a rich phenomenology
[59], but are naturally challenging to motivate (see, e.g.,
EFT applications in Hořava–Lifshitz gravity [60]). We will
show that teleparallelism has an Einstein–Hilbert MA,
while the MA of ECKS theory is a pure Cuscuton.
The second aim of this paper is to use the MA to

study the IR of certain novel cases, which were partly
motivated in the UV. We will show that Class 2A� of
PGTq;þ inherits the dark radiation of Class 3C�, while the
0− mass generates dark energy. The Cuscuton tends to
“stall” the cosmology in a state equivalent to ΛCDM. With
relevance to the Hubble tension and cosmological constant
problem [61,62], our results build the case for further
careful scrutiny of the underlying novel cases.

The remainder of this paper is set out as follows. In
Secs. II to IV we map PGTq;þ to the MA. In Sec. VIII we
provide a brief primer on the novel theories of interest, and
their potential for renormalizability. In Sec. IX we show
that Class 2A� can undergo accelerated expansion in the
presence of a negative bare cosmological constant. In
Sec. X we find an alternative solution in which ΛCDM
is recovered, but the cosmological constant is provided
entirely by the gravitational sector. Conclusions follow in
Sec. XI. We use natural units c≡ ℏ≡ 1, reduced Planck
mass mp

2 ≡ κ−1 and signature ðþ;−;−;−Þ.

II. METRIC THEORIES

The generalized galileon, more commonly known as
Horndeski theory [63], is the most general ϕ–gμν coupling
with maximally second-order field equations. Avoidance of
higher-order field equations is a simple (yet insufficient)
precaution against ghosts given by Ostrogradsky’s theorem.
The generalized bi-Galileon [64] introduces a second
scalar ψ and is known not to be the most general
second-order biscalar-tensor theory [65], but follows a
simple prescription and is also often called Horndeski
theory. The generality of the bi-Galileon is provided by six
arbitrary G-functions. Of these, it suits our needs to discard
Gϕ

3 ,G
ψ
3 ,G

ϕ
5 , andG

ψ
5 (adopting the usual notation [66]) for a

total Lagrangian

LT ¼ G2ðϕ;ψ ;Xϕϕ; Xψψ Þ þ G4ðϕ;ψÞRþ LmðΦ; gÞ: ð1Þ
Note that G2 couples ∂ϕ and ∂ψ to gμν, and G4 non-
minimally couples ϕ and ψ to ∂g and ∂2g via the Ricci
scalar R≡ Rμν

μν, where the Riemann tensor is

Rαβμ
ν ≡ 2ð∂ ½βΓν

α�μ þ Γλ½αjμΓνjβ�λÞ; ð2Þ
and the Levi-Civita connection Γα

μν is of the form ∂g. As
with GR, one cannot formally fit the whole standard model
(SM) into the matter Lagrangian LmðΦ; gÞ. This is an
elementary but occasionally overlooked limitation of met-
ric theories: the matter fields Φ must be tensorial repre-
sentations of GLð4;RÞ, and are thus bosonic. Note also that
while ϕ and ψ are historically termed galileons, the
covariantization of the theory with respect to gμν breaks
the Galilean shift symmetry. In exchange, (1) acquires
diffeomorphism invariance and (like GR) may be inter-
preted as a geometric R1;3 gauge theory.

III. TETRAD THEORIES

Various other geometric gauge theories have been pro-
posed. Promotion of the proper, orthochronous Lorentz
rotations to a local symmetry yields the Poincaré gauge
theory (PGT) of R1;3⋊SOþð1; 3Þ. The geometric interpre-
tation of PGT replaces M with a spacetime of Riemann–
Cartan type in order to accommodate torsion. The modern
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picture [28,41,67] is perhaps more commensurate with
particle physics in assuming a flat metric γμν on

Minkowski spacetime M̌. Translations are gauged by the
field haμ and its inverse baμ, where haμbaν ≡ δμν and
haμbcμ ≡ δca. The Roman indices refer to an anholonomic,
Lorentzian basis. Lorentz rotations are gauged by the field
Aab

μ. The fields haμ and Aab
μ can be geometrically inter-

preted as the tetrad and spin connection. They provide two
field strengths

Rab
cd ≡ 2hcμhdνð∂ ½μAab

ν� þ Aa
e½μAeb

ν�Þ; ð3aÞ

T a
bc ≡ 2hbμhcνð∂ ½μbaν� þ Aa

d½μbdν�Þ; ð3bÞ

which are referred to as Riemann and torsion tensors,
but which confer no geometry to M̌. The Ricci tensor
Ra

b ≡Rac
bc, Ricci scalarR≡Ra

a and torsion contraction
T a ≡ T b

ab are then used to construct the most general total
Lagrangian up to quadratic order in the field strengths and
invariant under parity inversions

LT ¼ −
1

2
mp

2α0Rþ α1R2 þRabðα2Rab þ α3RbaÞ
þRabcdðα4Rabcd þ α5Racbd þ α6RcdabÞ
þmp

2½T abcðβ1T abc þ β2T bacÞ þ β3T aT a�
þ LmðΦ;Ψ; h; AÞ: ð4Þ

This general theory is termed PGTq;þ, and is parametrized
by ten dimensionless coupling constants. Note that the
remaining fermionic fields Ψ of the SM are now permitted
in LmðΦ;Ψ; h; AÞ as representations of SLð2;CÞ, which
universally covers SOþð1; 3Þ. TheMaxwell-like terms in (4)
are motivated by analogy to the Yang-Mills structure of the
SM: since Eqs. (3a) and (3b) are at lower order than (2),
maximally second-order field equations are guaranteed by
construction.

