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We compute the quantum tunneling rate of dilute axion stars close to the maximum mass [P.H. Chavanis,
Phys. Rev. D 84, 043531 (2011)] using the theory of instantons. We confirm that the lifetime of metastable
states is extremely long, scaling as tlife ∼ eNtD (except close to the critical point), where N is the number of
axions in the system and tD is the dynamical time (N ∼ 1057 and tD ∼ 10 hrs for typical QCD axion stars;
N ∼ 1096 and tD ∼ 100 Myrs for the quantum core of a dark matter halo made of ultralight axions).
Therefore, metastable equilibrium states can be considered as stable equilibrium states in practice. We
develop a finite size scaling theory close to the maximum mass and predict that the collapse time at
criticality scales as tcoll ∼ N1=5tD instead of being infinite when fluctuations are neglected. The collapse
time at criticality is smaller than the age of the universe for QCD axion stars and larger than the age of the
universe for dark matter cores made of ultralight axions. We also consider the thermal tunneling rate and
reach the same conclusions. We compare our results with similar results obtained for Bose-Einstein
condensates in laboratory, globular clusters in astrophysics, and quantum field theory in the early Universe.
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I. INTRODUCTION

The nature of dark matter (DM) is still unknown and
constitutes one of the greatest mysteries of modern cos-
mology. The cold dark matter (CDM) model in which DM
is assumed to be made of weakly interacting massive
particles (WIMPs) of mass m ∼ GeV=c2 works remarkably
well at large (cosmological) scales [1] but encounters
problems at small (galactic) scales. These problems are
known as the cusp-core problem [2], the missing satellite
problem [3], and the too big to fail problem [4]. In addition,
there is no current evidence for any CDM particle such as
the WIMP. In order to solve this “CDM crisis” [5], it has
been proposed to take the quantum nature of the particles
into account. For example, it has been suggested that DM
may be made of bosons in the form of Bose-Einstein
condensates (BECs) at absolute zero temperature [6–117]
(see the Introduction of [37] and Ref. [118] for an early
history of this model and Refs. [119–124] for recent
reviews). In this model, DM halos are interpreted as
gigantic boson stars described by a scalar field (SF) that
represents the wave function ψ of the BEC. The mass of the
DM boson has to be very small (see below) for quantum
mechanics to manifest itself at galactic scales. By contrast,
quantum mechanics is completely negligible at astrophysi-
cal scales for “heavy” particles of mass m ∼ GeV=c2 such
as WIMPs.
One possible DM particle candidate is the axion [125].

Axions are hypothetical pseudo-Nambu-Goldstone bosons
of the Peccei-Quinn [126] phase transition associated with
a Uð1Þ symmetry that solves the strong charge parity (CP)

problem of quantum chromodynamics (QCD). The QCD
axion is a spin-0 particle with a very small mass m ¼
10−4 eV=c2 and an extremely weak self-interaction as ¼
−5.8 × 10−53 m arising from nonperturbative effects in
QCD (as is the scattering length of the axion) [127,128].
Their role in cosmology has been first investigated in [129–
132]. Axions have huge occupation numbers so they can be
described by a classical relativistic quantum field theory
with a real scalar field φðr; tÞ whose evolution is governed
by the Klein-Gordon-Einstein (KGE) equations. In the
relativistic regime, the particle number is not conserved. In
the nonrelativistic limit, axions can be described by an
effective field theory with a complex scalar field ψðr; tÞ
whose evolution is governed by the Gross-Pitaevskii-
Poisson (GPP) equations (see the Appendix A). In the
nonrelativistic regime, the particle number is conserved.
One particularity of the QCD axion is to have a negative
scattering length (as < 0) corresponding to an attractive
self-interaction.
The formation of structures in an axion-dominated

Universe was first investigated by Hogan and Rees [133]
and Kolb and Tkachev [134]. In the very early Universe, the
axions are relativistic but self-gravity can be neglected with
respect to their attractive self-interaction. These authors
found that the attractive self-interaction of the axions
generates very dense structures corresponding to pseudo-
soliton configurations that they called “axion miniclusters”
[133] or “axitons” [134] (these nongravitational solitons are
also called “oscillons”). These axitons have a mass
Maxiton ∼ 10−12 M⊙ and a radius Raxiton ∼ 109 m. At later
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times, self-gravity must be taken into account. Kolb and
Tkachev [134] mentioned the possibility to form boson
stars1 by Jeans instability. This possibility was originally
proposed by Tkachev [139,140] who introduced the names
“gravitationally bound axion condensates” [139] and “axi-
onic Bose stars” [140], becoming later “axion stars.”
Tkachev [139,140] and Kolb and Tkachev [134] discussed
the maximum mass of these axion stars due to general
relativity but, surprisingly, they considered the case of a
repulsive self-interaction (as > 0). Since axions have an
attractive self-interaction (as < 0), their result does not
apply to axion stars.
The case of boson stars with an attractive self-interaction

(as < 0), possibly representing axion stars, has been con-
sidered only recently [37,38,44,75,86,93,110,112,141–170]
(see a review in [171]). The Jeans instability of a Newtonian
self-gravitating BEC with an attractive jψ j4 self-interaction
was studied by Chavanis [37,44] and Guth et al. [143]. An
infinite homogeneous BEC of axions is unstable to the
formation of localized denser clumps of axions. The clumps
can be axitons bound by axion self-interaction or axion stars
bound by self-gravity. In the case of axion stars, gravitational
cooling [172–174] provides an efficient mechanism for
relaxation to a stable configuation. The existence of a
maximum mass for axion stars was envisioned by
Barranco and Bernal [141] but they did not determine this
critical mass.2 The maximum mass of Newtonian self-
gravitating BECs with an attractive jψ j4 self-interaction,
and the corresponding radius, were first calculated by
Chavanis and Delfini [37,38] who obtained the explicit
expressions3

Mexact
max ¼ 1.012

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ð1Þ

and

ðR�
99Þexact ¼ 5.5

�jasjℏ2

Gm3

�
1=2

: ð2Þ

ForM > Mmax there is no equilibrium state. ForM < Mmax
there are two possible equilibrium states for the same mass
M. The solutionwithR > R�

99 is stable (minimumof energy)
while the solutionR < R�

99 is unstable (maximumof energy).
For R ≫ R�

99 we are in the noninteracting limit and for R ≪
R�
99 we are in the nongravitational limit. Starting from the

KGE equations with the axion potential, Braaten et al.
[145,146] showed that the results of Chavanis and Delfini
[37,38] apply to dilute axion stars because, for these objects,
it is possible to make the Newtonian approximation and to
expand the axion potential to order φ4, leading to the GPP
equations with an attractive jψ j4 self-interaction (see also
Eby et al. [142], Davidson and Schwetz [147], and
Appendix A). Thus, dilute axion stars can exist only below
themaximummassMmax and above theminimum radiusR�

99

given by Eqs. (1) and (2). We stress that the maximum mass
of dilute axion stars [37,38] has a nonrelativistic origin unlike
the maximum mass of boson stars [135–138].
For QCD axions, the maximum mass Mexact

max ¼ 6.46 ×
10−14 M⊙ ¼ 1.29 × 1017 kg ¼ 2.16 × 10−8 M⊕ and the
corresponding radius ðR�

99Þexact ¼ 3.26 × 10−4 R⊙ ¼
227 km ¼ 3.56 × 10−2 R⊕ are very small, much smaller
than galactic sizes. Therefore, QCD axions are expected
to form mini axion stars of the size of asteroids (“axte-
roids”). They could be the constituents of DM in the form
of massive compact halo objects (MACHOs) [75,86].
However, mini axion stars behave essentially as CDM
and do not solve the small-scale crisis of CDM.
On the other hand, string theory [175] predicts the

existence of axions with a very small mass leading to
the notion of string axiverse [176]. This new class of axions
is called ultralight axions (ULA) [122]. For an ULAwith a
mass m ¼ 2.19 × 10−22 eV=c2 and a very small attractive
self-interaction as ¼ −1.11 × 10−62 fm, one finds that the
maximum mass and the minimum radius of axionic DM
halos are Mmax ¼ 108 M⊙ and R�

99 ¼ 1 kpc. For smaller
(absolute) values of the scattering length, the maximum
mass is larger. Therefore, ULAs can form giant BECs with
the dimensions of DM halos. These objects may corre-
spond either to ultracompact DM halos like dwarf sphe-
roidal galaxies (dSphs) or to the quantum core (soliton) of
larger DM halos. In that second case, the quantum core is
surrounded by a halo of scalar radiation (arising from
quantum interferences) resulting from a process of violent
relaxation [177] and gravitational cooling [172–174]. This
“core-halo” structure has been evidenced in direct

1Boson stars, that are the solutions of the KGE equations, were
introduced by Kaup [135] and Ruffini and Bonazzola [136] in the
case where the bosons have no self-interaction. Boson stars in
which the bosons have a repulsive self-interaction (as > 0) were
considered later by Colpi et al. [137] using field theory and by
Chavanis and Harko [138] using a hydrodynamic treatment
valid in the Thomas-Fermi (TF) limit. These authors showed
that boson stars can exist only below a maximum mass,
Mmax ¼ 0.633ℏc=Gm for noninteracting bosons and Mmax ¼
0.307ðasℏ2c4=G3m3Þ1=2 for bosons with a repulsive self-inter-
action in the TF limit, due to general relativistic effects.

2Barranco and Bernal [141] developed a general relativistic
formalism based on the KGE equations which is well-suited to
the limit where jasj is very small (or the axion decay constant f is
close to the Planck energy MPc2). However, their scaling
relations were not adapted to study dilute axion stars for which
f ≪ MPc2 and they could not explore this type of stars
thoroughly, nor determine their maximum mass. The solutions
that they found (M ∼ 1014 kg and R ∼ 10 m for QCD axions)
have a mass much lower than the maximum mass Mmax ¼
1.29 × 1017 kg and correspond to the unstable branch R < R�

99 ¼
227 km of dilute axion stars (see below).

3Equivalent expressions, written in terms of different param-
eters (e.g., the dimensionless self-interaction constant λ or the
axion decay constant f), are given in [86].
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numerical simulations of noninteracting BECDM
[55,56,81,84,109,115] and it is expected to persist for
self-interacting bosons. In the case of ULAs, the quantum
core (ground state of the GPP equations) stems from the
equilibrium between the quantum pressure (Heisenberg’s
uncertainty principle), the attractive self-interaction of the
axions and the gravitational attraction. On the other hand,
the “atmosphere” has an approximately isothermal [177] or
Navarro-Frenk-White (NFW) profile [178] as obtained in
classical numerical simulations of collisionless matter (see,
e.g., [85] for the Schrödinger-Vlasov correspondance). It is
the atmosphere that determines the mass and the size of
large DM halos and explains why the halo radius rh
increases with the halo mass Mh while the core radius
Rc decreases with the core mass Mc (see Appendix L of
[99] for a more detailed discussion). The core mass–halo
mass relation McðMhÞ of BECDM halos with an attractive
self-interaction has been determined in [110,112]. It is
found that the core mass Mc increases with the halo mass
Mh up to the maximum mass ðMcÞmax. Of course, these
core-halo configurations are stable only if the mass of their
core is smaller than the maximum mass (Mc < ðMcÞmax).
In sufficiently large DM halos (see [110,112] for a precise
account), the core mass passes above the maximum mass,
becomes unstable, and undergoes gravitational collapse.
The collapse of dilute axion stars above Mmax was first

discussed by Chavanis [75] using a Gaussian ansatz and
assuming that the self-interaction is purely attractive and
that the system remains spherically symmetric and non-
relativistic. In that case, the system is expected to collapse
toward a mathematical singularity (Dirac peak).4 Less
idealized scenarios were considered in later works from
numerical simulations. For example, Cotner [151] showed
that the system may break into several stable pieces (axion
“drops” [147]) of mass M0 < Mmax, thereby avoiding its
catastrophic collapse toward a singularity. This type of
fragmentation has been observed experimentally in the case

of nongravitational BECs with an attractive self-interaction
in a magnetic trap [182]. On the other hand, when the
system becomes dense enough, the jψ j4 approximation is
not valid anymore and one has to take into account higher
order terms in the expansion of the SF potential (or, better,
consider the exact axionic self-interaction potential). These
higher order terms, which can be repulsive (unlike the φ4

term for axions), can account for strong collisions between
axions. These collisions may have important consequences
on the collapse dynamics. Three possibilities have been
considered in the literature:

(i) The first possibility, proposed by Braaten et al.
[145], is to form a dense axion star in which the
gravitational attraction and the attractive φ4 self-
interaction are balanced by the repulsive φ6 (or
higher order) self-interaction. They used a non-
relativistic approximation and determined the
mass-radius relation of axion stars numerically.
They recovered the stable branch of dilute axion
stars and the unstable branch of nongravitational
axion stars found by Chavanis and Delfini [37,38]
and evidenced, in addition, a new stable branch of
dense axion stars. On this branch, self-gravity is
negligible (except for very large masses). The mass-
radius relation of axion stars presents therefore a
maximum massMdilute

max and a minimum massMdense
min .

Following Ref. [75], Eby et al. [148,152,153] studied
the collapse of dilute axion stars to dense axion stars
with the Gaussian ansatz5 and argued that collapsing
axion stars evaporate a large fraction of their mass
through the rapid emission of relativistic axions.

(ii) The second possibility is a bosenova phenomenon in
which the collapse of the axion star may be
accompanied by a burst of outgoing relativistic
axions (radiation) produced by inelastic reactions
when the density reaches high values. In that case,
the collapse (implosion) is followed by an explosion.
This phenomenon was shown experimentally by
Donley et al. [183] for nongravitational relativistic
BECs with an attractive self-interaction and has been
demonstrated by Levkov et al. [154] for relativistic
axion stars from direct numerical simulations of the
KGE equations in the Newtonian limit with the exact
axionic potential taking collisions into account.
These equations predict multiple cycles of collapses
and explosions with a self-similar scaling regime
and a series of singularities at finite times. These
multiple cycles can lead either to a dilute axion star
with a massM0 < Mmax or no remnant at all because
of complete disappearance of the axion star into
scalar waves.

4In Ref. [75] this mathematical singularity was abusively
referred to as a “black hole.” This terminology is clearly not
correct since a nonrelativistic approach is used in [75]. What we
meant by “black hole” was actually a Newtonian “Dirac peak” in
the sense of, e.g., [179]. On the other hand, the Gaussian ansatz
used in [75] provides an inaccurate description of the late stage of
the collapse dynamics. Indeed, in the late stage of the collapse,
the system is dominated by the attractive self-interaction and the
BEC is described by the nongravitational GP equation with an
attractive self-interaction. In that case, it is well-known [180,181]
that the collapse is self-similar and leads to a finite time
singularity. The central density becomes infinite in a finite time
tcoll at which a singular density profile ρ ∝ r−2 is formed. The
Dirac peak may be formed in the post-collapse regime t > tcoll as
in [179]. This complex late dynamics cannot be studied with the
Gaussian ansatz. However, the Gaussian ansatz is relevant to
determine the collapse time of the system which is dominated by
the early evolution of the system. It is found in Ref. [75] that
tcoll ∝ ðM −MmaxÞ−1=4 when M → Mþ

max.

