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We calculate the primordial black hole abundance in the context of a Wess-Zumino type no-scale
supergravity model. We modify the Kähler potential, by adding an extra exponential term. Using just one
parameter in the context of this model, we are able to satisfy the Planck cosmological constraints for the
spectral index ns, the tensor-to-scalar ratio r, and to produce up to ∼20% of the dark matter of the Universe
in the form of primordial black holes.
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I. INTRODUCTION

The recent observations of black hole (BH) mergers by
VIRGO/LIGO open a new window to probe BH physics
[1–5]. These detections rekindled the idea that primordial
black holes (PBH) can be considered as dark matter (DM)
candidates [6–8]. As the nature of DM remains one of the
most notable mysteries in physics, a flurry of activity has
recently taken place in this direction [9–36].
It has been proposed that a spike in the cosmic micro-

wave background (CMB) power spectrum can be physi-
cally significant, as it could lead to formation of PBHs.
Such a spike is related to an inflection point in the scalar
inflaton potential [16]. In the context of single field
inflation models, an inflection point is created whence
the slow-roll parameter ε, that is related to the derivative of
the inflaton, gets sizeable value. On the other hand, ε stays
below one, allowing the inflation to goes on. The local
enhancement supervened by a period where the inflaton is
almost constant. During this plateau the power spectrum
amplifies, enabling production of PBH in the radiation
dominated phase of the early universe. This PBH abun-
dance can be interpreted as a substantial fraction of the
DM of the Universe. Similar reinforcement in the power
spectrum can be achieved in the context of two-field
models [21,33]. In these models, one field plays the role
of the inflaton and the other is responsible for the PBH
production.
It is now clear, that a more precise calculation of the

power spectrum is indispensable. This evaluation can be
achieved by solving numerically the so-called Mukhanov-
Sasaki (M-S) equation [37,38]. Because the slow-roll
approximation fails to reproduce the exact results in many

proposed models, such as the one in Ref. [9], it is
imperative to solve the M-S equation exactly. In addition
to that, the precise size and the location of the peak of the
power spectrum is crucial for calculating the fractional
abundance of PBH in the Universe.
Here, we try to sum up the basic developments in PBH

production using single field inflation. Specifically, in [9]
the authors employ a model based on an effective potential
with an approximate inflection point, arise from two-loop
logarithmic corrections. In [10,14] it has been considered
the PBH production studying a string inflation model.
Alternatively, models in (critical) Higgs inflation has been
studied in [17,20]. A power spectrum by a polynomical
potential has been suggested in [16,18,19]. In [13,27] has
been proposed a supergravity model with a single chiral
field. Moreover, the authors in [15,30] have studied infla-
tionary α-attractor models. Finally, PBH by axion mono-
dromy has been considered in [32].
Embedding models of inflation, into a more funda-

mental quantum theory such as supergravity, results to a
framework that can be predictive and reveals an aspect of
the high energy scale [39]. Taking this into account, we
consider that the natural framework for formulating
models of inflation is supergravity. Specifically, no-scale
supergravity models [39–43], turn out to have other
advantages: their potential depends on a minimal number
of parameters, they evade the η problem and they
emerge naturally as the low energy limit of compactified
string models [44]. In principle, no-scale models are
necessarily multifield inflation models. This means that
apart from the inflaton, there are additional scalar fields
(moduli).
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In this paper, we introduce an inflationary model based on
the no-scale supergravity [45]. Specifically, we consider
models with Starobinsky-like potential, derived by no-scale
supergravity theories. Since, we need to study the formation
of PBHs within these models, we deform the ordinary
SUð2; 1Þ=SUð2Þ ×Uð1Þ Kähler potential, in order to
achieve acceptable fluctuations to the scalar inflaton poten-
tial, producing an inflection point. For this reason we
introduce an exponential term with one extra parameter.
We have paid particular attention to satisfy all the Planck
cosmological constraints throughout our numerical analysis.
As a result we have found models that satisfying all the
phenomenological constraints, can produce up to 20% of the
total DM of the Universe, due to PBH formation. This value
almost saturates the allowed range for the PBH abundance,
applying all the relevant observational data.
The layout of the paper is as follows: In Sec. II we briefly

review some basic aspects of supergravity, relevant to
inflation. In Sec. III we modify the Kähler potential and
we calculate the effective scalar potential by fixing the
noncanonical kinetic terms. We choose the inflationary
direction and we verify that it remains stable. Moreover, we
solve the background equation and we justify the insuffi-
ciency of the slow-roll approximation. Therefore, we
describe an algorithm for the numerical solution of M-S
equation. Using these solutions we estimate the fractional
DM abundance of the PBH as a function of its mass and we
delineate the phenomenologically accepted regions on this
parameter space. Finally, in Sec. IV we give our conclu-
sions and perspectives.

