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We propose a two-phase reheating scenario where the initial preheating dynamics is described by an
effective dynamics followed by the standard perturbative reheating. Some of the important universal results
of lattice simulation during preheating have been considered as crucial inputs in our two-phase dynamics.
In this framework, detailed phenomenological constraints have been obtained on the inflaton couplings
with reheating fields and dark matter parameters in terms of the cosmic microwave background (CMB)
constrained inflationary scalar spectral index. It is observed that the conventional reheating scenario
generically predicts the maximum reheating temperature Tmax

re ≃ 1015 GeV, corresponding to an almost
instantaneous transition from the end of inflation to radiation domination. This fact will naturally lead to the
problem of nonperturbative inflaton decay, which is in direct conflict with the perturbative reheating itself.
Taking into account this by incorporating effective nonperturbative dynamics as the initial phase, our model
of two-phase reheating scenarios also predicts a model-independent maximum reheating temperature,
which does not correspond to the instantaneous process. Furthermore, Tmax

re is predicted to lie within
ð1013; 1010Þ GeV if CMB constraints on inflaton couplings with a different reheating field are taken into
account. We have further studied in detail the dark matter phenomenology in a model-independent manner
and show how dark matter parameter space can be constrained through CMB parameters via the inflaton
spectral index. Considering dark matter production during reheating via the freeze-in mechanism, its
parameter space has been observed to be highly constrained by our two-phase reheating than the constraints
predicted by the conventional reheating scenarios, which are believed to theoretically incomplete.
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I. INTRODUCTION

The inflationary universe [1,2] is currently the leading
paradigm to explain the inhomogeneities in the cosmic
microwave background (CMB) [3], which plays the crucial
role of seed perturbations for the large-scale structure of the
Universe [4]. Within the present setup, the inflationary
phase must be followed by a phase known as reheating1

when the energy stored in the inflaton field is released to
defrost the Universe [7–10]. Unlike inflation, the reheating
phase is not constrained by direct observables; however, the
modified expansion history of the Universe due to the

presence of the reheating phase prior to the hot big bang
evolution influences the relation between physical scales of
the CMB mode today and that at the time of their Hubble
exit during inflation (see Fig. 2 in this context). This was
the basic idea of reheating constraints to inflationary
models from the CMB [11]. Despite the thermalization
process erasing many microphysical details of this phase, a
better understanding of this phase is necessary and can shed
light on how the inflationary mechanism is connected to the
rest of the Universe dynamics [12–14], the production
mechanism of baryonic asymmetry in the early Universe
called baryogenesis [15–21], the origin of dark matter [22],
and the generation of primordial gravitational waves
[23–33] and constraining them, etc. There exist two
approaches that can constrain the reheating phase through
the inflationary models. Either we can model the expansion
during the reheating phase using an effective equation of
state parameter [11,34], or we can solve the Boltzmann
equation system supplemented with the background expan-
sion [35]. Both descriptions have their limitations and are
not theoretically complete. However, the latter approach’s
advantage is that one can further generalize it by including
matter components in addition to radiation, which could be
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1Particle production during inflation is also considered in the
so-called warm inflationary scenario [5,6].

PHYSICAL REVIEW D 102, 083534 (2020)

2470-0010=2020=102(8)=083534(37) 083534-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.083534&domain=pdf&date_stamp=2020-10-26
https://doi.org/10.1103/PhysRevD.102.083534
https://doi.org/10.1103/PhysRevD.102.083534
https://doi.org/10.1103/PhysRevD.102.083534
https://doi.org/10.1103/PhysRevD.102.083534
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


physically motivated. For example, in the original work, the
production of dark matter has been studied. The study
revealed a very interesting link between the dark matter
with CMB through inflation [35]. Later, this formalism has
been extended in considering various models of inflation
with a general power-law-type potential [36], and the
nonperturbative effect from numerical lattice simulation
has also been considered [37]. In this paper, we take up this
issue of the nonperturbative phase known as preheating and
formulate an effective approach that will be shown to lead
to qualitatively different results than that of the usual
reheating constraint analysis. Preheating is the phase when
the occupation number of field quanta for both the inflaton
and daughter field(s) grows exponentially due to parametric
resonance [38]. The equation of state during the steady state
of the preheating phase is crucial for model-independent
reheating constraint analysis. Furthermore, some scenarios
can lead to a nonstandard case such as a sudden blocking
reheating process due to the Higgs field [39] or a break-
down of coherent oscillation without thermalization [40].
Considering those into our present scenario would be
interesting to consider. Although the preheating phenome-
non depends on the inflation model and its interaction with
the daughter fields, certain universal behaviors have been
observed to emerge irrespective of inflation models
[37,41,42]. Namely, (i) the preheating phase is episodic
with at least three distinct phases. (iii) The equation of state
(EOS) of the system does not reach to that of the radiation
for quadratic potentials VðϕÞ ∝ ϕ2. However, for another
form VðϕÞ ∝ ϕn with n ≥ 4, the EOS reaches w → 1=3 at
the end of preheating [37,42–44].
These results indicate that, while nonperturbative proc-

esses dominate the initial stage, the inflaton decay in later
stages should be described by perturbative channels. A
systematic study of reheating constraints incorporating the
nonperturbative phase for various models and interactions
is missing in the literature.
In this work, we will extend the formalism developed in

Refs. [35,37] to include the nonperturbative effects in
reheating constraint analysis. As we just mentioned,
reheating happens in multiple stages, with the initial
nonperturbative stage followed by the perturbative one.
Let us now briefly describe the main idea of the present
work: Endowed with the above few universal features, we
will consider reheating as a two-stage process. We will
model the initial nonperturbative stage (henceforth, phase I)
governed by an effective fluid with an effective equation of
state (weff ). One of the boundary conditions of the effective
nonperturbative dynamics will be set by the inflation model
potential expressed in terms of the scalar spectral index (in
this regard, the reader may find this in parallel with the
conventional works in Ref. [11]). This phase is assumed to
be continued until the inflaton energy decaying into 50% of
its initial energy and the subsequent perturbative stage
(henceforth, phase II) follows. While evolving through

phase I and connecting to phase II, we allow the system to
satisfy an important consistency relation associated with
the total energy conservation comprising inflaton and
various daughter fields such as radiation and dark matter
(which we considered separately). We will see that this
consistency relation will restrict the possible values of weff
during phase I as opposed to the conventional analysis [11].
Furthermore, the perturbative decay in phase II will be
restricted by the CMB constraints [35].
We have structured our paper as follows: In Sec. II, we

discuss the general analysis of single-stage perturbative
reheating, and in Sec. III, we will try to specify the possible
limits on perturbative reheating considering some specified
form of the interaction between inflation and radiation
fields. Finally, in Sec. IV, we briefly describe our proposed
two-phase reheating analysis and, in Sec. V, illustrate the
strategy of our numerical study. After that, in Sec. VI, we
will try to find out an analytical estimation of the maximum
radiation temperature and reheating temperature. Next, in
Sec. VII, we consider different inflationary models and
analyze in the context of the two-phase scenario and
compare it with conventional reheating dynamics. In
Sec. VIII, we analyze the possible constraints on the
coupling parameter corresponding to different inflaton-
radiation field interactions. Furthermore, in Sec. IX, we
include additional dark matter components and discuss the
viable restrictions on the dark matter parameter space.

II. REHEATING CONSTRAINT ANALYSIS FOR
PERTURBATIVELY DECAYING INFLATON

Before we directly jump into constructing the two-phase
reheating model, let us first elaborate on widely studied
single-phase perturbative reheating with decaying inflaton
following Ref. [35]. This not only explains the methodol-
ogy of our analysis, but also helps us to identify the regime
of its validity which will further motivate the reader, the
need for considering a physically more acceptable two-
phase reheating process mentioned in the introduction.
While discussing this, we will see one of the important
results, that is, the existence of a maximum reheating
temperature. Subsequently, the generalization to two-phase
reheating will show how the aforesaid maximum reheating
temperature reduces depending upon the initial condition.
Let us start with the following Einstein equation for the
cosmological scale factor and conservation of energy:

n̈re ¼ −2_n2re þ
1 − 3w
6M2

p
ρϕ;

_ρϕ þ 3_nreðρϕ þ pϕÞ þ _ρrad þ 4_nreρrad ¼ 0; ð1Þ

with the following Friedmann-Robertson-Walker (FRW)
form of the metric:

ds2 ¼ −dt2 þ a2ðdx2 þ dy2 þ dz2Þ; ð2Þ

HAQUE, MAITY, and SAHA PHYS. REV. D 102, 083534 (2020)

083534-2



where ρ’s are the energy densities of two different compo-
nents. At any instant of time during reheating, we para-
metrize the duration of reheating by e-folding number
nreðtÞ ¼ lnða=aiÞ, where a is the cosmological scale factor.
The time derivative of nre is the Hubble expansion
parameter _nre ¼ H during reheating. During reheating,
we assume the effective equation of state of the inflaton
w ¼ hpϕ=ρϕi to be approximately constant. The funda-
mental difference between our present analysis followed
from Ref. [35] and that in Ref. [11] is the consideration of
Eq. (1), where we consider the multiple dynamical com-
ponents. Considering the evolution of ρϕ þ ρrad ¼ ρeff
together, the effective equation of state during reheating
can be defined as

weff ¼
�

3pϕ þ ρrad
3ðρϕ þ ρradÞ

�
: ð3Þ

Hence, weff will essentially interpolates between two values
ðw; 1=3Þ through nontrivial time dynamics for decaying
inflaton ρϕ and the growing radiation field ρrad. However, in
Ref. [11], the authors have taken it to be constant during
their analysis. Therefore, we not only employ realistic
decay dynamics into the reheating constraint analysis but
also provide a new framework to go beyond, which is our
main purpose of the present paper.
Keeping the above points in mind, let us express the total

energy density as

ρrad þ ρϕ ¼ e−4nre
�
ρiϕ þ ð1 − 3wÞ

Z
t

ti

ρϕe4nrednre

�
; ð4Þ

which is followed from the conservation Eq. (1). The index
i stands for the initial stage of reheating, which also marks
the end of inflation. At the beginning of reheating we set
ρradðtiÞ ¼ 0. For solving the above set of equations, the
boundary condition is set by the inflaton energy density as

_nreðtiÞ ¼ HðtiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρiϕ=3M

2
p

q
. The physical quantity of our

interest is the ratio of the radiation energy density and the
inflaton energy density. From Eq. (4), one gets

ρfrad
ρiϕ

¼ e−4Nre −
ρfϕ
ρiϕ

þ ð1 − 3wÞe−4Nre

Z
f

i

ρϕ
ρiϕ

e4nrdnre; ð5Þ

where f corresponds to the final value of radiation density.
We define the total e-folding number during reheating
as Nre ¼ nreðtfÞ.
The main goal of this whole program of reheating

constraint analysis is to understand the relation among
early Universe inflaton dynamics, the intermediate reheat-
ing dynamics, and late time dynamics. A particular cos-
mological scale k going out of the horizon during inflation
will reenter the horizon during late time cosmological
evolution. This fact will provide an important relation
among different phases just mentioned as follows:

ln

�
akHk

a0H0

�
¼ −Nk − Nre − ln

�
areHk

a0H0

�
; ð6Þ

where a particular scale k satisfies the relation
k ¼ a0H0 ¼ akHk. ðare; a0Þ are the cosmological scale
factors at the end of reheating phase and at the present
time, respectively. ðNk;HkÞ are the e-folding number and
the Hubble parameter, respectively, during inflation. H0 is
the present value of the Hubble constant.
The usual approach is to define the effective equation of

state of the total energy density during reheating and study
its evolution. However, we consider only the radiation part
during reheating and try to understand the evolution of its
temperatureTrad as a function of the scalar spectral index and
finally connect the temperature with CMB one on the large
scale [35]. The reheating temperature Tre is identified with
radiation temperature Trad at thermal equilibrium between
the decaying inflaton and the radiation. From the entropy
conservation of thermal radiation, the relation amongTrad ¼
Tre at equilibrium, and ðT0; Tν0 ¼ ð4=11Þ1=3T0Þ, the tem-
perature of the CMB photon and neutrino background at the
present day, respectively, can be written as

greT3
re ¼

�
a0
are

�
3
�
2T3

0 þ 6
7

8
T3
ν0

�
: ð7Þ

Using Eqs. (6) and (7), one arrives at the following well-
known relation:

Tre ¼
�

43

11gre

�
1=3
�
a0T0

k

�
Hke−Nke−Nre ¼ Gke−Nre ; ð8Þ

where gre ∼ 100 is the effective number of relativistic
degrees of freedom during the radiation phase. In our
subsequent study, we identify the cosmological scale k as
the pivot scale set by Planck, k=a0 ¼ 0.05 Mpc−1, and
compare our result with the corresponding estimated scalar
spectral index ns ¼ 0.9682� 0.0062 [45].

A. Example I: Exactly solvable case

As has already been discussed in Ref. [35], one of the
important outcomes of our formalism is the existence of a
maximum possible reheating temperature. In this and the
next section, we will elaborate on this considering a simple
ansatz of decaying inflaton. We first consider an analyti-
cally solvable case where the inflaton is decaying as

_ρϕ þ 3Hð1þ wÞρϕ ¼ −Γ̄ϕHρϕ

⇒ ρϕðtÞ ¼ ρiϕe
−3ð1þwÞnree−Γ̄ϕnre : ð9Þ

Γ̄ϕ is a dimensionless constant, which parametrizes the
decay of inflaton. This form of decay essentially modifies
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the Hubble friction term for the dynamics of inflaton during
reheating. With the aforementioned ansatz for the decaying
inflaton, the radiation density is analytically solved as

ρfrad
ρiϕ

¼ Γ̄ϕ

Γ̄ϕ þ 3w − 1
ðe−4Nre − e−3ð1þwÞNre−Γ̄ϕNreÞ: ð10Þ

The second term in the parentheses is quantifying the
fractional amount of inflaton energy left after the reheating
process is over. Expressing ρf in term of the radiation

temperature as ρfrad ¼ π2ðgre=30ÞT4
rad, Eq. (10) leads to

the following maximum radiation temperature [46] for a
given Γϕ:

Tmax
rad ¼

�
30ρiϕP

π2gre

�1=4

½x4=ðΓ̄ϕþ3w−1Þ−xð3þ3wþΓ̄ϕ=ðΓ̄ϕþ3w−1Þ�1=4;

ð11Þ

where ðx ¼ 4=ð3þ 3wþ Γ̄ϕÞ and P ¼ Γ̄ϕ=ðΓ̄ϕ þ 3w − 1Þ.
This also can be clearly seen from Fig. 1 for each value of
Γ̄ϕ. From the perturbative point of view, the value of Γϕ

should be ≤ 1. However, if we naively extrapolate the
above result for large Γ̄ϕ, the most important result turned
out to be the existence of a maximum possible temperature:

lim
Γ̄ϕ≫1

Tmax
rad ¼

�
30ρiϕ
π2gre

�1=4

≃ 2.9 × 1015 GeV: ð12Þ

However, the numerical value of this maximum temper-
ature turns out to be of the order of the same as the limiting
perturbative value for Γ̄ϕ ¼ 1 as shown in Fig. 1. Therefore,
the above temperature can be naturally identified as the
maximum possible reheating temperature. This also cor-
responds to the maximum possible value of scalar spectra

index nmax
s . Identifying the associated temperature of the

produced radiation in Eq. (10) with Eq. (8), we arrive at the
following exact expression for ðNre; TreÞ:

Tre ¼ Gk

�
1 −

1

P
π2greG4

k

32:5Vend

�
1=½4−3ð1þwÞ−Γ̄ϕ�

; ð13Þ

Nre ¼
1

4 − 3ð1þ wÞ − Γ̄ϕ
ln

�
1 −

1

P
π2greG4

k

32:5Vend

�
: ð14Þ

In Fig. 1, we have considered three possible values of Γ̄ϕ for
the quadratic inflaton potential. The special value is
Γ̄ϕ ¼ 1, for which the equilibrium condition between the
inflaton and the radiation can be achieved at the maximum
temperature shown as a black dot. The maximum value of
the scalar spectral index turned out to be nmax

s ≃ 0.9654.
This analysis motivates us to subsequently analyze a more
general case, and we will show that this conclusion
still holds.