5As noted in Appendix B of [86], replacing a mathematical
singularity (Dirac peak) by a dense axion star with a small radius
does not change the estimate of the collapse time obtained in [75].
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(iii) The third possibility, when the mass of the axion star
is sufficiently large or when the self-interaction is
sufficiently weak, is the formation of a black hole
[155,158]. In that case, general relativity must be
taken into account. Helfer et al. [155] and Michel
and Moss [158] produced a phase diagram display-
ing a tricritical point joining phase boundaries
between dilute axion stars, relativistic bosenova
(no remnant), and black holes.6

The importance of relativistic effects during the col-
lapse of axion stars has been stressed by Visinelli et al.
[157]. In particular, they argued that special relativistic
effects are crucial on the dense branch7 while self-gravity
can generally be neglected. As a result, dense axion stars
correspond to pseudobreathers or oscillons which are
described by the sine-Gordon equation. These objects
are known to be unstable and to decay via emission of
relativistic axions (more precisely, they are dynamically
stable but they decay rapidly because of relativistic
effects). They have a very short lifetime much shorter
than any cosmological timescale. Eby et al. [159,168,169]
confirmed the claim of Visinelli et al. [157] that dense
axion stars are relativistic and short-lived.8 It is important
to stress that these authors considered axions (like QCD
axions) described by a real scalar field for which the
particle number is not conserved in the relativistic regime.
This is the reason for their fast decay. Alternatively, if we
consider ULAs described by a complex scalar field (like,
e.g., in Refs. [63,64]) for which the particle number is
conserved, the dense axion stars should be long-lived.
This is suggested by the recent work of Guerra et al. [170]
on “axion boson stars.”
Phase transitions between nonrelativistic dilute and

dense axion stars have been studied in [86] using the
Gaussian ansatz. This allowed us to recover analytically the

mass-radius relation of axion stars obtained numerically
in [145].9 There exists a transition massMt such that dilute
axion stars are fully stable (global minima of energy) for
M < Mt and metastable (local minima of energy) for
Mt < M < Mdilute

max . Inversely, dense axion stars are meta-
stable forMdense

min < M < Mt and fully stable forM > Mt. If
a dilute axion star gains mass, for instance by merger and
accretion, it can overcome the maximum mass Mdilute

max ,
collapse and form a dense axion star (it may also emit a
relativistic radiation—bosenova—and disappear into sca-
lar waves as discussed above). Inversely, if a dense axion
star loses mass, decaying by emitting axion radiation
because of relativistic effects, it can pass below the
minimum mass Mdense

min and disperse outwards (explosion)
due to the repulsive kinetic pressure (quantum potential).
This mechanism determines the lifetime of dense axion
stars in the nonrelativistic regime. As noted by Braaten
and Zhang [171] their lifetime may be too short to be
astrophysically relevant. However, dense axion stars may
have an important cosmological effect by transforming
nonrelativistic axions into relativistic axions. The above
mentioned phase transitions, involving collapses and
explosions, are similar to those studied in [191,192] for
self-gravitating fermions at finite temperature enclosed
within a “box.” They also share similarities with the phase
transitions of compact objects (white dwarfs, neutron stars
and black holes) as discussed in Sec. XI.C of Ref. [86].
This analogy has been recently confirmed by Guerra et al.
[170] who numerically solved the KGE equations for a
complex scalar field. Their mass-radius relations
display the Newtonian maximum mass of dilute axion
stars Mdilute

max derived in [37,38] and the general relativistic
maximum mass of dense axion stars Mdense

max;GR predicted
qualitatively in [86] (see Appendix D for a complementary
discussion).
Close to the maximummassMdilute

max , the dilute axion stars
are metastable (local but not global minima of energy).
They are rendered unstable by the quantum mechanical
process of barrier-penetration (tunnel effect). We can
determine the tunneling rate of axion stars, and their
lifetime, by using the theory of path integrals and instantons
that was originally elaborated in the context of quantum
field theory [193,194]. The instanton theory was applied to
the Gross-Pitaevskii (GP) equation by Stoof [195] in order
to determine the lifetime of a (nongravitational) metastable
BEC with an attractive self-interaction in a confining

6Their phase diagram is consistent with the maximum mass of
nonrelativistic dilute axion stars with quartic attractive self-
interaction obtained in [37,38] (see the solid line in Fig. 1 of
[155] and the solid line in Fig. 3 of [158]).

7Braaten and Zhang [171] argue that their evidence is not
completely convincing except close to the minimum massMdense

min .
The accuracy of the nonrelativistic approximation may improve
as M increases along the dense branch.

8By contrast, dilute axion stars are long-lived with respect to
decay in photons with a lifetime far longer than the age of the
Universe [150,160,161,184]. However, photons can be emitted
during collisions between dilute axion stars and neutron stars.
In particular, it has been proposed that fast radio bursts
(FRBs), whose origin is one of the major mysteries of high
energy astrophysics, could be caused by axion stars that can
engender bursts when undergoing conversion into photons
during their collision with the magnetosphere of neutron stars
(magnetars), during their collision with the magnetized accretion
disk of a black hole, or during their collapse above the maximum
mass. We refer to [185–189] for the suggestion of this scenario
and to [190] for an interesting critical discussion.

9In Ref. [86] we have argued that, at very large masses where
general relativistic effects are important, the mass-radius relation
of dense axion stars should form a spiral. This implies the
existence of another maximum mass Mdense

max;GR, of general rela-
tivistic origin, above which the dense axion stars collapse toward
a black hole. We have estimated this maximum mass qualitatively
in [86]. In this manner, we could recover analytically [86] the
phase diagram and the tricritical point obtained numerically in
Refs. [155,158].
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harmonic potential.10 Using a Gaussian ansatz, he showed
that this problem can be reduced to the simpler problem of
the quantum tunneling rate of a fictive particle in a one
dimensional potential. This basically leads to the WKB
formula [217]. The approach of Stoof [195] was further
developed by Ueda and Leggett [218] and Huepe et al.
[219] who studied the behavior of the tunneling rate close
to the critical point. The correctness of Stoof’s analytical
approach was studied by Freire and Arovas [220] who used
a more rigorous instanton theory based on field theory and
showed that the results of Stoof provide a relevant
approximation of the exact solution. We will assume that
the collective coordinate approach (Gaussian ansatz)
remains valid in the case of self-gravitating BECs with
an attractive self-interaction and we will use this analytical
approach in line with our previous works on the subject
[37,38,75,86,93].11 A similar investigation was recently
made by Eby et al. [160]. Here, we explicitly derive the
analytical expression of the quantum tunneling rate close to
the maximum mass emphasizing the scaling ð1 −
M=MmaxÞ5=4 of the reduction factor. Despite this reduction
factor, we show that the lifetime of metastable axion stars is
considerable, scaling as eNtD (where tD is the dynamical
time) with N ∼ 1057 and tD ∼ 10 hrs for QCD axions, and
N ∼ 1096 and tD ∼ 100 Myrs for ULAs.12 Therefore, in
practice, metastable states can be considered as stable
equilibrium states, except for masses extraordinarily close

to the maximum mass Mmax. We develop a finite size
scaling theory close to the maximum mass and predict that
the collapse time at criticality scales as tcoll ∼ N1=5tD
instead of being infinite as in Ref. [75] where fluctuations
are neglected. The collapse time at criticality is smaller than
the age of the universe for QCD axion stars and larger than
the age of the universe for the quantum cores of DM halos
made of ULAs. On the other hand, our detailed calculation
of the quantum tunneling rate may be useful if one is able in
the future to perform direct N-body simulations or labo-
ratory experiments of self-gravitating BECs with an attrac-
tive self-interaction mimicking dilute axion stars. In that
case, the number of bosons N will not be very large and
metastability effects should be observed, especially close to
the maximum mass.
This paper is organized as follows. In Sec. II we recall

the basic equations describing dilute axion stars. In Sec. III
we use a Gaussian ansatz to transform these equations into
the simpler mechanical problem of a fictive particle in a one
dimensional potential. In Sec. IV we determine the quan-
tum tunneling rate of the BEC from the theory of
instantons. We give its general expression and its approxi-
mate expression close to the maximum mass. In Sec. V we
briefly consider the thermal tunneling (or thermal activa-
tion) rate of the BEC by using the analogy with Brownian
motion. In Sec. VI we consider corrections to the maximum
mass due to quantum and thermal fluctuations and show
that they are generally negligible. We emphasize the very
long lifetime of dilute axion stars. Finally, in Sec. VII we
determine the correction to the collapse time at criticality
due to quantum and thermal fluctuations. We finally
conclude by discussing analogies and differences with
other systems of physical interest.

II. DILUTE AXION STARS

In this section, we recall the basic equations describing
dilute axion stars in the nonrelativistic limit.

A. GPP equations

Dilute axion stars can be interpreted as Newtonian self-
gravitating BECs with an attractive φ4 self-interaction [86].
They are described by the GPP equations13

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ ; ð3Þ

ΔΦ ¼ 4πGjψ j2; ð4Þ

where ψðr; tÞ is the wave function of the condensate,
Φðr; tÞ is the gravitational potential, and as is the scattering

10Experimental evidence of Bose-Einstein condensation was
reported by several groups in 1995 [196–198]. Some laboratory
BECs like 7Li are made of atoms that have a negative scattering
length (as < 0), hence an attractive self-interaction [197]. When
they are confined by a harmonic potential, they are stable
(actually metastable) only below a maximum particle number
Nmax. This maximum particle number was obtained by Ruprecht
et al. [199] and Kagan et al. [200] by solving the GP equation
numerically and by Baym and Pethick [201] and Stoof [195] by
solving the GP equation analytically using a Gaussian ansatz. The
approximate analytical approach of Baym and Pethick [201] and
Stoof [195]—called the method of collective coordinates or the
Ritz optimization procedure—was further developed by [202–
204] and finds its origin in the works of [205–210] in the context
of nonlinear optics. The existence of a maximum particle number
was confirmed experimentally in Ref. [211]. Near the stability
limit, quantum tunneling or thermal fluctuations cause the
condensate to collapse. During the collapse, the density rises
until collisions cause atoms to be ejected from the condensate in
an energetic explosion similar to supernova [212]. After the
explosion, the condensate regrows fed by collisions between
thermal atoms in the gas. This leads to a series of sawtoothlike
cycles of growth (explosion) and collapse [204,213–216] until
the gas reaches thermal equilibrium.

11We refer to, e.g., [220–222] for more general methods,
including the formalism of coherent state path integration [223],
that could be used to go beyond the Gaussian ansatz.

12The scaling eNtD was anticipated in Ref. [86] by analogy
with similar results obtained for other systems with long-range
interactions, such as globular clusters [224], where the destabi-
lization of the metastable state is due to thermal (or energetic)
fluctuations instead of quantum fluctuations.

13See Appendix A for the derivation of the GPP equations
from the more general KGE equations describing relativistic
axion stars.
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length of the bosons (as < 0 for axions with an attractive
self-interaction). The GP equation (3) involves a cubic
nonlinearity associated with a quartic effective potential
(see Eq. (A31) of Appendix A).

B. Hydrodynamic equations

Making the Madelung [225] transformation

ψðr; tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ρ¼ jψ j2; u¼∇S

m
; ð5Þ

where ρðr; tÞ is the mass density, Sðr; tÞ is the action and
uðr; tÞ is the velocity field, it can be shown (see, e.g., [79])
that the GPP equations (3) and (4) are equivalent to
hydrodynamic equations of the form

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ð6Þ

∂S
∂t þ

1

2m
ð∇SÞ2 þmΦþ 4πasℏ2

m2
ρþQ ¼ 0; ð7Þ

∂u
∂t þ ðu ·∇Þu ¼ −

1

ρ
∇P −∇Φ −

1

m
∇Q; ð8Þ

ΔΦ ¼ 4πGρ; ð9Þ

where

Q ¼ −
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p ¼ −
ℏ2

4m

�
Δρ
ρ

−
1

2

ð∇ρÞ2
ρ2

�
ð10Þ

is the quantum potential taking into account the Heisenberg
uncertainty principle and PðρÞ is the pressure arising from
the self-interaction of the bosons. For a cubic nonlinearity
(i.e., a jψ j4 effective potential), the equation of state is
quadratic

P ¼ 2πasℏ2

m3
ρ2: ð11Þ

This is a polytropic equation of state of index n ¼ 1. For an
attractive self-interaction between the bosons (as < 0), the
pressure is negative. Equations (6)–(9) are called the
quantum Euler-Poisson equations [37]. They are equivalent
to the GPP equations (3) and (4). In the following, we will
exclusively use the hydrodynamic formalism. In that case,
the normalization condition of the wave function is
equivalent to the conservation of mass M ¼ R ρdr. We
refer to [79] for the expression of the following results in
terms of the wave function.

C. Equilibrium state

In the hydrodynamic representation, an equilibrium state
of the quantum Euler-Poisson equations (6)–(9), obtained
by taking ∂t ¼ 0 and u ¼ 0, satisfies the equation

∇Pþ ρ∇Φþ ρ

m
∇Q ¼ 0: ð12Þ

This equation can be interpreted as a condition of quantum
hydrostatic equilibrium. It describes the balance between the
pressure force due to the self-interaction of the bosons, the
gravitational force, and the quantum force arising from the
Heisenberg uncertainty principle. Combining Eq. (12) with
the Poisson equation (9), we obtain the fundamental differ-
ential equation of quantum hydrostatic equilibrium [79]

−∇ ·

�∇P
ρ

�
þ ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�

¼ 4πGρ: ð13Þ

For the quadratic equation of state (11), this differential
equation has been solved numerically in Ref. [38] in the
general case of attractive or repulsive self-interaction.

D. Total energy

The total energy associated with the quantum Euler-
Poisson equations is given by

Etot ¼ Θc þ ΘQ þ U þW; ð14Þ

where Θc is the classical kinetic energy, ΘQ is the quantum
kinetic energy, U is the internal energy, and W is the
gravitational energy. It can be explicitly written as

Etot ¼
Z

ρ
u2

2
drþ 1

m

Z
ρQdr

þ 2πasℏ2

m3

Z
ρ2 drþ 1

2

Z
ρΦ dr: ð15Þ

We can easily show [79] that the quantum Euler-Poisson
equations (6)–(9) conserve the total energy ( _Etot ¼ 0).

E. Variational principle

It can be shown that the minimization problem

min
ρ;u

fEtot½ρ;u� j M fixedg ð16Þ

determines an equilibrium state of the quantum Euler-
Poisson equations that is dynamically stable. This is a
criterion of nonlinear dynamical stability resulting from the
fact that Etot and M are conserved by the quantum Euler-
Poisson equations. It provides a necessary and sufficient
condition of dynamical stability since it takes into account
all the invariants of the quantum Euler-Poisson equations.
The variational principle for the first variations (extrem-

ization) can be written as

δEtot −
μ

m
δM ¼ 0; ð17Þ
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where μ is a Lagrange multiplier (global chemical poten-
tial) taking into account the mass constraint. This varia-
tional problem gives u ¼ 0 (the equilibrium state is static)
and the Gibbs condition

mΦþ 4πasℏ2

m2
ρþQ ¼ μ ð18Þ

expressing the fact that the gravitational potential þ the
enthalpy (equal to the local chemical potential) þ the
quantum potential is constant. Taking the gradient of
Eq. (18) and using Eq. (11), we recover the condition of
quantum hydrostatic equilibrium (12). Therefore, an
extremum of total energy at fixed mass is a steady state
of the quantum Euler-Poisson equations. Furthermore, it
can be shown that the star is linearly stable with respect to
the quantum Euler-Poisson equations if, and only if, it is a
local minimum of energy at fixed mass (a maximum or a
saddle point is linearly unstable).
The series of equilibria of dilute axion stars with an

attractive φ4 self-interaction presents a maximum mass
Mmax [37]. Using the Poincaré-Katz turning point criterion
[226,227], the Wheeler MðRÞ theorem [228], or the
catastrophe (or bifurcation) theory [229],14 one can show
that the series of equilibria is dynamically stable before the
turning point of massM or energy Etot [they coincide since
δEtot ¼ 0 ⇔ δM ¼ 0 according to Eq. (17)] and becomes
dynamically unstable afterwards [37,38].15 Furthermore,
the curve EtotðMÞ displays cusps at its extremal points [38].