II. SUPERGRAVITY MODELS AND INFLATION

The most general N ¼ 1 supergravity theory is charac-
terized by three functions. The Kähler potential K, which is
a Hermitian function of the matter scalar field Φi and
describes its geometry, a holomorphic function of
the fields, called superpotential W and a holomorphic
function fab.
In the following, we set the reduced Planck mass

MP ¼ ð8πGÞ−1=2 to unity. The N ¼ 1 supergravity action
can be written as:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðKij̄∂μΦi∂μΦ̄j̄ − VÞ: ð1Þ

Given the Kähler potential K and the superpotential W,
one can obtain the real field metric Kij̄ and the scalar
potential V, following the procedure outlined below.
The general form of field metric reads as

Kij̄ðΦ; Φ̄Þ ¼ ∂2K

∂Φi∂Φ̄j̄
: ð2Þ

Moreover, the scalar potential is given by

V ¼ eKðKij̄DiWDj̄W̄ − 3jWj2Þ þ g̃2

2
ðKiTaΦiÞ2; ð3Þ

where Kij̄ is the inverse Kähler metric and the covariant
derivatives are defined as:

DiW ≡ ∂iW þ KiW

DiW ≡ ∂iW − KiW: ð4Þ

In addition, we have defined that Ki ≡ ∂K=∂Φi and,
correspondingly, the complex conjugate Ki. The last
term in the scalar potential (3) is just the D-term potential,
which is set to zero, since the fields Φi are gauge singlets.
From (1) is clear that the kinetic term LKE ¼ Kij̄∂μΦi∂μΦ̄j̄

needs to be fixed.
The minimal no-scale SUð1; 1Þ=Uð1Þmodel is written in

the terms of a single complex scalar field T, with the Kähler
potential [40]

K ¼ −3 ln ðT þ T̄Þ: ð5Þ

In our case, we consider a no-scale supergravity model
with two chiral superfields T, φ, that parametrize the
noncompact SUð2; 1Þ=SUð2Þ ×Uð1Þ coset space. In this
model, the Kähler potential can be written as [42]

K ¼ −3 ln
�
T þ T̄ −

φφ̄

3

�
: ð6Þ

Then, the corresponding action (1) becomes:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂μφ; ∂μTÞ

�
Kφφ̄ KφT̄

KTφ̄ KTT̄

�

×

� ∂μφ

∂μT

�
− Vðφ; TÞ

�
: ð7Þ

The simplest globally symmetric model is the Wess-
Zumino model, with a single chiral superfield φ. This
model is characterized by a mass term μ̂ and a trilinear
coupling λ. Thus, the superpotential is given by [45]

W ¼ μ̂

2
φ2 −

λ

3
φ3: ð8Þ

It is possible to embed this model in the context of the no-
scale SUð2; 1Þ=SUð2Þ ×Uð1Þ case, by matching the T
field to the modulus field and the φ to the inflaton field.
By doing so, one can derive from (6) and (8) a class of no-
scale models that yield Starobinsky-like effective poten-
tials. This potential is calculated along the real inflationary
direction defined by

T ¼ T̄ ¼ c
2
; Imφ ¼ 0; ð9Þ
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with the choice λ=μ ¼ 1=3 and μ̂ ¼ μ
ffiffiffiffiffiffiffiffi
c=3

p
, where c is a

constant.
In order to have canonical kinetic terms, the field φ has to

be transformed [45] as

φ ¼
ffiffiffiffiffi
3c

p
tanh

�
χffiffiffi
3

p
�
; ð10Þ

recovering the potential of the Starobinsky model

VðχÞ ¼ μ2

4
ð1 − e−

ffiffi
2
3

p
χÞ2: ð11Þ

In Fig. 1, we plot the potential derived from the super-
potential Eq. (8) that depends on the ratio λ=μ, for various
values of this ratio around 1=3. This central value corre-
sponds to the Starobinsky case. In order to comply with the
cosmological data [46–48] and to explore the dependence
on the total number of e-folds, we vary the parameter μ in
the range ð1.8–3.4Þ × 10−5.
Studying no-scale models with two chiral superfields φ

and T, we notice that these fields can interchange roles
as the inflaton and modulus [45,49]. In the case which φ is
the modulus field and T is the inflaton, the superpotential
reads as [49,50]