B. Example II: Standard perturbative case

In this section, we will consider the standard perturba-
tively decaying inflaton parameterizing by decay constant
Γϕ as follows:

_ρϕ þ 3Hð1þ wÞρϕ ¼ −Γϕρϕð1þ wÞ
⇒ ρϕðtÞ ¼ ρiϕe

−3ð1þwÞnree−Γϕðt−tiÞð1þwÞ; ð15Þ

where Γϕ is the effective time-independent inflaton decay
constant. It is the phenomenological term which acts as a
damping force during the oscillating inflaton. This term can
be related to the total decay rate of inflaton to radiation.
However, we believe our conclusion will remain the same
for time-dependent Γϕ, which we will study later. Before
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FIG. 1. Variations of ðNre; TradÞ as a function of ns have been plotted for Γ̄ϕ ¼ ð1.0; 0.01; 0.000001Þ corresponding to blue, pink, and
black curves, respectively. The light blue shaded region corresponds to the 1σ bounds on ns from Planck. The brown shaded region
corresponds to the 1σ bounds of a further CMB experiment with sensitivity �10−3 [47,48], using the same central ns value as Planck.
Temperatures below the horizontal red line is ruled out by big bang nucleosynthesis (BBN). The deep green shaded region is below the
electroweak scale, assumed 100 GeV for reference.
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doing any numerical analysis, let us examine the approxi-
mate solution which has already been discussed in the
literature [46]. During the early stage of evolution, approxi-
mating ρiϕe

−Γϕt ≃ ρiϕ, the radiation density can be calcu-
lated as

ρfrad
ρiϕ

≃
2Γϕe−4Nre

ð5 − 3wÞ _nreðtiÞ
ðe½ð5−3wÞ=2�Nre − 1Þ: ð16Þ

Similar to the exactly solvable case in Eq. (11), the above
equation also leads to a maximum radiation temperature
[46] for a given Γϕ:

Tmax
rad ≃

�
392M2

pð _nireÞ2
π2gre

�
1=8 ffiffiffiffiffiffi

Tre

p
; ð17Þ

where the relation Tre ¼ 0.45ð200=greÞ1=4
ffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMp

p
has

been used. In the same way as our earlier exactly solvable
case, the maximum possible reheating temperature could be
obtained, if one identifies a special point where two
temperatures meet, Tmax

rad ¼ Tre. Our numerical analysis
also shows the maximum reheating temperature at the
aforementioned special point:

Tmax
re ≃

�
392ρiϕ
3π2gre

�1=4

: ð18Þ

Interestingly, the maximum reheating temperature Tmax
re can

also be computed for another exactly solvable case with
w ¼ 1=3. Corresponding result is as follows:

Tmax
rad jw¼1=3 ≃

�
30ρiϕ
π2gre

Γϕ

4_ni þ Γϕ

�1=4

;

Tmax
re jw¼1=3 ¼ lim

Γϕ≫4_ni
Tmax
rad jw¼1=3 ¼

�
30ρiϕ
π2gre

�1=4

: ð19Þ

This expression is exactly the same as previously discussed.
For this special value of w ¼ 1=3, we also have the exact
expression for all the reheating parameters ðTre; NreÞ as
follows:

Tre ¼ Gk

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρiϕ

3M2
pΓ2

ϕ

s
ln

�
1 −

π2greG4
k

32:5Vend

�!−1=2

; ð20Þ

Nre ¼
1

2
ln

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρiϕ

3M2
pΓ2

ϕ

s
ln

�
1 −

π2greG4
k

32:5Vend

��
: ð21Þ

At this point, let us again emphasize the fact that, as long
as we are in the perturbative regime, the relation among the
scalar spectral index ns and the reheating temperature Tre
can be understood from our detail analysis above. However,
the existence of a maximum reheating temperature will

come if we extrapolate all our formulas for large

Γϕ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρi=ð3M2

pÞ
q

. For low-scale inflation, Γϕ could

always be in the perturbative regime. For large-scale
inflation, this could lead to the nonperturbative regime,
which will be discussed in our subsequent section. We will
discuss possible limits on the value of Γϕ below which our
analysis will be valid. To this end, it is important to point
out that, in the effective reheating equation of state
description [11], the maximum temperature can be
explained in the limit of zero reheating e-folding number
Nre. Therefore, the large Γϕ limit in our analysis can be
thought of as equivalent to the zero Nre limit of the
previously studied reheating constraint analysis. However,
it is important to remember that those two facts are certainly
not identical. Corresponding to our maximum temperature,
we have a minimum reheating e-folding number. Our
prediction of maximum reheating temperature ∼1015 GeV
and its model independence could be robust, and they are
intimately connected with the observed CMB scale.
Nevertheless, the main point of our study is to under-

stand the effect of decaying inflaton into the reheating
constraint analysis. We think this is the appropriate pro-
cedure to understand the relation among ðTre; nsÞ. Another
advantage of our procedure is that we can easily generalize
our analysis to include any other decay products during
reheating such as dark matter, which is observed to be a
dominant matter component of our Universe [49–52], and
that can shape the observed pattern in the CMB. Before
this, our main motivation would be to incorporate the
nonperturbative aspects of reheating into our formalism.

III. REGIME OF VALIDITY OF PERTURBATIVE
REHEATING

In this section, we will try to mention the possible limits
on the inflaton decay constant assuming some specific form
of the interactions among the inflaton and the reheating
field. As emphasized throughout the present work, we have
assumed that the inflation decay to other components (for
the present work, the radiation component) is effectively
described by a phenomenological decay term Γϕ. In fact,
this was the first attempt to reheat the Universe [53].
However, it was soon realized that, once the particle
production initiates, the inflaton decay is subject to various
nonperturbative resonance production and feedback mech-
anisms. Those processes can change the reheating scenario
dramatically, though it has been argued in Ref. [12] that all
such feedback mechanisms will have no effect on the CMB.
Depending upon the coupling, the parametric resonance
can be very efficient, which may complete the reheating era
within a few e-foldings, and in such cases the CMB will
have very little to tell about the reheating phase. Despite
that, the situation may not be such helpless as noted in
Ref. [54,55] that the interactions among the produced
particles can delay the parametric resonance extending
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the e-folding number of reheating. This will eventually
improve the situation of theCMBconstraint on the reheating
phase. It must also be noted that we can always choose the
coupling constant small enough to evade the parametric
resonance. Below, we will briefly mention the space of
parameter region in which the perturbative treatment of
reheating will be valid over the parametric resonance.

A. Inflaton decaying into scalar particle

1. Scalar ϕχ 2 interaction

First, let us consider the case when inflaton decays into
another scalar particle ϕ → χχ with the following inter-
action term L ¼ −gϕχ2. In this case, the vacuum decay
width for the decay process ϕ → χχ is given by [56]

Γϕ→χχ ¼
g2

8πmϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mχ

mϕ

�
2

s
≃

g2

8πmϕ
; ð22Þ

wheremϕ andmχ are the mass of the inflaton and produced
particle, respectively, and g is the coupling constant. The
mode function χk of the decay product can be cast into the
following Mathieu equation:

χ̈k þ ðAk − 2q cosð2zÞÞχk ¼ 0; ð23Þ
where z ¼ ðmϕt − 2z − π=2), Ak ¼ 4k2=m2

ϕ, and
q ¼ 4gΦ=m2

ϕ. Φ is the initial amplitude of the inflaton
during oscillations. The Mathieu equation is known to
show resonance solutions of the form χk ∝ expðμkzÞ. The
condition for the resonance to be efficient is formulated as

q2m≳H: ð24Þ
This can be transformed into the following condition2 on
the dimensionless coupling constant g̃ ¼ g=mϕ indicating
the regime of perturbative validity [57]:

g̃ ≤
V1=4
end

ϕend

�
mϕ

24Mp

�
1=2

; ð25Þ

which can further expressed in terms of the decay constant
as

Γϕ ≤
V1=2
end

ϕ2
end

�
m2

ϕ

192πMp

�
⇒ Γcri

ϕ ðmodelÞ ¼ V1=2
end

ϕ2
end

�
m2

ϕ

192πMp

�
:

ð26Þ

Therefore, we see that if the decay width satisfies the
aforementioned condition, the perturbative reheating will

be the only mechanism and our perturbative analysis will
be at work. Given a model Γcri

ϕ ðmodelÞ is the point which
qualitatively separates the perturbative and nonperturbative
effects of inflaton decay.

2. Scalar ϕχ 3 interaction

In this case, inflaton couples to another light scalar via
interaction

L ¼ −yϕχ3; ð27Þ

where y is the coupling constant. The vacuum decay rate of
the inflaton field into three bodies ϕ → χχχ can be
determined by a Dalitz plot [58] as

Γϕ→χχχ ¼
y2mϕ

3!64ð2πÞ3 : ð28Þ

At the tree level, the mode function χk following the same
Mathieu equation and the consideration from the previous
scalar ϕχ2 interaction can be correlated if one replaces
g̃mϕΦ → h2Φ2. Therefore, the condition to treat the
dynamics of reheating perturbatively is roughly

q ∽
y2Φ2

m2
ϕ

≤ 1: ð29Þ

To estimate the lower bound on the coupling for the
resonance, we make a substitution Φ → ϕend. The above
condition for the effectiveness of perturbative reheating can
be written in terms of the decay rate as

Γϕ ≤
m3

ϕ

3!64ð2πÞ3ϕ2
end

⇒ Γcri
ϕ ðmodelÞ ¼ m3

ϕ

3!64ð2πÞ3ϕ2
end

:

ð30Þ

Thereafter, in our analysis, we want to examine whether
this above condition is consistent with our analysis or not
for the different inflationary models.

B. Inflaton decaying into a pair of fermions

Let us now consider the case when the inflaton decays
into a pair of massless fermions with the following Yukawa
interaction:

Lint ¼ −hϕψ̄ψ ; ð31Þ

where h is the dimensionless coupling constant. Now the
vacuum decay rate is given by

Γϕ→ψ̄ψ ¼ h2mϕ

8π
: ð32Þ

2In deriving this condition, the initial amplitude Φ has been
replaced by ϕend, which implies that this is essentially a lower
bound on the decay width as in the case of preheating Φ < ϕend.
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The condition for the validity of perturbative reheating in
this case, as shown in Ref. [59], can be written as

q ¼ h2Φ2

m2
ϕ

≤ 1: ð33Þ

Hence, in connection with the decay rate, Eq. (33) is
rewritten as

Γϕ ≤
m3

ϕ

ϕ2
endð8πÞ

⇒ Γcri
ϕ ðmodelÞ ¼ m3

ϕ

ϕ2
endð8πÞ

: ð34Þ

In our proposed effective two-phase dynamical scenario,
we will observe the existence of a similar critical inflaton
decay constant associated with the reheating e-folding
number. Wewill see how the aforementioned three different
interacting model-dependent critical decay constants
restrict in initial parameter space of the reheating dynamics.
In the following sections, our attempt will be to build up a
formalism which can effectively incorporate the nonper-
turbative dynamics at the initial stage of the reheating.

IV. REGIME OF EFFECTIVE
NONPERTURBATIVE AND PERTURBATIVE

REHEATING

The standard and well-studied mechanism to consider
the nonperturbative effect during reheating is called pre-
heating. This stage is essentially the combination of a
highly nonlinear process of parametric resonance and
subsequent thermalization. It is a well-known fact that a
generically nonperturbative preheating mechanism does
not completely decay inflaton into the radiation field.
Therefore, subsequent perturbative decay will be necessary
to complete the reheating process. To the best of our
knowledge, Ref. [35] has considered this issue for the first
time and studied perturbative reheating, followed by the
preheating considering a specific model of chaotic-type
inflation. However, generically, the preheating mechanism
is model dependent. Hence, combining the end of preheat-
ing and subsequent model-independent perturbative reheat-
ing is somewhat irreconcilable. Therefore, our objective in
the following sections would be to make these two phases
reconcilable.
Instead of dwelling on explicit nonperturbative compu-

tation during the preheating stage, wewill adopt an effective
model-independent approach following Ref. [11]. The basic
idea is to assume the dynamics of preheating to be solely
governed by an effective equation of stateωeff supplemented
with the total energy conservation law in terms of its
constituents. As already emphasized in the introduction,
the information about the actual nonperturbative dynamic
will be encoded through considering its universal features
into our effective dynamics.

As has been pointed out already, during the nonpertur-
bative dynamics, inflaton decay is not complete, and
typically it is around 50% of its total comoving energy,
which is being transferred into the daughter fields.
Furthermore, for inflation models with a quadratic potential
near the minimum, the nonperturbative reheating does not
lead to the equation of state, ω ¼ 1

3
, which is expected at the

end point of reheating [37,60]. Our essential idea would be
to correctly utilize those results as the end point conditions
of our proposed effective dynamics in place of preheating.
After the end of this, the usual Boltzmann perturbative
reheating process will follow. The second phase completes
the reheating process by leading to the correct state
equation with relativistic degrees of freedom as the dom-
inant components collectively called radiation. Figure 2
illustrates our methodology of calculation. Throughout this
paper, we call this the two-phase reheating process.

A. Phase I: (Effective nonperturbative phase)

During the early stage of reheating, the phase will be
described by total energy density ρT ¼ ρR þ ρϕ and the
constant effective equation state weff . Hence, the evolution
will be described by

ρT ¼ ρTe

�
aend
a

�
3ð1þweffÞ

; ð35Þ

where ρTe is the total energy density at the end of the
inflation. aend is the scale factor at the end of the inflation.
In this section, we will build up our formalism considering
two matter components with ρϕ and ρR as the inflaton
energy density and radiation energy density, respectively, at
any instant of time. In the subsequent section, we will add
dark matter as a third component as an extension.
Nonetheless, from the total energy expression one can
write down the following equation that follows from
Eq. (35):

_ρϕ þ _ρR þ 3Hð1þ weffÞðρϕ þ ρRÞ ¼ 0: ð36Þ

To reduce the number of unknown parameters, to this end
we will also utilize total energy conservation relation
considering the individual equation of state of the inflaton
ðωϕÞ and the radiation field ðωR ¼ 1=3Þ described as

_ρϕ þ 3Hð1þ wϕÞρϕ þ _ρR þ 4HρR ¼ 0: ð37Þ

Given the aforementioned constraint relation, one obtains
the possible restricted value of the effective equation of
state, ωeff . To find those restrictions, we combine the above
two Eqs. (36) and (37) and obtain the following consistency
relation:
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ρR
ρϕ þ ρR

¼ 3ðwϕ − weffÞ
3wϕ − 1

: ð38Þ

Right at the end of inflation or the beginning of the
preheating phase, the energy density of the radiation part
will naturally be close to zero ρR ≃ 0. As time evolves, ρR
increases due to decaying inflaton. This initial condition
automatically restricts the possible values of weff to be very
close to that of the inflaton equation of state wϕ. Of course,
a more appropriate approach would be to assume the
inflaton equation of state evolving from the value very close
to ωϕ to the value required in the next phase. We will
comment on this issue at the appropriate place during our
discussion. However, from the usual numerical lattice
simulation, the preheating phase’s significant duration is
dominated by the inflaton. Hence, the equation of state will
naturally be close to that of the inflaton field. Thus, our
effective dynamics approach toward preheating truly cap-
tures all these necessary properties of the nonperturbative
dynamics. As weff turned out to be no longer a free
parameter and constrained by the above consistency rela-
tion (38), our following analysis will be based on this
important result. Throughout our study, we consider
models for which the inflaton equation of state during

phase I ωϕ ¼ 0, and, consequently, following Eq. (38) we
choose two values of effective equation of state ωeff ¼
ð10−6; 10−3). This choice will automatically fix the initial
radiation densities during phase I as ρR=ðρϕ þ ρRÞ ¼
ð3 × 10−6; 3 × 10−3Þ. We will see that the maximum
reheating temperature crucially depends upon these initial
conditions.

B. Phase II: (Perturbative phase)

Once the preheating dynamics ends, the usual
Boltzmann perturbative reheating follows. During this
period, various components of the total energy density
satisfy the following standard Boltzmann equations [61]:

_ρϕ þ 3Hð1þ w1
ϕÞρϕ þ Γϕρϕð1þ w1

ϕÞ ¼ 0; ð39Þ

_ρR þ 4HρR − Γϕρϕð1þ w1
ϕÞ ¼ 0; ð40Þ

where the inflaton field ϕ decays into radiation with the
decay rate Γϕ. ω1

ϕ represents the inflaton equation of state
during perturbative reheating. It is important to note that the
inflaton equation of state during phase I, ωϕ, is taken to be
different than that of phase II, ωϕ. This is where we will

FIG. 2. The evolution of the comoving Hubble scale ( 1
aH) connects the inflationary phase with the CMB. The end of the inflation is

denoted by point B, and the ending of the radiation-dominated era is denoted by the points D1 and D2. The inflationary phase and
radiation-dominated era connect through the reheating phase, which contains two different regions, the effective nonperturbative
reheating era and the perturbative reheating era. C denotes the ending point of the nonperturbative reheating era. The points D1 and D2

are the ending point of the perturbative reheating era for two different inflaton equations of state during perturbative reheating
ω1
ϕ ¼ ð0; 0.2Þ, respectively. For the perturbative reheating era with the inflaton equation of state ω1

ϕ ¼ ð0; 0.2Þ, the e-folding numbers,
basically, the duration of the perturbative process, are different. For a particular value of the spectral index (lower values of ns, toward
nmin
s ), the decay width calculating by considering ω1

ϕ ¼ 0.2 is quite lower in comparison with ω1
ϕ ¼ 0. That is why, for that particular

values of ns, the duration of the perturbative era is quite wider for ω1
ϕ ¼ 0.2 in connection with ω1

ϕ ¼ 0 (Nre2 > Nre1).
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again consider lattice simulation results as another impor-
tant input.
Now that we have identified the full reheating phase in

terms of two distinct stages, we will numerically solve all
those equations self-consistently. With the appropriate
dimensionless rescaled variables for the inflaton and
radiation energy densities,

Φ ¼ ρϕa3ð1þwϕÞ

m
ð1−3wϕÞ
ϕ

; RðtÞ ¼ ρRa4; ð41Þ

the governing equations for the effective dynamical pre-
heating phase turn into the following form:

Φ0

A3wϕ
þR0

A ¼ 0;

Φ0

A2þ3wϕ
þ R

A4 ½3ð1þweffÞ−4�þ R0
A3þ 3Φðweff−wϕÞ

A3ð1þwϕÞ ¼ 0

)
; phaseI;

ð42Þ

and the associated governing equations for the subsequent
perturbative phase will reduce into

Φ0 þ C1ð1þ w1
ϕÞ A

1=2Φ
X ¼ 0;

R0 − C1ð1þ w1
ϕÞ A

3ð1−2w1
ϕ
Þ

2 Φ
X ¼ 0

9=
;; phase II: ð43Þ

The rescaled scale factor is defined as A ¼ a
aend

. A prime
represents derivative with respect to A. The constant C1 and
redefined variables are

X ¼ Φ
A3w1

ϕ

þ R
A
; C1 ¼

ffiffiffi
3

p
MpΓϕ

m2
ϕ

: ð44Þ

mϕ is the mass of the inflaton. In next section, we will
describe the methodology for solving the above set of
equations numerically.