IV. SCALE INVARIANCE

Pushing the SM analogy further, one considers scale
invariance. This pertains to local conformal (or Weyl)
transformations

gμν ↦ Ω2gμν; ϕ ↦ Ω−1ϕ; ψ ↦ Ω−1ψ ; ð5aÞ

baμ ↦ Ωbaμ; Aab
μ ↦ Aab

μ: ð5bÞ

The Lagrangia (1) and (4) are scale-invariant if they
transform with weight −4, which cancels with the measureffiffiffiffiffijgjp

, or h−1 ≡ det baμ. A scale-invariant PGTq;þ has
α0 ¼ β1 ¼ β2 ¼ β3 ¼ 0, which eliminates the explicit
mass scale mp. By convention, ϕ and ψ have weight −1
[68] and Aab

μ has weight 0 [41]. As a slight aside, an

inhomogeneously rescaling Aab
μ was recently used in

an extension of Weyl gauge theory (eWGT) [41]. Quite
unlike PGT, eWGT is scale-invariant by construction.
However, when expressed in terms of scale-invariant
variables [69–71], the quadratic, parity-preserving version
(eWGTq;þ) was shown to be dynamically equivalent to
PGTq;þ under the SCP [50]. At this level, PGTq;þ and
eWGTq;þ differ only through a scale-dependent interpre-
tation of the coupling constants. We will briefly return to
eWGTq;þ in closing.

V. THE FULL METRICAL ANALOGUE

We will now construct an instance of (1) which mimics
(4) under the spatially flat SCP. Adopting dimensionful
Cartesian coordinates on M, the flat FLRW metric has
interval

ds2 ¼ dt2 − a2dx2: ð6Þ

The dimensionless scale factor a provides the Hubble
number H ¼ ∂ta=a. Under conformal transformations of
the form (5a), the form of (6) is always preserved by
implicit combination with the diffeomorphism

dt ↦ Ω−1dt; H ↦ Ω−1ðH − ∂tΩÞ: ð7Þ

Analogous Cartesian coordinates γμν ¼ ημν, assumed to
transform according to (7) under Weyl rescalings of the
form (5b), then allow us to equate component values
gμν ¼an ηabhaμhbν and gμν¼anηabbaμbbν . Our “analogue equal-
ity” flags the notational abuse of incompatible tangent
spaces. The torsion tensor on M̌ is restricted by the SCP to
the scalar U and pseudoscalar Q, which are the 0þ and 0−

sectors [72–74]

T a
bc ¼ δd0

�
2

3
Uδa½cηb�d −Qεadbc

�
: ð8Þ

These are homogeneous cosmological fields in the same
sense as ϕ and ψ , inviting the analogue of torsion on M

ϕ¼an 2

3
U − 2H; ψ ¼an Q: ð9Þ

Related constructions are used in [50,75,76] for
algebraic convenience. In our case we see that (9) corrects
the inhomogeneous rescaling of T a

bc, endowing the
Galileons with a weight of −1. Thus, all relations in
(5a) are reconciled with those in (5b). Finally, we
tacitly convert matter fermions into bosons so as to
preserve the stress-energy tensor 2ð δδgÞμν½

ffiffiffiffiffijgjp
LmðΦ; gÞ� ¼an

ηabbaðμð δ
δhÞaνÞ½h−1LmðΦ;Ψ; h; AÞ�, see, e.g., [77]. The spin

tensor ð δ
δAÞabμ½h−1LmðΦ;Ψ; h; AÞ� is neglected.
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At this point we are ready to derive the specific G2 and
G4 which facilitate (4). Throughout the PGTq;þ equations,
the nine Maxwell-like couplings appear exclusively in five
linear combinations under the SCP

σ1 ≡ 3

2
α1 þ

1

4
α2 þ

1

4
α3 þ

1

4
α5 −

1

2
α6;

σ2 ≡ 3

2
α1 þ

1

2
α2 þ

1

2
α3 þ

3

2
α4 −

1

4
α5 þ

1

2
α6;

σ3 ≡ 3

2
α1 þ

1

2
α2 þ

1

2
α3 þ

1

2
α4 þ

1

4
α5 þ

1

2
α6;

υ1 ≡ −2β1 þ 2β2; υ2 ≡ 2β1 þ β2 þ 3β3: ð10Þ

These physical couplings are insensitive to, e.g., a Gauss–
Bonnet variation 4δα1 ¼ −δα3 ¼ 4δα6, which is topologi-
cal in D ≤ 4. An application of the minisuperspace method
is sufficient to obtain the required mapping from (4) to (1).
For our previous treatments of the minisuperspace

formulation of PGTq;þ, see [50,76]. We use an ADM-like
interval ds2 ¼ u2ðdt2 − v2dx2Þ, where the flat FLRW
interval in (6) is recovered by taking u ↦ 1 and v ↦ a.
The analogue defined in (9) corresponds to the following
choices of gauge, in a further abuse of notation which
assumes the holonomic and anholonomic bases to be
aligned

baμ ¼an uðvðδaμ − δa0η0μÞ þ δa0η0μÞ; ð11aÞ

Aab
μ ¼an uvδd0

�
ϕδ½bμ δ

a�
d −

1

2
ψεμd

ab

�
: ð11bÞ

The gauge fields in (11b) and (11a) are then substituted into
(3a) and (3b), and then into (4). The Maxwell-like
couplings defined in (10), along with a minimal addition
of surface terms (including the Gauss-Bonnet derivative)
then reduce this to

LT ¼an
�
1

2
mp

2υ2 þ σ3ϕ
2 þ 1

2
ðσ3 − σ2Þψ2

�
½6v3ð∂tuÞ2 þ 12uv2∂tu∂tvþ 6u2vð∂tvÞ2�

þ 12σ3

�
uv3ϕ∂tuþ 1

2
u2v3∂tϕþ u2v2ϕ∂tv

�
∂tϕþ 6ðσ3 − σ2Þ

�
uv3ψ∂tuþ 1

2
u2v3∂tψ þ u2v2ψ∂tv

�
∂tψ

þ 4σ1ðψ2 − ϕ2Þ
�
3

2
u2v3ϕ∂tuþ 3

2
u3v2ϕ∂tvþ

3

2
u3v3∂tϕ

�
þ 3mp

2ðα0 þ υ2Þ½u2v3ϕ∂tuþ u3v2ϕ∂tv�

þ 3

4
u4v3½2σ3ϕ4 − 4σ2ϕ

2ψ2 þ 2σ3ψ
4 þmp

2ðα0 þ υ2Þϕ2 −mp
2ðα0 − 4υ1Þψ2� þ LmðΦ;Ψ; u; v;ϕ;ψÞ: ð12Þ

A naïve ansatz restricts to polynomial G-functions,
but inspection of (12) reveals that this is only viable up
to surface terms if α0 þ υ2 ¼ σ1 ¼ 0. These constraints
eliminate terms of first order in ∂tϕ and H from the
penultimate line of (12), and so from the E.o.Ms.
Such terms are noncanonical, but can be included (and
the constraints removed) by extending (1) to LT ↦
LT þ ΔLT, where

