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We study the cosmic microwave background (CMB) in the framework of the degenerate higher-order
scalar-tensor (DHOST) theory to test gravity theories. This theoretical framework includes the wide class of
dark energy models such as the Horndeski theory and its extensions as certain limits, and the general
relativity can be also recovered. In this study, to test gravity theories with CMB, we formulate the linear
perturbations of gravity and matter in the theory and their effective description parametrized by time-
dependent effective field theory (EFT) parameters, a; (i = B, K, T, M, H, L) and f; (i = 1, 2, 3). Based on
the resultant DHOST framework, we develop a numerical code to solve Boltzmann equations consistently.
We then show that the angular power spectra of the CMB temperature anisotropies, E-mode, and lensing
potential as a demonstration and find that the parameter characterizing the DHOST theory, f3,, provides the
larger modifications of the spectra, compared with other EFT parameters. We also show the results in the
case of a specific model in which the cosmic expansion and the EFT parameters are consistently

determined.
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I. INTRODUCTION

The nearly simultaneous detection of the gravitational
event GW170817 and its optical counterpart GRB170817A
has put a strong constraint on the speed of gravitational
waves propagating from a neutron star binary such that
it should not deviate from that of light, |ca, — c| <1071
[1-3], which forbids any extensions of general relativity
(GR) predicting a large deviation of c,,,. This measurement
can therefore put constraints on scalar-tensor theory as
alternative to dark energy [4-8]. To explore the theories of
gravity beyond GR, the degenerate higher-order scalar-
tensor (DHOST) theory [9,10] (see [11] for review and
references therein) is useful since most of known theories
of gravity so far, such as the Horndeski theory [12—14] and
the beyond-Horndeski theory [15,16], are included. The
DHOST theory has eight arbitrary functions of the scalar
field ¢ and X = 0,$0"¢$, dubbed as P(¢,X), Q(¢.X),
f2(¢,X), and a;(¢p,X) with i = 1,...,5. There are three
degeneracy conditions eliminating the unwanted higher-
order time-derivative terms. The measurement of
GW170817 strongly implies that the propagation speed
of gravitational waves and the speed of light strictly coin-
cide, that is, Cow = C. Even when imposing this condition,
a certain subclass of type-I quadratic DHOST theory
survived [7,8]. This theory is still phenomenologically
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interesting because the Vainshtein screening mechanism
is successfully implemented outside matter, whereas its
partial breaking occurs inside [8,17-20]. This pheno-
menon can be used to put the additional constraints on
the DHOST theory. Moreover, several theoretical con-
straints on the DHOST theory have been discussed in
the literatures [21,22].

However, the propagation of gravitational waves from
GW170817 as well as the local measurement of gravity can
put any constraints on gravity theories at the relatively low
redshift, z < 0.01. In this sense, there is still a large viability
of extended gravity theories whose deviation from GR
emerges at high redshift, say, z = 1. One of the well-
established experiments at such a high redshift is the cosmic
microwave background (CMB). As of the Planck experi-
ments, we know that the A-Cold Dark Matter (ACDM)
model can well describe our Universe [23]. Hence, the
extended gravity theories are required to satisfy that the
background evolution should be almost the same as ACDM.
We then need to explore the dynamics of linear perturbations
of gravity and matter contents in the extended theories of
gravity with keeping the background the fiducial one.

In this paper, we investigate the time evolutions of
the metric perturbations, density/velocity perturbations
of fluid components, and the perturbation of the scalar
field after reheating. To do so, we employ the effective
description of the DHOST theory, following the approach
called the effective field theory (EFT) of dark energy
[24-32]. The EFT describing the DHOST theory has nine
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time-dependent parameters, and the degeneracy conditions
mentioned later reduce them to six parameters, a;(¢) with
i=K, B, T, M, H and f,(¢), which are defined as the
coefficients of terms such as 6K"6K;; and SKSR in the
ADM Lagrangian and vanish in GR. The EFT parameters
are frequently assumed to scale as (e.g., [26])

. Qpg(1)
" Qpgo

a;(t) =

where Qpg(7) and Qpg( denote the fractional energy
density of the dark energy and its present value.
Following this parametrization, the EFT parameters are
negligible in the early Universe where Qpg(z) is quite
small, recovering GR. Therefore, we do not need to
consider the modification of the initial perturbations in
solving the Boltzmann equation from very high redshift.
Then we compute the angular power spectra of the CMB
temperature  anisotropies (C%T), E-mode polarization
(CEE), and the lensing potential (C’b,/f'/)).

The EFT approach is useful to for us to know the impacts
of modification of each term in the Lagrangian on the time
evolution of the perturbations in the fixed background.
Strictly speaking, however, the background geometry is
not consistently treated in the EFT approach. In the DHOST
theory, the time evolution of background scalar field ¢ (¢)
modifies the Friedmann equation and determines how the
EFT parameters evolve in time. To demonstrate a consistent
way to describe both the background and the perturbations,
we also solve the set of equations with the EFT parameters
and the cosmic expansion history computed from the
DHOST theory with the parametrization of the arbitrary
functions therein proposed by Crisostomi and Koyama [33].