W ¼ μφ

�
T −

1

2

�
: ð12Þ

The Starobisky potential is recovered along the inflationary
direction φ ¼ φ̄ ¼ ImT ¼ 0 and ReT ¼ ϕ. In this case too,
in order to have canonical kinetic term, one needs to
transform the field ϕ to χ using a relation similar to (10).
Hence, the effective scalar potential is also given by
Eq. (11).
It is essential one to verify that the masses of the inflaton

and the modulus field are not tachyonic. Thus, before
calculating the evolution of the field, we must check the
stabilization along the inflationary direction. If the stabi-
lization is achieved, the modulus field can be set to be zero

and the relevant term becomes irrelevant to the dynamical
evolution of the inflaton.

III. CALCULATING PBH FROM THE MODIFIED
KÄHLER POTENTIAL

In this section, we will study modifications of the Kähler
potential, that induce an inflection point to the scalar
potential, and consequently causes peaks in the CMB
power spectrum. For this reason, we use as basis the
Wess-Zumino potential (8), modifying the Kähler potential,
by introducing an exponential term as

K ¼ −3 ln
�
T þ T̄ −

φφ̄

3
þ ae−bðφþφ̄Þ2ðφþ φ̄Þ4

�
; ð13Þ

where a and b are real numbers. Obviously, in the limit
a ¼ 0, we retrieve the result that corresponds to the
Starobinsky potential, as calculated in the previous section.
Moreover, expanding the exponential, one obtains a poly-
nomial modification of the Kähler potential, as it has been
used in the literature [16,18,19]. The particular exponential
form has the advantage that practically introduces just one
extra parameter, b. In our analysis the parameter a gets just
two values: a ¼ 0 to switch off the effect of the modified
term and a ¼ −4 when the extra term is used.
The real part of the field φ plays the role of the inflaton.

In order to verify the stability of the potential, along the real
direction in Eq. (9), we calculate the squared mass matrix
and we check that no tachyonic instability is present, that
is m2

ReT; m
2
ImT; m

2
Imφ ≥ 0.

In detail, the general form of mass matrix is

m2
s ¼

� ðK−1ÞikDk∂jV ðK−1ÞikDk∂jV

ðK−1ÞkiDk∂jV ðK−1ÞkiDk∂jV

�
; ð14Þ

where ðK−1Þij is the inverse metric of Kj
i ¼ ∂2K=∂Φi∂Φj

and the Kähler covariant derivative is given in (4).
Specifically, in the case of the two chiral fields the mass
matrix takes the form

m2
s ¼

� ðK−1ÞφkDk∂φV ðK−1ÞφkDk∂ T̄V

ðK−1ÞkTDk∂φ̄V ðK−1ÞkT̄Dk∂ T̄V

�
: ð15Þ

Following [51,52], we have computed analytically and
numerically the masses of the fields φ and T and we have
verified that along the real direction, T ¼ T̄ and φ ¼ φ̄, the
eigenstates of the matrix (15) are positive. Unfortunately,
the corresponding equations are too long to be displayed
here. Repeating the same calculation in the imaginary
direction, we have checked the positivity of the mass
eigenstates, using hReTi ¼ c

2
and hφi ¼ 0.

Having verified the stability along the inflationary
direction, using Eqs. (2) and (3), the scalar effective

FIG. 1. The potential as given by Eqs. (8) and (10) for various
values of the ratio λ=μ, as in [45].
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potential can be calculated. As a first step, we find the field
transformation, that puts the kinetic term in canonical form.
Moreover, defining Reφ≡ ϕ, the relevant term in Eq. (7) is
the Kφφ̄, which along the direction (9), apparently equals to
Kϕϕ. Thus, one gets