ΔLT ¼ ½Gϕ
6 ðϕ;ψÞ∂μϕþ Gψ

6 ðϕ;ψÞ∂μψ �Bμ

þmpðmp
2 − BμBμÞχ: ð13Þ

The neutral vector Bμ and scalar χ may be thought
of as gravitational spurions: they constrain the theory by
singling out a preferred timelike vector under the SCP
without breaking general covariance in the action [78].
The spurions are generally nondynamical and are integrated
out directly such that (13) merely renormalizes G2.
Writing out the final G-functions explicitly, the full MA
of (4) is

LT ¼
�
1

2
mp

2υ2 þ σ3ϕ
2 þ 1

2
ðσ3 − σ2Þψ2

�
R

þ 12

�
σ3Xϕϕ þ 1

2
ðσ3 − σ2ÞXψψ

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jJμJμj

q

þ 3

4
mp

2½ðα0 þ υ2Þϕ2 − ðα0 − 4υ1Þψ2�

þ 3

2
ðσ3ϕ4 − 2σ2ϕ

2ψ2 þ σ3ψ
4Þ þ LmðΦ; gÞ; ð14aÞ

Jμ ≡ 4σ1ψ
3∂μðϕ=ψÞ −mp

2ðα0 þ υ2Þ∂μϕ: ð14bÞ

Further surface terms distinguish the minisuperspace
Lagrangian of (14) from (12), and a straightforward
calculation confirms that the E.o.Ms coincide with those
of PGTq;þ under the spatially flat SCP.

VI. FIRST IMPRESSIONS

Noting in what follows that
ffiffiffiffiffiffiffiffiffiffiffiffijJμJμj

p
carries an implicit

factor of sgnðJ0Þ for continuity [79], a straightforward
calculation confirms that (14) and (4) are dynamically
coincident under the spatially flat SCP. In this paper we will
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not consider inhomogeneous applications, e.g., to acoustic
stability. Various features of the MA are already apparent at
the Lagrangian level. Since G4 is not constant, ϕ and ψ are
nonminimally coupled to R, thus the MA has been unwit-
tingly but naturally constructed in the Jordan conformal
frame (JF). It will prove convenient later to transform to the
Einstein frame (EF), but since the EF derives its meaning
from the artificial context of the MA, we cannot take it to be
physical. Equivalently, to work at the usual level of the
PGTq;þ equations is to work in the JF of the MA and know
no better. While counterintuitive, we find this picture
to be unavoidable [80]. A scale-invariant PGTq;þ sets
α0 ¼ υ1 ¼ υ2 ¼ 0, reducing the MA to a manifestly con-
formal field theory [68]. In our minimal formulation, this
would restrict to a pure radiation cosmology (see e.g., [76]),
but we note that various Higgs-like scale symmetry-
breaking extensions to the gauge theory have been
proposed [81–83].

VII. APPLICATION TO ESTABLISHED THEORIES

Before addressing the novel theories, we will analyse
some “conventional” PGTq;þs with nondynamical Aab

μ.
Consider the representative two-parameter theory

LT ¼ −
1

2
mp

2α0Rþ 1

2
mp

2βT þ LmðΦ;Ψ; h; AÞ; ð15Þ

i.e., a linear combination of R and the teleparallel term
T ≡ 1

4
T abcT abc þ 1

2
T abcT bac − T aT a, with the MA

LT ¼ −
1

2
mp

2βRþmp
2ðβ − α0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jXϕϕj

q

−
3

4
ϕ2 þ 3

4
ψ2

�
þ LmðΦ; gÞ: ð16Þ

We see that the MA is a linear combination of R, a
quadratic Cuscuton ϕ with equation of motion ϕ¼−2H,
and a nondynamical mass which sets ψ ¼ 0. By (9) we will
have U ¼ Q ¼ 0. As a general principle, the Cuscuton is a
nondynamical constraint field, and preserves the form of
the usual Friedmann equations of GR that follow from R.
This can be seen by substituting ϕ into the gμν equation of
(16) [59]. ECKS theory is equivalent to GR when the spin
tensor vanishes, and is defined by α0 ¼ 1 and β ¼ 0 in (15)
[21]. Remarkably, this eliminates R from (16) entirely, so
that R is represented purely by the Cuscuton. If β ≠ 0, the
admixture of T in (15) leads toR–Cuscuton contributions in
(16) which exactly cancel in the gμν equation. However,
true teleparallelism, with β ¼ 1 and α0 ¼ 0 is also dynami-
cally equivalent to GR if PGT curvature (as defined in (3a)
vanishes identically [27,28,84]. The constraint Rab

cd ≡ 0
is properly imposed via Lagrange multiplier fields [28], but
in practice this just restricts Aab

μ to a pure gauge (the
Weitzenböck connection) and fixes ϕ≡ ψ ≡ 0. By (9) we

will then have Q≡ 0 and U≡ 3H. Since the Cuscuton is
now eliminated, T is represented purely by R, and the
expected equivalence to GR is immediate.