F. Quantum virial theorem

The time-dependent scalar virial theorem associated with
the quantum Euler-Poisson equations can be written as (see
Appendix G of [79])

1

2
̈I ¼ 2ðΘc þ ΘQÞ þ 3

Z
PdrþW; ð19Þ

where I ¼ R ρr2 dr is the moment of inertia. At equilib-
rium, we obtain the quantum virial theorem

2ΘQ þ 3

Z
PdrþW ¼ 0: ð20Þ

III. GAUSSIAN ANSATZ

A. Total energy

We can obtain an approximate analytical solution of the
GPP equations (3) and (4) by developing a mechanical
analogy. Making a Gaussian ansatz for the wave function
(see, e.g., Sec. 8.2 of Ref. [79] for details):

ψðr; tÞ ¼
�

M

π3=2RðtÞ3
�
1=2

e−r
2=2RðtÞ2eimHðtÞr2=2ℏ; ð21Þ

where RðtÞ is the typical radius of the BEC and H ¼ _R=R,
we find that the energy functional (14) can be written as a
function of R and _R (for a fixed mass M) as16

Etot ¼
1

2
αM

�
dR
dt

�
2

þ VðRÞ ð22Þ

with the effective potential

VðRÞ ¼ σ
ℏ2M
m2R2

− ζ
2πjasjℏ2M2

m3R3
− ν

GM2

R
: ð23Þ

The coefficients are

α¼ 3

2
; σ¼ 3

4
; ζ¼ 1

ð2πÞ3=2 ; ν¼ 1ffiffiffiffiffiffi
2π

p : ð24Þ

The first term in Eq. (22) is the classical kinetic energy
while the effective potential (23) comprises the quantum
kinetic energy, the internal energy and the gravitational
energy. Using the conservation of total energy, _Etot ¼ 0, we
get

αM
d2R
dt2

¼ −
dV
dR

: ð25Þ

This equation is similar to the equation of motion of a
particle of mass αM and position R moving in a one-
dimensional potential VðRÞ. This equation can also be
obtained from the quantum virial theorem (19) (see Sec. 8.4
of Ref. [79] for details). Instead of starting from the total
energy, the same results can be obtained from the
Lagrangian of the GPP equations (see Appendix B of
Ref. [75] for details). Finally, we can draw some analogies
between the equation of motion (25) for the radius of a BEC
and the Friedmann equations in cosmology governing the
evolution of the scale factor of the Universe where H ¼
_R=R plays the role of the Hubble constant (see Sec. 8.8 of
Ref. [79] for details).

14The Poincaré-Katz turning point criterion [226,227] states that
a mode of stability is lost at an extremum ofmass if the curve μðMÞ
rotates anticlockwise and gained if it rotates clockwise (see
Refs. [86,191,227] for a precise account and for illustrations).
The mass-radius theorem of Wheeler [228] introduced in the
physics of compact objects like white dwarfs and neutron stars
states that a mode of stability is lost at an extremum of mass if the
curveMðRÞ rotates anticlockwise and gained if it rotates clockwise.
To be complete, we also quote the necessary (but not sufficient)
Vakhitov-Kolokolov condition of stabilitydM=dρ0 > 0 [181,230].

15Note that in more general situations (e.g., in the case of dense
axion stars with an additional repulsive φ6 potential [86]) the
stability can be regained after a second turning point of mass
(minimum mass Mmin).

16For a Gaussian density profile, the relation between the
radius R and the radius R99 containing 99% of the mass is R99 ¼
2.38167R [37].
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B. Mass-radius relation

We have seen that an extremum of total energy Etot given
by Eq. (14) at fixed mass M is an equilibrium state of the
GPP equations (3) and (4). On the other hand, a (local)
minimum of total energy is (meta)stable while a maximum
or a saddle point is unstable. Within the Gaussian ansatz,
we have to minimize the total energy Etot given by Eq. (22)
at fixed mass M. An extremum corresponds to dR=dt ¼ 0
and V 0ðRÞ ¼ 0. The second condition leads to the mass-
radius relation [37]

M ¼ 2σ ℏ2

m2R3

νG
R2 þ 6πζ jasjℏ2

m3R4

: ð26Þ

This equation can also be obtained from the equilibrium
quantum virial theorem (20) [79]. The mass-radius relation
is plotted in Fig. 1 in the case of an attractive self-
interaction (as < 0). It displays a maximum mass [37]

Mmax ¼
�

σ2

6πζν

�
1=2 ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ð27Þ

at

R� ¼
�
6πζ

ν

�
1=2
�jasjℏ2

Gm3

�
1=2

: ð28Þ

The prefactors are 1.085 and 1.73. We have the identity

Mmax ¼
σ

ν

ℏ2

Gm2R�
: ð29Þ

There is no equilibrium state with M > Mmax. When
M < Mmax, two equilibrium states exist with the same

mass. By computing the second derivative of VðRÞ or by
using the identity

dM
dR

¼ −αM
m2R3

2σℏ2
ω2; ð30Þ

where ω2 ¼ V 00ðRÞ=αM is the square radial pulsation of the
BEC (see Sec. 8 of Ref. [79] for details and generalizations)
one can analytically show [37] that the equilibrium states
with R > R� are stable while the equilibrium states with
R < R� are unstable. Therefore, R� is the minimum radius
of stable equilibrium states. This result can also be obtained
from the mass-radius relation MðRÞ by using the Poincaré-
Katz turning point criterion [226,227] or the Wheeler
theorem [228] (see footnote 14) stating that the change
of stability occurs at the turning point of mass (this result is
valid beyond the Gaussian ansatz as discussed in Sec. II E).
In the noninteracting limit, corresponding to R ≫ R�, the

mass-radius relation reduces to

M ∼
2σ

ν

ℏ2

Gm2R
: ð31Þ

These equilibrium states are stable. In the nongravitational
limit, corresponding to R ≪ R�, we get

M ∼
σ

3πζ

mR
jasj

: ð32Þ

However, these equilibrium states are unstable.
Remark: The above results apply to dilute axion stars.

Stable dilute axion stars exist only below a maximum mass
Mmax and above a minimum radius R� given by Eqs. (27)
and (28) within the Gaussian ansatz [37].17 The exact
values of the maximum massMexact

max and of the correspond-
ing radius ðR�

99Þexact [see Eqs. (1) and (2)] have been
obtained in Ref. [38] by computing the steady states of the
GPP equations (3) and (4) numerically. If we take into
account a φ6 repulsion in the self-interaction potential (or
consider the exact potential of axions), an additional stable
branch appears in the mass-radius relation at small radii
corresponding to dense axion stars [86,145].

C. Collapse, gravitational cooling, or explosion

When M < Mmax there are two possible equilibrium
states for the same mass with radius RS > R� and RU < R�.
The equilibrium state RS is stable (S) and the equilibrium
state RU is unstable (U). The evolution of the unstable state

depends on the sign of its energy EðUÞ
tot . In [75] we have

identified a critical mass

0 10 20 30 40 50
R

99

0

0.2

0.4

0.6

0.8

1

1.2

M
a

s
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M
max

NI

NG

(S)(U)

FIG. 1. Mass-radius relation of dilute axion stars interpreted as
self-gravitating BECs with an attractive self-interaction (as < 0).
We have chosen a normalization such that ℏ ¼ G ¼ m ¼
jasj ¼ 1. The solid line is the exact mass-radius relation obtained
by solving the GPP equations numerically [38]. The dotted line
corresponds to the approximate analytical mass-radius relation
(26) obtained from the Gaussian ansatz [37].

17The expressions of the maximum mass in the presence of a
central black hole or in the presence of dark energy (cosmological
constant) are given in [93,231].
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Mc ¼
ffiffiffi
3

p

2
Mmax ð33Þ

at which EðUÞ
tot ¼ 0.

WhenMc < M < Mmax, the energy EðUÞ
tot of the unstable

state is negative (see Fig. 2). If slightly perturbed, the
unstable star can either collapse toward a Dirac peak
(R → 0) or migrate toward a stable dilute axion star by
gravitational cooling (R → RS) [172–174]. This is a dis-
sipative process similar to violent relaxation [177] during
which the star undergoes damped oscillations and emits a
scalar field radiation. Through this process, it loses energy
(and mass) and settles on a stable equilibrium state (S) with
a larger radius and a lower energy than the initial con-
figuration (U).
When M < Mc, the energy EðUÞ

tot of the unstable state is
positive (see Fig. 3). If slightly perturbed, the unstable star
can either collapse toward a Dirac peak (R → 0), migrate
toward a stable dilute axion star by gravitational cooling
(R → RS), or explode and disperse away (R → þ∞).
Remark: In the following, we shall assume that the mass

of the dilute axion star (S) is relatively close to Mmax. As a
result, if it can reach the unstable state (U) by quantum or
thermal tunneling, thereby reducing its radius, it then
generically collapses toward a Dirac peak.

D. Normal form of the potential close to the
maximum mass

Expanding the effective potential from Eq. (23) to third
order close to the maximum mass Mmax, we obtain [75]

VðRÞ
V0

¼ 1

3R3�
ðR − R�Þ3 −

2

R�

�
1 −

M
Mmax

�
ðR − R�Þ

−
1

3
þ 5

3

�
1 −

M
Mmax

�
; ð34Þ

where

V0 ¼ ν
GM2

max

R�
¼ σ2ν1=2

ð6πζÞ3=2
ℏm1=2G1=2

jasj3=2
: ð35Þ

Equation (34) is the normal form of a potential VðRÞ close
to a saddle-center bifurcation (see Fig. 4). With this
approximation, the equation of motion (25) of the fictive
particle becomes

αM
d2R
dt2

¼ −
V0

R3�
ðR − R�Þ2 þ

2V0

R�

�
1 −

M
Mmax

�
: ð36Þ

The mass-radius relation close toMmax, corresponding to
V 0ðRÞ ¼ 0, is given by

R − R� ¼ �
ffiffiffi
2

p
R�

�
1 −

M
Mmax

�
1=2

: ð37Þ

The upper sign corresponds to the branch R > R� and the
lower sign corresponds to the branch R < R�. On the other
hand, the square radial pulsation ω2 ¼ V 00ðRÞ=αM of the
BEC is given by
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R
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R
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M
c
< M < M

max

FIG. 2. Effective potential VðRÞ as a function of the radius R for
Mc < M < Mmax. In that case Vmax < 0.
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FIG. 3. Effective potential VðRÞ as a function of the radius R for
M < Mc. In that case Vmax > 0.
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FIG. 4. Normal form of the potential close to a saddle-center
bifurcation.

QUANTUM TUNNELING RATE OF DILUTE AXION STARS … PHYS. REV. D 102, 083531 (2020)

083531-9



ω2 ¼ � 2
ffiffiffi
2

p

t2D

�
1 −

M
Mmax

�
1=2

; ð38Þ

where we have introduced the dynamical time

tD ¼
�
α

ν

�
1=2 1ffiffiffiffiffiffiffiffi

Gρ0
p ¼ 6πζ

ν

�
α

σ

�
1=2 jasjℏ

Gm2
ð39Þ

constructed with the density

ρ0 ¼
Mmax

R3�
¼ σν

ð6πζÞ2
Gm4

a2sℏ2
: ð40Þ

The expression from Eq. (38) confirms that the branch R >
R� is stable (ω2 > 0) while the branch R < R� is unstable
(ω2 < 0). From Eqs. (37) and (38) we obtain the relation

dM
dR

¼ −
ω2

2

Mmaxt2D
R�

ð41Þ

that links the stability of the system (through the sign of the
square pulsation ω2) to the slope of the mass-radius
relation. This is a particular case of the Poincaré-Katz
turning point criterion close to the maximum mass (see
Sec. 8.7 of Ref. [79] for details). Another manner to
investigate the stability of an equilibrium state is to
compute its energy. The energies of the equilibrium states
close to the maximum mass are

Etot

V0

¼ V
V0

¼ −
1

3
þ 5

3

�
1 −

M
Mmax

�

∓ 4

3

ffiffiffi
2

p �
1 −

M
Mmax

�
3=2

: ð42Þ

The energy of the stable state (R > R�, upper sign) is lower
than the energy of the unstable state (R < R�, lower sign)
for the same massM. This is expected since an equilibrium
state is a minimum energy state.
When M > Mmax, there is no equilibrium state. In that

case, the dilute axion star is expected to collapse. Within
our approximations (nonrelativistic treatment þ purely
attractive self-interaction þ spherical collapse), it should
form a classical singularity (Dirac peak). The collapse time
has been investigated in [75] using a Gaussian ansatz. It is
found that, close to the maximum mass, the collapse time is
given by

tcoll
tD

∼ 2.90178…

�
M

Mmax
− 1

�
−1=4

ðM → Mþ
maxÞ: ð43Þ

If we consider that the dilute axion star collapses toward a
dense axion star of finite radius Rdense > 0 [86,148] instead
of forming a singularity at R ¼ 0 (Dirac peak), the results

of [75] remain valid because Rdense is generically very small
(this point is specifically addressed in Appendix B of [86]).

IV. QUANTUM TUNNELING RATE OF THE BEC

When M < Mmax, the potential VðRÞ has two equilib-
rium states (see Fig. 4): a stable equilibrium state at RM >
R� (local minimum) and an unstable equilibrium state at
RU < R� (local maximum). Since the potential VðRÞ has no
global minimum (it tends to −∞ when R → 0), the stable
equilibrium state at RM is actually metastable. This meta-
stable equilibrium state represents a dilute axion star. In
principle, because of quantum fluctuations, the metastable
BEC can decay toward a more stable state—a dense axion
star if we take into account the repulsive φ6 term in the self-
interaction potential—or collapse. In this section, we
compute the tunneling rate of the BEC and the lifetime
of the metastable state by using the instanton theory (a
pedagogical exposition of this theory is presented in [232]).
This path integral formulation lends itself naturally to the
study of the semiclassical limit ℏ → 0 via a steepest-
descent approach. As explained in the Introduction, we
use a Gaussian ansatz and reduce the problem to the
tunneling rate of a particle in a one dimensional potential
following the approach of Stoof [195].

A. General expression

The equation of motion of the fictive particle represent-
ing the BEC is given by Eq. (25). Classically (ℏ ¼ 0), the
fictive particle can be in equilibrium in the local minimum
RM of the potential VðRÞ. If slightly displaced from its
equilibrium position, it will oscillate with a pulsation
ω2
M ¼ V 00ðRMÞ=αM. However, because of quantum fluc-

tuations (ℏ ≠ 0), this equilibrium state is metastable and the
particle can cross the potential barrier and escape. In the
present formalism, quantum fluctuations are incorporated
in the Schrödinger equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2αM
d2ψ
dR2

þ VðRÞψ ð44Þ

for the fictive particle. In the semiclassical limit ℏ → 0, the
quantum tunneling rate of the BEC is given by

Γ ∼ Ae−B=ℏ; ð45Þ

where the prefactor A is specified below and the exponent
B is equal to

B ¼ S½RbðtÞ� − S½RM�; ð46Þ

where

S½RðtÞ� ¼
Z �

1

2
αM

�
dR
dt

�
2

þ VðRÞ
�
dt ð47Þ
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is the Euclidean action of the fictive particle representing
the BEC. It is obtained from the classical action by
replacing VðRÞ by −VðRÞ (this is achieved by making the
Wick rotation t → −it in the Feynman path integral [232]).
The trajectory RbðtÞ occuring in B is the one that makes the
Euclidean action (47) extremal. This is the so-called instan-
ton (or bounce) solution. Therefore, the bounce exponentB is
equal to the value of the Euclidean (imaginary-time) action
evaluated along the bounce trajectory (instanton). The
condition δS ¼ 0 leads to the equation

αM
d2Rb

dt2
¼ V 0ðRbÞ; ð48Þ

which is analogous to the classical equation of motion of a
fictive particle in the reversed potential −VðRÞ. If we
consider the classical equation of motion (25) of the particle
in the potential VðRÞ, the only solution consistent with the
initial condition _R ¼ 0 atR ¼ RM isRðtÞ ¼ RM (see Fig. 4).
It corresponds to the stable equilibrium state of the original
problem.When wemake theWick rotation, we are led to the
equation of motion (48) for the particle in the reversed
potential −VðRÞ. There are now two solutions consistent
with the initial condition _R ¼ 0 at R ¼ RM (see Fig. 5). The
first solution is the trivial solution RðtÞ ¼ RM mentioned
previously. The second solution is a nontrivial topological
solution which extends far from RM. This is the standard
example of an instanton. It starts at t → −∞ from the top of
the hill RM with zero initial velocity, rolls down the hill,
bounces off the wall at the turning point R0

M such that
VðR0

MÞ ¼ VðRMÞ at some time tc (this defines the center of
the instanton) and returns to the top of the hill RM with zero
velocity at t → þ∞. Using the classical analogy, the so-
called “bounce” solution RbðtÞ has the property that the
particle spends a very long time aroundRM but in a relatively
short time oscillates once in the potential minimum of
−VðRÞ. The first integral of motion of Eq. (48) is

E ¼ 1

2
αM _R2

b − VðRbÞ; ð49Þ

where E is a constant that can be called the energy of the
instanton. It is determined by the initial condition _Rb ¼ 0 at
Rb ¼ RM giving E ¼ −VðRMÞ. As a result, the equation of
the instanton is