1

2
∂μχ∂μχ ¼ Kϕϕ∂μϕ∂μϕ ð16Þ

or equivalently

dχ
dϕ

¼ ffiffiffiffiffiffiffiffiffiffiffi
2Kϕϕ

p
: ð17Þ

By integrating the latter, we obtain the generalization of
Eq. (10), using appropriate boundary conditions. These
conditions are fixed from the requirement to retrieve the
Strarobinsky case, in the limit a ¼ 0.
Afterwards, we compute the scalar potential along the

direction (9), using Eq. (3) and the modified Kähler
potential from (13), as

VðϕÞ ¼ 3e3bϕ
2

ϕ2ðcμ2 − 2
ffiffiffiffiffi
3c

p
λμϕþ 3λ2ϕ2Þ

½−3aϕ4 þ ebϕ
2ð−3cþ ϕ2Þ�2½ebϕ2 − 6aϕ2ð6þ bϕ2ð−9þ 2bϕ2ÞÞ� : ð18Þ

Finally, using the generalized relation ϕðχÞ, obtained by
Eq. (17), the potential above can be expressed as VðχÞ. The
precise form of the VðχÞ is obtained only numerically, due to
its complexity and this numerical relation is used thereafter.
In Fig. 2 we plot the potential VðχÞ=μ2, as a function of

the field χ, using the values of the parameters λ=μ and b, as
in Table I. The parameter μ is fixed in order to satisfy the
Planck constraint for power spectrum, which is approxi-
mately PR¼2.1×10−9, at a pivot scale of k� ¼0.05Mpc−1.
As we will discuss below, varying the parameter λ affects
mainly the spectral index ns, but also the tensor-to-scalar
ratio r of the power spectra. After fixing λ and μ, the values
for b in Table I, are chosen in order the PBH abundance to
saturate the cosmological bounds. which as we will see,
constrain significantly the parameter space of the PBH. The
prediction of the model is not very sensitive on the a, and
thus is chosen to be a ¼ −4. Finally, in the context of our
model, the parameter c affects mainly the total number of
e-folds. To get agreement with the Planck 2018 data we
choose c ¼ 0.065.1

One can notice, that the potential has the required
features that ensure that sizable abundance of PBH is
created. Specifically, the potential around the inflection
point χ ∼ 1, satisfies the relations

dVðχiÞ
dχi

≃ 0;
d2VðχiÞ
dχ2i

¼ 0:

Around the inflection point, the inflaton slows down,
generating a large amplification in the power spectrum.
In addition, it has a minimum with Vðχ0Þ ¼ 0, at χ0 ¼ 0, to
achieve the reheating, after inflation ends.
In Fig. 3 we plot the predictions for the tilt ns in the

spectral index of scalar perturbations and for the tensor-to-
scalar ratio r, of the original Wess-Zumino model (thin line
segments with empty dots) and the model with modified
Kähler potential (thick line segments with filled dots),
compared against the recent data of Planck 2018, that prefer
the central shaded regions in the plot. The meaning of
the colors of these regions are explained in the Planck
collaboration analysis [46]. Green colored lines correspond
to the case λ=μ ¼ 1=3, the orange to 0.33330 and the purple
to 0.33327. The evolution of the field is fixed by requiring
50 (small dots), or 60 (big dots) e-folds at the end of the line
segments. We notice, that introducing the modified poten-
tial in Eq. (13), the cosmological predictions are affected
considerably. Therefore, some values of the ratio λ=μ,

FIG. 2. The potential given in Eq. (18) as a function of χ, for
various values of the ratio λ=μ as in Table I.

TABLE I. The values of the parameters λ=μ and b, for a ¼ −4
and 2hReTi ¼ c ¼ 0.065.

λ=μ b

1. 0.33327 87.379427
2. 0.33330 87.390563
3. 1=3 87.402941

1In the original model based on the Kähler potential as in
Eq. (6), the dependence on the parameter c drops out [45]. In
particular, this results from the transformation in Eq. (10) and the
redefinition μ̂ → μ

ffiffiffiffiffiffiffiffi
c=3

p
. In the context of the modified Kähler

potential (13) there is indeed a remaining c-dependence, that is
fixed by the Planck data.
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which were originally excluded, become acceptable in the
modified case.