VIII. APPLICATION TO NOVEL THEORIES

The graviton and roton propagators of a generic PGTq;þ

may approach the UVas p2Nh and p2NA , where Nh; NA ≤ 0
are some integers, and the even powers are expected of
bosons. In such a theory, a diagram may have Eh external
graviton and EA external roton lines. Also, there will be
Vnm vertices with n graviton and m roton valences, and
whose coupling constant has some (low) mass dimension
Cnm supplied by the appearance of mp in (4). By consid-
ering the perturbative structure of (4) and applying the
usual topological identity that relates the number propa-
gators, vertices and loops [85], one eventually arrives at the
following formula for the superficial divergence D of the
diagram

D ¼ 4 − ð2þ NhÞEh − ð2þ NAÞEA

−
X
n;m

½Cnm − 2nð2þ NhÞ − 2mð1þ NAÞ�Vnm: ð17Þ

The strong PCR criteria Nh ¼ −2 and NA ¼ −1 are then
suggestive of perturbative renormalizability. If these criteria
are met, one can see from (17) that any diagram appearing
at high enough loop order or with sufficiently many
external lines should superficially converge. While such
a diagram may still be divergent in practice, there is some
hope that this divergence may result from the incorporation
of a finite number of primitively divergent diagrams. The
novel cases in [39,40] are defined by linear constraints on
the ten PGTq;þ parameters. These constraints structurally
alter the saturated propagator, obtained by inverting the
linearized, matter-free Lagrangian in (4), so as to effectively
satisfy these criteria. As noted in Sec. I, the criteria may be
safely relaxed for modes which become nonpropagating in
the UV; for a full discussion of this matter the reader is
referred to [40].
The SCP groups the cases into classes, some of which

are shown in Fig. 1. The constraint α0 ¼ 0 marks a
complete break with ECKS theory: one is left only with
quadratic invariants which have no EFT interpretation as
loop corrections to the PGT Ricci scalar R. The further
constraint σ3 ¼ 0 then triggers the k-screening mechanism,
in which the physical spatial curvature k ∈ f�1; 0g is
eliminated from the PGTq;þ equations: a hyperspherical,
hyperbolic or simply flat choice of universe does not affect
the background dynamics [50]. The description of such
classes as offered by the MA is thus not limited by our
earlier assumption of spatial flatness in (6).
We consider Class 2A�, defined by the further constraint

σ2 ¼ σ1 (note that Class 3C� will always be the special case
υ1 ¼ 0). We next set σ1 < 0 (no ghost) and υ1 < 0
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(no tachyon): these unitarity conditions are translated from
[40]. They may also be read off from (14) near the vacuum
R ¼ ϕ ¼ ψ ¼ 0, once the defining constraints are imposed.
We finally take a third condition υ2 < 0 by analogy to the
Einstein-Hilbert Lagrangian, although this is not listed in
[40]. A conformal transformation Ω takes the MA of Class
2A� into the EF. Following the conventions of, e.g., Brans–
Dicke theory [86], we then partly recanonicalize the MA
through two new fields ζðϕ;ψÞ and ξðψÞ

LT ¼ −
1

2
mp

2Rþ Xξξ þmp
2ωðξÞ3

ffiffiffiffiffiffiffiffiffiffi
jXζζj

q

− VðξÞ þ 3

4
mp

2ωðξÞ4ζ2 þ LmðΦ; ξ; gÞ; ð18aÞ

VðξÞ≡−
4υ1
3σ1υ2

mp
4

�
1þ1

8
ωðξÞ2

��
1þ1

2
ωðξÞ2

�
; ð18bÞ

ωðξÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3 coshð

ffiffiffiffiffiffiffiffi
2=3

p
ξ=mpÞ − 5j

q
: ð18cÞ

While (18) is strictly valid for the range

1 ≤ 4σ1Q2=υ2mp
2 < 4; ð19Þ

we will use it to obtain physical results which are
completely general, as may be confirmed directly from
(14). In fact, we will later see that the universe is expected
to lie in this range for most of its history anyway. Noting

that Ω2 ¼ − 4
3υ2

ð1þ 1
8
ω2Þ, it seems natural in what follows

to take υ2 ¼ −4=3, and this choice will be justified in
stages. The “conformal shift” ω nowmeasures the degree to
which the physical JF has strayed from the EF, and so
mediates any ξ–Φ coupling. Note that ω also weights the
field ζ, which is a quadratic Cuscuton. The field ξ is
canonical, and in moving from Class 3C� to Class 2A� it
acquires a potential V. Note that V traces back to the mass
of ψ , which in turn corresponds to the massive 0− D.o.F in
Fig. 1. By inspection, V must act as a (quintessence) dark
energy source, since υ1=σ1 > 0. In the final sections we
will make the nature of this dark energy more concrete,
using the ζ E.o.M as a heuristic

ω2ð
ffiffiffi
2

p ∂ξω∂tξþ
ffiffiffi
2

p
ωH − ω2ζÞ ¼ 0: ð20Þ

IX. NEGATIVE SCREENED DARK ENERGY

By analogy to (16), suppose that the Cuscuton obeys
ζ ∝ H, which was its “minimally coupled” behavior. This is
possible if the last two terms in (20) cancel, whereupon the
decay of ξ stalls above the natural vacuum of V at constant
conformal shiftω ¼ ffiffiffi

2
p

H=ζ. This solutionhas the following
utility if the physical JF matter Lagrangian contains
only a bare cosmological constant LmðΦ; gÞ ¼ −mp

2Λb.
Accelerated expansion is difficult to drive with Λb < 0 in
many gravitational theories. This can make them hard to
reconcilewith attractive,more fundamental theories [87–90].
If LmðΦ; ξ; gÞ ¼ −mp

2Λbð1þ 1
8
ω2Þ2 and ω¼ ffiffiffi

2
p

H=ζ are
substituted into the remaining E.o.Ms of (18), one
can straightforwardly solve for ξ and H in the EF. In the
physical JF this givesQ2 ¼ 2Λb=3υ1, andH2 ¼ Λ=3, where
the effective cosmological constant is Λ ¼ υ1mp