V. PROCEDURE FOR NUMERICAL ANALYSIS
AND BOUNDARY CONDITIONS

Let us describe the strategy of our numerical study. We
first identify the inflation model-dependent input parame-
ters as Nk, Hk, and Vend for a particular CMB scale k. For a
given a canonical inflaton potential VðϕÞ, the inflationary
e-folding number Nk and Hubble constant Hk can be
expressed as

Nk ¼ log

�
aend
ak

�
¼
Z

ϕk

ϕend

3

2

VðϕÞ
V 0ðϕÞ dϕ ¼

Z
ϕend

ϕk

jdϕjffiffiffiffiffiffiffi
2ϵv

p
Mp

;

Hk ¼
1

3M2
p
VðϕkÞ ¼

πMp
ffiffiffiffiffiffiffiffiffi
rkAs

pffiffiffi
2

p ; ð45Þ

where the field values at a particular scale k, ðϕend;ϕkÞ are
computed from the condition of the end of inflation:

ϵðϕendÞ ¼
1

2M2
p

�
V 0ðϕendÞ
VðϕendÞ

�
2

¼ 1; ð46Þ

and equating a particular value of scalar spectral index with
nsðϕkÞ. Therefore, we will get explicit relations between
ðNk; nksÞ and ðHk; nksÞ. The well-known inflationary input
parameters can be found out from the following equations:

nks ¼ 1 − 6ϵðϕkÞ þ 2ηðϕkÞ; rk ¼ 16ϵðϕkÞ; ð47Þ

which are expressed in terms of slow-roll parameters

ϵv ¼
M2

p

2

�
V 0

V

�
2

; jηvj ¼ M2
p
jV 00j
V

: ð48Þ

The reheating parameters Nre and Trad will implicitly
depend upon the scalar spectral index nks for a given scale.
The above expression can be inverted to find ϕk in terms of
the scalar spectral index. After identifying all required
parameters from inflation, we will set the initial conditions
for subsequent reheating dynamics. Using all these rela-
tions among those parameters, one can establish the
connection between CMB anisotropy and reheating
through inflation.

A. Phase-I initial condition

The initial conditions for phase I of the reheating
dynamics (effective nonperturbative era) are set by the
end of inflation at A ¼ 1 and Eq. (38). Those are as follows:

ΦðA ¼ 1Þ ¼ 3

2

VendðϕÞ
m4

ϕ

;

RðA ¼ 1Þ ¼ 3ðωeff − ωϕÞ
1 − 3ωeff

ΦðA ¼ 1Þ; ð49Þ

where VendðϕÞ is defined at the end of inflation, fixed by
ϕend. The initial Hubble expansion rate is expressed
as HI ¼ ρendϕ =3M2

p.
Subsequent perturbative dynamics will now crucially

depend on the end point of the first phase of reheating,
namely, phase I. On this issue, we rely on the actual
nonperturbative lattice simulation results [37,41,60] con-
sidering a specific model of reheating where the inflaton
field is assumed to couple with the reheating field. This
system has been studied quite extensively [62,63] in the
literature by using the publicly available numerical
package LATTICEEASY [64] and its parallelized version
CLUSTEREASY [65]. The nonperturbative analysis for differ-
ent inflationary models has been proved to yield some
universal results which will be our important input for the
numerical analysis. Extensive works on nonperturbative
reheating analysis yields an important fact that only the
50% of the total comoving inflaton energy density is
getting transferred into the daughter field. Additionally,
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the inflaton equation of state tends to achieve a steady-state
value depending upon the power-law form of the inflaton
potential near its minimum. For example, if one assumes
the inflaton potential to be of power-law form V ∼ ϕn, for a
chaotic-type model, namely, n ¼ 2, the nonperturbative
phase ends with a steady value of the equation of state
∼0.2. However, for other value of n ≥ 4, the equation of
state approaches ω ¼ 1

3
at the end point of the nonpertur-

bative reheating. These are the crucial quantitative results
from nonperturbative preheating dynamics we will be
utilizing in our analysis for the phase-II dynamics.

B. Phase-II initial condition

After the phase-I dynamics, the perturbative dynamics
will automatically follow. However, an important point
would be to identify the appropriate boundary conditions.
The starting moment of phase II will be set by the
normalized scale factor Anpre ¼ anpre=aend, which is the
ratio between the scale factor at the end of the effective
nonperturbative epoch, namely, phase I anpre, and the end of
the inflation. The initial conditions for the dimensionless
comoving densities are

Φ ¼ ΦðAnpreÞ;
RðAnpreÞ

RðAnpreÞ þΦðAnpreÞ
≃
1

2
: ð50Þ

It is important to realize that the initial condition is
determined by 50% decay of the total comoving energy
density ρT. Furthermore, we have numerically checked that
our results do not seem to depend both qualitatively as well
as quantitatively much on the amount of decay within
40%–60% of the total energy at the end of phase I. For the
analysis, we further assume the inflaton equation of state
ω1
ϕ ≃ 0.2 irrespective of the models under consideration.

This approximate value is again another important input
from the lattice simulation. For comparison, we also
consider the cases where either phase-I or phase-II evolu-
tion completely governs the reheating dynamics.

C. Determining the reheating parameters

Once we numerically solve the reheating dynamics, we
define one of the important parameters called reheating

temperature Tre, which is generically identified as the
radiation temperature Trad when the condition HðtÞ ¼ Γϕ

is satisfied:

HðAreÞ2¼
�
_Are

Are

�2

¼ρϕðΓϕ;Are;nksÞþρRðΓϕ;Are;nksÞ
3M2

p
¼Γ2

ϕ;

ð51Þ

where Are is the normalized scale factor at the end of the
reheating. Accordingly, the reheating temperature in terms
of the radiation temperature (Trad) is expressed as

Tre ¼ Tend
rad ¼

�
30

π2g�ðTÞ
�

1=4
ρRðΓϕ; Are; nksÞ1=4: ð52Þ

Furthermore, the e-folding number during reheating Nre
consists of two contributions born out of two distinct
phases as

Nre¼ log

�
are
aend

�
¼ log

�
are
anpre

anpre
aend

�
¼NpreþNnpre; ð53Þ

Npre ¼ log

�
are
anpre

�
; Nnpre ¼ log

�
anpre
aend

�
; ð54Þ

where Npre and Nnpre are the e-folding number during the
perturbative and effective nonperturbative region, respec-
tively. Combining Eqs. (8) and (53), we obtain the most
important modification of Eq. (8) relating the reheating and
inflationary parameters:

Tre ¼
�

43

11gre

�
1=3
�
a0T0

k

�
Hke−Nke−Nnpree−Npre : ð55Þ

Now connecting Eqs. (51), (52), and (55), we can establish
one-to-one correspondence between Tre and Γϕ.
As described before, we will consider three possible

cases and compare the results:

case I Nnpre ≠ 0; Npre ≠ 0 phase Iþ phase II;

case II Nnpre ≠ 0; Npre ¼ 0 Kamionkowski et al: ½6�;
case III Nnpre ¼ 0; Npre ≠ 0 phase II; discussed in the previous section: ð56Þ

To this end, let us specifically mention case II, when
perturbative dynamics ceases to exist. This particular
procedure, proposed in Ref. [11], has been studied quite
extensively in the literature [38]. In this particular phase,

dynamics is solely governed by the effective equation of
state ωeff . The explicit decay of inflaton does not appear in
the computation. However, information about the decay
constant Γϕ is extracted from the equilibrium condition
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Γϕ ¼ H, where the reheating temperature (Tre) is defined as
Tre ¼ 0.2ð200g� Þ1=4ðΓϕMplÞ1=2, with g� being the effective
number of relativistic degrees of freedom. However, not
to ignore an important difference between the phase I
described before and the approach devised in Ref. [11] or
case II for the present study is the additional conservation
equation (38). This essentially differentiates the regime of
applicability of these two approaches. Phase-I dynamics is
assumed to be applicable in the early nonperturbative
regime. Whereas, since condition (38) does not exist, the
original Kamionkowski et al. [11] approach is effectively
applicable throughout the full period of reheating without
any microscopic details. Furthermore, the value ofωeff is no
longer constrained to be very close to the inflaton equation
of state during phase I. This relation essentially helps us to
compare the results for various scenarios we consider. To
avoid symbol confusion whenever we study case II, we use

the symbol ωK
eff instead of ωeff , which we reserve for two-

phase reheating dynamics.

VI. MAXIMUM RADIATION TEMPERATURE
AND REHEATING TEMPERATURE:

ANALYTIC STUDY

Before moving on to a particular model, let us analyti-
cally estimate the maximum reheating temperature and its
dependence upon the initial condition following the same
line as before. Considering the standard definition of the
radiation temperature Trad ¼ ð 30

π2g�
ρRÞ1=4 and computing the

radiation energy density during phase II following
Eqs. (36), (37), (39), and (40), the approximate radiation
temperature assumes the following form (see Appendix A
for details of the calculation):

Trad ¼
�
ρinϕΓϕð1þ ω1

ϕÞ
βx4Hin

�
2

5 − c
ðxð5−cÞ=2 − 1Þ þ ρinR

ρinϕ

�
1 − xðcþ3Þ=2

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
���1=4

; ð57Þ

where x, β, c, and Hin are expressed as

x ¼ a
anpre

; β ¼ π2g�ðTÞ
30

; c ¼ 3ω1
ϕ; Hin ¼

ffiffiffiffiffiffi
ρinϕ

q
ffiffiffi
3

p
MP

: ð58Þ

In the above expression, ρinϕ and ρinR represent inflaton and radiation energy density, respectively, at the end of phase I or the
beginning of phase II:

ρinϕ ¼ ρϕða ¼ anpreÞ; ρinR ¼ ρRða ¼ anpreÞ: ð59Þ

The maximum radiation temperature is defined at the point xmax ¼ amax=anpre, where
dTrad
dx ¼ 0, which gives us the

maximum radiation temperature for two-phase reheating expressed in terms of dimensionless comoving densities:

Tmax
rad ≃D1=4

"
1þ ð3þ cÞRðAnpreÞ

8ΦðAnpreÞA1−c
npre

 
1 − xðcþ3Þ=2

max;p

cþ 3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦðAnpreÞA

−3ð1þω1
ϕÞ

npre m4
ϕ

q
ffiffiffi
3

p
MpΓϕð1þ ω1

ϕÞ

!#
; ð60Þ

D ¼

0
B@2Γϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2

pΦðAnpreÞA
−3ð1þω1

ϕÞ
npre m4

ϕ

q
ð3þ cÞβx4max;p

1
CA

1=4

; xmax;p ¼
�

8

3þ c

�
2=ð5−cÞ

: ð61Þ

One particularly notices the correction term in the maxi-
mum radiation temperature due to initial comoving radi-
ation density RðAnpreÞ at the beginning of phase II. It boils
down to well-known expression Tmax

re ¼ D1=4 in the
RðAnpreÞ ¼ 0 limit the same as Eq. [46]. In the above
expression, we ignored the contribution of dark matter.
However, generically during the reheating period, dark
matter is not the dominant component; therefore, the
numerical value of the reheating temperature will not be

affected. The analytic expression for the dimensionless
comoving density during phase II related to the density at
the end of inflation will be

ΦðAnpreÞ ¼ ð1 − 3ωeffÞΦðA ¼ 1ÞA−3ωeff
npre ; ð62Þ

where Anpre is the normalized scale factor at the end of the
effective dynamics (phase I):
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Anpre ¼
1 − 3ωeff

3ωeff
: ð63Þ

One of our important results from the above expression for
the maximum reheating temperature is the highest radiation
temperature, which is defined at Tmax

rad ¼ Tmax
re correspond-

ing to a given nmax
s . As we change the value of

ωeff ¼ ð10−3 → 10−6), the maximum reheating tempera-
ture changes as Tmax

re ¼ ð1013 → 1010Þ GeV. Once we set
RðAnpreÞ ¼ 0, the maximum reheating temperature be-
comes Tmax

re ∼ 1015 GeV as expected [see Eqs. [46] and
(18)]. Proceeding further, we can also obtain the approxi-
mation expression for the reheating temperature itself.
Utilizing the expression of the Hubble constant at the
equilibrium point (Hre ¼ Γϕ) and subsequent entropy
conservation, one arrives at the following expression:

T4
re≃

x−4re ρinϕ
β

�
G4β

ρinϕ
þ 5−c
2ðcþ3Þ

ρinR
ρinϕ

�
G4β

ρinϕ
−
ρinR
ρinϕ

�
xc−1re

�
; ð64Þ

where xre ¼ are=anpre can be recognized as

xre ¼
�
α

η

�
1=ðc−1Þ

: ð65Þ

Here

α ¼ G4β

ρinϕ
;

η ¼ 5 − c
2

�
G4β

ρinϕ
−
ρinR
ρinϕ

��
ρinR

ðcþ 3Þρinϕ
þ 5 − c

2

3M2
pH2

in

ρinϕ ð1þ ω1
ϕÞ2

×

�
G4β

ρinϕ
−
ρinR
ρinϕ

��
: ð66Þ

The detailed derivation of all the aforementioned equations
for the reheating temperature is in Appendix B. Now we
will consider a class of inflationary models of inflation and
analyze our proposal of two-phase reheating scenario.

VII. INFLATION MODELS AND NUMERICAL
RESULTS

Based on our methodology discussed above, wewill now
consider a class of inflationarymodels for which the inflaton
potentials assume quadratic form.Wewill also point out the
regime of validity of the effective nonperturbative and
perturbative era for the different inflationary models.
After the inflation, the inflaton field generically oscillates
around the minimum of its potential VðϕÞ. Reheating fields
coupled with the oscillating inflaton is generically prone to
nonperturbative particle production. Our objective is to
replace this nonperturbative dynamics by an effective
dynamical equation, which is solely governed by the
effective equation of state, ωeff supplemented with the

additional constraint relation Eq. (38). We have already
observed that, during phase I, ωeff is close to that of the
inflaton equation of state, ωϕ. Near the minimum of the
potential, if the form is taken to be power law as ∝ϕn, over
multiple oscillations, the average inflaton equation of state is
expressed as [66]

ωϕ ¼ Pϕ

ρϕ
≈
hϕV 0ðϕÞ − 2VðϕÞi
hϕV 0ðϕÞ þ 2VðϕÞi ¼

n − 2

nþ 2
: ð67Þ

For the n ¼ 2model,ωϕ assumes a dustlike equation of state
ðωϕ ¼ 0Þ. Throughout the subsequent study, we consider
those inflationary models which have quadratic potential
near their minimum. Therefore, during phase I of reheating,
we set ωϕ ¼ 0. To this end, let us emphasize again that
during phase II, when the reheating dynamics enter into the
perturbative phase, we assume the inflaton equation of state
ω1
ϕ ≃ 0.2, which is one of the important lattice simulation

results mentioned earlier. Furthermore, we analyze phase-I
dynamics considering two specific choices of the effective
equation of state ωeff ¼ ðωϕ þ 10−3;ωϕ þ 10−6Þwhich are
close to ωϕ.

A. Plots and important model-independent
observations

Before we go into a detailed discussion on various
inflationary models, let us first illustrate different plots
and important model-independent observations. For each
model, we have drawn two different plots: one in (Γϕ vs N)
space where it shows the variation of reheating e-folding
number N depending upon the inflaton decay constant. As
noted earlier, we have considered different scenarios. For
our proposed two-phase reheating scenario (case I), we
have studied two possible values of phase-I effective
equation of state, ωeff ¼ 10−3, corresponding to the solid
green and solid black curves, and ωeff ¼ 10−6, correspond-
ing to the dotted green and dotted black curves. For all
cases, ωϕ ¼ 0. One of the most important outcomes of our
analysis is the emergence of a critical inflaton decay
constant Γϕ ¼ Γcri

ϕ denoted by red dots associated with
each particular ωeff. This indicates the fact that, for
Γϕ > Γcri

ϕ , the reheating period will be dominated by
phase-I, effective nonperturbative dynamics; otherwise, it
is perturbative dominated. The critical value of the inflaton
decay constant increases with the decreasing ωeff . This can
be understood from several interconnecting physical
effects. First of all, most importantly, Eq. (38):

RðA ¼ 1Þ ¼ ðωeff − ωϕÞ
1 − 3ωeff

ΦðA ¼ 1Þ; ð68Þ

which not only fixes the approximate value of ωeff but
also sets the initial condition for phase-I dynamics.
Furthermore, the larger the value of ωeff , the higher will
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be initial radiation density RðA ¼ 1Þ, which automatically
leads to a smaller value of phase-I e-folding number Nnpre.
Therefore, a particular Γϕ will naturally lead to larger Npre,
as associated with each Γϕ there exists a reheating temper-
ature which follows from Tre ∝ e−Nre ¼ e−ðNpreþNnpreÞ. On
the other hand, critical Γcri

ϕ is a point where Npre ¼ Nnpre in
N vs Γϕ space. From these two conditions, one can argue
that a transition from perturbative to nonperturbative
reheating phase would occur for a larger critical value
Γcri
ϕ for a larger ωeff value. Given a reheating model with

specific inflaton-daughter field interaction, we have also
discussed the existence of critical inflation decay constant
Γcri
ϕ ðmodelÞ, which were shown by vertical red lines in the

plots. From the theoretical values of the critical inflaton
decay constant, (Γϕ vs Nk) plots indicate that the value of
ωeff must lie within ð10−3; 10−6Þ irrespective of the infla-
tionary models considered. At this point, let us understand
the physical meaning of nonvanishing initial radiation
density ρRðA ¼ 1Þ ≃ ð10−3; 10−6Þρinϕ considering ωeff ¼
ð10−3; 10−6Þ. We replace the full nonperturbative dynamics
by an effective dynamics, which naturally does not capture
the complete picture. Typically, the nonperturbative phase
contains three distinct phases: the parametric resonance
phase, thermalization phase, and steady-state phase. And
this is the initial parametric resonance phase, where
explosive particle production can naturally give rise to
required initial radiation density ρRðA ¼ 1Þ ≃ 10−6–10−3 in
units of total density ρϕ almost instantly.
To see whether our proposed phase-I dynamics is

justified or not, we compare our result with actual non-
perturbative results. In order to do that, we use non-
perturbative lattice simulation during the preheating,
considering a specific inflaton-reheating field interaction
1
2
g2ϕ2χ2. In all the lattice simulation results, the initial

radiation density typically assumes ρRðA ¼ 1Þ ≃ 10−4 in
units of initial inflaton energy density, which essentially
lies within what we have considered. Once the preheating
phase reaches the steady-state condition, we again solve
perturbative dynamics and found that the reheating ends at
around the same value of Are (shown by the dashed black
line) where our two-phase reheating ends for ωeff ¼ 10−3

(solid pink line) and for ωeff ¼ 10−6 (dashed pink line)
accordingly. Therefore, our effective two-phase reheating
approach seems to capture the essential properties of
nonperturbative lattice results, except the nonperturbative
e-folding number, which will be taken up in the future.
Nevertheless, for comparison, in the same plot, we also

have drawn the total reheating e-folding number for the
other two cases: dotted pink lines for case II and solid blue
lines for case III mentioned before. It turns out that the total
number of reheating e-folding number for case II, case III,
and case I, Nre ¼ ðNnpre þ npreÞ, is almost the same for all
different values of the equation of state.