1

2
αM _R2

b ¼ VðRbÞ − VðRMÞ; ð50Þ

or, equivalently,

_Rb ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

αM
½VðRbÞ − VðRMÞ�

r
; ð51Þ

wherewe should use the sign− before the bounce atR0
M and

the signþ after the bounce. The instanton profile is given by
an integral of the form

Z
RbðtÞ

R0
M

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½VðRÞ − VðRMÞ�
p ¼ ∓

ffiffiffiffiffiffiffi
2

αM

r
ðt − tcÞ: ð52Þ

An arbitrary parameter tc indicates its center (defined
by _RbðtcÞ ¼ 0).
It is now easy to obtain a closed expression for the

Euclidean action of the instanton in the limit t → þ∞.
Using Eq. (50) the bounce exponent

B ¼
Z þ∞

−∞

�
1

2
αM

�
dRb

dt

�
2

þ VðRbÞ − VðRMÞ
�
dt ð53Þ

can be written under the equivalent forms

B ¼
Z þ∞

−∞
2½VðRbÞ − VðRMÞ�dt; ð54Þ

or

B ¼
Z þ∞

−∞
αM _R2

bdt: ð55Þ

The last integral can be rewritten as

B ¼ 2

Z
tc

−∞
αM _R2

bdt ¼ 2

Z
R0
M

RM

αM _RbdRb; ð56Þ

leading to [see Eq. (51)]

B ¼ 2

Z
RM

R0
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αM½VðRÞ − VðRMÞ�

p
dR; ð57Þ

where we recall that R0
M is the turning point (bounce)

defined by the condition VðR0
MÞ ¼ VðRMÞ. If we use

Eq. (54) or Eq. (55) to compute B, we have to explicitly
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FIG. 5. Inverted potential occurring in the instanton theory (the
dashed line locates the bounce).
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determine the trajectory of the instanton (bounce). If we use
Eq. (57), this is not necessary. We just need to know the
expression of the potential VðRÞ. This leads to the follow-
ing expression of the quantum tunneling rate

Γ ∼ Ae
−2
ℏ

R
RM
R0
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αM½VðRÞ−VðRMÞ�

p
dR
: ð58Þ

This expression, which is valid in the semiclassical
approximation ℏ → 0, can also be obtained by using the
WKB method to find the transmission amplitude across the
potential barrier [217]. Therefore, it is oftentimes called
the WKB transmittivity formula.
In many applications, the exponential behavior of the

tunneling rate is sufficient. The calculation of the prefactor
A is more involved. It requires the determination of a
fluctuation determinant which was obtained by Duru et al.
[233] using the method of Gel’fand and Yaglom [234]. This
leads to the following expression of the prefactor

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αMωMv2M

πℏ

r
; ð59Þ

where vM, which depends on the details of the potential, is
determined by the asymptotic behavior of the instanton
solution via the formula

RbðtÞ ≃ RM −
vM
ωM

e−ωM jtj ðt → �∞Þ: ð60Þ

The complete expression of the tunneling rate including the
prefactor is therefore

Γ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αMωMv2M

πℏ

r
e
−2
ℏ

R
RM
R0
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αM½VðRÞ−VðRMÞ�

p
dR
: ð61Þ

Finally, the typical lifetime of the metastable state can be
estimated by

tlife ∼ Γ−1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πℏ

αMωMv2M

s
e

2
ℏ

R
RM
R0
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αM½VðRÞ−VðRMÞ�

p
dR
: ð62Þ

B. Expression valid close to the maximum mass

In this section, we determine the quantum tunneling rate
of the BEC close to the maximum mass Mmax by using the
normal form of the potential close to a saddle-center
bifurcation given by Eq. (34). It is convenient to set
x ¼ R − R�. In that case, the potential can be rewritten as

VðxÞ ¼ 1

3
ax3 − bx; ð63Þ

where a and b are two positive constants given by

a ¼ V0

R3�
and b ¼ 2V0

R�

�
1 −

M
Mmax

�
: ð64Þ

For simplicity, we have taken the additional constant in the
potential equal to zero (this is possible without restriction of
generality since only differences of potential occur in our
problem). The potential (63) presents a local minimum and
a local maximum (see Fig. 4). The local minimum of VðxÞ
is located at xM ¼ ffiffiffiffiffiffiffiffi

b=a
p

and the value of the potential at
that point is VðxMÞ ¼ −ð2=3Þax3M. The maximum of VðxÞ
is located at xU ¼ −xM and the value of the potential at that
point is VðxUÞ ¼ ð2=3Þax3M. The bouncing (or escape)
point x0M where Vðx0MÞ ¼ VðxMÞ is given by x0M ¼ −2xM.
Finally, we note that VðxÞ ¼ 0 for x ¼ 0 and for
x ¼ � ffiffiffiffiffiffiffiffiffiffiffi

3b=a
p

. With these notations, the potential (63)
can be rewritten as

VðxÞ − VðxMÞ ¼ a

�
1

3
x3 − x2Mxþ

2

3
x3M

�
: ð65Þ

The roots of the third degree equation defined by the term
in parenthesis in Eq. (65) are xM (double root) and x0M
(single root). We then find that the potential (63) can be
written as

VðxÞ − VðxMÞ ¼
a
3
ðx − xMÞ2ðx − x0MÞ: ð66Þ

For future use, we note that the barrier of potential ΔV ¼
VðxUÞ − VðxMÞ is

ΔV ¼ 4

3
ax3M: ð67Þ

On the other hand, the square pulsations (ω2 ¼ V 00ðxÞ=αM)
of the fictive particle at the metastable and unstable
positions are

ω2
M ¼ 2

αM

ffiffiffiffiffiffi
ab

p
and ω2

U ¼ −
2

αM

ffiffiffiffiffiffi
ab

p
: ð68Þ

When ℏ → 0, the quantum tunneling rate of the BEC is
given by Eq. (61). We propose two methods to compute the
bounce exponent B in the exponential factor using respec-
tively the WKB formula and the instanton solution. We also
compute the prefactor A of the tunneling rate.

1. The WKB formula

The expression of B can be obtained from the WKB
formula (57). When the potential is given by Eq. (66), the
integral appearing in Eq. (57) takes the explicit form

B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2αMa
3

r Z
xM

−2xM
ðxM − xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2xM

p
dx: ð69Þ
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With the change of variables

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

3xM
þ 2

3

s
; ð70Þ

it can be rewritten as

B ¼ 36
ffiffiffiffiffiffiffiffiffiffiffiffi
2αMa

p
x5=2M

Z
1

0

ð1 − X2ÞX2 dX: ð71Þ

Using the identityZ
1

0

ð1 − X2ÞX2 dX ¼ 2

15
; ð72Þ

we obtain

B ¼ 24

5

ffiffiffiffiffiffiffiffiffiffiffiffi
2αMa

p
x5=2M : ð73Þ

2. The instanton solution

The expression of B can also be obtained from Eqs. (54)
and (55) by explicitly calculating the instanton solution.
The instanton (bounce) is determined by Eq. (52). When
the potential is given by Eq. (66), this equation becomes

Z
xbðtÞ dx

ðxM − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2xM

p ¼ −
ffiffiffiffiffiffiffiffiffiffi
2a
3αM

r
t: ð74Þ

With the change of variables

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

3xM
þ 2

3

s
; ð75Þ

it can be rewritten as

Z ffiffiffiffiffiffiffiffiffiffi
xbðtÞ
3xM

þ2
3

q
dX

1 − X2
¼ −

ffiffiffiffiffiffiffiffiffiffi
axM
2αM

r
t: ð76Þ

Using the identityZ
dX

1 − X2
¼ tanh−1ðXÞ ð−1 < X < 1Þ; ð77Þ

we obtain

xbðtÞ ¼ xM

�
3 tanh2

� ffiffiffiffiffiffiffiffiffiffi
axM
2αM

r
t
�
− 2

�

¼ xM

�
1 −

3

cosh2ð ffiffiffiffiffiffiffiaxM
2αM

p
tÞ

�
: ð78Þ

This is the instanton (bounce) solution (see Fig. 6). We have
chosen the origin of time so that the instanton center is at
x0M ¼ −2xM (bouncing point) at t ¼ 0. For t → �∞, we

have xbðtÞ → xM. It is precisely this type of solutions,
which approach a static limit in the distant past and future,
that are referred to as “instantons.” The velocity of the
fictive particle associated with the instanton solution is

_xbðtÞ ¼ 6xM

ffiffiffiffiffiffiffiffiffiffi
axM
2αM

r
sinh ð ffiffiffiffiffiffiffiaxM

2αM

p
tÞ

cosh3ð ffiffiffiffiffiffiffiaxM
2αM

p
tÞ : ð79Þ

Substituting this expression into Eq. (55) we obtain

B ¼ 18
ffiffiffiffiffiffiffiffiffiffiffiffi
2αMa

p
x5=2M

Z þ∞

−∞

sinh2ðxÞ
cosh6ðxÞ dx: ð80Þ

Using the identity

Z þ∞

−∞

sinh2ðxÞ
cosh6ðxÞ dx ¼ 4

15
; ð81Þ

we recover Eq. (73). The same expression can also be
obtained from Eq. (54).

3. The prefactor

To obtain the prefactor of the tunneling rate given by
Eq. (59) we first note thatω2

M ¼ V 00ðxMÞ=αM ¼ 2axM=αM.
On the other hand, from Eq. (78), we have

xbðtÞ ≃ xM − 12xMe
−
ffiffiffiffiffiffiffi
2axM
αM

p
jtj ðt → �∞Þ: ð82Þ

Comparing this asymptotic behavior with the expression
from Eq. (60), we obtain

vM ¼ 12

�
2a
αM

�
1=2

x3=2M : ð83Þ

Therefore, the prefactor of the tunneling rate is
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FIG. 6. Quantum instanton (bounce) xbðtÞ close to the maxi-
mum mass (the dashed line corresponds to the velocity _xbðtÞ).
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A ¼ 12

�
8a3

π2αMℏ2

�
1=4

x7=4M : ð84Þ

Combining Eqs. (45), (73) and (84), we find that the
complete expression of the quantum tunneling rate of the
BEC close to the maximum mass is given by

Γ ∼ 12

�
8a3

π2αMℏ2

�
1=4

x7=4M e−
24
5ℏ

ffiffiffiffiffiffiffiffiffi
2αMa

p
x5=2M : ð85Þ

Returning to the original variables, we get

Γ ∼ 12

�
8

π2

�
1=4
�
2

�
1 −

M
Mmax

��
7=8

ðασÞ1=4
ffiffiffiffi
N

p

× e−
24
5

ffiffi
2

p ½2ð1− M
Mmax

Þ�5=4 ffiffiffiffiασp
Nt−1D ; ð86Þ

where we have introduced the particle number N ¼ M=m
and we recall that the above expression is valid for
M → Mmax. We note that the bounce exponent scales
as B ∝ ð1 −M=MmaxÞ5=4 and the prefactor as A ∝
ð1 −M=MmaxÞ7=8. These are the same scalings as those
obtained in Refs. [218,219] for nongravitational BECs.
These scalings are universal since they just depend on the
normal form of the potential close to a saddle-center
bifurcation.

V. THERMAL TUNNELING RATE OF THE BEC

In addition to quantum fluctuations, the BEC may also
experience thermal fluctuations that can destabilize the
metastable equilibrium state. Indeed, because of thermal
fluctuations the system can overcome the energy barrier
between the metastable state and the unstable state and
collapse. We provide here a very heuristic treatment of
thermal fluctuations in a BEC, using an analogy with the
Kramers [235] problem in Brownian theory (a similar
approach has been used in [195,219] for nongravitational
BECs and in [224] for globular clusters).
In Sec. III, making a Gaussian ansatz, we have reduced

the original problem (solving the GPP equations (3) and
(4)) to the simpler mechanical problem of a particle with
mass αM in a potential VðRÞ governed by the deterministic
equation (25). Within this framework, we have taken into
account quantum fluctuations in Sec. IV by replacing the
deterministic equation (25) by the Schrödinger equa-
tion (44). Similarly, we can take thermal fluctuations into
account by replacing the determinsitic equation (25) by a
stochastic Langevin equation of the form

αM
d2R
dt2

þ ξαM
dR
dt

¼ −
dV
dR

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξαMkBT

p
ηðtÞ; ð87Þ

where ηðtÞ is a Gaussian white noise with hηðtÞi ¼ 0 and
hηðtÞηðt0Þi ¼ δðt − t0Þ. This equation involves a friction
force characterized by a friction coefficient ξ and a random

force whose strength is measured by the temperature T.
These two effects arise simultaneously on account of
the fluctuation-dissipation theorem encapsulated in the
Einstein relation D ¼ ξkBT=αM, where D is the diffusion
coefficient. The thermal tunneling (or thermal activation)
rate is of the general form

Γ ∼ Ae−ΔV=kBT; ð88Þ

where ΔV ¼ VðRUÞ − VðRMÞ is the potential barrier
between the metastable state and the unstable state and
A is a prefactor discussed below. The expression (88) is
valid when kBT ≪ ΔV. The exponential term in Eq. (88)
was obtained long ago by Arrhenius [236] from an
empirical analysis of chemical reaction rates and is called
the Arrhenius law. It was later justified by Kramers [235]
from the detailed study of the stochastic motion of a
Brownian particle past a potential barrier. The prefactor
has different expressions depending on the considered
regime. Kramers [235] obtained the general formula

Γ ∼
ωM

2πjωUj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2

4
þ jωUj2

r
−
ξ

2

�
e−ΔV=kBT; ð89Þ

where we recall that ω2
M ¼ V 00ðRMÞ=αM > 0 and

ω2
U ¼ V 00ðRUÞ=αM < 0. This formula was derived from a

Fokker-Planck equation in phase space (Kramers equation).
In the strong friction limit ξ → þ∞, Eq. (89) reduces to

Γ ∼
ωMjωUj
2πξ

e−ΔV=kBT: ð90Þ

This asymptotic result can be directly obtained from a
Fokker-Planck equation in position space (Smoluchowski
equation). In the weak friction limit ξ → 0, Eq. (89)
reduces to

Γ ∼
ωM

2π
e−ΔV=kBT; ð91Þ

which corresponds to the result of the transition state theory.
However, using a more careful treatment, Kramers [235]
showed that this asymptotic formula is not perfectly correct
and that it must be replaced by

Γ ∼
ξIU
kBT

ωM

2π
e−ΔV=kBT; ð92Þ

where IU ∼ 2πΔV=ωM is the action of the path at the barrier
peak. This more accurate expression shows that, when
ξ → 0, the thermal tunneling rate Γ vanishes proportionally
to ξ instead of tending to a constant. For sufficiently large
values of ξ, the expressions (89) and (90) become valid.
Close to the maximum mass, using the normal form of

the potential (66), we find that the thermal tunneling rate of
the BEC based on the Arrhenius law (88) is given by
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Γ ∝ e−
4
3
½2ð1− M

Mmax
Þ�3=2νηN; ð93Þ

where we have introduced the particle number N ¼ M=m
and the dimensionless inverse temperature

η ¼ GMmaxm
R�kBT

: ð94Þ

We recall that Eq. (93) is valid for M → Mmax. The
complete expression of the thermal tunneling rate based
on the Kramers formula (89) is

Γ ∼
1

2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

4
þ 2

t2D

�
2

�
1 −

M
Mmax

��
1=2

s
−
ξ

2

�

× e−
4
3
½2ð1− M

Mmax
Þ�3=2νηN: ð95Þ

In the strong friction limit ξ → þ∞, we get

Γ ∼
1

πξt2D

�
2

�
1 −

M
Mmax

��
1=2

e−
4
3
½2ð1− M

Mmax
Þ�3=2νηN: ð96Þ

In the weak friction limit ξ → 0, we obtain

Γ ∼
1ffiffiffi
2

p
πtD

�
2

�
1 −

M
Mmax

��
1=4

e−
4
3
½2ð1− M

Mmax
Þ�3=2νηN; ð97Þ

although this formula is not fully correct as mentioned
above. We note that the potential barrier scales as
ΔV ∝ ð1 −M=MmaxÞ3=2. This is the same scaling as the
one obtained in [219] for nongravitational BECs and in
[224] for globular clusters. This scaling is universal since it
just depends on the normal form of the potential close to a
saddle-center bifurcation.
Remark: The thermal tunneling rate of the BEC can also

be obtained by applying the instanton theory to the
generalized stochastic GPP and quantum Smoluchowski-
Poisson equations [232] (see also Appendix C for the
related stochastic Ginzburg-Landau-Poisson equations).