A. Applying the slow-roll approximation

The evolution of the inflaton field χ in a Friedmann-
Robertson-Walker (FRW) homogeneous background,
which we take to be spatially flat, is driven by the system
of the Friedmann equation and the inflaton field equation:

H2 ¼ 1

3

�
1

2
_χ2 þ VðχÞ

�

χ̈ þ 3H _χ þ V 0ðχÞ ¼ 0; ð19Þ

where dots represent derivatives with respect to cosmic
time and primes the derivatives with respect to the field χ.
We can rewrite the system above in terms of number of
e-folds elapsed from initial cosmic time ti described by
the integral:

NðtÞ ¼
Z

t

ti

Hðt0Þdt0:

So, the background equation or the equation of the inflaton
field take the form

d2χ
dN2

þ 3
dχ
dN

−
1

2

�
dχ
dN

�
3

þ
�
3 −

1

2

�
dχ
dN

�
2
�
d lnVðχÞ

dχ
¼ 0:

ð20Þ

We solve numerically the Eq. (20), using as initial
conditions those that, in the slow-roll approximation are
compatible with the cosmologically acceptable values
for ns and r [46–48]. Specifically, by the Planck 2018

data [46] on inflationary parameters, at the pivot scale
k� ¼ 0.05 Mpc−1, we get

ns ¼ 0.9625� 0.0048

r < 0.044: ð21Þ

We evaluate the spectral index ns and the tensor-to-scalar
ratio r, at leading order in the slow-roll expansion by

ns ≃ 1þ 2ηV − 6εV; r ≃ 16εV; ð22Þ

where the relevant slow-roll parameters are defined as

εV ¼ 1

2

�
V 0ðχÞ
VðχÞ

�
2

; ηV ¼ V 00ðχÞ
VðχÞ : ð23Þ

Using the numerical relation between ϕ and χ, based on
Eq. (17), the initial condition for the field ϕ can be
transformed to the initial conditions for the χ. As for the
initial condition for the derivative of χ, we use the slow-roll
attractor relation

dχ
dN

≈ −
���� dVVdχ

����: ð24Þ

Consequently, the numerical solution for the slow-roll
parameters reads as

εH ¼ 1

2

�
dχ
dN

�
2

; ηH ¼ εH −
1

2

d ln εH
dN

: ð25Þ

Using this equation for εH, the Hubble function squared
reads from Eq. (19) as

H2 ¼ VðχÞ
3 − εH

: ð26Þ

Given these expressions, we evaluate the power spectrum
within the slow-roll approximation, as:

PR ≃
1

8π2
H2

εH
: ð27Þ

Notice that for the numerical solution of the background
Eq. (20), one must use the Eq. (17) and Eq. (18). As usual,
the condition εH ≈ 1 marks the end of inflation and the
numerical calculation ends at this point. We constrain the
number of e-folds N, that is the number of e-folds elapsed
between the time that today’s largest observable scales exit
the Hubble horizon and the time at which inflation ends, to
be 45–55.
In our numerical analysis, we use the sets of parameters

given in Table I, as discussed in the beginning of this
section. For the initial condition of the field ϕ, ϕ0, we use
the numbers in the first column in Table II. Please note that,

FIG. 3. The predictions of our model for the tilt ns and the
tensor-to-scalar ratio r. The shaded regions are taken from Planck
2018 and other data [46]. For the details see the main text.
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the first two lines in Table II, correspond to the first line in
Table I. The last two columns in Table II are the outcome of
the calculation, the predicted values for the observables ns
and r. The initial conditions ϕ0 and N� ¼ 0 are set to the
point that CMB scales cross the horizon. In addition, this
point corresponds to the asymptotic plateau of the potential
VðχÞ in Fig. 2. At the end of this procedure, we calculate
the evolution of the field χ and the slow-roll parameters εH,
ηH in terms of N, and show our results in Figs. 4 left and
right panel, respectively.
As it can be seen in Fig. 4 right, the value of parameter

εH remains always below 1 until the end of inflation.
We further notice that the inflaton reaches the region
of reheating at the global minimum of potential in
Fig. 2, that corresponds to N ≃ 50 in Fig. 4 left, as it
was expected.
Using the slow-roll approximation for calculating the

power spectrum as in Eq. (27), we can get sizable peaks.
However, paying attention to the details of the slow-roll
approximation, especially to the values of the parameters
εH and ηH in Fig. 4 right, we remark that they get values of
Oð10−1Þ–Oð1Þ, that clearly violate this approximation.
Therefore, it is crucial to solve the precise M-S equation
and then we can proceed to the evaluation of fractional
abundance of PBH.