2=2σ1.
Remarkably therefore, a negative Λb is required, yet
screened from the de Sitter expansion rate.
To verify the stability of the de Sitter solution, we

employ another product of the MA: the powerful dynamical
systems theory of scalar-tensor inflation [79,91]. We view ξ
as a canonical inflaton, whose “total potential” is VT ≡
V þ LmðΦ; ξ; gÞ. It is possible to encode all E.o.Ms as
an autonomous, first order system in the dimensionless
variables

x2 ≡mp
2ð∂tξÞ2
6H2

; y2 ≡ VT

3mp
2H2

; ð21Þ

which are the comoving Hamiltonian coordinates of ξ. In
order to obtain this form, we further define intermediate
dimensionless variables

z2 ≡mp
2ω4ζ2

4H2
; λ≡ −

mp∂ξVT

VT
; μ≡ ω: ð22Þ

FIG. 1. Cosmologies and associated particle content of the
novel theories (see [40] and literature comparisons in [39,50]). In
the weak, free-field limit, certain cases of PGTq;þ are unitary and
power-counting-renormalizable. These cases contain propagating
irreps of SO(3), i.e., D.o.F of spin-parity JP. For massless D.o.F,
the propagator poles associated with any contributing JP sectors
are degenerate at the origin of p-space. Since this leads to
ambiguity, we restrict to cases which do not preclude the two 2þ
polarizations of the graviton (which should be unique [46]). The
cases are grouped into cosmological classes, of which we
consider Class 2A� and Class 3C�.
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Note that x, y and λ are conventional parameters in the literature, while μ is defined for convenience and z is somewhat
analogous to the conventional matter parameter [79,91]. From (18), the ξ equation (or alternatively the pressure–gμν
equation) combined with the derivative of the ζ equation (20) can be expressed as a coupled first-order system in terms of
these variables

∂τx ¼ −½xð2
ffiffiffi
3

p
λμ3xy2 þ 4z2ððμ4 − 8Þz2 − 2ðμ4 − 4Þy2 − 8Þ þ

ffiffiffi
2

p
μð

ffiffiffi
3

p
λμ3xy2z2 þ μ4ðy − zÞ2ðyþ zÞ2

− 16ðy − zÞðyþ zÞðy2 − z2 − 1Þ þ 2μ2ðy2 − 1Þð3y2 − z2ÞÞÞ�=½μ3ð
ffiffiffi
2

p
ðð2þ μ2Þy2 − μ2z2 − 2Þ − 4μz2Þ�; ð23aÞ

∂τy ¼ y½μ2ð
ffiffiffi
3

p
λxð2 − 2y2 þ μ2z2Þ − 4μz2ð3 − 3y2 þ z2ÞÞ −

ffiffiffi
2

p
ð2μ2ðy2 − 1Þð3y2 − z2 − 3Þ þ

ffiffiffi
3

p
λμ3xðy2 − 2Þz2

− 16ð1 − y2 þ z2Þ2 þ μ4ðy4 þ z2ð3þ z2Þ − y2ð1þ 2z2ÞÞÞ�=½μ2ð
ffiffiffi
2

p
ðð2þ μ2Þy2 − μ2z2 − 2Þ − 4μz2Þ�; ð23bÞ

where the dimensionless (Hubble-normalized) time is dτ ¼ Hdt. In order to obtain the autonomous system in x and y we
must eliminate λ, μ and z from (23a) and (23b). Using (18b) and (18c), it is possible to solve for λ in terms of μ

λ ¼ −
½4ð2Λb þ 5 υ1

σ1
mp

2Þ þ ðΛb þ 4 υ1
σ1
mp

2Þμ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ μ2Þ

p
½8ðΛb þ υ1

σ1
mp

2Þ þ ðΛb þ 4 υ1
σ1
mp

2Þμ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 1

8
μ2Þ

q : ð24Þ

Note that (24) explicitly incorporates both the bare
cosmological constant Λb and our central combination
υ1mp

2=σ1. As emphasized above, these quantities should
be considered on an equal footing. Next, the ζ equation
reduces to a quartic in μ

ðx2 − 1Þμ4 þ 2
ffiffiffi
2

p
zμ3 þ 2ð5x2 − z2Þμ2 þ 16x2 ¼ 0: ð25Þ

Finally, z is solved for x and y by the density–gμν equation

x2 þ y2 − z2 ¼ 0; ð26Þ

revealing that the physical portions of the phase space are
expelled from the unit disc. If z were a conventional matter
parameter (i.e., proportional to a density which is obedient
to the weak energy condition), the phase space would be
confined to the unit disc. This more holistic picture, in
which all critical points ∂τx ¼ ∂τy ¼ 0 are visible, may be
reached by taking a simple Möbius transform of the phase
space. The quartic roots of (25) cause the fully autonomous
system to be highly unwieldy. This is a natural consequence
of explicitly encoding the Cuscuton constraint in the Class
2A� and Class 3C� theories, rather than a generic limitation
of the MA in (14). Returning at last to the question of
stability, the de Sitter solution outlined above is then found
to be a stable critical point in this system, as illustrated in
Fig. 2.
While ζ ∝ H may describe our late universe if Λb < 0,

it is not self-consistent in a matter-dominated epoch.
Therefore, we will next consider a family of solutions
which naturally describe the whole expansion history.

X. GENERALLY VIABLE DARK ENERGY

The “generally viable” solution to (20) occurs at vanish-
ing conformal shift ω ¼ 0, where the EF and physical JF
coincide. We previously termed this the correspondence
solution (CS) [50]. The CS of Class 3C� reduces (18a) to
GR by inspection; Class 2A� differs from this through
the constant stalled potential V. The stalled ξ fixes
Q2 ¼ −mp

2=3σ1. If the universe is reasonably assumed
to follow the CS closely, then Q should not stray too far

FIG. 2. Partial phase portrait of Class 2A�, with negative bare
cosmological constantΛb ¼ −0.48mp

2. The saddleA deflects the
universe toward the de Sitter attractor B in the inflationary region
where it feels a positive effective Λ ¼ 0.1mp

2, all in the physical
JF. The EF deceleration parameter is 1þ q ¼ −∂tH=H2.
Hamiltonian coordinates y and x describe the 0− torsional mode.
Phase velocity reflects elapsing Hubble-times.
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from this critical value, which is fortunately the lower bound
in (19). The equivalence of conformal frames is guaranteed
by our earlier condition υ2 ¼ −4=3. Broadly speaking, this
has the same effect as fixing Einstein’s κ in GR.
The stability of the CS should be verified for all matter in