In another class of plots in (ns vs Tre) space, we describe
the variation of reheating temperature Tre with respect to
the scalar spectral index ns. From these plots, we can read
that the two-phase reheating process (case I) is crucially
dependent upon the value of ωeff . Furthermore, case-I
results are qualitatively similar to that of case II ωK

eff ¼
0.212 (equation of state at the starting point of phase II in
two-phase analysis). On the other hand, perturbative
reheating (case-III) results are qualitatively similar to that
of case II for ωK

eff ¼ 0. For the usual perturbative reheating
scenario (case III), the semianalytic approach discussed
before reveals the existence of maximum possible reheating
temperature ∼1015 GeV. Our numerical computation also
indicates the same through solid blue lines. Furthermore,
the case-II scenario also has the same prediction of model-
independent maximum reheating temperature Tmax

re irre-
spective of the value of its effective equation of state ωK

eff ¼
ð0; 0.212Þ shown through solid pink lines and dotted pink
lines, respectively. For conventional reheating dynamics
(case II and case III), the maximum reheating temperature
directly corresponds to instantaneous reheating with total
e-folding number Nre → 0. This can also be straightfor-
wardly connected with the maximum possible scalar
spectral index nmax

s . The proposed two-stage reheating
dynamics (case I) instead predicts very different results
in this regard. First of all, instantaneous reheating ceases to
exist in this scenario because of its underlying assumptions.
As Npre → 0, Nre → Nnpre, which automatically leads to
different values of ðTmax

re ; nmax
s Þ followed from the condition

Nre ¼ Nnpre, which naturally assumes model-independent
values such as Nnpre ∼ 6 for ωeff ¼ 10−3 and Nnpre ∼ 12 for
ωeff ¼ 10−6. The smaller the effective equation of state
during phase I, the larger will be its duration Nnpre, and,
consequently, Tmax

re will be reduced. As expected from our
earlier analytical calculation, the important results are the
values of maximum reheating temperature Tmax

re ∼
ð1013; 1010Þ GeV for ωeff ¼ ð10−3; 10−6Þ, respectively.
Physical origin of these two different limiting temperatures
is clear from the fact that an increase of Tre is directly
connected with the increase of Γϕ. Hence, with the
increasing temperature, reheating dynamics undergoes a
transition from perturbative to nonperturbative regime at
particular critical temperature Tcri

re associated with Γcri
ϕ ,

leading to a distinct value of Nnpre which is different for
different ωeff values. This leads to different Tmax

re .
Therefore, an important conclusion we can arrive at is
that, given the approximate estimates of model-specific
critical decay width Γcri

ϕ ðmodelÞ, the maximum reheating
temperature Tmax

re should be within ð1010–1013Þ GeV,
irrespective of the dynamics of the second phase-II and
inflationary model under consideration. However, we must
note that the associated maximum values of nmax

s are model
dependent, which will be discussed for each model.
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B. Chaotic inflation [67]

Even though chaotic inflation is observationally disfa-
vored, we consider this potential for its simple nature. For
usual chaotic inflation, the potential looks like

VðϕÞ ¼ 1

2
m4−nϕn; ð69Þ

where n ¼ 2; 4; 6;…. If we consider only the absolute
value of the field, n ¼ 3; 5;… can also be included. m is a
parameter of mass dimension. For the purpose of our study,
we consider only n ¼ 2 mainly because ωϕ ¼ 0.

1. Initial conditions for phase I

The initial densities to solve dynamical equation during
phase I can be calculated as

ΦðA ¼ 1Þ ¼ 3

4

m4−n

m4
ϕ

�
nMpffiffiffi

2
p

�
n
;

RðA ¼ 1Þ ¼ 3ðωeff − ωϕÞ
1 − 3ωϕ

ΦðA ¼ 1Þ; ð70Þ

where

m ¼ Mpð3π2rkAδϕÞ1=ð4−nÞ
�

1 − nks
nðnþ 2Þ

�
n=½2ð4−nÞ�

: ð71Þ

Aδϕ ∼ 10−9 is the amplitude of the inflaton fluctuation
which is measured from CMB observation.mϕ is defined as
the second derivative of the inflaton potential. To establish
the connection among inflationary and reheating parame-
ters, the inflationary e-folding number Nk and tensor-to-
scalar ratio rk are similarly calculated as

Nk ¼
nþ 2

2ð1 − nksÞ
−
n
4
; rk ¼

8n
nþ 2

ð1 − nksÞ: ð72Þ

2. Initial conditions for phase II

Additionally, the initial conditions for phase II will be set
at the normalized scale factor Anpre where phase I ends. The
conditions are

Φ ¼ ΦðAnpreÞ;
RðAnpreÞ

RðAnpreÞ þΦðAnpreÞ
≃
1

2
: ð73Þ

To establish the relation between the reheating temperature
(Tre) and inflationary index (nks), we follow the method-
ology explained in the previous section.

3. Observations

Important results for chaotic inflation are depicted in
Fig. 4. As stated at length, the initial effective equation of

state ωeff plays a crucial role in driving the whole reheating
dynamics. For our purpose, we took two sample values
ð10−3; 10−6Þ. According to these two values, the critical
values of the inflaton decay constants are found to be
Γcri
ϕ ¼ ð2.46 × 103; 2.73 × 10−7Þ GeV. Similarly, we can

address critical values (transition from perturbative to
nonperturbative reheating) in terms of the reheating temper-
ature. For this model, the critical values of the reheating
temperature are set to be Tcri

re ≃ ð2.7 × 1010; 3 × 105Þ GeV
for the equation of state ωeff ¼ ð10−3; 10−6Þ. This entails
the fact that if Γϕ > Γcri

ϕ ðTre > Tcri
re Þ, the reheating phase

will be dominated by the nonperturbative process.
For concreteness, let us bring specific reheating models

into consideration. We have discussed three different
interaction models with associated nonperturbative con-
straints equations (30), (26), and (34). Associated with
those, we have theoretical values of the critical inflaton
decay constants Γcri

ϕ ðmodelÞ ¼ ð0.003; 0.5; 11.8Þ GeV,
respectively. The first two values correspond to inflaton
decaying into the scalar particle, and the third one corre-
sponds to decaying into a pair of fermionic particles.
Interestingly, comparing those numerical and theoretical
values of Γcri

ϕ , one can observe that the initial effective
equation of state ωeff during phase I must lie within
ð10−3; 10−6Þ. This essentially suggests that all three models
of inflaton interaction will lead to initial radiation density
within the value ð10−3; 10−6Þ instantaneously, which we
can immediately read off from Fig. 3.
In all the reheating scenarios discussed and proposed so

far, there exists a model-independent maximum reheating
temperature. However, the associated maximum value of
the spectral index nmax

s turned out to be model dependent.
In the conventional perturbative reheating discussed before,
and also the constraints from the reheating (case-II)
scenario, Nre → 0 provides the condition for nmax

s . For
the two-phase reheating scenario (case I), the phase-I
effective dynamics is inevitable, which leads to different
condition Nre ≈ Nnpre for the maximum possible nmax

s

compatible with CMB observation. Furthermore, for each
model, one can define minimum spectral index nmin

s which
can be associated with the minimum possible reheating
temperature set by BBN constraints [68–71], which is
Tmin
re ¼ 10−2 GeV. Taking into account both the possibil-

ities, for case I, we obtain the possible bound on the spectral
index 0.9628 ≤ ns ≤ 0.9653 and 0.9628 ≤ ns ≤ 0.9649 for
ωeff ¼ ð10−3; 10−6Þ, respectively. For case II [11], the
bound is 0.955 ≤ ns ≤ 0.9654 and 0.9629 ≤ ns ≤ 0.9654
for ωK

eff ¼ ð0; 0.212Þ, respectively. Additionally, for purely
perturbative dynamics case III, one obtains 0.9555 ≤ ns ≤
0.9657. Important to recall at this point, all these bounds are
consistent with CMB within 2σ error of ns. From the
maximum nmax

s , the maximum value of the inflationary
e-folding number (Nmax

k ) can be obtained. For example, for
the case-I scenario we have Nmax

k ≃ ð57; 56Þ with effective
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equation of state ωeff ¼ ð10−3; 10−6Þ, respectively,
whereas, for case II, Nmax

k ≃ 57 and, for case III, Nmax
k ≃ 58.

The variation of the reheating temperature as a function
of the spectral index for the different reheating mechanism

is shown in Fig. 4. The behavior of the reheating temper-
ature with respect to ns appears to be model independent.

C. Axion inflation [72,73]

The potential for the axion or natural inflation is

VðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
; ð74Þ

where ðΛ; fÞ are the scale of inflation and axion decay
constant of this present model. By tuning the value of the
decay constant, this model is marginally consistent with the
recent observation [74]. To be consistent with CMB data,
we consider two sample super-Planckian values of the
axion decay constant, f ¼ ð10; 50ÞMp. The scale of this
inflation, Λ, is fixed by the CMB normalization.

1. Initial conditions for phase I

The initial conditions to solve the differential equations
for the effective nonperturbative era are set at the end of
inflation to be

ΦðA ¼ 1Þ ¼ 3

2

2Λ4M2
p

ð2f2 þM2
pÞm4

ϕ

;

RðA ¼ 1Þ ¼ 3ðωeff − ωϕÞ
1 − 3ωeff

ΦðA ¼ 1Þ; ð75Þ

where

FIG. 3. We plot the evolution of the different energy compo-
nents (inflaton and radiation) with the normalized scale factor for
chaotic inflation model with n ¼ 2. The blue and green curves
indicate the variation of comoving densities, the inflaton, and
radiation density, respectively, for our proposed two-phase
dynamics (case I). The red and pink lines represent the normal-
ized scale factor at the ending of phase I and II accordingly.
Furthermore, the solid and dashed curves correspond to the two
different values of the effective equation of state ωeff ¼
ð10−3; 10−6Þ, whereas the result for considering the standard
nonperturbative lattice simulation, during phase I, is shown by the
dashed black and brown lines.

FIG. 4. We plot, on the left side, the variation of the e-folding number as a function of the inflation decay width (Γϕ) and, on the right
side, variation of the reheating temperature (Tre) as a function of ns for the chaotic inflation model with n ¼ 2. The plot on the left side,
variations of Nnpre (e-folding number during first phase of reheating) and Npre (e-folding number during perturbative reheating) are
shown by black and green lines (solid and dashed), respectively, for two different values of ωeff ¼ ð10−3; 10−6Þ. The intersection points
of Nnpre and Npre for different values of ωeff are shown by a red circle. The blue and dashed pink lines indicate the variation of the
e-folding number during reheating for purely perturbative and the analysis given by Kamionkowski et al. [11] with ωK

eff ¼ 0,
respectively. The thick dashed, thin dashed, and solid red lines correspond to the three different values of the decay constant at the
transition point of nonperturbative to the perturbative era from the theoretical point of view provided by Eqs. (34), (26), and (30),
respectively. All plots are drawn within 2σ range of ns [3]. The light brown region is below the electroweak scale Tew ∽ 100 GeV, and
the violet region below 10−2 GeV would ruin the predictions of BBN.
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Λ ¼
�
3π2M2

pAsðf4ð1 − nsÞ2 −M4
pÞ

2f2

�
1=4

; mϕ ¼ Λ2

f
:

ð76Þ

In addition, the inflationary e-folding number Nk and
tensor-to-scalar ratio rk for the natural inflation model
are expressed in terms of scalar spectral index and model
parameters as

Nk ¼
f2

M2
p
ln

�
2f2ðf2ð1 − nsÞ þM2

pÞ
ð2f2 þM2

pÞðf2ð1 − nsÞ −M2
pÞ
�
;

rk ¼ 4

�
f2ð1 − nsÞ −M2

p

f2

�
: ð77Þ

The initial condition for the phase-II dynamics will be
the same as chaotic inflation has given in Eq. (73).

2. Observations

The main results of the axion inflationary model are
depicted in Fig. 5. As has been mentioned earlier, we have
considered two sample values of the axion decay constant
f ¼ ð10; 50ÞMp. For a fixed value of axion decay constant
f ¼ 10Mp, the critical values of the inflaton decay constant
assume Γcri

ϕ ≃ ð3.7 × 104; 1.1 × 10−7Þ GeV, and those of the
reheating temperatures are Tcri

re ≃ ð4× 1010;1.8× 105Þ GeV.
Similarly, for f¼50Mp, Γcri

ϕ ≃ ð2.7× 104;1.1× 10−7Þ GeV

and Tcri
re ≃ ð9 × 1010; 1.9 × 105Þ GeV. For both the cases,

the effective equations of state are taken to be
ωeff ¼ ð10−3; 10−6Þ. On the other hand, the theoretical
value of the critical inflaton decay constants for three
different interacting reheating models are calculated to be
Γcri
ϕ ðmodelÞ ¼ ð2.8 × 10−3; 0.45; 10.8Þ GeV for f ¼ 10MP

and Γcri
ϕ ðmodelÞ¼ð3.2×10−3;0.51;12.3ÞGeV for f¼50MP.

Those values of decay constants are determined from
Eqs. (30), (26), and (34) accordingly. Let us point out again
that the first two values correspond to inflaton decaying into
the scalar particle, and the third one corresponds to decaying
into a pair of fermionic particles. Here again, from the left
panel in Fig. 5, one concludes that if the Universe undergoes
two-phase reheating, considering the specific interaction
during reheating, the initial ωeff during phase I must lie
within ð10−3; 10−6Þ.
The lower limit of ns has been set by the minimum

possible reheating temperature due to the BBN constraint.
With increasing the spectral index from its minimum value
nmin
s along with decay width, the perturbative e-folding

number Npre depreciates toward zero, and the total
e-folding number Nre approaches toward Nnpre, which is
identified as the point of Tmax

re and nmax
s . Following the

discussion of the chaotic inflation model, in Table I, we
provide a possible limiting value of the inflationary
parameters ðnmin

s ; nmax
s ; Nmax

k Þ parameters for three different
reheating scenarios. These limiting values, in turn, will

FIG. 5. All plots are same as in the previous Fig. 4. The main difference is that, here, we have plotted for the natural inflation model for
f ¼ ð10; 50ÞMp.
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restrict the possible values of reheating parameters.
Therefore, the more we decrease the error of the infla-
tionary parameter more precisely, we will be able to fix the
reheating parameters.

D. α-attractor model [75]

This is a new class of model that unifies many of the
existing inflationary models in a single framework and was
first proposed in Ref. [75]. This is currently the most
favored model from the observational point of view. A class
of α-attractor potential, known as the E model, is given as

VðϕÞ ¼ Λ4
h
1 − e−

ffiffiffiffiffiffiffi
2=3α

p
ðϕ=MpÞ

i
2n
; ð78Þ

where the mass scale Λ is fixed from the CMB power
spectrum. An important feature of this class of potential is a
large plateau region for the large field value. It also predicts
a very low value of the scalar-to-tensor ratio for different n
and α. However, it is worth noting that, for n ¼ 1, α ¼ 1,
this model reduces to the Higgs-Starobinsky model [76]. So
the form of the potential for the Higgs-Starobinsky model is
as follows:

VðϕÞ ¼ β
	
1 − e−

ffiffiffiffiffiffi
2=3

p
ðϕ=MpÞ



2
; ð79Þ

where the dimension full parameter β takes the following
forms:

βS ¼
1

4α
; βH ¼ λM4

p

ξ2
: ð80Þ

Prefixes S and H stand for Starobinsky and Higgs model,
respectively. The aforementioned coupling parameters
appear in the noncanonical Lagrangian as follows:

LS ¼
M2

p

2
RJð1þ αRJÞ þ � � � ;

LH ¼ M2
p

2
RJ þ

2ξRJ

M2
p
h2 −

1

2
∂μh∂μh −

λ

4
h4 þ � � � ; ð81Þ

where RJ is the Ricci scalar in the Jordan frame. For the
Higgs inflation model, one assumes ðξ > 1; h=Mp > 1Þ
during inflation. The inflaton degrees of freedom ϕ in
Eq. (79) are expressed as

ϕS ¼
ffiffiffi
2

3

r
ln ð1þ 2αRJÞ; ϕH ¼

ffiffiffi
2

3

r
ln

�
1þ ξh2

M2
p

�
;

in units of Mp. For our purpose, we have taken two values
of αð1; 100Þ with n ¼ 1 and compare their outcomes.