B. Solving the Mukhanov-Sasaki equation

As it has been explained in the previous section the slow-
roll approximation fails to reproduce the correct power
spectrum and hence the correct mass of PBH as well as, the
fractional abundances. The fact that the values of slow-roll
parameters εH and ηH are close to 1 and over 3 respectively,
leads us to search for a more accurate method. When the
potential has a sharp feature such as an inflection point, it is
crucial to evolve the full mode equation numerically,
without any approximation [53]. Hence, we need to have
an precise solution of the power spectrum, versus the
comoving wave number k in order to produce the abun-
dance of PBH. This solution can be found by the so-called
M-S equation [37,38] which is given by the following
expression:

d2uk
dN2

þ ð1 − εHÞ
duk
dN

þ
�
k2

H2
þ ð1þ εH − ηHÞðηH − 2Þ

−
dðεH − ηHÞ

dN

�
uk ¼ 0 ð28Þ

and

u ¼ zR; z ¼ a
H

dϕ
dτ

; ð29Þ

where R is the comoving curvature perturbation and a is the
scale factor. We denote by τ the conformal time and by
H ¼ aH the conformal Hubble parameter. Instead of
working with complex coefficients, it is convenient to
solve the M-S equation twice: one for the real and one for
the imaginary part for each mode uk. The corresponding
initial conditions are [53]:

FIG. 4. Left panel: The evolution of the inflaton field χ, in Planck units, as a function of the numbers of e-folds. Right panel: The slow-
roll parameters using the first set of parameters in Table I. Solid line corresponds to εH and dashed to jηHj.

TABLE II. The initial conditions for the field ϕ, ns and r that
correspond to sets in Table I. (The first two sets correspond to the
first set of Table I, with different ϕ0.)

ϕ0 λ=μ ns r

1. 0.4258 0.33327 0.961234 0.0121106
2. 0.4272 0.33327 0.967463 0.0109205
3. 0.4266 0.33330 0.958265 0.00900217
4. 0.4258 1=3 0.948072 0.00740699
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ReðukÞ ¼
1ffiffiffiffiffi
2k

p ; ImðukÞ ¼ 0

Re

�
duk
dNi

�
¼ 0; Im

�
duk
dNi

�
¼ −

ffiffiffi
k

p
ffiffiffi
2

p
ki

ð30Þ

where ki is chosen a thousand times smaller than the wave
number of interest. To evaluate the power spectrum we
repeat the integration over many values of k. The numerical
precise value of spectrum (solving the M-S equation) is
given by:

PR ¼ k3

2π2

���� ukz
����
2

k≪H
: ð31Þ

The numerical strategy for solving the M-S equation,
based on Refs. [9,30], is summarized below:

(i) The background Eq. (20) is solved numerically
using the initial conditions for the field and its first
derivative. The numerical solution stops when the
condition εH ¼ 1 is satisfied, denoting the end of
inflation. The total number of e-folds is defined
between the times where the k-modes exit and enter
the Hubble horizon. The transformation of the field
needs to be taken into account too.

(ii) In order to solve the Eq. (28) the solution of the
background equation for χ is required, as well as
the slow-roll parameters from the previous steps.
The second and third derivatives of χ in the last term
of (28) are also be evaluated using Eq. (20) and its
first derivative with respect to N.

(iii) One can now solve the M-S equation. For each mode
of interest k, the Eq. (28) is solved twice with the
initial conditions given by (30), until the solution
is approximately constant (ukz ≈ const). We choose
the values of initial Ni to be N ¼ Ni − N� and the
connection between the number of e-folds and the
comoving wave number is given by:

k ¼ k�
HðNiÞ
HðN�Þ

eNi−N� : ð32Þ

The initial value of k� is k� ¼ 0.05 Mpc−1 and we
assume that N� ¼ 0, as the CMB scales exit the
Hubble horizon.

(iv) Eventually, the PR is evaluated precisely using
Eq. (31) for each k-mode of interest, which is related
to N as it is explained in the previous step. As for the
normalization of the power spectrum we use that it is
approximately 2.1 × 10−9 [48] at k� ¼ 0.05 Mpc−1.