VI. CORRECTION OF THE CRITICAL MASS DUE
TO QUANTUM AND THERMAL FLUCTUATIONS

Let us summarize the preceding results. A self-gravitat-
ing BEC with an attractive self-interaction can exist only
below a maximum mass Mmax [37,38]. For M < Mmax and
R > R� the BEC is in a metastable state (local but not
global minimum of energy) corresponding to a dilute axion
star. Because of quantum fluctuations it can decay into a
more stable state (dense axion star) if we account for the
repulsive self-interaction between the bosons, or collapse if
there is no repulsive self-interaction. The lifetime of the
metastable state due to quantum fluctuations can be
estimated by tQlife ∼ 1=ΓQ where ΓQ is the quantum tunnel-
ing rate of the BEC. According to Eq. (86), we have

tQlife ∼
1

12

�
π2

8

�
1=4
�
2

�
1 −

M
Mmax

��
−7=8 1

ðασÞ1=4
1ffiffiffiffi
N

p

× e
24
5

ffiffi
2

p ½2ð1− M
Mmax

Þ�5=4 ffiffiffiffiασp
NtD: ð98Þ

The quantum lifetime of dilute axion stars scales as

tQlife ∼ eNtD; ð99Þ

except close to the critical point. Since N is very large
(N ¼ 7.21 × 1056 for QCD axions and N ¼ 5.09 × 1095

for ULAs), the lifetime of a metastable state is consid-
erable [86]. As a matter of fact, metastable states can be
considered as stable states. Only extraordinarily close to the
maximum mass will their lifetime decrease. In principle,
the BEC will collapse at a mass Mcrit smaller than Mmax.
The mass at which the BEC collapses because of quantum
tunneling can be estimated by writing that the exponent of
the exponential term in Eq. (98) is of order unity. This gives

MQ
crit ∼Mmaxð1 − 0.103N−4=5Þ: ð100Þ

It displays the scalingN−4=5. For large values ofN, which is
the case for axion stars, this correction is extremely small
and can be neglected. Therefore, the value of the maximum
mass of axion stars [37,38] is essentially unaffected by
quantum tunneling. However, corrections due to quantum
tunneling could be observed in laboratory experiments and
numerical simulations attempting to mimic “axion stars”
because, in that case, the number of particles will be
necessarily reduced as compared to reality.
Similar results are obtained if we account for thermal

tunneling. The lifetime of the metastable state due to
thermal fluctuations can be estimated by tTlife ∼ 1=ΓT where
ΓT is the thermal tunneling rate of the BEC. According to
Eq. (93), we have

tTlife ∝ e
4
3
½2ð1− M

Mmax
Þ�3=2νηN; ð101Þ

where the value of the prefactor is discussed in Sec. V. The
thermal lifetime of dilute axion stars scales as

tTlife ∝ eN; ð102Þ

except close to the critical point. The mass at which the
BEC collapses because of thermal tunneling can be
estimated by

MT
c ∼Mmaxð1 − 0.762N−2=3Þ; ð103Þ

where we have taken η ∼ 1 for simplicity. It displays the
scaling N−2=3. The same scaling was found in [224,237] in
the case of globular clusters. For axion stars, this correction
is extremely small and can be neglected. Therefore, the
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value of the maximum mass of axion stars [37,38] is not
altered by thermal effects.

VII. FINITE SIZE SCALING CLOSE TO THE
MAXIMUM MASS

In Ref. [75] we have studied the collapse time of dilute
axion stars when M > Mmax. For M → Mþ

max, we have
found that

tcoll
tD

∼
2.90

ðM=Mmax − 1Þ1=4 : ð104Þ

This study neglects quantum and thermal fluctuations. As a
result, it predicts that the collapse time is infinite when
M ¼ Mmax. Actually, because of quantum and thermal
fluctuations, the collapse time should be large but finite at
M ¼ Mmax. We develop below an argument to estimate the
finite size scaling of the collapse time close to the
maximum mass and its finite value at M ¼ Mmax.
ForM < Mmax, we have found that the quantum lifetime

of dilute axion stars is given by Eq. (98). Finite size effects
enter in the expression of the metastable state lifetime in the
combination Nð1 −M=MmaxÞ5=4. If we assume that a
similar combination enters in the expression of the collapse
time for M > Mmax we expect a scaling of the form

tcoll
tD

∝ ðM=Mmax − 1Þ−1=4F½NðM=Mmax − 1Þ5=4� ð105Þ

with FðxÞ → 1 for x → þ∞ in order to recover Eq. (104)
when N → þ∞. At M ¼ Mmax, the singular factor
ðM=Mmax − 1Þ−1=4 must cancel out implying that FðxÞ ∼
x1=5 for x → 0. Therefore, at M ¼ Mmax, the collapse time
taking into account quantum fluctuations scales as

tQcoll ∝ N1=5tD; ðM ¼ MmaxÞ: ð106Þ

We can make similar calculations to account for thermal
fluctuations. In that case, finite size effects enter in the
expression of the metastable state lifetime in the combi-
nation Nð1 −M=MmaxÞ3=2 [see Eq. (101)]. We therefore
expect a scaling of the form

tcoll
tD

∝ ðM=Mmax − 1Þ−1=4F½NðM=Mmax − 1Þ3=2� ð107Þ

with FðxÞ → 1 for x → þ∞ and FðxÞ → x1=6 for x → 0.
Therefore, at M ¼ Mmax, the collapse time taking into
account thermal fluctuations scales as

tTcoll ∝ N1=6tD; ðM ¼ MmaxÞ: ð108Þ

For QCD axions with mass m ¼ 10−4 eV=c2 and self-
interaction as ¼ −5.8 × 10−53 m, the maximum mass is

Mexact
max ¼ 6.46 × 10−14 M⊙ and the minimum radius is

ðR�
99Þexact ¼ 227 km. As a result, the typical number of

axions is N ∼ 1057 and the typical dynamical time is
tD∼10 hrs. Then, we get tQcoll ∼ 108 yrs and tTcoll∼106 yrs.
The collapse time of QCD axion stars at criticality is smaller
than the age of the Universe (∼14 × 109 yrs).
For ULAs with massm ¼ 2.19 × 10−22 eV=c2 and self-

interaction as ¼ −1.11 × 10−62 fm, the maximum mass is
Mexact

max ¼ 108 M⊙ and the minimum radius is
ðR�

99Þexact ¼ 1 kpc. As a result, the typical number of
axions is N ∼ 1096 and the typical dynamical time
is tD∼108 yrs. Then, we get tQcoll ∼ 1027 yrs and
tTcoll∼1024 yrs. The collapse time of axion stars (or of
the quantum core of DM halos) made of ULAs at
criticality is much larger than the age of the Universe
(∼14 × 109 yrs).
Remark: We note that the scalings from Eqs. (106)

and (108) for the collapse time at criticality are also valid
for nongravitational BECs with an attractive self-
interaction in a confining trap (see footnote 10). They
do not seem to have been reported previously in that
context.

VIII. CONCLUSION

In this paper, we have computed the quantum and
thermal tunneling rates of dilute axion stars close to the
maximum mass Mmax [37,38]. In the quantum case, we
have shown that the bounce exponent vanishes as ð1 −
M=MmaxÞ5=4 and the amplitude as ð1 −M=MmaxÞ7=8. In the
thermal case, we have shown that the energy barrier
vanishes as ð1 −M=MmaxÞ3=2. The same scalings were
previously obtained in the case of nongravitational BECs
with attractive self-interaction in a harmonic trap close to
the maximum particle number [218,219]. The scaling for
the bounce exponent of the quantum tunneling rate was also
obtained long ago by [228] in the case of neutron stars close
to the Oppenheimer-Volkoff maximum mass and the
scaling for the thermal tunneling rate was also obtained
by [224] in the case of globular clusters close to the point of
gravitational collapse. These scalings reflect the universal
form of the potential close to a saddle-center bifurcation.
However, despite these attenuation factors, the lifetime of
dilute axion stars generically scales as eNtD as anticipated
in [86]. In the case of axion stars, the number of bosons is
very large (N ∼ 1050–10100) implying that the lifetime of
dilute axion stars is considerable. As a matter of fact, these
metastable states can be considered as stable states [86,160]
except extremely close to the critical point. Barrier pen-
etration is a notoriously slow process. Indeed, similar
results regarding the very long lifetime of metastable states
have been previously obtained in the case of systems with
long-range interactions [238–241], neutron stars [228],
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quantum field theory in the early universe [242–252],18
laboratory BECs [195,218,219], globular clusters
[224,237],19 and Q-balls [222]. In all these examples,
quantum and thermal tunneling are very rare processes.
More precisely, we can draw the following conclusions

depending on the number of particles in the system:
(i) In laboratory BECs, the number of bosons in a

quantum gas is moderate (N ∼ 1000) so that quan-
tum and thermal tunnelings, even if they are small,
can be observed and measured [218,219].

(ii) In globular clusters, the number of stars is of the order
of N ∼ 106. This number is large but not gigantic. In
particular, finite N effects can advance the onset of
gravitational collapse (gravothermal catastrophe)
[224,237,266]. The critical density contrast taking
into account the finite number of particles is Rc ¼
709 × expð−3.30N−1=3Þ giving Rc ¼ 686 for N ¼
106 instead of Rc ¼ 709. This may explain why
observations reveal that a greater number of globular
clusters than is normally believed may already be in
an advanced stage of core collapse.

(iii) In axion stars, the number of bosons is of the order
of N ∼ 1050–10100. This number is gigantic so that
quantum and thermal tunnelings are completely
negligible and the onset of gravitational collapse
(or the value of the maximum mass) is not altered
[86]. Only extraordinarily close to the maximum
mass does their lifetime decrease.

Our results show that the tunneling rate of dilute axion
stars is usually negligible. This strengthens the validity of
our former results [37,75,86]where this effect was neglected
from the start. This is because, in axion stars, the number of
bosons N is huge. However, we can imagine that, in a close
future, it will be possible to make laboratory experiments
and numerical simulations of “axion stars” or self-
gravitating BECs with an attractive self-interaction. In such
experiments, and in the first generation of numerical simu-
lations, the number of bosons N will be relatively small and
tunneling effects may be measurable. Our results will be
useful to interpret such experiments and numerical simu-
lations. The general methods presented in our paper may
also find applications in other situations of physical interest,
beyond axion stars, where the tunneling rate is larger.
On the other hand, the present study allowed us to take

into account the effect of fluctuations during the collapse of
axion stars which were ignored in our previous work [75].
In particular, at the maximum mass M ¼ Mmax, we found
that the collapse time scales as tQcoll ∝ N1=5tD in the
quantum case and as tTcoll ∝ N1=6tD in the thermal case
instead of being infinite as implied by Eq. (104) which does
not take into account quantum and thermal fluctuations
[75]. We then found that the collapse time is smaller than
age of universe for QCD axion stars but larger for axion
stars (or for the quantum core of DM halos) made of ULAs.

APPENDIX A: FROM THE KGE EQUATIONS TO
THE GPP EQUATIONS

In this Appendix, we show that the GPP equations (3)
and (4) can be derived from the KGE equations in the
nonrelativistic limit c → þ∞. For the sake of generality,
we take into account the expansion of the Universe (the
static case is recovered for a ¼ 1). As an example, we
consider the case of dilute axion stars and relate the
scattering length as appearing in the GP equation (3) to

18In the context of quantum field theory, it was believed in the
1970-1980s that the early Universe, by cooling below some
critical temperature T0, had undergone a first order phase
transition from a metastable symmetic state φ ¼ 0 (false vacuum)
to a stable symmetry-breaking Higgs state φ ¼ σ (true vacuum)
giving mass to the particles [193,194,253–256]. The tunneling
was expected to proceed through the formation of bubbles like in
the liquid-gas phase transition [257]. However, it was soon
realized that the nucleation of bubbles, thermal or quantum,
was a very rare event and that the tunneling probability was
extremely small. As a result, the lifetime of the metastable
vacuum state φ ¼ 0 in gauge theories is usually extremely large
[242–252], much larger than the age of the Universe. In practice,
in these scenarios, the Universe remains in the supercooled
symmetric vacuum state φ ¼ 0, leading to a phase of inflation
during which the scale factor increases exponentially with time
[246–251,258–263]. Therefore, the transition from the symmetric
state φ ¼ 0 to the asymmetric state φ ¼ σ does not occur at T0,
where the asymmetric state becomes energetically favored, but at
a much lower temperature ∼Tc at which the symmetric state φ ¼
0 becomes unstable. Now that the Higgs mass has been measured
and found to be much larger than the value required in the
previous scenarios, it is rather believed that the early Universe
experienced a second order phase transition from a symmetric
phase φ ¼ 0 at high temperatures (T > Tc) to a symmetry-
breaking phase φ ¼ σ at low temperatures (T < Tc).19The very long lifetime of metastable states justifies the
notion of statistical equilibrium for self-gravitating systems
[224]. It is well known since the works of Antonov [264] and
Lynden-Bell and Wood [265] that no equilibrium state for self-
gravitating systems exists in a strict sense, even if they are
confined within a box in order to prevent their evaporation or if
we use the King model to take into account tidal effects. They can
always increase their entropy at fixed energy and mass by
forming a “core-halo” structure made of a binary star (containing
a very negative potential energy) surrounded by a hot halo
(containing a very positive kinetic energy). In this sense, there is
no global maximum of entropy at fixed energy and mass. The
system is ultimately expected to collapse (gravothermal catas-
trophe). However, there exist metastable equilibrium states (local
but not global maxima of entropy at fixed energy and mass) if the
energy is not too low. If the system is initially in a metastable state
(which is the most natural situation), it must cross a huge barrier
of entropy to collapse. This is achieved by forming a condensed
structure (or a binary star) similar to a “critical droplet” in the
physics of phase transitions and nucleation problems. This
requires nontrivial three-body or higher correlations. This is a
very rare event whose probability scales as e−N . Therefore the
lifetime of the metastable state scales as eN . This lifetime is
generally larger or comparable to the age of the Universe making
metastable states fully relevant. Therefore, in practice, metastable
states can be considered as stable equilibrium states.