1. Initial conditions for phase I

Initial conditions to solve the differential equations for
the effective nonperturbative era in the context of present
model can be expressed as

ΦðA ¼ 1Þ ¼ 3

2
Λ4

�
2n

2nþ ffiffiffiffiffiffi
3α

p
�

2n
;

RðA ¼ 1Þ ¼ 3ðωeff − ωϕÞ
1 − 3ωeff

ΦðA ¼ 1Þ; ð82Þ

where

Λ¼Mp

�
3π2rAs

2

�

×

�
2nð1þ2nÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2þ6αð1þnÞð1−nsÞ

p
4nð1þnÞ

�n=2
: ð83Þ

The inflationary e-folding number Nk and tensor-to-
scalar ratio rk can be written in terms of the inflationary
spectral index (ns) as

TABLE I. Reheating models and their associated bound on inflationary parameters (axion inflation).

f ¼ 10Mp

Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.9618 0.9618 0.9541 0.9619 0.9545

nmax
s 0.9643 0.9639 0.9644 0.9644 0.9646

Nmax
k 57.06 56.39 57.23 57.23 57.58

f ¼ 50Mp

Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.96275 0.96275 0.9549 0.9629 0.9554

nmax
s 0.9653 0.9649 0.9654 0.9654 0.9657

Nmax
k 57.14 56.48 57.31 57.31 57.81
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Nk ¼
3α

4n

�
e
ffiffiffiffiffiffiffi
2=3α

p
ðΦk=MpÞ − e

ffiffiffiffiffiffiffi
2=3α

p
ðΦend=MpÞ −

ffiffiffiffiffiffi
2

3α

r
ðΦk −ΦendÞ

Mp

�
;

rk ¼
64n2

3αðe
ffiffiffiffiffiffiffi
2=3α

p
ðΦk=MpÞ − 1Þ2

: ð84Þ

Furthermore, the initial conditions to solve the
Boltzmann equations for different energy components
during the perturbative epoch are determined by the
spectral index at the ending point of the effective dynamics,
Anpre. All the initial conditions for phase II will be the same
as before, provided in Eq. (73).

2. Observations

We have chosen two sample values of α ¼ ð1; 100Þ.
With these two values, the model-dependent critical values
of the inflaton decay constant assume Γcri

ϕ ðmodelÞ ¼
ð0.069; 5.03; 260.3Þ and (0.01, 1.6, 42.2) GeV for three
different kinds of the decay processes, whereas our
numerical analysis predicts the critical decay constant to
be Γcri

ϕ ¼ ð3.44 × 103; 1.37 × 10−7Þ GeV for α ¼ 1 and
Γcri
ϕ ¼ ð1.27 × 104; 3.90 × 10−6Þ GeV for α ¼ 100 with

ωeff ¼ ð10−3; 10−6Þ, respectively. Within these values, all

the model-dependent critical decay constants must lie (see
Fig. 6). In addition to that, the reheating temperature
connected with the critical value of the inflaton decay
constant turns out to be Tcri

re ≃ ð2.3 × 105; 3.5 × 1010Þ GeV
for α ¼ 1 and for α ¼ 100, Tcri

re ≃ ð1.2 × 106; 7.2 ×
1010Þ GeV with ωeff ¼ ð10−6; 10−3Þ accordingly. Similar
to the other inflation model discussed above, in Table II the
possible constraints on the inflationary parameters can be
obtained.

E. Minimal plateau inflation model [77]

The minimal plateau inflationary model is a nonpoly-
nomial modification of the power-law chaotic potential.
The potential for this inflation is given by

Vmin ¼ Λ
m4−nϕn

1þ ð ϕϕ�
Þn ; ð85Þ

FIG. 6. All plots are same as in the previous Fig. 4. The main difference is that, here, we have plotted for the α-attractor model for
α ¼ ð1; 100Þ with n ¼ 1. However, the plot for α ¼ 1 and n ¼ 1 is for the Higgs-Starobinsky model.
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where n, Λ, and m have the same role as in the power-law
chaotic inflation model and their values are fixed from
WMAP normalization [78]. Only even values of n are
taken, as in the case of the chaotic inflation model. The new
scale of ϕ� controls the shape of the potential. For a wide
range of ϕ�, this model predicts lower values of scalar-to-
tensor ratio for different values of n and satisfies the latest
Planck data [3]. For numerical purpose, we consider ϕ� ¼
ð0.001; 0.1ÞMp with n ¼ 2.

1. Initial conditions for phase I

The initial conditions are set as

ΦðA¼1Þ¼3

2

Vend

m4
ϕ

; RðA¼1Þ¼3ðωeff −ωϕÞ
1−3ωeff

ΦðA¼1Þ;

ð86Þ
where

Vend ¼
m4−nϕn

end

1þ ðϕend
ϕ�
Þn ;

m ¼
�
3π2M4

prkAs

2Λϕn
k

�
1þ

�
ϕk

ϕ�

�
n
��

1=ð4−nÞ
: ð87Þ

We setΛ ¼ 1, except for n ¼ 4. Constraining the parameter
Λ for n ¼ 4 has been studied in the context of minimal
Higgs inflation in Ref. [79]. The inflationary parameters Nk
and rk can be written as

rk ¼
8M2

pn2

ϕ2ð1þ ð ϕϕ�
ÞnÞ2 ; Nk ¼

Z
ϕend

ϕk

−
ϕðϕn� þ ϕnÞ
nM2

pϕ
n�

dϕ:

ð88Þ
Similar to the other inflationary models, the initial

condition of the second phase boundary condition is set

at the normalized scale factor at Anpre through Eq. (73). As
we mentioned earlier, our main intention is to see the
modification in reheating parameters (Tre; Nre) in compari-
son with the usual analysis.

2. Observations

The important results of the minimal plateau infla-
tionary model are depicted in Fig. 7. In this model, the
values of Γcri

ϕ ðmodelÞ for three different decay processes
assume Γtheo

ϕ ¼ ð0.7; 34.2; 2749.2Þ GeV for ϕ� ¼ 0.01 and
ð15.3; 231.7; 5.8 × 104Þ GeV for ϕ� ¼ 0.001Mp. As usual,
those values are obtained from Eqs. (30), (26), and (34)
with ϕ� ¼ ð0.01; 0.001ÞMp accordingly. On the other
hand, our numerical analysis estimates the value of Γcri

ϕ ¼
ð2.3 × 103; 4.8 × 10−7Þ GeV for ϕ� ¼ 0.01Mp and Γcri

ϕ ¼
ð394.7; 2.7 × 10−8Þ GeV for ϕ� ¼ 0.001Mp. As discussed
for other inflationary scenarios, for each model parameter
value of ϕ�, two bracketed values of Γcri

ϕ are calculated
for ωeff ¼ ð10−3; 10−6Þ, respectively. The reheating
temperature linked with the decay width Γcri

ϕ can be found

to be Tcri
re ≃ ð2.80 × 105; 2.25 × 1010Þ GeV considering

ϕ� ¼ 0.01Mp, and, for ϕ� ¼ 0.001Mp, Tcri
re ≃ ð5.80 ×

104; 8.76 × 109Þ GeV with ωeff ¼ ð10−6; 10−3Þ accord-
ingly. Interestingly, for this minimal inflation scenario, a
specific choice of ϕ� ¼ 0.01Mp, ωeff ¼ 10−3, Γcri

ϕ approx-
imately matches with that of Γcri

ϕ ðmodelÞ for a specific
reheating scenario when inflaton decaying into a pair of
fermionic particles with the interaction ϕψ̄ψ . Similarly, for
ϕ� ¼ 0.001Mp, ωeff ¼ 10−3, we found Γcri

ϕ ≃ Γcri
ϕ ðmodelÞ

when reheating dynamics is governed by the inflaton
decaying into a pair of scalar particles with the interaction
ϕχ2. Associated with the reheating temperature, the bound
on the inflationary parameters are given in Table III.

TABLE II. Reheating models and their associated bound on inflationary parameters (α-attractor model).

Higgs-Starobinsky model (α ¼ 1Þ
Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.9626 0.9626 0.9548 0.9628 0.9552

nmax
s 0.9652 0.9648 0.9653 0.9653 0.9656

Nmax
k 55.36 54.72 55.52 55.52 56.02

α ¼ 100

Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.966 0.966 0.9587 0.9661 0.959

nmax
s 0.9684 0.968 0.9685 0.9685 0.9657

Nmax
k 56.73 56.03 56.91 56.91 57.27
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VIII. CONSTRAINING THE INFLATON
COUPLING PARAMETERS

So far, we have discussed mainly understanding the
reheating parameters and their constraints from reheating.
In this section, we qualitatively translate those results into
constraints on coupling parameters ðg̃ ¼ g=mϕ; y; hÞ cor-
responding to specific inflaton-scalar interactions g̃mϕϕχ

2;
yϕχ3 and inflaton-fermion interaction hϕψ̄ψ , respectively.

So far, our analysis was independent of the specific inflaton
interaction model. Therefore, the inflaton decay width was
a free parameter with one-to-one correspondence with the
reheating temperature. Constraining reheating models is
very challenging from the perspective of its observational
limitations. Therefore, indirect constraints on the inflaton
coupling parameters through reheating dynamics would be
significant from the model building point of view. The
reheating temperature directly estimates the allowed ranges

FIG. 7. All plots are the same as in the previous Fig. 4. The main difference is that, here, we have plotted for the minimal inflation
model with ϕ� ¼ ð0.01; 0.001ÞMp; n ¼ 2.

TABLE III. Reheating models and their associated bound on inflationary parameters (minimal plateau model).

ϕ� ¼ 0.01Mp

Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.9703 0.9703 0.9637 0.9702 0.9640

nmax
s 0.9723 0.972 0.9722 0.9722 0.9725

Nmax
k 54.16 53.58 53.96 53.96 54.55

ϕ� ¼ 0.001Mp

Case I (two-phase) Case II Case III (perturbative)

Inflationary parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

nmin
s 0.9700 0.9700 0.9632 0.9698 0.9636

nmax
s 0.9720 0.9717 0.9719 0.9719 0.9722

Nmax
k 53.57 53.00 53.38 53.38 53.96
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of dimensionless coupling parameter via the inflaton decay
constant Γϕ. In this section, for illustration only, we
consider two observationally viable inflationary models:
Higgs-Starobinsky and minimal plateau models with
n ¼ 2, which are consistent with the current observational
bound on r < 0.064 [3].

A. Bounds on couplings

The constraints on different coupling constants are
shown in Fig. 8. Plots show how the dimensionless
coupling parameters g̃, h, and y are intimately linked with
CMB anisotropy via the inflationary observables such as
ðns; rkÞ for different types of reheating dynamics. The
mapping Tre → Γϕ → ðg̃; y; hÞ directly follows from
Eqs. (22), (28), (32), and (52). From these equations, we

obtain the constraints on the coupling parameters with
respect to the inflationary parameters. Any realistic sce-
nario of reheating should include all possible inflaton
coupling based on underlying symmetry. Therefore, the
assumption of a specific inflaton coupling’s contribution to
be the dominant one throughout the entire reheating period
may not be relevant. Hence, a more pragmatic approach
would be to construct particle physics motivated models
which we left for our future study. However, as a toy model
analysis, the present study may guide us in building
scenarios that include all the standard model fields.
Nevertheless, based on our reheating discussions so far,
we compare the constraints for all the cases. To this end, let
us point out that, in terms of mathematical expression, the
decay widths Γϕ associated with the coupling parameters g̃

FIG. 8. We have plotted the spectral index dependence of the dimensionless coupling constant g̃ ¼ g
mϕ

with gϕχ2 interaction, y
with three-body yϕχ3 interaction, and Yukawa coupling with yϕψψ̄ interaction. The upper two plots are for the Higgs-Starobinsky
inflation model, and the lower two plots are for the minimal plateau inflation model with ϕ� ¼ 0.001Mp, n ¼ 2. The solid and dashed
pink lines correspond to the usual reheating dynamics given by Kamionkowski et al. [11] for ωK

eff ¼ ð0; 0.212Þ, respectively. The solid
blue line indicate the results for perturbative analysis. The results for our developed two-phase reheating mechanism are represented by
the solid black line and dashed green line for ωeff ¼ ð10−3; 10−6Þ accordingly. In the first and third plots, the solid and dashed red lines
imply the transition point from parametric resonance to perturbative dynamics for two different kinds of interaction, gϕχ2 and yϕψψ̄ ,
respectively, measured from theoretical constraints provided by Eqs. (25) and (33). Similarly, in the second and fourth plots, the solid red
line corresponds to the three-body yϕχ3 interaction. Additionally, the solid and dashed sky blue lines indicate the coupling constant at
the intersection points of the e-folding numbers, Nnpre and Npre, respectively, above which value the effective dynamics start dominating
over perturbative dynamics for ωeff ¼ ð10−3; 10−6Þ, respectively. All the plots are drawn within the minimum and maximum values of
the spectral index. The minimum value of the spectral index ðnmin

s Þ corresponds to Tre ≈ 10−2 GeV and for maximum values of spectral
index ðnmax

s Þ, Nre ≈ Nnpre in our analysis and Nre → 0 in conventional reheating dynamics.
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and h are the same. Therefore, for each model under
consideration, we have two different figures in the ðg̃=h; nsÞ
and ðy; nsÞ space. Given the observation from CMB
temperature anisotropy, the coupling parameters for the
Higgs-inflation model, which are assumed to be respon-
sible for the entire reheating process, are found to be
constrained within 1.31 × 10−17 ≤ ðg̃; hÞ ≤ 0.01 (solid
black curve) and 1.38 × 10−17 ≤ ðg̃; hÞ ≤ 2.55 × 10−5 (dot-
ted green curve) for two different values of effective
equation state ωeff ¼ ð10−3; 10−6Þ, respectively, whereas,
for the same values of the effective equation of state, the
coupling constant y for three-body interaction ðyϕχ3Þ lies
within 8.07 × 10−16 ≤ y ≤ 0.85 (solid black curve) and
8.47 × 10−16 ≤ y ≤ 1.50 × 10−3 (dotted green curve). It is
important but straightforward to note that the largest values
of the coupling constant g̃max=hmax ¼ ð0.01; 2.55 × 10−5Þ
and ymax ¼ ð0.85; 1.50 × 10−3Þ correspond to maximum
reheating temperature Tmax

re ¼ ð1010; 1013Þ GeV, respec-
tively, reemphasizing the fact that two different limiting
values of coupling constants are realizable only in the high-
temperature limit for two different ωeff . All the above
estimates are for the two-phase reheating process (case I).
For the other two scenarios, the bounds on the coupling
constant can be read from Table IV.
The interesting interplay among the inflationary theory

parameters and the emergent reheating parameters governed
by the CMB anisotropy gives important constraints on the
theory itself. Apart from having the maximum possible
values of the coupling constants, compatible with CMB
observations, there exists a critical value of the same born
out of Γcri

ϕ , which entails whether the reheating is perturba-
tive or nonperturbative phase dominated. For the minimal
plateau model, we found ðg̃cri ≈ 3.46 × 10−5Þ for
ωeff ¼ 10−3, which closely matches with the associated

perturbative constraints g̃criðmodelÞ ≈ 2.38 × 10−5. For the
Higgs-Starobinsky inflation model, hcri ≃ 5.3 × 10−5 for
ωeff ¼ 10−3, and the associated perturbative constraint for
Yukawa interaction is hcriðmodelÞ ≃ 1.33 × 10−5. There-
fore, we can infer from this observation that our two-phase
reheating scenario essentially captures the necessary fea-
tures of the nonperturbative phase.
So far, we have discussed the reheating dynamics

considering inflaton and radiation as the two dynamical
components. However, as we all know, dark matter is
another important constituent of our present Universe. One
of this component’s important properties is that its coupling
with the standard model fields must be very weak. Apart
from this, not much is known about its other fundamental
properties, such as charge, mass, and coupling. Experi-
mental searches of this particle are going on across the
globe without much success till now. The searches include
both directly as well as indirectly observing the properties
of this object and, finally, jointly constrain the parameter
region. This paper will study the dark matter phenomenol-
ogy based CMB parameter space following our previous
work [36]. We essentially generalize our two-phase reheat-
ing formalism and include the dark matter as the third
dynamical matter component.

IX. UNIFYING THE DARK SECTOR

In the previous section, we discussed the two-phase
reheating process, where inflaton decays only into radiation.
In the present discussion, we add additional dark matter
components and discuss the impact on dark matter phe-
nomenology. The assumption is that inflaton decays into
radiation and then radiation to dark matter. The methodol-
ogy of the analysiswill be the same as before, except the new
additional dynamical equations for dark matter.

TABLE IV. Reheating models and their associated bound on coupling parameters.