With this algorithm we are able to reproduce previous
works, such as those of Refs. [9,10,13,14]. This numerical
method is applied to our case, where the Kähler potential is
modified. The power spectrum is evaluated using Eqs. (28)
and (31) and depicted in Fig. 5 for the first set of parameters

shown in Table I taking into consideration that the initial
condition for the background equation is given by the first
set of Table II. The solid line corresponds to the M-S power
spectrum and the dashed line to the slow-roll approxima-
tion as in Eq. (27). As one can notice in Fig. 5, despite the
fact that peaks can be produced within the slow-roll
approximation, this approximation fails to reproduce either
the peak’s height or its position. The numerical precise
result of power spectrum ensures that the value of peak’s
height is larger than 10−2 and hence a significant fractional
abundance of PBH can be achieved, as it is shown in the
next section.
We notice that employing improvements of the slow-roll

approximation like the optimized slow-roll approximation
[24], the size of power spectrum peak, approaches indeed
that of the M-S numerical solution. On the other hand,
although using either the slow-roll or its improvement, the
peak’s position is not affected, this is quite different from
that of the numerical solution. As it will be discussed
below, since the position of the peak is crucial for the
precise calculation of fractional PBH abundance, in the
following we will use the M-S numerical solution, as it is
suggested in [22].

C. The calculation of the PBH abundance

Using the precise calculation of the power spectrum via
the M-S equation, as described in the previous section, we
can evaluate the fractional abundance of PBH that can be
interpreted as DM. For this reason, we will employ the
Press-Schechter model, that is used in the gravitation
collapse [54]. This model is summarized below.
First, we need to compute the coarse-grained mass

variance, which is defined in the radiation-dominated
era as:

FIG. 5. The CMB power spectrum using the slow-roll approxi-
mation (dashed line) and the M-S formalism (solid line) for the
first set of parameters of Table I.
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σ2ðMðkÞÞ ¼ 16

81

Z
dk0

k0

�
k0

k

�
4

PRðk0ÞW2

�
k0

k

�
; ð33Þ

whereWðxÞ¼e−x
2=2 is the Gaussian distribution. Knowing

σðMðkÞÞ we evaluate the mass fraction of PBH at for-
mation, denoted by βðMÞ:

βðMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðMÞ

p
Z

∞

δc

dδ exp

�
−

δ2

2σ2ðMÞ
�
: ð34Þ

The value of δc, which denotes the critical value for
collapse to produce a PBH, plays a crucial role in this
procedure. The integral in Eq. (34) is evaluated using the
incomplete gamma function

βðMÞ ¼
Γð1

2
; δ2c
2σ2ðMÞÞ

2
ffiffiffi
π

p : ð35Þ

As the next step we compute the mass as a function of k [9]:

MðkÞ ¼ 1018
�

γ

0.2

��
g�ðTfÞ
106.75

�−1=6

×

�
k

7 × 1013 Mpc−1

�
−2
in grams: ð36Þ

This expression runs over all the k-modes. With γ we
denote a factor which depends on gravitation collapse and
we choose γ ¼ 0.2 [55]. Tf denotes the temperature of
PBH formation. g�ðTfÞ are the effective degrees of freedom
during this formation and counting only the SM particles
we set g�ðTfÞ ¼ 106.75.
Given the mass fraction β and the mass MðkÞ we can

evaluate the abundance ΩPBH=ΩDM as a function of mass

ΩPBH

ΩDM
ðMÞ ¼ βðMÞ

8 × 10−16

�
γ

0.2

�
3=2

�
g�ðTfÞ
106.75

�−1=4

×

�
M

10−18 grams

�
−1=2

: ð37Þ

Hence, we plot ΩPBH
ΩDM

ðMÞ versusMðkÞ. Finally, we integrate
the expression in Eq. (37) as

ΩPBH ¼
Z

dM
M

ΩPBHðMÞ; ð38Þ

in order to find the present abundance and the results are
in Table III.
One should notice that the calculated PBH abundance

is sensitive to the value of δc. This value depends on the
profile of the collapsing overdensities. Recent studies,
assuming radiation domination, suggest that δc ≈ 0.4–0.5
[56–63]. The same result is supported, by analytical
calculations [62,63]. Furthermore, one can notice by

Eqs. (33) and(35) that the PBH abundance depends
also on the value of the power spectrum peak, since σ
is in the denominator in the exponential. This is an
additional justification for employing the precise numerical
solution of the M-S equation, instead of the slow-roll
approximation.
Using this method, we are able to produce a significant

abundance of PBH, modifying accordingly the Kähler
potential, through the b parameter. We summarize our
results in Table III, where we have used δc ¼ 0.45. The sets
of parameters in this table correspond to those in Table II.
We must stress that the amount of the fine-tuning in the
parameter b, is related to the central value for the δc we
have used. For example, using δc ¼ 0.5, the values of b as
appear in Table I are less tuned in the last two digits. This
means that allowing a slight variation on δc, we can
somewhat reduce the fine-tuning on b.
We plot the fractional abundance for the first set of

parameters of Table I (Fig. 6). The observational data
depicted in Figs. 6 and 7 are adapted by [9] with the bounds
by refs [64–76]. Specifically, these bounds are from
extragalactic gamma ray from PBH evaporation (EGγ)
[64], femtolensing of gamma ray burst (Femto) [65], white
dwarfs explosion (WD) [66], microlensing for Subaru

TABLE III. The values of the peak of power spectrum using
δc ¼ 0.45 and their fractional abundance, which correspond to
the parameter sets in Table II.