QUANTUM TUNNELING RATE OF DILUTE AXION STARS … PHYS. REV. D 102, 083531 (2020)

083531-17



the axion decay constant f. This Appendix follows Secs. II
and III of [86].
Let us consider the relativistic quantum field theory of a

real SF φðr; tÞ with an action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ðA1Þ

associated with the Lagrangian density

L ¼ 1

2
gμν∂μφ∂νφ −

m2c2

2ℏ2
φ2 − VðφÞ þ c4

16πG
R; ðA2Þ

where gμν is the metric tensor, g is its determinant, R is the
Ricci scalar, and VðφÞ is the potential of the SF. The least
action principle δS ¼ 0 leads to the KGE equations (see,
e.g., [63])

□φþm2c2

ℏ2
φþ dV

dφ
¼ 0; ðA3Þ

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν; ðA4Þ

where □ ¼ Dμðgμν∂νÞ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νÞ is the

d’Alembertian in a curved spacetime and

Tμν ¼ ∂μφ∂νφ − gμν

�
1

2
gρσ∂ρφ∂σφ −

m2c2

2ℏ2
φ2 − VðφÞ

�
ðA5Þ

is the energy-momentum tensor of the SF with T0
0 ¼ ϵ the

energy density. The SF may represent the axion. The
instanton potential of the axion is [126,267,268]

VðφÞ ¼ m2cf2

ℏ3

�
1 − cos

�
ℏ1=2c1=2φ

f

��
−
m2c2

2ℏ2
φ2; ðA6Þ

where m is the mass of the axion and f is the axion decay
constant. For this potential, the KG equation (A3) takes
the form

□φþm2c3=2f

ℏ5=2 sin

�
ℏ1=2c1=2φ

f

�
¼ 0: ðA7Þ

This is the general relativistic sine-Gordon equation.
Considering the dilute regime φ ≪ f=

ffiffiffiffiffiffi
ℏc

p
(which is valid

in particular in the nonrelativistic limit c → þ∞ considered
below)20 and expanding the cosine term in Eq. (A6) in
Taylor series, we obtain at leading order the φ4 potential

VðφÞ ¼ −
m2c3

24f2ℏ
φ4: ðA8Þ

In that case, the KG equation (A3) takes the form

□φþm2c2

ℏ2
φ −

m2c3

6f2ℏ
φ3 ¼ 0: ðA9Þ

In general, a quartic potential is written as

VðφÞ ¼ λ

4ℏc
φ4; ðA10Þ

where λ is the dimensionless self-interaction constant.
Comparing Eqs. (A8) and (A10), we find that

λ ¼ −
m2c4

6f2
: ðA11Þ

We note that λ < 0, so that the φ4 self-interaction term for
axions is attractive. This attraction is responsible for the
collapse of dilute axion stars above a maximum mass
[37,75]. The next order φ6 term has been considered in [86]
and turns out to be repulsive. This repulsion, that occurs at
high densities, may stop the collapse of dilute axion stars
and lead to the formation of dense axion stars [145].
In the weak-field gravity limit of general relativity

Φ=c2 ≪ 1, using the simplest form of the Newtonian gauge,
the Friedmann-Lemaître-Robertson-Walker (FLRW) line
element is given by

ds2 ¼ c2
�
1þ 2

Φ
c2

�
dt2 − aðtÞ2

�
1 − 2

Φ
c2

�
δijdxidxj;

ðA12Þ

where Φðr; tÞ is the Newtonian potential and aðtÞ is the
scale factor. In the Newtonian limit Φ=c2 → 0, the
KGE equations (A3) and (A4) for the inhomogeneous SF
reduce to

1

c2
∂2φ

∂t2 þ 3H
c2

∂φ
∂t −

1

a2
Δφþm2c2

ℏ2

�
1þ 2Φ

c2

�
φþ dV

dφ
¼ 0;

ðA13Þ

ΔΦ
4πGa2

¼ ϵ

c2
−
3H2

8πG
; ðA14Þ

where H ¼ _a=a is the Hubble parameter and the energy
density is given by

20According to Eq. (A40), the axion decay constant f scales
as c3=2.
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ϵ ¼ 1

2c2

�∂φ
∂t
�

2

þ 1

2a2
ð∇φÞ2 þm2c2

2ℏ2
φ2 þ VðφÞ: ðA15Þ

For the φ4 potential (A8), we get

1

c2
∂2φ

∂t2 þ
3H
c2

∂φ
∂t −

1

a2
Δφþm2c2

ℏ2

�
1þ2Φ

c2

�
φ−

m2c3

6f2ℏ
φ3¼0

ðA16Þ

and

ϵ ¼ 1

2c2

�∂φ
∂t
�

2

þ 1

2a2
ð∇φÞ2 þm2c2

2ℏ2
φ2 −

m2c3

24f2ℏ
φ4:

ðA17Þ

In Eqs. (A13)–(A15), we have neglected general relativity
(i.e., we have treated gravity in the Newtonian framework)21

butwe have kept special relativity effects (seeEqs. (2) and (3)
of [86] formoregeneral equations valid at the orderOðΦ=c2Þ
in the post-Newtonian approximation). Considering now the
nonrelativistic limit c → þ∞ where the SF displays rapid
oscillations, these equations can be simplified. To that
purpose, we write

φ ¼ 1ffiffiffi
2

p ℏ
m
½ψðr; tÞe−imc2t=ℏ þ ψ�ðr; tÞeimc2t=ℏ�; ðA18Þ

where the complex wave function ψðr; tÞ is a slowly varying
function of time (the fast oscillations eimc2t=ℏ of the SF have
been factored out). This transformation allows us to separate
the fast oscillations of the SF with pulsation ω ¼ mc2=ℏ
caused by its rest mass from the slow evolution of ψðr; tÞ.
From Eq. (A18), we get

_φ ¼ 1ffiffiffi
2

p ℏ
m

�
_ψe−imc2t=ℏ −

imc2

ℏ
ψe−imc2t=ℏ þ c:c:

�
; ðA19Þ

∇φ ¼ 1ffiffiffi
2

p ℏ
m
ð∇ψe−imc2t=ℏ þ c:c:Þ; ðA20Þ

φ̈ ¼ 1ffiffiffi
2

p ℏ
m

�
ψ̈e−imc2t=ℏ −

2imc2

ℏ
_ψe−imc2t=ℏ

−
m2c4

ℏ2
ψe−imc2t=ℏ þ c:c:

�
; ðA21Þ

Δφ ¼ 1ffiffiffi
2

p ℏ
m
ðΔψe−imc2t=ℏ þ c:c:Þ; ðA22Þ

where c.c. denotes complex conjugation. These equations are
exact.22 On the other hand, if we compute _φ2, ð∇φÞ2, φ2, φ3

and φ4 from Eqs. (A18)–(A20) and neglect terms with a
rapidly oscillating phase factor einmc2t=ℏ with n ≥ 2, we get23

_φ2 ¼ ℏ2

m2

���� ∂ψ∂t
����2 þ c4jψ j2 − 2

ℏc2

m
Im

�∂ψ
∂t ψ

�
�
; ðA24Þ

ð∇φÞ2 ¼ ℏ2

m2
j∇ψ j2; ðA25Þ

φ2 ¼ ℏ2

m2
jψ j2; ðA26Þ

φ3 ≃
1

2
ffiffiffi
2

p ℏ3

m3
ð3ψ2ψ�e−imc2t=ℏ þ c:c:Þ; ðA27Þ

φ4 ¼ 3ℏ4

2m4
jψ j4: ðA28Þ

Substituting these relations into the KGE equations (A14),
(A16) and (A17), and neglecting oscillatory terms, we obtain
the relativistic GPP equations (see Eqs. (7) and (8) of [86] for
more general equations valid at the order OðΦ=c2Þ in the
post-Newtonian approximation):

iℏ
∂ψ
∂t −

ℏ2

2mc2
∂2ψ

∂t2 −
3

2
H

ℏ2

mc2
∂ψ
∂t þ

ℏ2

2ma2
Δψ

−mΦψ −m
dVeff

djψ j2 ψ þ 3

2
iℏHψ ¼ 0; ðA29Þ

ΔΦ
4πGa2

¼jψ j2þ ℏ2

2m2c4

����∂ψ∂t
����2þ ℏ2

2a2m2c2
j∇ψ j2

þ 1

c2
Veffðjψ j2Þ−

ℏ
mc2

Im

�∂ψ
∂t ψ

�
�
−
3H2

8πG
; ðA30Þ

with the effective potential

21This is valid provided the system is sufficiently far from
forming a black hole.

22For a noninteracting SF (V ¼ 0), substituting Eqs. (A18)–
(A22) into Eq. (A13), we get the exact special relativistic wave
equation

1

c2
∂2ψ

∂t2 þ
3H
c2

�∂ψ
∂t −

imc2

ℏ
ψ

�
−
2im
ℏ

∂ψ
∂t −

1

a2
Δψþ2m2

ℏ2
Φψ¼0:

ðA23Þ
23Since we are considering the slowly varying part of the wave

function, we can remove all parts that oscillate with a frequency
much larger than mc2=ℏ, i.e., we can neglect all parts that change
with a frequency 2mc2=ℏ, 3mc2=ℏ, 4mc2=ℏ… To a good
approximation, we can argue that the fast oscillating parts average
to zero in the evolution of φ. This eliminates particle number
changing, as discussed at the end of this Appendix.
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Veffðjψ j2Þ ¼ −
ℏ3c3

16f2m2
jψ j4: ðA31Þ

We note that Veffðjψ j2Þ≡ VðφÞ is different from the expres-
sion that one would have obtained by directly substituting
Eq. (A26) into Eq. (A8).24 They differ by a factor 2=3. On the
other hand, assuming ðℏ=mc2Þjψ̈ j ≪ j _ψ j, ðℏ=mc2Þj _ψ j ≪
jψ j and mc2=ℏ ≫ H, Eqs. (A29) and (A30) reduce to

iℏ
∂ψ
∂t þ

3

2
iℏHψ ¼ −

ℏ2

2ma2
Δψ þmΦψ þm

dVeff

djψ j2 ψ ;

ðA32Þ

ΔΦ
4πGa2

¼ jψ j2 þ ℏ2

2a2m2c2
j∇ψ j2 þ 1

c2
Veffðjψ j2Þ −

3H2

8πG
:

ðA33Þ

Finally, taking the nonrelativistic limit c → þ∞, we obtain
the GPP equations

iℏ
∂ψ
∂t þ

3

2
iℏHψ ¼ −

ℏ2

2ma2
Δψ þmΦψ þm

dVeff

djψ j2 ψ ;

ðA34Þ

ΔΦ
4πGa2

¼ jψ j2 − 3H2

8πG
: ðA35Þ

In the last expression, the energy density is given by

ϵ

c2
≃ jψ j2: ðA36Þ

Since ϵ=c2 represents, in the nonrelativistic limit c → þ∞,
the rest-mass density ρ, we conclude that ρ ¼ jψ j2.
Therefore, the field equation (A14) reduces to the Poisson
equation

ΔΦ ¼ 4πGa2
�
ρ −

3H2

8πG

�
: ðA37Þ

Equation (A31) is valid for the φ4 potential (A8). More
generally, the effective potential associated with the axion
potential (A6) is

Veffðjψ j2Þ ¼
m2cf2

ℏ3

�
1 −

ℏ3c
2f2m2

jψ j2 − J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ3cjψ j2
f2m2

s ��
;

ðA38Þ

where J0 is the Bessel function of zeroth order (see
[86,148] for a detailed derivation). In the dilute regime
jψ j2 ≪ f2m2=ℏ3c (which is valid in particular in the
nonrelativistic limit c → þ∞, see footnote 20) the effective
potential Veffðjψ j2Þ is dominated by the jψ j4 term. If we
expand Eq. (A38) in powers of jψ j, we recover Eq. (A31) at
leading order. A jψ j4 effective potential is usually written as

Veffðjψ j2Þ ¼
2πasℏ2

m3
jψ j4; ðA39Þ

where as is the s-scattering length of the bosons [269].25

Comparing Eqs. (A31) and (A39), we find that

as ¼ −
ℏc3m
32πf2

: ðA40Þ

We note that the scattering length is negative (as < 0)
corresponding to an attractive self-interaction. On the other
hand, comparing Eqs. (A11) and (A40) yields26

λ

8π
¼ 2asmc

3ℏ
: ðA41Þ

The nonrelativistic limit c → þ∞ can also be performed
directly in the action of the SF. Let us consider the
nongravitational case for brevity of presentation (we also
assume a static background). In that case, the action of the
SF is

S ¼
Z

d4xL ðA42Þ

with the Lagrangian density

L ¼ 1

2c2

�∂φ
∂t
�

2

−
1

2
ð∇φÞ2 −m2c2

2ℏ2
φ2 − VðφÞ: ðA43Þ

24This is because φ is a real SF. Therefore, substituting φ
(exact) from Eq. (A18) into VðφÞ then averaging over the
oscillations is different from substituting φ (already averaged
over the oscillations) from Eq. (A26) into VðφÞ. In other words,
V1ðφ2Þ ≠ V1ðφ2Þwhere we have set VðφÞ ¼ V1ðφ2Þ. The case of
a complex SF φ has been considered in [63,64]. In that case, the
transformation of the equations from φ to ψ is exact (there is no
need to average over the oscillations) and the potential is
unchanged (Veff ¼ V).

25The ordinary GP equation with a cubic nonlinearity [270–
273] is usually derived from the mean field Schrödinger equation
[274] with a pair contact potential [275,276] (see, e.g., Sec. II.A.
of [37]). The present approach shows that the GP equation with a
cubic nonlinearity may also be derived from the KG equation
with a quartic self-interaction potential. More generally, the GP
equation with a nonlinearity Veffðjψ j2Þ may be derived from the
KG equation with a self-interaction potential VðφÞ (see
Refs. [63,64,86] for a more detailed discussion in the case of
a complex or a real SF respectively).

26We note that the relation between λ and as is different for a
real SF and for a complex SF (see Appendix A of [75] for a
complex SF). They differ by a factor 2=3 for the reason indicated
in footnote 24.

PIERRE-HENRI CHAVANIS PHYS. REV. D 102, 083531 (2020)

083531-20



The least action principle δS ¼ 0 leads to the Euler-
Lagrange equation

∂μ

� ∂L
∂ð∂μφÞ

�
−
∂L
∂φ ¼ 0; ðA44Þ

yielding the KG equation

1

c2
∂2φ

∂t2 − Δφþm2c2

ℏ2
φþ dV

dφ
¼ 0: ðA45Þ

On the other hand, substituting Eqs. (A24)–(A28) into the
Lagrangian (A43) and neglecting oscillatory terms, we
obtain the action

S ¼
Z

Ldr ðA46Þ

with the Lagrangian

L ¼ ℏ2

2m2c2

���� ∂ψ∂t
����2 − ℏ

m
Im

�∂ψ
∂t ψ

�
�

−
ℏ2

2m2
j∇ψ j2 − Veffðjψ j2Þ: ðA47Þ

In the nonrelativistic limit c → þ∞, it reduces to

L ¼ ℏ
2m

i

�∂ψ
∂t ψ

� − ψ
∂ψ�

∂t
�
−

ℏ2

2m2
j∇ψ j2 − Veffðjψ j2Þ;

ðA48Þ

where we have used

2iIm

�∂ψ
∂t ψ

�
�

¼ ∂ψ
∂t ψ

� − ψ
∂ψ�

∂t : ðA49Þ

We recover the Lagrangian of a nonrelativistic BEC (see,
e.g., Appendix B of [75]). The Euler-Lagrange equation

∂
∂t
�∂L
∂ _ψ
�
þ∇ ·

� ∂L
∂∇ψ

�
−
∂L
∂ψ ¼ 0 ðA50Þ

yields the GP equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm

dVeff

djψ j2 ψ : ðA51Þ

Remark: Basically, axions are described by a relativistic
quantum field theory with a real scalar field φ that obeys the
KGE equations. In that case, the particle number is not
conserved. However, axions whose kinetic energies are
much smaller than mc2 (like in dilute axion stars) can be
described by a nonrelativistic effective field theory with a
complex SF ψ that obeys the GPP equations. In that case,

they are just spinless particles whose number N ¼
1
m

R jψ j2dr is conserved. Physically, the particle number
is conserved because, by removing the fast oscillating
terms, we have eliminated the particle number violating
processes that are energetically forbidden for nonrelativistic
particles.