Higgs-Starobinsky model

Case I (two-phase) Case II Case III (perturbative)

Coupling parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

g̃min; hmin 1.31 × 10−17 1.38 × 10−17 1.06 × 10−17 1.13 × 10−17 1.15 × 10−17

g̃max; hmax 0.01 2.55 × 10−5 2.52 1.71 2.48
ymin 8.07 × 10−16 8.47 × 10−16 6.51 × 10−16 6.98 × 10−16 7.10 × 10−16

ymax 0.85 1.50 × 10−3 155.10 105.31 152.76

Minimal plateau model (ϕ� ¼ 0.001Mp)

Case I (two-phase) Case II Case III (perturbative)

Coupling parameter ωeff ¼ 10−3 ωeff ¼ 10−6 ωK
eff ¼ 0 ωK

eff ¼ 0.212 ωϕ ¼ 0

g̃min; hmin 8.74 × 10−17 9.27 × 10−17 4.62 × 10−17 1.58 × 10−16 2.70 × 10−17

g̃max; hmax 5.90 × 10−3 1.19 × 10−5 1.79 1.30 1.12
ymin 5.38 × 10−15 5.71 × 10−15 2.84 × 10−15 9.73 × 10−15 1.66 × 10−15

ymax 0.36 7.37 × 10−4 110.26 80.31 68.93
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A. Phase I (effective nonperturbative phase)

The dynamics is governed by

ρt ¼ ρϕ þ ρR þ ρX ¼ ρend

�
aend
a

�
3ð1þweffÞ

; ð89Þ

where the new component ρX is the energy density of the
dark matter particle with mass MX and energy of the dark
matter is expressed as hEXi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þ 9T2
p

[80]. T is the
temperature. The above equation can be written in differ-
ential form as

_ρϕ þ _ρR þ _ρX þ 3Hð1þ weffÞðρϕ þ ρR þ ρXÞ ¼ 0: ð90Þ

Besides the above equation, we consider an additional
conservation equation characterizing the dynamics of every
individual energy components during this phase as

_ρϕ þ 3Hð1þ wϕÞρϕ þ _ρR þ 4HρR þ _ρX þ 3HρX ¼ 0:

ð91Þ

To solve the above equations (90) and (91), we need one
more condition. We define the ratio of the dark matter and
the radiation energy density as γ ¼ ρX

ρR
. After combining the

above two equations, one finds

ρR
ρϕ þ ρR þ ρX

¼ ρR
ρϕ þ ρR þ γρR

¼ 3ðωϕ − ωeffÞ
3ωϕð1þ γÞ − 1

: ð92Þ

At the initial stage of reheating, the radiation energy density
must be very small ρR ≃ 0. Hence, as discussed extensively
for the two-component reheating, here also ωeff must
assume the value very close to the inflaton equation of
state ωϕ, at least near the beginning. In terms of dimen-
sionless variable, this phase can be written as

Φ0

A3wϕ
þ R0

A
þ hEXiX0

mϕ
¼ 0; ð93Þ

Φ0

A2þ3wϕ
þ R
A4

½3ð1þ weffÞ − 4� þ 3hEXiX
mϕA3

ωeff þ
R0

A3

þ 3Φðweff − wϕÞ
A3ð1þwϕÞ þ X0hEXi

mϕA2
¼ 0; ð94Þ

where the dimensionless dark matter density X ¼ ρX
hEXi a

3.

B. Phase II (perturbative phase)

The subsequent perturbative phase will now be governed
by two more parameters related to the dark matter compo-
nent. Apart from the inflaton equation of state ω1

ϕ and the
inflaton decay constant Γϕ, we have a thermal average of
dark matter annihilation cross section hσvi and the dark

matter massMX. The corresponding dimensionless comov-
ing energy densities’ dynamics will be governed by the
Boltzmann equation [35]:

Φ0 ¼ −c1
A1=2Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ

A
3ω1

ϕ
þ R

A þ XhEXi
mϕ

r ; ð95Þ

R0 ¼ c1
A½3ð1−2ω1

ϕÞ�=2Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ

A
3ω1

ϕ
þ R

A þ XhEXi
mϕ

r

þ c2
A−3=2hσvi2hEXiMplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ

A
3ω1

ϕ
þ R

A þ XhEXi
mϕ

r ðX2 − X2
eqÞ; ð96Þ

X0 ¼ −c2
A−5=2hσviMplmϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ

A
3ω1

ϕ
þ R

A þ XhEXi
mϕ

r ðX2 − X2
eqÞ: ð97Þ

The equilibrium number density of the dark matter particle
can be described in terms of the modified Bessel function of
the second kind [80]

neqX ¼ gT3

2π2

�
MX

T

�
2

K2

�
MX

T

�
; ð98Þ

and the constants c1 and c2 are delineated as

c1 ¼
ffiffiffiffi
3
8π

q
MplΓϕ

m2
ϕ

; c2 ¼
ffiffiffiffiffiffi
3

8π

r
: ð99Þ

We consider fermionic-type dark matter particles with
internal degrees of freedom g.

C. Initial conditions

The general form of the initial conditions during the first
phase of reheating (phase I) are

Φð1Þ ¼ 3

2

VðϕendÞ
m4

ϕ

; Rð1Þ ¼ 3ðωeff − ωϕÞ
1 − 3ωeffð1þ γÞΦð1Þ;

Xð1Þ ¼ γmϕ

hEXi
Rð1Þ: ð100Þ

The initial values of the energy densities for phase II will be
set at the normalized scale factor Anpre as

Φ¼ΦðAnpreÞ;
RðAnpreÞ

RðAnpreÞþΦðAnpreÞþXðAnpreÞ
≃
1

2
;

XðAnpreÞ¼
γmϕ

hEXi
RðAnpreÞ: ð101Þ
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As described in detail in Sec. V, radiation energy density is
again assumed to be 50% of the total comoving energy
density right after the completion of phase I. Therefore, the
dark matter number density will automatically be fixed for
a given γ value. All the required equations of state for two
different phases are assumed to take the same approximate
values ω1

ϕ ≃ 0.2 and ωϕ ≃ 0. The methodology of solving
the dynamics will be the same as before except some
additional constraints in the dark sector after the end of
reheating.

D. Boundary condition from observations

The condition for ending the reheating dynamics is set
by the following equation:

H2 ¼ ρϕðΓϕ; Nre; nksÞ þ ρRðΓϕ; Nre; nksÞÞ þ ρXðΓϕ; Nre; nksÞ
3M2

p

¼ Γ2
ϕ; ð102Þ

supplemented with the observational constraint, namely,
the relation the between reheating temperature following
from the above equation and present CMB temperature
T0 ¼ 2.7 K ≃ 2.35 × 10−13 GeV through the relation
Eq. (55). A further additional observational constraint is
the observed value of the dark matter abundance defined as
ΩX [81,82]:

ΩXh2 ¼ hEXi
XðTFÞTFAF

RðTFÞT0mϕ
ΩRh2 ¼ 0.1199� 0.0022;

ð103Þ

which is expressed in terms of radiation abundance ΩR

(ΩRh2 ¼ 4.3 × 10−5). TF is the temperature at very late
time when both dark matter and radiation energy compo-
nents become stationary. While solving the Boltzmann
equations during perturbative reheating (phase II), these
conditions will constrain the dark matter parameter hσvi

(thermal average of the cross section times velocity) for a
fixed value of the dark matter mass MX and the inflaton
decay constant in terms of the reheating temperature. The
detailed analysis only on phase II has already been done in
Ref. [35], including the dark matter phenomenology.
Nevertheless, we consider only dark matter production
via freeze-in mechanism. This mechanism indicates that the
dark matter will never reach equilibrium with the thermal
bath. This kind of dark matter is known as feebly
interacting dark matter [83–94]. We can illustrate that
the production of dark matter via freeze-in mechanism
through the heavy mediator during reheating is sensitive to
the early history of the Universe before the UV-dominated
era [95–105].

E. Physical constraints

Further constraints on the dark matter parameter space
will be inherited if one considers various theoretical limits
on the scattering cross section. The cross section cannot be
arbitrarily large. Perturbative unitarity usually limits the
cross section hσvi in term of mass, hσvimax ¼ 8π

M2
X
[106],

which is shown by pink solid lines in Figs. 9 and 10. On the
other hand, we will also have another bound on the cross
sections coming from the fact that during reheating dark
matter production peaks around the temperature of T� ¼ MX

4

[80]. This provides a natural condition on the dark matter
number density nXðTÞ < neqX ðT�Þ, as for T < T� the dark
matter production would be frozen, and it must be diluted
subsequently due to the expansion of the Universe. The
aforementioned condition on the dark matter number
density sets an upper bound on the cross section hσvi ≈
hσviT¼T� [80,107]:

hσvi� ≤ 7 × 10−14
�
2

g

��
g�ðT�Þ
10

��
10

g�ðTreÞ
�

1=2
�

MX

10 GeV

�

×
�
100 MeV

Tre

�
2

GeV−2: ð104Þ

FIG. 9. In the first two plots, we have plotted the contour ofΩXh2 ¼ 0.12 in the ns − hσvi plane with a fixed value of dark matter mass
within the minimum and maximum values of the reheating temperature for the Higgs-Starobinsky model. In the case of two-stage
reheating, we have chosen a fixed value of γ ¼ 10−11 (ratio of the dark matter energy density to the radiation density) during the first
stage of reheating. The allowed parameter space is shown by the shaded region below the contour line. The pink horizontal line
corresponds to the unitarity bound. The solid and dashed black lines correspond to the reheating bound for two different reheating
processes. On the right-hand side, we have plotted maximum permitted values of dark matter mass as a function of the spectral index for
three different values of γ. Here the solid and dashed lines are for ωeff ¼ ð10−3; 10−6Þ, respectively.
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We call it the reheating bound in the plot. This condition is
depicted by black solid lines and black dotted lines for
perturbative and two-phase reheating scenarios, respec-
tively, in Figs. 9 and 10. We have shown both of these
bounds in the subsequent plots for different inflation model
once we fixed the dark matter mass. An interesting
observation that can be made from this theoretical con-
straint is that, given a dark matter mass, the perturbative
unitarity bound and the dynamical condition Eq. (104)
modify the possible range of allowed ns values obtained
from the previous analysis. This can directly shed light on
the inflationary model building. Conversely, one can state
that, for a given inflationary model, CMB can shed light on
the possible nature of the dark matter candidate via the
reheating phase.
Nevertheless, unifying the dark sector into a single

reheating framework is the primary motivation of this
section. The basic philosophy is to look into further
constraints on the dark matter parameter space in a more
realistic framework of two-phase reheating dynamics and
compare with that of the usual perturbative reheating
analysis [35]. An important outcome is the constraints
due to CMB temperature anisotropy. Particularly, con-
straints imparted on the dark matter and inflationary
parameter space ðhσvi − nsÞ by the CMB anisotropy could
enable us to constrain the viable inflationary models
through a dark matter observable. Conversely, given a
viable inflationary model, CMB can potentially shed light
on the possible properties of dark matter. Keeping this
in mind, we study dark matter phenomenology consi-
dering two observationally viable inflationary models:
Higgs-Starobinsky and minimal plateau models, which
are consistent with the current observational bound on
r < 0.064 [3].

F. Higgs-Starobinsky model [2,108]
and dark matter phenomenology

We have already discussed the model in the previous
Sec. VII D and the constraints on the reheating parameters
ðNre; TreÞ in terms of spectral index ðnsÞ. The inclusion of
dark matter does not affect much those parameters.
Therefore, the main constraints will be on the thermally
averaged cross section times velocity ðhσviÞ and the dark

matter mass MX. The first two plots of Fig. 9 depict the
variation of the annihilation cross section as a function of
the spectral index for two different values of dark matter
mass MX ¼ ð1; 103Þ GeV. The range of ns is taken to be
within ðnmin

s ; nmax
s Þ depending upon the model of reheating.

For comparison, we include the perturbative reheating
scenario [35] as well. Since the viable range of scalar
spectral index ns is reduced for the two-phase reheating
than that of the perturbative case, consequently the allowed
range of hσvi is shrunk as shown by green dotted and blue
dotted lines. Because of the larger allowed range of ns
(nmin

s ≃ 0.956; nmax
s ≃ 0.9655), the perturbative reheating

[35] widens the allowed range of dark matter annihilation
cross section as 2.25 × 10−39 ≤ hσvi ≤ 4.2 × 10−19 for
MX ¼ 1 GeV and 2.3 × 10−42 ≤ hσvi ≤ 2.51 × 10−5 for
MX ¼ 103 GeV, whereas for the two-phase reheating
scenario, for both values of dark matter mass, we can
observe the narrower range (nmin

s ≃ 0.9626; nmax
s ≃ 0.9652)

for ωeff ¼ 10−3 and (nmin
s ≃ 0.9626; nmax

s ≃ 0.9648) for
ωeff ¼ 10−6. These ranges of ns are well within the 1σ
range of spectral index, ns ¼ 0.9649� 0.0042 (68% C.L.,
Planck TT;TE;EEþ lowEþ lensing) from Planck [3].
Detailed constraints on the annihilation cross section for
the Higgs inflation model are proved in Table V. Therefore,
one can observe the significant differences on the allowed
range of dark matter annihilation cross section for two
different reheating scenarios (perturbative and two-phase).
It is important to note that the dark matter parameter space
is constrained by the CMB anisotropy through the infla-
tionary models, or, alternatively, one can state how various
dark matter experimental observations can have the
potential to constrain the inflationary model through our
unified reheating analysis.
The inclusion of dark matter dynamics and the associated

theoretical constraints discussed in the previous section has
put further limits on the range of ns compatiblewith the dark
matter observation. For example, the perturbative reheating
scenario modifies the highest possible value of the spectral
index nmax

s as → 0.9619, and for two-phase reheating
dynamics nmax

s shifts as ð0.9652; 0.9648Þ → ð0.9645;
0.9643Þ with ωeff ¼ ð10−3; 10−6Þ accordingly for MX ¼
1GeV. This modified maximum ns condition leads to the

FIG. 10. All plots are same as in the previous Fig. 9. The main difference is that, here, we have plotted for the minimal plateau inflation
model with ϕ� ¼ 0.001Mp and n ¼ 2.
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minimum values of the dark matter cross section
hσvimin ≈ 1.66 × 10−32 GeV−2 for the perturbative case
and hσvimin ≈ ð1.65 × 10−34; 7.75 × 10−32Þ GeV−2 for the
two-phase reheating case with two different values of
ωeff ¼ ð10−3; 10−6Þ. For MX ¼ 103 GeV, instead, the uni-
tary bound puts stringent constraints on nmin

s , only for the
perturbative process. Furthermore, dynamics during reheat-
ing (reheating bound) bounds the cross section within
1.98 × 10−41 ≤ hσvi ≤ 8.5 × 10−12 for the perturbative sce-
nario. However, for MX ¼ 103 GeV, there is no effect of
theoretical constraints on the bound of dark matter annihi-
lation cross section obtained from two-phase reheating
analysis.
From the first two plots in Fig. 9, we read the variation of

the cross section for two different effective equations of
state ωeff . As we decrease the value of the ωeff from
10−3 → 10−6, the e-folding number Nnpre, which is nearly
independent of the inflationary parameter, changes from
5.8 → 12.2. Another interesting consequence of the phase-I
dynamics is the maximum possible value of dark matter
massMmax

X . To understand the underlying reason behind the
origin of Mmax

X , we have computed analytic expressions
considering relativistic dark matter. The dark matter num-
ber density at the point of freeze-out nfX (see Appendix C) is
expressed as

nfXx
3
f ¼ ninX þ hσvifðxfÞ; ð105Þ

where expressions of various symbols are given in the
Appendix C. xf ¼ Af=Anpre and Af is the normalized scale

factor when both comoving dark matter and radiation
component become constant. By using the above expres-
sion, we can obtain dark matter abundance as

ΩXh2≃
hEXifx−3f
ρRðxfÞ

TðxfÞ
Tnow

ðninX þhσvifðxfÞÞΩRh2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Xþ9TðxfÞ2
q

x−3f
ρRðxfÞ

TðxfÞ
Tnow

ðninX þhσvifðxfÞÞΩRh2:

ð106Þ

The above expression indicates that the dark matter
abundance increases with increasing dark matter mass.
Moreover, at a particular value of the dark matter mass, the
dark matter component’s initial number density (ninX ) will
also play in the final value of the observed dark matter
abundance ΩXh2 ¼ 0.12. It can be observed from
Eq. (106), if MX > Mmax

X , then ΩXh2 always ≥ 0.12.
Therefore, the maximum possible dark matter mass
can be obtained from the above equation considering
ΩXh2 ¼ 0.12 as

Mmax
X ¼ TðxfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
0.12

β

ninX

TnowTðxfÞ2
ΩRh2x−3f

�
2

− 9

s
; ð107Þ

which is dependent on the initial dark matter number
density for the phase-II evolution:

TABLE V. Model parameters and associated constraints on the dark matter parameters for different reheating dynamics: Higgs-
Starobinsky model.