ΛCDM including the conventional Λb ≥ 0, but the earlier
dynamical systems approach is impractical in this case.
Such matter may be characterized by linear equations of
state (E.o.S) ρ ¼ wP, diluting away as ρ ∝ a−3ð1þwÞ. For
any dominant matter, a straightforward perturbation around
the CS is equivalent to adding an effective fluid ρ ↦
ρþ ρeff to GR. The effective E.o.S parameter tracks the
dominant w according to

weffðwÞ≡1

2
ðwþ1Þ−1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9w2þ3

p
; −1≤w≤

1

3
; ð27Þ

The ρeff becomes increasingly sub-dominant (and the CS is
stable) when weffðwÞ > w; the only exception is co-dom-
inant dark radiation, since weffð1=3Þ ¼ 1=3. The possible
utility of this dark radiation in shrinking the sound horizon
at recombination (and raising the early-universe inference
of h) is discussed in [50]. Note that the effective fluid need
not satisfy the weak energy condition by itself. This
strengthens the justification of (19), since a value of Q
below the lower bound would manifest as ρeff < 0, i.e., a
negative dark radiation fraction which would exacerbate the
Hubble tension. Finally, the stalled V readily gives an
effective Λ ¼ Λb þ υ1mp

2=σ1.

XI. CONCLUSIONS

We constructed in (14) a noncanonical biscalar-tensor
theory, the metrical analogue (MA) which lays bare the
rich IR background cosmology of PGTq;þ. It is natural that
the theory explicitly includes only the cosmological 0þ and
0− torsion sectors, rather than all 20 D.o.Fs native to PGT.
As a consequence, portions of both the IR and UV are
necessarily lost. In particular, it is evident that no parameter
constraint may be applied to the MA itself to render it
perturbatively renormalizable. This follows since the MA is
an explicit extension of GR by scalar D.o.Fs, and lacks any
of the expected quadratic curvature invariants. However, we
see no reason why this should affect the anticipated
renormalizability of the underlying PGTq;þ. Rather, it is
interesting to consider how the quadratic and linear
invariants of PGTq;þ are allocated to the linear invariant
of the MA. Tellingly, it is teleparallelism and the other
quadratic theories which inherit the Einstein–Hilbert
Lagrangian, while ECKS theory is relegated to a
Cuscuton. We verified that the Friedmann equations are
recovered in both cases. This illustrates, in the context of
our introductory discussion, the naturalness of quadratic
PGT Lagrangia.
Our analysis in this paper of the MA phenomenology

was not intended to be exhaustive. Particularly, our

approach invites inflationary applications in the early
universe, and extension to Weyssenhoff fluids through a
nonminimal ψ-coupling to modified matter sources [92].
A principle observation is that PGTq;þ, when expressed in
scalar-tensor form, contains a noncanonical term which
may often be interpreted as a Cuscuton field. While this
interpretation offers theoretical support to the Cuscuton,
we note that it is not unique. For instance, it is evident
from (13) that by alternatively integrating out a Galileon the
MA would contain a neutral vector. Specifically, the
physics is basically equivalent (as is the Cuscuton itself)
to the cosmological model of Lorentz-violating vector
fields [93].
In this paper we focussed on late-universe dark

energy in recently proposed, superficially healthy cases
of PGTq;þ. The proposed emergent Λ ¼ Λb þ υ1mp

2=σ1
still does not address the “strong” cosmological constant
problem [61,62]. Let us assume a “nongravitating
vacuum” Λb ¼ 0 [61,94,95]. CMB-inference fixes Λ ¼
7.15� 0.19 × 10−121 mp

2 [9], with some (slight) shift
expected from any dark radiation we may choose to
add [96,97]. The requisite υ1=σ1 ∼ 10−121 then reveals an
apparent hierarchy. We tentatively observe that the hier-
archy appears less severe in the scale-invariant eWGT
counterpart, since the ∼4.1 Gpc Hubble horizon endows
specific physical eWGTq;þ couplings with a natural length
scale [41]. This builds the case for a future extension of the
systematic analysis in [39,40,98] to eWGTq;þ, whose
propagator is currently unexplored.
In a conservative summary, the Class 2A� theory not only

matches the GR background, but can provide dark radiation
and (hierarchical) dark energy. Unlike GR [12], the pertur-
bative renormalizability of this unitary theory is not pre-
cluded by a simple power counting [39,40]; a nonlinear
Hamiltonian analysis may offer further insight. The 0−

torsional mode must survive averaging over homogeneous
comoving scales of≳300 h−1Mpc [99,100]. This mode has
yet to be constrained, even in an Earth-based laboratory
[22,23,26], and its strength is not separable here from the σ1
or υ1 couplings. Indeed, the expansion history only deter-
mines υ2 and υ1=σ1, which translate to the two freedoms in
Lovelock’s theorem.
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[30] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Universe
5, 173 (2019).

[31] K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 65, 525
(1981).

[32] M. Blagojević and B. Cvetković, Phys. Rev. D 98, 024014
(2018).

[33] D. J. Gross, Rev. Mod. Phys. 77, 837 (2005).
[34] A. Eichhorn, Front. Astron. Space Sci. 5, 47 (2018).
[35] D. E. Neville, Phys. Rev. D 18, 3535 (1978).
[36] D. E. Neville, Phys. Rev. D 21, 867 (1980).
[37] E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21,

3269 (1980).
[38] E. Sezgin, Phys. Rev. D 24, 1677 (1981).
[39] Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D

99, 064001 (2019).
[40] Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D

101, 064038 (2020).

[41] A. N. Lasenby and M. P. Hobson, J. Math. Phys. (N.Y.) 57,
092505 (2016).

[42] K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64, 1435
(1980).

[43] H.-J. Yo, J. M. Nester, and W. T. Ni, Int. J. Mod. Phys. D
11, 747 (2002).