APPENDIX B: GINZBURG-LANDAU-POISSON,
CAHN-HILLIARD-POISSON, AND

SMOLUCHOWSKI-POISSON EQUATIONS

In this Appendix, we introduce Ginzburg-Landau-
Poisson (GLP), Cahn-Hilliard-Poisson (CHP) and
Smoluchowski-Poisson (SP) equations that can serve as
numerical algorithms to compute the stable equilibrium
states of the GPP equations.27

1. Equations for ψ

The GP equation writes [79]

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm½V 0ðjψ j2Þ þΦþΦext�ψ ; ðB1Þ

where, for the sake of generality, we have considered an
arbitrary potential of self-interaction Vðjψ j2Þ and we have
added an external potential ΦextðrÞ. We also recall that
Φðr; tÞ is the gravitational potential determined by the
Poisson equation (4). More generally, it can represent the
mean field potential Φðr; tÞ ¼ R uðjr − r0jÞρðr0; tÞdr0 pro-
duced by particles interacting via a long-range binary
potential uðjr − r0jÞ. The energy functional associated with
the GPP equations is [79]

Etot ¼
ℏ2

2m2

Z
j∇ψ j2drþ

Z
Vðjψ j2Þdr

þ 1

2

Z
jψ j2Φdrþ

Z
jψ j2Φextdr: ðB2Þ

The GP equation (B1) can then be rewritten as

iℏ
∂ψ
∂t ¼ m

δEtot

δψ� : ðB3Þ

The GPP equations conserve the mass M ¼ R jψ j2dr and
the energy Etot [79]. A stationary solution is obtained by
extremizing Etot at fixed M, writing δEtot −

μ
m δM ¼ 0,

where μ (global chemical potential) is a Lagrange
multiplier accounting for the conservation of mass [79].
Using

27Note that similar numerical algorithms, having the form of
generalized Fokker-Planck equations, have been introduced in
[277–280] in order to compute the stable equilibrium states of the
Vlasov-Poisson and Euler-Poisson equations.
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δEtot

δψ� ¼ −
ℏ2

2m2
Δψ þ ½V 0ðjψ j2Þ þΦþΦext�ψ ; ðB4Þ

we get

−
ℏ2

2m
Δψ þm½V 0ðjψ j2Þ þΦþΦext�ψ ¼ μψ : ðB5Þ

The same equation can be obtained by substituting the
ansatz ψðr; tÞ ¼ ϕðrÞe−iEt=ℏ into Eq. (B1). This establishes
that the eigenenergy E is equal to the global chemical
potential μ. It can be shown furthermore that an equilibrium
state is stable if, and only if, it is a minimum of Etot at fixed
M [79].
We stress that the GPP equations do not relax toward the

stationary state that minimizes the energy Etot at fixed mass
M (ground state)—except if the system is in this state
initially—because they do not satisfy an H-theorem.
Indeed, the GPP equations are reversible and the energy
Etot is conserved. In other words, the GPP equations are not
relaxation equations in the usual sense. They can, however,
display a complicated process of violent relaxation [177]
and gravitational cooling [172–174] toward a quasista-
tionary state with a core-halo structure. The characteriza-
tion of this core-halo state is considered in [281].
Independently from the characterization of this core-halo
state it is an important mathematical problem in itself to be
able to construct the stable stationary solutions of the GPP
equations. However, it is difficult in practice to numerically
solve the nonlinear eigenvalue problem defined by Eq. (B5)
and make sure that the solution is stable.
In order to compute the stable steady states of the GP

equation, Huepe et al. [219] proposed to solve the GL
equation28

−ℏ
∂ψ
∂t ¼ m

δF
δψ� ; ðB6Þ

where F ¼ Etot −
μ
mM is a grand potential. This equation

can be written explicitly as

−ℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm½V 0ðjψ j2Þ þΦþΦext�ψ − μψ :

ðB7Þ

The GLP equations satisfy an H-theorem for the grand
potential: _F ¼ −ð2m=ℏÞ R jδF=δψ j2dr ≤ 0. As a result,
they relax toward a steady state of the form of Eq. (B5)
which minimizes F at fixed μ.29 This is therefore a stable
steady state of the GPP equations with this value of μ. The

GL equation does not conserve the mass M contrary to the
GP equation. This is because it is associated with a grand
canonical description where the chemical potential μ is
fixed instead of the mass M. In order to obtain, at
equilibrium, the correct value of μ corresponding to a
prescribed mass M, Huepe et al. [219] proposed to solve
Eq. (B7) with a chemical potential μðtÞ that evolves
in time so as to conserve M.30 This amounts to introducing
formally a canonical description where the mass is fixed. In
conclusion, the GL equation provides a useful numerical
algorithm to construct the stable stationary solutions of the
GP equation. By construction, the equilibrium solution
reached by the GL equation (which truly is a relaxation
equation) is guaranteed to be a stable stationary solution of
the GP equation.

2. Equations for ρ

In the hydrodynamic representation, the energy func-
tional associated with the GPP equations is [79]

Etot ¼
1

m

Z
ρQdrþ

Z
VðρÞ dr

þ 1

2

Z
ρΦ drþ

Z
ρΦext dr; ðB8Þ

where we have not written the classical kinetic term Θc ¼
ð1=2Þ R ρu2dr since we are interested by equilibrium states
only. The quantum Euler-Poisson equations (6)–(9), which
are equivalent to the GPP equations (3) and (4), can be
written in terms of functional derivatives of Etot (see
Sec. 3.6 of [79]). The quantum Euler-Poisson equations
conserve the mass M ¼ R ρdr and the energy Etot (includ-
ing Θc) [79]. A steady state is obtained by extremizing Etot
at fixed M, writing δEtot −

μ
m δM ¼ 0 [79]. Using

δEtot

δρ
¼ Q

m
þ V 0ðρÞ þΦþΦext; ðB9Þ

we get

QþmðV 0ðρÞ þΦþΦextÞ ¼ μ: ðB10Þ

The same equation can be obtained from the condition of
quantum hydrostatic equilibrium (12) by using V 00ðρÞ ¼
h0ðρÞ ¼ P0ðρÞ=ρ or P ¼ ρV 0ðρÞ − VðρÞ, where h is the
enthalpy (equal to the local chemical potential) [79].
Equation (B10) is also equivalent to Eq. (B5). An equi-
librium state is stable if, and only if, it is a minimum of Etot
at fixedM [79]. In order to compute the stable steady states
of the quantum Euler equation, one can solve the GL
equation28This amounts to integrating the GP equation in imaginary

time [282,283].
29They can only relax toward minima of F, not toward maxima

or saddle points that are unstable.

30This is similar to the time-dependent inverse temperature
βðtÞ enforcing the conservation of energy in [277].
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ξ
∂ρ
∂t ¼ −

δF
δρ

; ðB11Þ

where F ¼ Etot −
μ
mM is a grand potential. This equation

can be written explicitly as

−mξ
∂ρ
∂t ¼ QþmðV 0ðρÞ þΦþΦextÞ − μ: ðB12Þ

The GLP equations satisfy an H-theorem for the grand
potential: _F ¼ −ð1=ξÞ R ðδF=δρÞ2dr ≤ 0. We can then
make the same comments as those following Eq. (B7).
Remark: An alternative manner to compute the stable

equilibrium states of the quantum Euler equation is to solve
the CH equation

ξ
∂ρ
∂t ¼ Δ

δEtot

δρ
; ðB13Þ

or, explicitly,

ξ
∂ρ
∂t ¼ Δ

�
Q
m
þ V0ðρÞ þΦþΦext

�
; ðB14Þ

which conserves the massM and satisfies an H-theorem for
the energy: _Etot ¼−ð1=ξÞR ½∇ðδEtot=δρÞ�2dr≤ 0. Following
[79], we may also consider the generalized CH equation

ξ
∂ρ
∂t ¼ ∇ ·

�
ρ∇ δEtot

δρ

�
; ðB15Þ

which conserves the massM and satisfies an H-theorem for
the energy: _Etot¼−ð1=ξÞR ρ½∇ðδEtot=δρÞ�2dr≤0. Explicitly,
this equation has the form of a quantum Smoluchowski
equation [79]

ξ
∂ρ
∂t ¼ ∇ ·

�
∇Pþ ρ∇Φþ ρ∇Φext þ

ρ

m
∇Q
�
: ðB16Þ

It corresponds to the strong friction limit ξ → þ∞ of the
damped GP equation introduced in [79]:

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm½V0ðjψ j2Þ þΦþΦext�ψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
�
ln

�
ψ

ψ�

�	�
ψ : ðB17Þ

This dissipative equation may thus serve as a numerical
algorithm to compute the stable equilibriumstates of theGPP
equations. The damped quantum Euler equations, which are
equivalent to Eq. (B17), could be considered as well [79]. In
these different examples, the mass is automatically con-
served so it is not necessary to enforce its conservationwith a
Lagrange multiplier μðtÞ as for the GL equation.

3. Equations for ϕ

Let us set ρ ¼ ϕ2 where ϕ is real. In that case, the energy
functional (B8) can be rewritten as

Etot ¼
ℏ2

2m2

Z
ð∇ϕÞ2drþ

Z
Vðϕ2Þdr

þ 1

2

Z
ϕ2Φdrþ

Z
ϕ2Φextdr; ðB18Þ

where, as before, we have not written the classical kinetic
term Θc. The GPP equations conserve the mass M ¼R
ϕ2dr and the energy Etot (including Θc). A steady

state is obtained by extremizing Etot at fixed M, writing
δEtot −

μ
m δM ¼ 0. Using

δEtot

δϕ
¼ −

ℏ2

m2
Δϕþ 2V 0ðϕ2Þϕþ 2ϕΦþ 2ϕΦext; ðB19Þ

we get

−
ℏ2

2m
Δϕþm½V 0ðϕ2Þ þΦþΦext�ϕ ¼ μϕ: ðB20Þ

An equilibrium state is stable if, and only if, it is a
minimum of Etot at fixed M.
In order to compute the stable steady states of the GP

equation, one can solve the GL equation

ξ
∂ϕ
∂t ¼ −

δF
δϕ

; ðB21Þ

where F ¼ Etot −
μ
mM is a grand potential. This equation

can be written explicitly as

−
ξm
2

∂ϕ
∂t ¼ −

ℏ2

2m
Δϕþm½V 0ðϕ2Þ þΦþΦext�ϕ − μϕ:

ðB22Þ

The GLP equations satisfy an H-theorem for the grand
potential: _F ¼ ð−1=ξÞ R ðδF=δϕÞ2dr ≤ 0. We can then
make the same comments as those following Eq. (B7).

APPENDIX C: THERMAL TUNNELING IN THE
STOCHASTIC GINZBURG-LANDAU EQUATION

In this Appendix, we take thermal fluctuations into
account in the framework of the stochastic GL equation
[284].31 We compute the thermal tunneling rate of a field
ρðr; tÞ across a barrier of free energy by using the instanton
theory [285]. Our approach provides, in this context, a
justification of the Kramers formula giving the typical

31This equation has been studied numerically recently by
Verma et al. [108] in relation to self-gravitating BECs.
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lifetime of a metastable state. Similar results can be
obtained for the stochastic CH and generalized CH (or
Smoluchowski) equations [286–288].
The stochastic GL equation writes

ξ
∂ρ
∂t ¼ −

δF
δρ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξkBT

p
ζðr; tÞ; ðC1Þ

where ζðr; tÞ is a Gaussian white noise. The free energy
F½ρ� can be an arbitrary functional of ρ, but it is usually
written under the form

F½ρ� ¼
Z �

1

2
ð∇ρÞ2 þ VðρÞ

�
dr: ðC2Þ

The potential VðρÞ is often approximated by its normal
form close to a critical point according to the Landau theory
of phase transitions but we shall treat it here as an arbitrary
function of ρ. For a functional of the form of Eq. (C2), the
stochastic GL equation (C1) can be written explicitly as

ξ
∂ρ
∂t ¼ Δρ − V 0ðρÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξkBT

p
ζðr; tÞ: ðC3Þ

In the absence of noise (T ¼ 0), the deterministic GL
equation writes

ξ
∂ρ
∂t ¼ −

δF
δρ

¼ Δρ − V 0ðρÞ: ðC4Þ

Its equilibrium states are extrema of F:

∂ρ
∂t ¼ 0 ⇔

δF
δρ

¼ 0 ⇔ −Δρþ V 0ðρÞ ¼ 0: ðC5Þ

On the other hand, it satisfies an H-theorem

_F ¼
Z

δF
δρ

∂ρ
∂t dr ¼ −

1

ξ

Z �
δF
δρ

�
2

dr ≤ 0: ðC6Þ

As a result, the deterministic GL equation generically
relaxes toward a stable equilibrium state which minimizes
F½ρ� (maxima or saddle points are linearly unstable). In the
presence of noise (T ≠ 0), the stochastic GL equation (C1)
can be interpreted as a Langevin equation. The probability
density P½ρ; t� of the density field ρðr; tÞ at time t is
governed by the functional FP equation

ξ
∂P
∂t ½ρ; t� ¼

Z
dr

δ

δρðrÞ

�

kBT
δ

δρðrÞ þ
δF

δρðrÞ
�
P½ρ; t�

�
:

ðC7Þ

It relaxes toward the equilibrium Boltzmann distribution

Peq½ρ� ¼
1

ZðβÞ e
−βF½ρ�: ðC8Þ

Let us assume that the free energy functional F½ρ� has a
local minimum ρMðrÞ (metastable state) and a global
minimum ρSðrÞ (stable state) separated by a maximum
or a saddle point ρUðrÞ (unstable state). In the absence of
noise, the evolution of the system is deterministic and the
density ρðr; tÞ relaxes toward one of the minima of the
potential as implied by theH-theorem (C6). In the presence
of noise, the density switches back and forth between the
two minima (attractors). When the noise is weak (T → 0),32

the transition between the two minima is a rare event. One
important problem is to determine the rate Γ for the density
profile, initially located in the metastable state ρMðrÞ, to
cross the barrier of free energy and reach the stable
state ρSðrÞ.
Since the distribution of the Gaussian white noise ζðr; tÞ

is

P½ζðr; tÞ� ∝ e−
R þ∞
−∞

dt
R

d rζ2ðr;tÞ=2; ðC9Þ

the probability of the path ρðr; tÞ is

P½ρðr; tÞ� ∝ e−S½ρðr;tÞ�=kBT; ðC10Þ

where S is the generalized Onsager-Machlup (OM) func-
tional [289]

S½ρðr; tÞ� ¼ 1

4χ

Z
dt
Z

dr

�∂ρ
∂t þ χ

δF
δρ

�
2

: ðC11Þ

The functional S may be called an action by analogy with
the path-integral formulation of quantum mechanics (the
temperature T plays the role of the Planck constant ℏ in
quantum mechanics) [290]. It can be written as S ¼ R Ldt
where L is the corresponding Lagrangian. The probability
density to observe the system with the profile ρ2ðrÞ at time
t2 given that it had the profile ρ1ðrÞ at time t1 is

P½ρ2ðrÞ; t2jρ1ðrÞ; t1� ¼
Z

Dρe−S½ρ�=kBT; ðC12Þ

where the integral runs over all paths satisfying ρðr; t1Þ ¼
ρ1ðrÞ and ρðr; t2Þ ¼ ρ2ðrÞ. For a given initial condition
ρ0ðrÞ at t ¼ t0, the probability density P½ρðrÞ; t�≡
P½ρðrÞ; tjρ0ðrÞ; t0� to observe the system with the profile
ρðrÞ at time t satisfies the functional FP equation (C7).
Therefore, Eq. (C12) provides the exact solution of
Eq. (C7).
In the weak noise limit, the typical paths explored by the

system are concentrated close to the most probable path.