MX ¼ 1 GeV

Constraints due to reheating bound

Case I (two-phase) Perturbative Case I (two-phase) perturbative

Parameters ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0 ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0

nmin
s 0.9626 0.9626 0.9560 0.9626 0.9626 0.9560

nmax
s 0.9652 0.9648 0.9655 0.9645 0.9643 0.9619

hσviminðGeV−2Þ 3.20 × 10−37 1.75 × 10−34 2.25 × 10−39 1.65 × 10−34 7.75 × 10−32 1.66 × 10−32

hσvimaxðGeV−2Þ 8.15 × 10−31 3.10 × 10−27 4.20 × 10−19 8.15 × 10−31 3.10 × 10−27 4.20 × 10−19

MX ¼ 103 GeV

Constraints due to reheating bound

Case I (two-phase) Perturbative Case I (two-phase) Perturbative

Parameters ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0 ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0

nmin
s 0.9626 0.9626 0.9561 0.9626 0.9626 0.9568

nmax
s 0.9652 0.9648 0.9655 0.9652 0.9648 0.9650

hσviminðGeV−2Þ 9.50 × 10−41 1.60 × 10−37 2.30 × 10−42 9.50 × 10−41 1.60 × 10−37 1.98 × 10−41

hσvimaxðGeV−2Þ 8.10 × 10−34 3.10 × 10−30 2.51 × 10−5 8.10 × 10−34 3.10 × 10−30 8.50 × 10−12
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ninX ¼¼ γmϕ

hEXi
3ðωeff − ωϕÞ

1 − 3ωeffð1þ γÞΦðAnpreÞA−3
nprem3

ϕ: ð108Þ

For a given γ, the initial value of X is clearly set by the value
of ωeff . Therefore, for a given value of phase-I dynamics
parameters ωeff and γ, a particular value of the dark matter
mass exists above which the present value of the dark
matter abundance, ΩXh2 ≈ 0.12, cannot be achieved irre-
spective of the cross section values. Equations (107) and
(108) illustrate the behavior ofMmax

X , inversely proportional
to γ as for a fixed value of the spectral index (ns). From
the third plot in Fig. 9, we can also observe the same.
Likewise for ns ¼ 0.9635, Mmax

X ¼ð2.38×107;2.38×103;
0.238ÞGeV with γ ¼ ð10−12; 10−8; 10−4Þ accordingly once
we fixed ωeff ¼ 10−3. Furthermore, from the third plot in
Fig. 9, one can observe that Mmax

X is nearly independent
of the choice of ωeff except a small deviation as one
approaches toward nmax

s . The straightforward answer could
be that Mmax

X is proportional to the freeze-out radiation
temperature TðxfÞ, which remains invariant with the choice
of ωeff value.

G. Minimal plateau inflation model [77]

The details of this model are discussed in Sec. VII E. As
was already the case for Higgs inflation, for the minimal
inflation model also the reheating parameters such as
ðTre; NreÞ will not be modified much because of dark
matter dynamics. The reason being, the contribution of dark
matter in the background evolution during the reheating
phase is insignificant. Throughout this analysis, we con-
sider ϕ� ¼ 0.001Mp, which satisfies the CMB observation.

Another motivation is that, as one increases ϕ� value, the
models assume a simple power law. Details constraints on
the dark matter parameter space can be read off from
Fig. 10. Furthermore, the numerical values are provided in
Table VI. From the figure, we observed a similar behavior
of dark matter annihilation cross section as a function of
the spectral index for two different values of ωeff ¼
ð10−3; 10−6Þ with dark matter mass MX ¼ ð1; 103Þ GeV.
For the minimal model, we again identify the maximum
allowed values of dark matter mass Mmax

X followed by
Eqs. (107) and (108). Furthermore, for a given value of ns,
the Mmax

X turns out to be linearly varying with γ. Like, for
ns ¼ 0.9705, Mmax

X ≃ ð1.5 × 107; 1.5 × 103; 0.15Þ GeV
with γ ¼ ð10−12; 10−8; 10−4Þ.

X. SUMMARY AND DISCUSSION

In this paper, we propose an effective two-phase reheat-
ing scenario. After inflation, reheating has been studied
extensively in the literature, through either a perturbative or
nonperturbative approach. However, it is believed that both
approaches independently should not capture the complete
picture of the complicated dynamics. In this paper, we, for
the first time, study this phase to the best of our knowledge,
taking into account both the approaches together motivated
by our previous work [37]. However, instead of considering
explicit nonperturbative decay of the inflaton field through
parametric resonance, we model the initial phase by
effective dynamics governed by the standard conservation
laws and parametrized by a constant effective equation of
state (ωeff ). The combined form of conservation laws
and the initial condition of the reheating dynamics puts

TABLE VI. Model parameters and associated constraints on the dark matter parameters for different reheating dynamics: minimal
plateau model.

ϕ� ¼ 0.001Mp;MX ¼ 1 GeV

Constraints from reheating bound

Case I (two-phase) Perturbative Case I (two-phase) Perturbative

Parameters ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0 ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0

nmin
s 0.96975 0.96975 0.9636 0.96975 0.96975 0.9636

nmax
s 0.9719 0.9716 0.9722 0.97136 0.9712 0.9692

hσviminðGeV−2Þ 1.29 × 10−36 6.80 × 10−34 8.60 × 10−39 3.76 × 10−34 7.31 × 10−32 2.89 × 10−32

hσvimaxðGeV−2Þ 1.95 × 10−30 7.35 × 10−27 1.40 × 10−12 1.95 × 10−30 7.35 × 10−27 1.40 × 10−12

MX ¼ 103 GeV

Constraints from reheating bound

Case I (two-phase) Perturbative Case I (two-phase) Perturbative

Parameters ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0 ωeff ¼ 10−3 ωeff ¼ 10−6 ωϕ ¼ 0

nmin
s 0.96975 0.96975 0.9643 0.96975 0.96975 0.9651

nmax
s 0.9719 0.9716 0.9722 0.9719 0.9716 0.9720

hσvi�minðGeV−2Þ 3.80 × 10−40 6.30 × 10−37 9.10 × 10−42 3.80 × 10−40 6.30 × 10−37 1.82 × 10−41

hσvi�maxðGeV−2Þ 1.95 × 10−33 7.32 × 10−30 2.51 × 10−5 1.95 × 10−33 7.32 × 10−30 7.42 × 10−14
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constraints on the effective equation of state during the
effective nonperturbative process calling it as phase I.
However, during perturbative analysis due to explicit decay
of the inflaton field into radiation, we obtain the nontrivial
time-dependent effective equation of state. At this stage, let
us remind the reader that in all the Planck analysis [109–111]
on constraining the inflationarymodelsweff is assumed to be
a constant free parameter during reheating, which follows
from the proposal described in Ref. [11]. What we argue is
that those assumptions should not be correct. After inflation,
every inflationary model has its own characteristic oscil-
latory period, which contributes to the equation of state
during reheating. Therefore, considering weff as a free
parameter loses some of the fundamental characteristic
properties of the inflaton potential itself. Furthermore, if
reheating occurs for a longer period of time, the time-
dependent weff during the perturbative process should also
be very important to get precise constraints on any infla-
tionary model. This is where our analysis not only can play
an important role in better understanding the inflationary
models but also opens up the possibility of understanding
the microphysics of the reheating process through CMB
physics. As we can clearly see, the CMB power spectrum
constrains the value of inflation-radiation coupling para-
metrized byΓϕ through reheating temperatureTre. The usual
connection between Γϕ and Tre will not be correct any more
oncewe consider the decaying inflaton, as it is awell-known
fact that during the reheating process, even at the end of
reheating time, Γϕ ¼ H, inflaton does not decay into
radiation completely. Therefore, one certainly needs to take
into account this fact while calculatingTre and its connection
with the scalar power spectrum ns in the analysis. However,
in all the previous theoretical as well as Planck analysis,
complete decay of inflaton is assumed while relating the
cosmological scales exiting and reentering the horizon at
two different timescales. Therefore, based on the two-phase
reheating scenario, our prediction of the reheating temper-
ature corresponding to the inflationary power spectrum is
more accurate than the previous analysis.
At first, we analyzed the viable constraints on the decay

width as well as reheating parameters (Nre; Tre) considering

the decay of the inflaton field in the perturbative Boltzmann
framework. Perturbative dynamics have been shown to give
rise to a maximum reheating temperature Tmax

re ≃ 1015

naturally, which essentially corresponds to almost instanta-
neous reheating. As long as the decay width is in the
perturbative regime, the result from the only perturbative
process is trustworthy. However, because of the straightfor-
ward relation between Tre and Γϕ, a high reheating
temperature limit can correspond to nonperturbative phe-
nomena. This fact motivates us to include nonperturbative
aspects of reheating through effective dynamics. In our
present scenario, the Universe passes through two distinct
phases during reheating. Combining the inflation and
subsequent standard big bang evolution with the inter-
mediate two-phase reheating, our approach predicts the
critical value of the inflaton decay constant Γcri

ϕ depending
upon the phase-I equation of state ωeff .
The critical point naturally defined at Nnpre ¼ Npre.

Therefore, if Γϕ < Γcri
ϕ , the reheating phase will be domi-

nated by the perturbative one and vice versa. We also
compare our numerical results of Γcri

ϕ with the critical decay
width obtained from the theoretical consideration for
different types of inflaton-reheating field interactions
gϕχ2, yϕχ3, and hϕψψ̄ . It turns out that all the theoretical
values of ΓcriðmodelÞ correspond to an effective phase-I
equation of state ωeff within 10−3 − 10−6. Our actual lattice
simulation results also appeared to be compatible with this
conclusion (see Fig. 3). A summary Table VII for Γcri

ϕ is
given for three observationally viable models.
The inclusion of the initial nonperturbative phase nat-

urally changes the maximum reheating temperature value
because of its perturbative definition. Tmax

re is no longer
defined at the point of instantaneous reheating Nre ≃ 0;
rather, it is defined at Nre ≈ Nnpre, which is equivalent to
saying the phase-II e-folding number Npre ≃ 0. At the end
of phase I, approximately 50% of the total comoving
energy density remains in the form of the inflaton, which
naturally leads to different Tmax

re defined in the perturbative
phase-II dynamics. This phase further sets the final equa-
tion of the state of the system to 1=3. All these results have

TABLE VII. Different inflationary models and associated values of Γcri
ϕ (Tcri

re ), measured in units of GeV.

α-attractor Axion Minimal plateau

α ¼ 1 α ¼ 100 f ¼ 10Mp f ¼ 50Mp ϕ� ¼ 0.01Mp ϕ� ¼ 0.001Mp

Tcri
re ðωeff ¼ 10−3Þ 3.5 × 1010 7.2 × 1010 4.0 × 1010 9.0 × 1010 2.2 × 1010 8.8 × 109

Tcri
re ðωeff ¼ 10−6Þ 2.3 × 105 1.2 × 106 1.8 × 105 1.9 × 105 2.8 × 105 5.8 × 104

Γcri
ϕ ðωeff ¼ 10−3Þ 960.0 1.3 × 104 3.7 × 104 2.7 × 104 2.3 × 103 394.7

Γcri
ϕ ðωeff ¼ 10−6Þ 1.4 × 10−7 3.9 × 10−6 1.1 × 10−7 1.1 × 10−7 4.8 × 10−7 2.7 � 10−8

Γcri
ϕ ðmodelÞðϕ → χχχÞ 0.07 0.01 2.8 × 10−3 3.2 × 10−3 0.70 15.30

Γcri
ϕ ðmodelÞðϕ → χχÞ 5.03 1.60 0.45 0.51 34.20 231.70

Γcri
ϕ ðmodelÞðϕ → ψ̄ψÞ 260.30 42.20 10.80 12.30 2.7 × 103 5.8 × 104
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been shown to be crucially dependent upon the phase-I
effective equation of state ωeff . As one changes the value of
ωeff from 10−3 → 10−6, the phase-I e-folding number Nnpre

changes from 6 → 12. The maximum reheating temper-
ature Tmax

re accordingly changes from (1013 → 1010) GeV.
Therefore, the conclusion that can be emphasized is that the
value of the reheating temperature may encode the infor-
mation about the nonperturbative phase. Furthermore, all
the inflationary models which are compatible with the
observed CMB anisotropy predict the same maximum
reheating temperature (Tmax

re ) for a given ωeff . This is
reminiscent of the maximum reheating temperature Tmax

re
obtained for purely perturbative reheating dynamics irre-
spective of the inflation model. Keeping this point in mind,
we have performed a comparative analysis of different
existing reheating formalisms such as conventional reheat-
ing dynamics (case II) and purely perturbative analysis
(case III) with our proposed two-phase (case I). For both
cases II and III, the model-independent maximum value of
the reheating temperature turns out to be Tmax

re ≃ 1015 GeV,
which is reduced to 1013 − 1010 GeV when considering
two-phase reheating for ωeff ¼ 10−3 − 10−6. Furthermore,
the two-phase reheating scenario constrains the inflation
model within a very narrow range of allowed scalar spectral
index compatible with CMB anisotropy.
Further generalization has been analyzed by including

the dark matter component as one of the decay products of
the inflaton. Depending upon the mass dark matter anni-
hilation cross section versus scalar spectral index parameter
space has been shown to be reduced because of two-phase
reheating as compared to that of standard reheating
dynamics, which can be observed from Figs. 9 and 10.
Details of the allowed parameter space for various models
can be obtained from Tables V and VI. Because of the
nontrivial initial condition for two-phase dynamics, there
exists a maximum possible mass Mmax

X above which dark
matter turned out to be overproduced no matter how small
the annihilation cross section is assumed. In the summary

Table VIII, we provide numerical values of maximum
possible dark matter mass allowed for different viable
models under consideration. As just stated, the value of
Mmax

X is directly connected to γ (γ ¼ ρX
ρR
), which is defined

during phase I. Once we fixed the spectral index for a
particular inflation model, these values of Mmax

X are nearly
independent of the choice of ωeff .
Nonetheless, one important point we should understand

that the existing reheating scenarios, either perturbative or
nonperturbative, are not the complete description of this
phase. A unified description that connects both nonpertur-
bative and perturbative dynamics is more appropriate. In
our present study, we, for the first time, try to construct such
a unified description. As a first attempt toward this goal, we
describe nonperturbative preheating dynamics by effective
dynamics. Our present formalism is particularly suited for
the class of inflation models with a quadratic potential near
its minimum. For an inflaton potential with a power greater
than 2, lattice results generically predict the equation of
state 1

3
after the end of nonperturbative dynamics [37]. So

for those models, our two-phase reheating is not applicable.
We will be considering this case in our future work. Instead
of considering an effective nonperturbative approach,
actual nonperturbative dynamics integrated with perturba-
tive one would be more appropriate. Recently, an interest-
ing approach has been proposed to describe preheating
phenomena in the Boltzmann framework [112]. In our
present two-phase reheating dynamics, the aforementioned
nonperturbative Boltzmann framework could be natural to
integrate with the perturbative Boltzmann equations.
Another important fact we have not considered is the
temperature dependency of the effective numbers of rela-
tivistic degrees of freedom (g�). Constant effective degrees
of freedom is a reasonably good approximation for a wide
range of temperature [113,114] till the QCD hadronic
transition happens at around 102 MeV scale, around which
the value of effective degrees of freedom changes as g� ¼
100 → 10 [115,116]. So our eventual plan in the future is to

TABLE VIII. Models and their associated values of Mmax
X , measured in units of GeV.

Higgs-Starobinsky model

γ ¼ 10−12 γ ¼ 10−8 γ ¼ 10−4

ωeff ¼ 10−3 ωeff ¼ 10−6 ωeff ¼ 10−3 ωeff ¼ 10−6 ωeff ¼ 10−3 ωeff ¼ 10−6

Mmax
X (minimum) 1.4 × 104 1.1 × 105 1.4 10.6 1.4 × 10−4 1.1 × 10−3

Mmax
X (maximum) 11.7 × 108 11.6 × 108 11.7 × 104 11.6 × 104 11.7 11.6

Minimal plateau model (ϕ� ¼ 0.001Mp)

γ ¼ 10−12 γ ¼ 10−8 γ ¼ 10−4

ωeff ¼ 10−3 ωeff ¼ 10−6 ωeff ¼ 10−3 ωeff ¼ 10−6 ωeff ¼ 10−3 ωeff ¼ 10−6

Mmax
X (minimum) 1.4 × 104 1.0 × 105 1.4 10.4 1.4 × 10−4 1.0 × 10−3

Mmax
X (maximum) 6.8 × 108 6.7 × 108 6.8 × 104 6.7 × 104 6.8 6.7
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calculate dark matter and reheating parameter space accu-
rately by acknowledging the precise evolution of those
degrees of freedom in the thermal bath [117–119].
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APPENDIX A: TWO-PHASE REHEATING:
ANALYTIC EXPRESSION OF Tmax

After the end of the effective nonperturbative dynamics,
the usual perturbative analysis follows, and the governing
Boltzmann equations are

_ρϕ þ 3Hð1þ ω1
ϕÞρϕ ¼ −Γϕρϕð1þ ω1

ϕÞ; ðA1Þ

_ρR þ 4HρR ¼ Γϕρϕð1þ ω1
ϕÞ þ 2hEXihσviðn2X − n2X;eqÞ;

ðA2Þ

_nX þ 3HnX ¼ −hσviðn2X − n2X;eqÞ: ðA3Þ

In order to solve analytically, we assume the inflaton
energy density to follow the equation

ρϕ ¼ ρinϕ

�
a
ain

�
−3ð1þω1

ϕÞ
e−Γϕð1þω1

ϕÞðt−tiÞ ≃ ρinϕ

�
a
ain

�
−3ð1þω1

ϕÞ
:

ðA4Þ

Here Γϕ is the time-independent inflaton decay constant.
Notice that the effect of the decay constant is being ignored
assuming the fact that at the initial stage of perturbative
reheating inflaton energy is the dominant one. ρiϕ and ti are
initial density and initial time during the perturbative era,
respectively. Using the above equation, the radiation energy
can be solved as follows:

dðρRa4Þ ¼ ðΓϕρϕð1þ ω1
ϕÞa4 þ 2hEXihσviðn2X − n2X;eqÞa4Þdt

¼ ðΓϕρ
in
ϕ e

−Γϕðt−tiÞa
3ð1þω1

ϕÞ
in a1−3ω

1
ϕð1þ ω1

ϕÞ þ 2hEXihσviðn2X − n2X;eqÞa4Þdt

≃ Γϕρ
in
ϕa

3ð1þω1
ϕÞ

in a−3ω
1
ϕ
da
H

þ 2hEXihσviðn2X − n2X;eqÞa3
da
H

: ðA5Þ

We use the following expression for the Hubble parameter:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinϕ ð a

ain
Þ−3ð1þω1

ϕÞ þ ρinR ð a
ain
Þ−4

q
ffiffiffi
3

p
Mp

; ðA6Þ

where ρinR is the initial radiation density at the beginning of the perturbative phase. For the reheating temperature
computation, we ignore the effect of dark matter whose contribution has been verified to be negligible in our full numerical
computation. By solving Eq. (A5), we obtain