Ppeak
R Mpeak

PBH=M⊙ ΩPBH=ΩDM

1. 4.472 × 10−2 5.544 × 10−14 0.165
2. 3.968 × 10−2 1.171 × 10−16 0.095
3. 3.988 × 10−2 7.399 × 10−17 0.121
4. 3.998 × 10−2 8.787 × 10−17 0.121

FIG. 6. The fractional abundance of PBH for the first set of
parameters in Table II (black line). Details on the various
excluded regions due to observation data given in [64–76].
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(HSC) with dashed line shows the uncertain constraint of
HSC and Eros/Macho [67,68], dynamical heating of ultra-
faint dwarf (UFD) [69], CMB measurements [73] and radio
observation [75]. Taking into account these bounds, in
Fig. 6 we superimpose our results for the PBH abundance
using the parameters of the first set in Table III. This
prediction is marked by a black solid line reaching values
for ΩPBH=ΩDM up to 0.2, between the microlensing for
Subaru and the white dwarfs explosion excluded regions.
Using the last three parameter sets in Table I, we

superimpose our results in Fig. 7. Purple line corresponds
to λ=μ ¼ 0.33327, orange to 0.33330, and green to 1=3. We
notice that, although these three different parameter sets
yield quite distinctive cosmological predictions, as can be
seen in Fig. 3, by appropriate choice of the initial value for
the field ϕ (see Table II), we can achieve almost similar
fractional abundance for all cases, as in Fig. 7. Finally, our
results are consistent with the constraints calculated
in Ref. [77].

IV. CONCLUSIONS

In this paper, we study a model based on a no-scale
supergravity with SUð2; 1Þ=SUð2Þ ×Uð1Þ symmetry [45],
with a deformed Kähler potential by introducing a simple
exponential term, using practically one extra parameter.
The perturbation due to this modification induces an
inflection point to the effective scalar potential. As
expected, this potential, in the absence of the modification
yields the usual Starobinsky-like potential. The super-
potential we employ is the well-known Wess-Zumino
superpotential. The induced inflection point can be

expounded as a peak in the CMB power spectrum.
Interestingly enough, using this mechanism we satisfy
all the Planck cosmological constraints for inflation and
we were able to achieve ample PBH production, that can
explain up to 20%–25% of the DM of the Universe.
Moreover, we studied the stability of the potential along

the inflationary directions, checking all the parameter sets
presented in this work. Afterwards in the context of the
slow-roll approximation, we use the single field inflation
method and we evaluate the evolution of the field and the
slow-roll parameters. We highlight that the slow-roll
approximation fails to provide the precise power spectrum,
therefore the use of the M-S equation is imperative.
Eventually, using the numerical result from the M-S
solution, we calculate the power spectrum and the frac-
tional abundance of PBH.
We have scanned the parameters entering in the modified

Kähler potential and we have presented results for various
sets of them. Interestingly, we have found that potentials
with values for the ratio λ=μ > 1=3, which are excluded by
CMB constraints in the context of the original Wess-
Zumino model, now become compatible with the latest
Planck data. In parallel, these values of the parameters are
compatible to significant amount of PBH.
Unfortunately, as all the inflation models that use the

inflection point mechanism in order to produce PBH, our
model requires fine-tuning of the parameters entering by the
modification of the Kähler potential. Although, the numeri-
cal analysis reveals that this fine-tuning can be compensated
in part, by the appropriate choice of the parameter δc that
affects the calculation of the PBH abundance, a more
detailed quantitative analysis on this aspect can be per-
formed. Moreover, exploring inflationary models that are not
using the inflection point mechanism in order to produce
PBH, will alleviate the necessary fine-tuning. Both direc-
tions require detailed analysis, since the PBH is an interest-
ing alternative to the standard DM models.
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FIG. 7. The fractional abundance of PBH, such as Fig. 6, for the
last three sets of parameters in Table II.
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