32For systems with long-range interactions, the noise is also
weak when the number of particles N → þ∞.
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In that case, a steepest-descent evaluation of the path
integral is possible. The path integral is dominated by
the most probable path. To determine the most probable
path, we have to minimize the OM functional S½ρðr; tÞ�, i.e.,
we have to solve the minimization problem

min
ρðr;tÞ

fS½ρðr; tÞ�g: ðC13Þ

The equation for the most probable path ρcðr; tÞ that
connects two attractors is called an “instanton” [291]. It
is obtained by cancelling the first order variations of the
action

δS ¼ 0: ðC14Þ

In the weak noise limit, the transition probability from one
state to the other is dominated by the most probable path:

P½ρ2ðrÞ; t2jρ1ðrÞ; t1� ≃ e−S½ρc�=kBT: ðC15Þ

This formula can be interpreted as a large deviation result.
It provides an approximate solution of the functional FP
equation (C7). On the other hand, it can be shown that the
escape rate of the system over the barrier of free energy is
given by

Γ ∝ e−S½ρc�=kBT; ðC16Þ

where S½ρc� is the action of the most probable path
(instanton) that connects the metastable state to the stable
state. In the limit of weak noise, it can be shown that the
most probable path between the metastable state and the
stable state must necessarily pass through the saddle point
ρUðrÞ (playing the role of a “critical droplet” in problems of
nucleation). Once the system reaches the saddle point it
may either return to the initial metastable state or reach the
stable state. In the latter case, it has crossed the barrier of
free energy.
To determine the instanton which solves the variational

problem (C13), we can proceed as follows. The Lagrangian
associated with the OM functional (C11) is

L ¼ 1

4χ

Z
dr

�∂ρ
∂t þ χ

δF
δρ

�
2

: ðC17Þ

The corresponding Hamiltonian is defined by

H ¼
Z

_ρ
δL
δ_ρ

dr − L: ðC18Þ

Since the Lagrangian does not explicitly depend on time,
the Hamiltonian is conserved. Therefore, using Eq. (C17),
we get

H ¼ 1

4χ

Z
dr

�∂ρ
∂t − χ

δF
δρ

��∂ρ
∂t þ χ

δF
δρ

�
; ðC19Þ

where H is a constant. Since the attractors satisfy ∂ρ=∂t ¼
0 and δF=δρ ¼ 0, the constant H is equal to zero (H ¼ 0).
Therefore, the instanton satisfies the equations

∂ρc
∂t ¼ ∓ χ

δF
δρc

ðC20Þ

with the boundary conditions ρcðr;−∞Þ ¼ ρMðrÞ and
ρcðr;þ∞Þ ¼ ρSðrÞ. We note that the most probable path
corresponds to the deterministic dynamics (C4) with a
sign ∓.33 The physical interpretation of Eq. (C20) is the
following. Starting from the metastable state ρMðrÞ, the
most probable path follows the time-reversed deterministic
dynamics against the free energy gradient up to the saddle
point ρUðrÞ; beyond the saddle point, it follows the
forward-time deterministic dynamics down to the stable
state ρSðrÞ. According to Eqs. (C11) and (C20), the action
of the most probable path corresponding to the transition
from the saddle point to the stable state (downhill solution
corresponding to Eq. (C20) with the sign −) is zero while
the action of the most probable path corresponding to the
transition from the metastable state to the saddle point
(uphill solution corresponding to Eq. (C20) with the sign
þ) is nonzero. This is to be expected since the descent from
the saddle point to the stable state is a “free” descent that
does not require thermal noise; it thus gives the smallest
possible value of zero of the action. By contrast, the rise
from the metastable state to the saddle point is a rare event
that requires thermal noise. The action for the uphill
solution is

S½ρcðr;tÞ�¼
Z

dt
Z

dr
∂ρc
∂t

δF
δρc

¼
Z

dt
dF
dt

¼ΔF; ðC21Þ

where ΔF ¼ F½ρU� − F½ρM� is the barrier of free energy
between the metastable state and the unstable state. The
total action for the most probable path connecting the
attractors is therefore Sc ¼ S½ρþc � þ S½ρ−c � ¼ ΔF þ 0 ¼
ΔF. It is determined solely by the uphill path. The instanton
solution gives the dominant contribution to the transition
rate for a weak noise. Therefore, the rate for the system to
pass from the metastable state to the stable state (escape
rate) is

33Considering the solution with the sign −, which corresponds
to the downhill solution (see below), we see that the most
probable path (instanton) coincides with the ensemble average
path, i.e., the deterministic GL equation (C4) obtained by
averaging the stochastic GL equation (C1) over the noise. It
has a zero action (S ¼ 0). As a result, the deterministic GL
equation (C4)—the average path—can be obtained by minimi-
zing the OM functional (C11).
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Γ ∝ e−ΔF=kBT: ðC22Þ

This is the celebrated Arrhenius (or Kramers) formula
stating that the transition rate is inversely proportional to
the exponential of the barrier of free energy divided by
kBT.

34 The typical lifetime of a metastable state is
tlife ∼ Γ−1. For systems with long-range interactions, the
free energy scales as N so the typical lifetime of a
metastable state scales as

tlife ∝ eNΔf=kBT: ðC23Þ

For systems with long-range interactions, the metastable
states are very relevant since their lifetime scales as eN with
N ≫ 1. Therefore, metastable states are stable in practice.
Only very close to the critical point where Δf → 0 does
their lifetime decrease substantially.

APPENDIX D: MAXIMUM MASS OF GENERAL
RELATIVISTIC SELF-INTERACTING

BOSON STARS

We consider a relativistic complex SF φ with a self-
interaction potential Vðjφj2Þ like in Refs. [57,60,63,64,
78,80,137,138,170]. In the TF (or semiclassical) limit where
the quantum kinetic energy can be neglected, the energy
density and the pressure are given by [78]

ϵ ¼ ρc2 þ VðρÞ þ ρV 0ðρÞ; ðD1Þ

P ¼ ρV 0ðρÞ − VðρÞ ¼ ρ2
�
V
ρ

�0
; ðD2Þ

where ρ is the pseudo rest-mass density

ρ ¼ m2

ℏ2
jφj2: ðD3Þ

Therefore, in this approximation, a self-interacting boson star
is equivalent to a relativistic fluid described by a barotropic
equation of state PðϵÞ defined in implicit form by Eqs. (D1)
and (D2). We note that Eq. (D2) has the same form as in the
nonrelativistic limit where ρ ¼ jψ j2 represents the mass
density (see [79] for detail).

Let us consider a power-law potential

Vðjφj2Þ ¼ Ajφj2γ ðD4Þ

with γ > 1. Using Eq. (D3), we get

VðρÞ ¼ K
γ − 1

ργ ðD5Þ

with

K ¼ ðγ − 1ÞA
�
ℏ
m

�
2γ

: ðD6Þ

According to Eq. (D2), the pressure is given by

P ¼ Kργ: ðD7Þ

This is a polytropic equation of state with polytropic
constant K and polytropic index γ ¼ 1þ 1=n. On the
other hand, according to Eq. (D1), the energy density is
given by

ϵ ¼ ρc2 þ Kðγ þ 1Þ
γ − 1

ργ ¼ ρc2 þ ð2nþ 1ÞP: ðD8Þ

This leads to the equation of state

ϵ ¼
�
P
K

�
1=γ

c2 þ γ þ 1

γ − 1
P ðD9Þ

given in the reversed form ϵðPÞ. At low densities ρ → 0, we
get ϵ ∼ ρc2 so that the energy density is dominated by the
rest-mass energy. This corresponds to the nonrelativistic
limit. At high densities ρ → þ∞, we obtain ϵ ∼ ð2nþ 1ÞP
or, equivalently,

P ∼
1

2nþ 1
ϵ: ðD10Þ

This corresponds to the ultrarelativistic limit. Since the
relation between the pressure and the energy density is
linear (P ¼ qϵ), the mass-radius relation MðRÞ, parame-
trized by ϵ, forms a spiral at high densities as in the case of
neutron stars [228]. Furthermore, the series of equilibria
becomes unstable at themaximummassMmax corresponding
to the first turning point of the spiral.35 The square of the

34This formula can be simply obtained as follows. The
equilibrium probability of observing the density ρðrÞ is
∝ e−βF½ρ�. Therefore, the probability for the system initially
prepared in the metastable state to form a “critical droplet”
(unstable state ρU) and then reach the stable state ρS is
∝ e−βðF½ρU �−F½ρM �Þ. The typical lifetime of a metastable state
may then be estimated by tlife ∼ eβΔF, where ΔF ¼ F½ρU� −
F½ρM� is the barrier of free energy between the metastable state
and the unstable state.

35More precisely, according to Wheeler’s theorem, a mode of
stability is lost at a turning point of mass if theMðRÞ curve rotates
anticlockwise and gained if it rotates clockwise [228]. Now, we
know that nonrelativistic polytropic gaseous spheres are stable for
n < 3 and unstable for n > 3 [292]. Therefore, when n < 3, the
series of equilibria is stable before the first turning point of mass
and becomes unstable afterwards. When n > 3, the whole series
of equilibria is unstable.
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speed of sound is c2s ¼ P0ðϵÞc2 ¼ c2=ð2nþ 1Þ. Since
n > 0, the speed of sound is always less than the speed of
light (cs < c).
(i) We first consider a jφj4 potential with a repulsive self-

interaction (as > 0) of the form [57,60,63,64,78,80,
137,138]

Vðjφj2Þ ¼ 2πasm
ℏ2

jφj4: ðD11Þ

Using Eq. (D3) we get

VðρÞ ¼ 2πasℏ2

m3
ρ2: ðD12Þ

According to Eq. (D2) the pressure is given by

P ¼ 2πasℏ2

m3
ρ2: ðD13Þ

This is a polytropic equation of state of polytropic constant
K ¼ 2πasℏ2=m3 and polytropic index γ ¼ 2 (i.e., n ¼ 1).
According to Eq. (D1) the energy density is given by

ϵ ¼ ρc2 þ 3P ¼ ρc2 þ 6πasℏ2

m3
ρ2. ðD14Þ

This is a quadratic equation for ρ. Solving this equation and
substituting the result into Eq. (D13), we obtain the
equation of state

P ¼ m3c4

72πasℏ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24πasℏ2

m3c4
ϵ

s
− 1

!2

: ðD15Þ

It coincides with the result of [137]. For ρ → þ∞, the
equation of state reduces to P ∼ ϵ=3 like for the ordinary
radiation due to photons. The mass-radius relation corre-
sponding to the equation of state (D14) has been obtained
in [60,138]. It displays a maximum mass

Mmax;GR ¼ 0.307
ℏc2

ffiffiffiffiffi
as

p
ðGmÞ3=2 ðD16Þ

at a radius

R�;GR ¼ 1.923

�
asℏ2

Gm3

�
1=2

; ðD17Þ

and forms a spiral at high densities as explained previously.
(ii) We now consider axion boson stars (in the sense of

[170]) with the axion boson potential Vðjφj2Þ truncated at
the order jφj6 as in [86]:

Vðjφj2Þ ¼ 2πasm
ℏ2

jφj4 þ 32π2a2s
9ℏ2c2

jφj6: ðD18Þ

The jφj4 term is attractive (as < 0) while the jφj6 is
repulsive. We are interested in describing the branch of
dense axion boson stars for large mass M where general
relativistic effects are important. Since we are considering a
complex SF, the number of bosons is conserved. As a
result, dense axion boson stars should be stable with respect
to the decay via emission of relativistic axions contrary to
the case where the SF is real (see the introduction). Using
Eq. (D3) we get

VðρÞ ¼ 2πasℏ2

m3
ρ2 þ 32π2a2sℏ4

9m6c2
ρ3: ðD19Þ

At high densities the repulsive jφj6 term dominates over the
attractive jφj4 term. If we just keep the repulsive jφj6
potential, we obtain

VðρÞ ¼ 32π2a2sℏ4

9m6c2
ρ3: ðD20Þ

According to Eq. (D2) the pressure is given by

P ¼ 64π2a2sℏ4

9m6c2
ρ3: ðD21Þ

This is the equation of state of a polytrope with polytropic
constant K ¼ 64π2a2sℏ4=9m6c2 and polytropic index γ ¼ 3
(i.e., n ¼ 1=2). According to Eq. (D1) the energy density is
given by

ϵ ¼ ρc2 þ 128π2a2sℏ4

9m6c2
ρ3 ¼ ρc2 þ 2P: ðD22Þ

This is a third degree equation for ρ. For ρ → þ∞, the
equation of state reduces to P ∼ ϵ=2. The corresponding
mass-radius relation will be studied in a specific paper
[293]. We just provide below preliminary results.
At low densities, the system is nonrelativistic. The

general mass-radius relation of polytropic spheres is

Mðn−1Þ=nRð3−nÞ=n ¼ Kð1þ nÞ
ð4πÞ1=nG ωðn−1Þ=n

n ; ðD23Þ

where ωn is a constant that can be obtained from the Lane-
Emden equation [292]. Specializing on the equation of state
(D21), we obtain

M ¼ 3Gm6c2

2ℏ4a2s
ω1=2R5 ¼ 0.0323

Gm6c2

ℏ4a2s
R5; ðD24Þ

where we have used ω1=2 ¼ 0.02156…. We note that the
mass increases with the radius.
At high densities, the system is ultrarelativistic. Since the

equation of state is linear at high densities (P ∼ ϵ=2), we
expect that the mass-radius relationMðRÞ will form a spiral
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and display a maximum mass Mmax. An estimate of the
maximum mass of general relativistic dense boson axion
stars in the jφj6 approximation can be obtained by
combining the Newtonian mass-radius relation (D24) with
the constraint R ≥ RS, where RS ¼ 2GM=c2 is the
Schwarzschild radius. This gives a maximum general
relativistic mass

Mdense
max;GR ¼ 0.991

�jasjℏ2c4

G3m3

�
1=2

ðD25Þ

and a corresponding radius

Rdense
�;GR ¼ 1.98

�jasjℏ2

Gm3

�
1=2

: ðD26Þ

We can also express these results in terms of the axion
decay constant

f ¼
�

ℏc3m
32πjasj

�
1=2

: ðD27Þ

We get

Mdense
max;GR ¼ 0.0988

�
ℏ3c7

G3

�
1=2 1

fm
; ðD28Þ

Rdense
�;GR ¼ 0.197

�
ℏ3c3

G

�
1=2 1

fm
: ðD29Þ

If we measure the axion decay constant f in units of
1015 GeV and the axion massm in units of 10−22 eV=c2 we
obtain Mdense

max;GR ¼ 1.61 × 1015 ðfmÞ−1M⊙ and Rdense
�;GR ¼

154 ðfmÞ−1 pc.
For QCD axions with m ¼ 10−4 eV=c2, as ¼ −5.8 ×

10−53 m and f ¼ 5.82 × 1019 eV ¼ 4.77 × 10−9MPc2, we
find that Mdense

max;GR ¼ 27.7 M⊙ and Rdense
�;GR ¼ 81.9 km.

For ULAs withm ¼ 2.19 × 10−22 eV=c2, as ¼ −1.11 ×
10−62 fm and f ¼ 1.97 × 1023 eV ¼ 1.61 × 10−5MPc2,
we find thatMdense

max;GR¼3.74×1015M⊙ and Rdense
�;GR ¼ 358 pc.

Remark: For QCD axions, the product mf≡ ðΛQCD=cÞ2
of the mass and decay constant is fixed to the valueΛQCD ¼
7.6 × 107 eV [125]. This gives a universal maximum mass
and maximum stable radius Mdense

max;GR ¼ 27.7 M⊙ and
Rdense
�;GR ¼ 81.9 km [see Eqs. (D28) and (D29)]. We stress

that this result is valid only for the jφj6 potential given by
Eq. (D20) in the TF limit in whichMdense

max;GR ∝ 1=ðfmÞ. The
fact that the maximum mass of dense axion boson stars
obtained numerically by Guerra et al. [170] depends on f
when mf is fixed shows that the exact description of dense
axion boson stars [170] is more complicated than the
present analysis.

APPENDIX E: OTHER TYPES OF POTENTIALS

In Appendix D, we have considered the case of power-
law potentials. Here, we briefly introduce other types of
potentials that will be specifically studied in future works.
For a potential of the form

VðρÞ ¼ Tρ ln

�
ρ

ρ�

�
; ðE1Þ

the pressure is given by [see Eq. (D2)]

P ¼ ρT: ðE2Þ

This is an isothermal equation of state with temperature T.
According to Eq. (D1), the energy density is given by

ϵ ¼ ρc2 þ 2Tρ ln

�
ρ

ρ�

�
þ ρT: ðE3Þ

This leads to the equation of state

ϵ ¼ Pc2

T
þ 2P ln

�
P
Tρ�

�
þ P ðE4Þ

given in the reversed form ϵðPÞ. The square of the speed of
sound is c2s ¼ c2=½c2=T þ 2 lnðρ=ρ�Þ þ 3�.
For a potential of the form

VðρÞ ¼ −A ln

�
ρ

ρP

�
− A; ðE5Þ

the pressure is given by [see Eq. (D2)]

P ¼ A ln

�
ρ

ρP

�
: ðE6Þ

This is a logotropic equation of state with generalized
temperature A [294]. According to Eq. (D1), the energy
density is given by

ϵ ¼ ρc2 − A ln

�
ρ

ρP

�
− 2A: ðE7Þ

This leads to the equation of state

ϵ ¼ ρPc2eP=A − P − 2A ðE8Þ

given in the reversed form ϵðPÞ. The square of the speed of
sound is c2s ¼ c2=ðρc2=A − 1Þ.
For a potential of the form

VðρÞ ¼ A
γ − 1

ργ
�
ln

�
ρ

ρP

�
−

1

γ − 1

�
; ðE9Þ

the pressure is given by [see Eq. (D2)]
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P ¼ Aργ ln

�
ρ

ρP

�
: ðE10Þ

This is a generalized logotropic equation of state. According to Eq. (D1), the energy density is given by

ϵ ¼ ρc2 þ A
γ þ 1

γ − 1
ργ ln

�
ρ

ρP

�
−

2A
ðγ − 1Þ2 ρ

γ: ðE11Þ
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