[44] H. Chen, J. M. Nester, and H.-J. Yo, Acta Phys. Pol. B 29,
961 (1998).

[45] H.-J. Yo and J. M. Nester, Int. J. Mod. Phys. D 08, 459
(1999).

[46] M. Porrati, in 17th International Seminar on High Energy
Physics (Center for Cosmology and Particle Physics
(CCPP), New York, 2012).

[47] M. Blagojević and I. A. Nikolić, Phys. Rev. D 28, 2455
(1983).

[48] M.Blagojević andM.Vasilić, Phys. Rev.D 35, 3748 (1987).
[49] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J.

Handley (to be published).
[50] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J.

Handley, Phys. Rev. D 102, 024048 (2020).
[51] M. Zumalacarregui, Phys. Rev. D 102, 023523 (2020).
[52] A. N. Lasenby et al. (to be published).
[53] H. Goenner and F. Mueller-Hoissen, Classical Quantum

Gravity 1, 651 (1984).
[54] K.-F. Shie, J. M. Nester, and H.-J. Yo, Phys. Rev. D 78,

023522 (2008).
[55] A. V. Minkevich, A. S. Garkun, and V. I. Kudin, J. Cosmol.

Astropart. Phys. 03 (2013) 040.
[56] H. Zhang and L. Xu, J. Cosmol. Astropart. Phys. 09 (2019)

050.
[57] D. Puetzfeld, New Astron. Rev. 49, 59 (2005).
[58] N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Phys.

Rev. D 75, 083513 (2007).
[59] N. Afshordi, D. J. H. Chung,M. Doran, and G. Geshnizjani,

Phys. Rev. D 75, 123509 (2007).
[60] N. Afshordi, Phys. Rev. D 80, 081502 (2009).
[61] J. Martin, C. R. Phys. 13, 566 (2012).
[62] J. F. Koksma and T. Prokopec, arXiv:1105.6296.
[63] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[64] A. Padilla and V. Sivanesan, J. High Energy Phys. 04

(2013) 032.
[65] T. Kobayashi, N. Tanahashi, and M. Yamaguchi, Phys.

Rev. D 88, 083504 (2013).
[66] T. Kobayashi, Rep. Prog. Phys. 82, 086901 (2019).
[67] A. Lasenby, C. Doran, and S. Gull, Phil. Trans. R. Soc. A

356, 487 (1998).
[68] A. Padilla, D. Stefanyszyn, and M. Tsoukalas, Phys. Rev.

D 89, 065009 (2014).
[69] E. Scholz, arXiv:1911.01696.
[70] R. Utiyama, Prog. Theor. Phys. 50, 2080 (1973).
[71] R. Utiyama, Prog. Theor. Phys. 53, 565 (1975).
[72] M. Tsamparlis, Phys. Lett. A75, 27 (1979).
[73] C. G. Boehmer and P. Bronowski, Ukr. J. Phys. 55, 607

(2010).
[74] S. D. Brechet, M. P. Hobson, and A. N. Lasenby, Classical

Quantum Gravity 25, 245016 (2008).
[75] H. Zhang and L. Xu, arXiv:1906.04340.
[76] A. N. Lasenby, C. J. L. Doran, and R. Heineke, arXiv:

gr-qc/0509014.
[77] P. D. Mannheim, Prog. Part. Nucl. Phys. 56, 340 (2006).

BARKER, LASENBY, HOBSON, and HANDLEY PHYS. REV. D 102, 084002 (2020)

084002-10

https://doi.org/10.1016/j.dark.2016.02.001
https://arXiv.org/abs/1804.01318
https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.1038/s41550-019-0902-0
https://arXiv.org/abs/1908.09139
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1038/s42254-019-0137-0
https://doi.org/10.3847/1538-4357/ab1422
https://arXiv.org/abs/1807.06209
https://doi.org/10.1142/S021827181930012X
https://doi.org/10.1088/1126-6708/2008/03/014
https://arXiv.org/abs/1610.08744
https://doi.org/10.1103/PhysRevD.10.401
https://doi.org/10.1103/PhysRevD.10.401
https://doi.org/10.1103/PhysRevD.10.3337
https://doi.org/10.1103/PhysRevD.10.3337
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.3390/sym11111334
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/PhysRev.101.1597
https://doi.org/10.1103/RevModPhys.36.463
https://arXiv.org/abs/gr-qc/0606062
https://doi.org/10.1088/0034-4885/73/5/056901
https://doi.org/10.1016/S0375-9601(97)00127-8
https://arXiv.org/abs/1903.04712
https://doi.org/10.1140/epjc/s10052-020-8128-y
https://doi.org/10.1140/epjc/s10052-020-8128-y
https://doi.org/10.1142/S0218271814420048
https://doi.org/10.1142/S0218271814420048
https://arXiv.org/abs/1801.06929
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.1143/PTP.65.525
https://doi.org/10.1143/PTP.65.525
https://doi.org/10.1103/PhysRevD.98.024014
https://doi.org/10.1103/PhysRevD.98.024014
https://doi.org/10.1103/RevModPhys.77.837
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.1103/PhysRevD.18.3535
https://doi.org/10.1103/PhysRevD.21.867
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRevD.101.064038
https://doi.org/10.1103/PhysRevD.101.064038
https://doi.org/10.1063/1.4963143
https://doi.org/10.1063/1.4963143
https://doi.org/10.1143/PTP.64.1435
https://doi.org/10.1143/PTP.64.1435
https://doi.org/10.1142/S0218271802001998
https://doi.org/10.1142/S0218271802001998
https://doi.org/10.1142/S021827189900033X
https://doi.org/10.1142/S021827189900033X
https://doi.org/10.1103/PhysRevD.28.2455
https://doi.org/10.1103/PhysRevD.28.2455
https://doi.org/10.1103/PhysRevD.35.3748
https://doi.org/10.1103/PhysRevD.102.024048
https://doi.org/10.1103/PhysRevD.102.023523
https://doi.org/10.1088/0264-9381/1/6/010
https://doi.org/10.1088/0264-9381/1/6/010
https://doi.org/10.1103/PhysRevD.78.023522
https://doi.org/10.1103/PhysRevD.78.023522
https://doi.org/10.1088/1475-7516/2013/03/040
https://doi.org/10.1088/1475-7516/2013/03/040
https://doi.org/10.1088/1475-7516/2019/09/050
https://doi.org/10.1088/1475-7516/2019/09/050
https://doi.org/10.1016/j.newar.2005.01.022
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.75.123509
https://doi.org/10.1103/PhysRevD.80.081502
https://doi.org/10.1016/j.crhy.2012.04.008
https://arXiv.org/abs/1105.6296
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/JHEP04(2013)032
https://doi.org/10.1007/JHEP04(2013)032
https://doi.org/10.1103/PhysRevD.88.083504
https://doi.org/10.1103/PhysRevD.88.083504
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1098/rsta.1998.0178
https://doi.org/10.1098/rsta.1998.0178
https://doi.org/10.1103/PhysRevD.89.065009
https://doi.org/10.1103/PhysRevD.89.065009
https://arXiv.org/abs/1911.01696
https://doi.org/10.1143/PTP.50.2080
https://doi.org/10.1143/PTP.53.565
https://doi.org/10.1016/0375-9601(79)90265-2
https://doi.org/10.1088/0264-9381/25/24/245016
https://doi.org/10.1088/0264-9381/25/24/245016
https://arXiv.org/abs/1906.04340
https://arXiv.org/abs/gr-qc/0509014
https://arXiv.org/abs/gr-qc/0509014
https://doi.org/10.1016/j.ppnp.2005.08.001