ρRa4 ¼ ρRa4in þ Γϕρ
in
ϕa

3
in

Z
a

ain

ða=ainÞ−3ω
1
ϕð1þ ω1

ϕÞda
ð ffiffiffi

3
p

MPÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinϕ ð a

ain
Þ−3ð1þω1

ϕÞ þ ρinR ð a
ain
Þ−4

q ;

ρRx4 ¼ ρinR þ Γϕρ
in
ϕ ð1þ ω1

ϕÞ
Z

x

1

x2−3ω
1
ϕdx

ð ffiffiffi
3

p
MPÞ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinϕ x

1−3ω1
ϕ þ ρinR

q

¼ ρinR þ Γϕρ
in
ϕ ð1þ ω1

ϕÞ
Hin

Z
x

1

xð3−cÞ=2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρinR

ρinϕ
xc−1

r ≃ ρinR þ Γϕρ
in
ϕ ð1þ ω1

ϕÞ
Hin

Z
x

1

xð3−cÞ=2
�
1 −

ρinR
2ρinϕ

xc−1
�
dx: ðA7Þ

In the above expression, we neglected higher-order terms of ρinR=ρ
in
ϕ . Additionally, in terms of radiation temperature

Trad ¼ ð 30
π2g�

ρRÞ1=4, the above equation transforms into the following expression:
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βT4x4

ρinϕ
¼ Γϕð1þ ω1

ϕÞ
Hin

�
2

5 − c
ðxð5−cÞ=2 − 1Þ þ ρinR

ρinϕ

�
1 − xðcþ3Þ=2

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��

: ðA8Þ

Here x, β, c, and Hin are defined, respectively, as

x ¼ a
ain

; β ¼ π2g�ðTÞ
30

; c ¼ 3ω1
ϕ; Hin ¼

ffiffiffiffiffiffi
ρinϕ

q
ffiffiffi
3

p
MP

: ðA9Þ

The maximum radiation temperature can be found by taking derivative of the above equation (A8) with respect to x and
setting it to zero:

4βT3

ρinϕ

dT
dx

¼ −4Γϕð1þ ω1
ϕÞ

Hinx5

�3þc
4
xð5−cÞ=2 − 2

5 − c
þ ρinR
ρinϕ

�c−5
8
xðcþ3Þ=2 þ 1

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��

¼ 0: ðA10Þ

In the limit of ρϕ=ρR ≪ 1 (perturbative approximation), the values of x at the point of maximum radiation temperature
appear as

xmax;p ¼
�

8

3þ c

�
2=ð5−cÞ

: ðA11Þ

In our present analysis, the expression of x associated with the maximum radiation temperature leads to the following
relation:

xmax ≃
�

8

3þ c

�
2=ð5−cÞ�

1 −
ρinR
ρinϕ

�
c − 5

8ðcþ 3Þ x
ðcþ3Þ=2
max;p þ 1

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��

¼ xmax;p½1 − z�; ðA12Þ

where z ¼ ρinR
ρinϕ
ð c−5
8ðcþ3Þ x

ðcþ3Þ=2
max;p þ 1

cþ3
þ Hin

Γϕð1þω1
ϕÞ
Þ. Now after replacing the expression of xmax into the above Eq. (A8), the

maximum radiation temperature turns out as

Tmax ≃
�Γϕð1þ ω1

ϕÞρinϕ
βHinx4max;p

2

3þ c

�1=4�
1þ 3þ c

2

ρinR
ρinϕ

�
1 − xðcþ3Þ=2

max;p

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��1=4

ðA13Þ

≃
�Γϕð1þ ω1

ϕÞρinϕ
βHinx4max;p

2

3þ c

�1=4�
1þ 3þ c

8

ρinR
ρinϕ

�
1 − xðcþ3Þ=2

max;p

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��

: ðA14Þ

In the above expression, we have neglected higher-order terms of ρinR=ρ
in
ϕ . Next, we will try to express all initial densities in

terms of the inflaton energy density at the end of the inflation ρendϕ . The effective nonperturbative phase-I dynamics solves
the radiation and inflaton energy density in terms of ρendϕ . Therefore, during phase I, the dimensionless radiation energy
density RIðAÞ can be correlated with inflaton energy density ΦIðAÞ [using (36), (37), and (41)] as

RIðAÞ ¼ 3ωeff

ð1 − 3ωeffÞ
ΦIðAÞA: ðA15Þ

The initial densities during phase II (perturbative era) in terms of dimensionless comoving energy densities are identified as

ρinϕ ¼ ΦðAnpreÞA
−3ð1þω1

ϕÞ
npre m4

ϕ; ρinR ¼ RðAnpreÞA−4
nprem4

ϕ: ðA16Þ

Furthermore, we can relate the ΦðAnpreÞ in terms of ΦðA ¼ 1Þ as

ΦðAnpreÞ ¼ ð1 − 3ωeffÞΦðA ¼ 1ÞA−3ωeff
npre ; ðA17Þ
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where Anpre is the normalized scale factor at the end of the effective dynamics. Anpre is defined when the dimensionless

comoving radiation energy density becomes 50% of the total comoving energy density, RðAnpreÞ
ΦðAnpreÞþRðAnpreÞ ≃

1
2
⇒

ΦðAnpreÞ ≃ RðAnpreÞ. Using Eq. (A15), one can find Anpre and corresponding e-folding number Nnpre, respectively, as

Anpre ¼
1 − 3ωeff

3ωeff
; Nnpre ¼ lnðAnpreÞ: ðA18Þ

From our analytic expression above, we obtain Nnpre ∼ ð5.8; 12.7Þ for two values of ωeff ¼ ð10−3; 10−6Þ accordingly. These
values of the e-folding number during phase I almost exactly match with our numerical result.
The final expression for the maximum radiation temperature in terms of comoving energy densities is given by

Tmax ≃D1=4

2
641þ ð3þ cÞRðAnpreÞ

8ΦðAnpreÞA1−c
npre

0
B@1 − xðcþ3Þ=2

max;p

cþ 3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦðAnpreÞA

−3ð1þω1
ϕÞ

npre m4
ϕ

q
ffiffiffi
3

p
MpΓϕð1þ ω1

ϕÞ

1
CA
3
75; ðA19Þ

where

D ¼

0
B@2Γϕð1þ ω1

ϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2

pΦðAnpreÞA
−3ð1þω1

ϕÞ
npre m4

ϕ

q
ð3þ cÞβx4max;p

1
CA

1=4

: ðA20Þ

Combining equations from (A15) to (A20), we obtain the maximum radiation temperature as a function of ΦðA ¼ 1Þ
(dimensionless comoving inflaton energy density at the end of the inflation).

APPENDIX B: TWO PHASE REHEATING: ANALYTIC EXPRESSION
OF INFLATON DECAY WIDTH Γϕ AND Tre

Assuming the end point of reheating as xre ¼ are=anpre and considering Eq. (A8), the reheating temperature can be
obtained as

T4
re ¼

Γϕρ
in
ϕ ð1þ ω1

ϕÞx−4re
βHin

�
2

5 − c
ðxð5−cÞ=2re − 1Þ þ ρinR

ρinϕ

�
1 − xðcþ3Þ=2

re

cþ 3
þ Hin

Γϕð1þ ω1
ϕÞ
��

: ðB1Þ

Using Eq. (55) (entropy conservation of thermal radiation), one arrives at the following relation:

T4
re ¼

�
43

11gre

�
4=3
�
a0T0

k

�
4

H4
ke

−4Nke−4Nnpree−4Npre ¼ G4

�
are
anpre

�
−4

¼ G4x−4re ; ðB2Þ

where

G ¼
�

43

11gre

�
1=3
�
a0T0

k

�
Hke−Nke−Nnpre : ðB3Þ

Comparing Eqs. (B1) and (B2), we obtain Γϕ in terms of xre:

Γϕ ¼
�
G4β

ρinϕ
−
ρinR
ρinϕ

�
Hin

ð1þ ω1
ϕÞ
�

2

5 − c
ðxð5−cÞ=2re − 1Þ þ ρinR

ρinϕ

�
1 − xðcþ3Þ=2

re

cþ 3

��−1

≃
�
G4β

ρinϕ
−
ρinR
ρinϕ

�
Hin

ð1þ ω1
ϕÞ

5 − c
2

xðc−5Þ=2re

�
1þ 5 − c

2ðcþ 3Þ
ρinR
ρinϕ

xc−1re

�
: ðB4Þ

The reheating temperature is defined when the inflaton field comes in thermal equilibrium with the radiation bath at the
point
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HðxreÞ2 ¼
ρϕðxreÞ þ ρRðxreÞ

3M2
p

≃
ρRðxreÞ
3M2

p
¼ Γ2

ϕ: ðB5Þ

In the above equation, we ignore the contribution of inflaton energy density to be negligible. Using the expression for the
radiation energy density, we can obtain the decay width as follows:

Γ2
ϕ ≃

�
G4β

ρinϕ
−
ρinR
ρinϕ

�
2 H2

in

ð1þ ω1
ϕÞ2
�
5 − c
2

�
2

xc−5re

�
1þ 5 − c

cþ 3

ρinR
ρinϕ

xc−1re

�
: ðB6Þ

In the earlier expression, we can ignore the second term in the third bracket, since xre ≫ 1 for most of the values of the
spectral index. As a result, the Γ2

ϕ can now be written as

Γ2
ϕ ≃

�
G4β

ρinϕ
−
ρinR
ρinϕ

�
2 H2

in

ð1þ ω1
ϕÞ2
�
5 − c
2

�
2

xc−5re : ðB7Þ

Furthermore, the radiation energy density at the ending point of reheating era ρRðxreÞ can be expressed as

ρRðxreÞ ≃ x−4re ρinϕ
�

2

5 − c

Γϕð1þ ω1
ϕÞ

Hin
xð5−cÞ=2re þ ρinR

ρinϕ

�
1 −

Γϕð1þ ω1
ϕÞ

Hin

xðcþ3Þ=2
re

cþ 3

��
: ðB8Þ

Combining Eqs. (B4) and (B8), one can find

ρRðxreÞ ¼ βT4
re ≃ x−4re ρinϕ

�
G4β

ρinϕ
þ 5 − c
2ðcþ 3Þ

ρinR
ρinϕ

�
G4β

ρinϕ
−
ρinR
ρinϕ

�
xc−1re

�
: ðB9Þ

Now equating the above equation with Γ2
ϕ [Eq. (B7)], one arrives at the following expression:

xre ¼
�
α

η

�
1=ðc−1Þ

: ðB10Þ

Here

α ¼ G4β

ρinϕ
; η ¼ 5 − c

2

�
G4β

ρinϕ
−
ρinR
ρinϕ

��
ρinR

ðcþ 3Þρinϕ
þ 5 − c

2

3M2
pH2

in

ρinϕ ð1þ ω1
ϕÞ2
�
G4β

ρinϕ
−
ρinR
ρinϕ

��
: ðB11Þ

FIG. 11. Variation of reheating temperature (Tre) as a function of ns for the Higgs-Starobinsky and axion inflation models with
ωeff ¼ 10−3 in the framework of two-phase analysis. The solid blue line indicates the result from approximate analytical expression
[Eq. (B1)], whereas the solid black line shows results from numerical analysis. The light brown region is below the electroweak scale
Tew ∽ 100 GeV, and the violet region below 10−2 GeV would ruin the predictions of BBN.
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By utilizing the above equation, we can easily fix the decay
width [Eq. (B4)] and reheating temperature [Eq. (B9)] as
they are the functions of xre. Besides, the maximum
reheating temperature and associated maximum possible
value of the spectral index (nmax

s ) can also be defined at the
point xre → 1 (Npre → 0). To check whether our analytical
calculations predict the correct result, we plot the reheating
temperature as a function of the spectral index (Fig. 11) and
compare with our numerical result.

APPENDIX C: TWO-PHASE REHEATING:
ANALYTICAL EXPRESSION OF DARK MATTER

ABUNDANCE AND ORIGIN OF MAXIMUM
DARK MATTER MASS Mmax

X

The relevant Boltzmann equation for the evolution of
dark matter during the perturbative reheating phase is
expressed as

dðnXa3Þ¼−a3hσvi½n2X−n2X;eq�dt¼−
a3hσvi½n2X−n2X;eq�da

aH
:

ðC1Þ

Throughout our calculation, we assume dark matter par-
ticles are always relativistic and never attain chemical
equilibrium (nX ≪ nX;eq) with the radiation bath. Hence,
in this freeze-in scenario, the dark matter density always

remains subdominant compared to its thermal equilibrium
values. Consequently, the above dark matter evolution
equation can be approximated as

dðnXa3Þ ¼
a3hσvin2X;eq

aH
da: ðC2Þ

In the relativistic limit, the equilibrium distribution is
given by

nX;eq ¼
gT3

π2
; ðC3Þ

where g is the number of degrees of freedom of the dark
matter species. Furthermore, considering the relativistic
dark matter, the dark matter’s mass must be less than the
reheating temperature. So the freeze-in happens very late
after the reheating. Therefore, we can approximate the
Hubble parameter as

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕðaÞ þ ρRðaÞ

3M2
p

s
≃

ffiffiffiffiffiffiffiffiffiffi
ρR
3M2

p

r
: ðC4Þ

Connecting Eqs. (C2)–(C4), one can solve for the dark
matter component as

nfXa
3
f ¼ ninXa

3
in þ

Z
af

ain

a2hσvi g2

π4
β−3=2ρR

ð ffiffiffi
3

p
MPÞ−1

da;

nfXx
3
f ≃ ninX þ

Z
xf

1

hσvig2 ffiffiffi
3

p
MP

π4β3=2
ρinϕ

�
2Γϕð1þ ω1

ϕÞ
Hinð5 − cÞ xð1−cÞ=2 þ ρinR

ρinϕ

�
x−2 −

Γϕð1þ ω1
ϕÞ

Hinðcþ 3Þ x
ðc−1Þ=2

��
da; ðC5Þ

where xf ¼ af
ain

and

ρR ≃ ρinϕx
−4
�
2Γϕð1þ ω1

ϕÞ
Hinð5 − cÞ xð5−cÞ=2 þ ρinR

ρinϕ

�
1 −

Γϕð1þ ω1
ϕÞ

Hinðcþ 3Þ x
ðcþ3Þ=2

��
: ðC6Þ

The scale factor at the point of freeze-in is defined as af, when both comoving dark matter and radiation component become
constant. In the preceding expression, we ignore higher-order terms of ρinR=ρ

in
ϕ . With these assumptions the comoving

number density nfX is found to be

nfXx
3
f ≃ ninX þ hσvifðxfÞ; ðC7Þ

where fðxfÞ can be expressed as

fðxfÞ ≃ ρinϕ

�
4Γϕð1þ ω1

ϕÞ
Hinð5 − cÞð3 − cÞ x

ð3−cÞ=2
f þ ρinR

ρinϕ

�
1 −

2Γϕð1þ ω1
ϕÞ

Hinðcþ 3Þðcþ 1Þ x
ðcþ1Þ=2
f

��
: ðC8Þ

The dark matter relic can be obtained in terms of radiation abundance ΩR (ΩRh2 ¼ 4.3 × 10−5) as
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ΩXh2 ¼
ρXðxfÞ
ρRðxfÞ

TðxfÞ
Tnow

ΩRh2 ¼
hEXifx−3f nfXðxfÞx3f

ρRðxfÞ
TðxfÞ
Tnow

ΩRh2 ¼ 0.12: ðC9Þ

Inserting the expression of nfXx
3
f [Eq. (C7)] into the above equation, one can arrive at the following equation for the dark

matter abundance:

ΩXh2 ≃
hEXifx−3f
ρRðxfÞ

TðxfÞ
Tnow

ðninX þ hσvifðxfÞÞΩRh2: ðC10Þ

The average energy of the single-component dark matter at the point of freeze-in can be expressed as

hEXif ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þ 9TðxfÞ2
q

≃ 3TðxfÞ
�
1þ M2

X

18TðxfÞ2
�

ðrelativistic approximationÞ: ðC11Þ

Therefore, connecting the above two equations (C10) and (C11), one arrives at the following expression:

ΩXh2 ≃
3x−3f ρRðxfÞ−1=2ð1þ M2

Xβ
1=2ρRðxfÞ−1=2

18
Þ

β1=2Tnow
ðninX þ hσvifðxfÞÞΩRh2: ðC12Þ

1. Maximum possible dark matter mass (Mmax
X )

The approximate analytical expression of dark matter
abundance [Eq. (C12)] indicates that the dark matter
abundance increases with increasing dark matter mass.
Moreover, at a particular value of the dark matter mass, the
dark matter component’s initial number density (ninX ) is
sufficient to produce the present observed value of the dark
matter abundance ΩXh2 ¼ 0.12. We define this particular
value of the dark matter mass as Mmax

X . We can clearly see
from Eq. (C12), if the mass of the dark matterMX > Mmax

X ,
the abundance ΩXh2 is always ≥0.12. Therefore, the
condition for the maximum possible dark matter mass
can be written as

ΩXh2 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þ 9TðxfÞ2
q

x−3f
ρRðxfÞ

TðxfÞninX
Tnow

ΩRh2 ¼ 0.12:

ðC13Þ

The outcome of this equation is the maximum possible
mass Mmax

X , which is determined to be

Mmax
X ¼ TðxfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
0.12

β

ninX

TnowTðxfÞ2
ΩRh2x−3f

�
2

− 9

s
: ðC14Þ
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