[78] J. Hirn and J. Stern, Eur. Phys. J. C 34, 447 (2004).
[79] N. Tamanini, Phys. Rev. D 89, 083521 (2014).
[80] V. Faraoni and E. Gunzig, Int. J. Theor. Phys. 38, 217

(1999).
[81] P. A. M. Dirac, Proc. R. Soc. A 333, 403 (1973).
[82] M. Omote and M. Kasuya, Prog. Theor. Phys. 58, 1627

(1977).
[83] D. Šijački, Phys. Lett. 109B, 435 (1982).
[84] S. Bahamonde, K. F. Dialektopoulos, and J. L. Said, Phys.

Rev. D 100, 064018 (2019).
[85] M. E. Peskin and D. V. Schroeder, An Introduction to

Quantum Field Theory (Westview, Boulder, 1995).
[86] A. Bhadra, K. Sarkar, D. P. Datta, and K. K. Nandi, Mod.

Phys. Lett. A 22, 367 (2007).
[87] J. B. Hartle, S. W. Hawking, and T. Hertog, arXiv:

1205.3807.
[88] K.-i. Maeda and N. Ohta, J. High Energy Phys. 06 (2014)

095.
[89] T. Biswas and A. Mazumdar, Phys. Rev. D 80, 023519

(2009).

[90] T. Prokopec, arXiv:1105.0078.
[91] S. C. C. Ng, N. J. Nunes, and F. Rosati, Phys. Rev. D 64,

083510 (2001).
[92] F. Izaurieta and S. Lepe, arXiv:2004.06058.
[93] S. M. Carroll and E. A. Lim, Phys. Rev. D 70, 123525

(2004).
[94] E. I. Guendelman and A. B. Kaganovich, Phys. Rev. D 53,

7020 (1996).
[95] V. A. Emelyanov, Nucl. Phys. B946, 114694 (2019).
[96] E. Mörtsell and S. Dhawan, J. Cosmol. Astropart. Phys. 09

(2018) 025.
[97] N.Schöneberg, J.Lesgourgues, andD. C.Hooper, J.Cosmol.

Astropart. Phys. 10 (2019) 029.
[98] Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, arXiv:

2005.02228.
[99] J. K. Yadav, J. S. Bagla, and N. Khandai, Mon. Not. R.

Astron. Soc. 405, 2009 (2010).
[100] R. S. Gonçalves, G. C. Carvalho, J. Bengaly, C. A. P.

Bengaly, Jr, J. C. Carvalho, A. Bernui, J. S. Alcaniz, and
R. Maartens, Mon. Not. R. Astron. Soc. 475, L20 (2018).

MAPPING POINCARÉ GAUGE COSMOLOGY TO HORNDESKI … PHYS. REV. D 102, 084002 (2020)

084002-11

https://doi.org/10.1140/epjc/s2004-01731-7
https://doi.org/10.1103/PhysRevD.89.083521
https://doi.org/10.1023/A:1026645510351
https://doi.org/10.1023/A:1026645510351
https://doi.org/10.1098/rspa.1973.0070
https://doi.org/10.1143/PTP.58.1627
https://doi.org/10.1143/PTP.58.1627
https://doi.org/10.1016/0370-2693(82)91108-X
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1142/S021773230702261X
https://doi.org/10.1142/S021773230702261X
https://arXiv.org/abs/1205.3807
https://arXiv.org/abs/1205.3807
https://doi.org/10.1007/JHEP06(2014)095
https://doi.org/10.1007/JHEP06(2014)095
https://doi.org/10.1103/PhysRevD.80.023519
https://doi.org/10.1103/PhysRevD.80.023519
https://arXiv.org/abs/1105.0078
https://doi.org/10.1103/PhysRevD.64.083510
https://doi.org/10.1103/PhysRevD.64.083510
https://arXiv.org/abs/2004.06058
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1103/PhysRevD.53.7020
https://doi.org/10.1103/PhysRevD.53.7020
https://doi.org/10.1016/j.nuclphysb.2019.114694
https://doi.org/10.1088/1475-7516/2018/09/025
https://doi.org/10.1088/1475-7516/2018/09/025
https://doi.org/10.1088/1475-7516/2019/10/029
https://doi.org/10.1088/1475-7516/2019/10/029
https://arXiv.org/abs/2005.02228
https://arXiv.org/abs/2005.02228
https://doi.org/10.1111/j.1365-2966.2010.16612.x
https://doi.org/10.1111/j.1365-2966.2010.16612.x
https://doi.org/10.1093/mnrasl/slx202