This paper is organized as follows. In Sec. II, we derive
the evolution equations of the background and linear
perturbations in the DHOST theory. In Sec. III, we derive
them in the effective description of the type-I DHOST
theory and explicitly show the relations between the EFT
parameters, @; and S, and the scalar field. In Sec. IV, we

|

a, = —day,
1

“T8(f2 + arX)?

briefly explain the setup for the numerical calculations.
In Sec. V, we show the angular power spectra and how
precisely we can estimate the EFT parameters according to
the Fisher analysis. In Sec. VI, we demonstrate a consistent
treatment of the background geometry and the perturba-
tions with a specific model. Finally, we conclude in
Sec. VIL Since the derived equations are too long to show
in the main text, the Appendixes supplement the main text.
Throughout the paper, we use the unit with ¢ = 72 = 1, and
M[jlz := 87G where G is the usual Newton constant.

II. DHOST THEORY

A. Basics

We consider the quadratic DHOST theory, whose action
is given as [9]

S = / d*x\/=gLpnost + / d*x\/=gL,,. (2)

where we assume that the Lagrangian for matter, £,,,
minimally couples to gravity, and

Lonost = P(¢. X) + Q(¢. X) T + f1(¢. X) YR

+ Zai(‘l’vx)‘civ (3)

with P, Q, f,, and a; being arbitrary functions of ¢ and
X = 0,¢0"¢. The Lagrangians for derivative couplings of
the scalar field are described as

‘Cl = ¢;w¢lw’ ‘CQ = (D(p)z? 'C3 = (D¢)¢ﬂ¢ﬂu¢y’
£4 = ¢”¢ﬂp¢py¢w ’CS = (¢/4¢H”¢u)2’ (4)

with ¢, :=V,¢ and ¢, =V, V, ¢. In this paper, we
consider the type-lI degeneracy condition to avoid the
ghost instability, which is given by the following three
conditions [9]:

[16Xa3 +4(3f + 16X fy)a3 + (16X fx — 12X f)aza, — X*fa3

+16fx(3f +4Xfx)ar + 8f(Xfx — f)as + 48ff3].

(4fX + 2612 + X(l3><—2a% + 3X(12(l3 - 4fXa2 + 4fa3)

“ 8(f + Xay)?

; (5)

where the subscripts ¢ and X denote the derivatives with respect to them. Since the DHOST theory contains the higher-
order derivatives, it is useful to introduce the following quantity as the variation of the Lagrangian in the gravity sector with

a variable A:

1 .
Eyi= —— ~1)/9,, -+
D

o (\/ —QEDHOST)
Oy, 80, 0, A (6)
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B. Background equations

We assume that the background metric is a flat
Friedmann-Lemaitre-Robertson-Walker metric (FLRW),

dsz = —delz + a25l~jdxidxj. (7)

By the use of the quantity defined in Eq. (6), one can easily
write the background equation-of-motion for the lapse, the
scale factor, and the scalar field. The explicit expressions
for €y, &,, €, are shown in Appendix A. With this, the
governing equation of the scalar field is simply written as

To get the evolution equation in the gravity sector, we have
to take into account the matter content. We assume that the
matter content is described as fluids. Hence, the energy-
momentum tensor is given as

o2 OV=GLs

Ve o0 Z (pr + pr)uyuy + prg*,
uy

I=B,Cyv
9)

where p; and p; are the energy density and pressure of
I = b (baryon), ¢ (CDM), y (photon), v (massless neu-
trinos), and u} is the 4-velocity of 1, u} = (u}, vi/a) with
the velocity perturbation v}. The zeroth order of the energy-
momentum tensor is calculated as

Zm )

bij
_ps TV = 2psv

s = Zpl’
(10)

which satisfy the conservation law, p, + 3H(p, + p,) =0,
where a dot denotes the derivative with respect to t.
Because the variations with respect to N and a can be
rewritten in terms of those with respect to metric, §/6N =
—26/6g00 and 6/6a = 2ad;;(6/5g;;), we obtain the
extended Friedmann equation and acceleration equation
in the DHOST theory,

a

gN:ps’ _gga:ps’ (11)

where the left-hand sides are defined in Eqs. (A1) and (A2).

C. Euler-Lagrange equations for perturbations

In this subsection, we briefly discuss the Euler-Lagrange
equation derived from the full DHOST Lagrangian Eq. (3).
Focusing on the scalar perturbations, we consider the
metric perturbations in the Newton-gauge form, which is
defined as

ds? = —(1 4+ 2%)ds* + 2a2a.§dtdxf

+a {(1 +2®)5; <8 9; — A) ;1] dx'dx/
(12)
and the perturbation of the scalar field as
P(1.x) = po(1) + 6(1.x). (13)

The Euler-Lagrange equation (6) for the perturbed varia-
bles, {¥, @, &, 1, 5¢}, can be derived by expanding the full
action Eq. (3) up to the second order and varying the
second-order action with respect to each variable. Although
we do not show the explicit expression for each £,, we
use the resultant Euler-Lagrange equations to determine
the relation between the DHOST functions, {P(¢,X),
0. X), f2(¢.X).a;(¢,X)} and the EFT parameters,
{a;(1),p;(t)} to be introduced in the later section.

III. LINEAR PERTURBATIONS IN EFFECTIVE
DESCRIPTION OF DHOST

In this section, we reformulate the linear perturbations of
gravity and matter in the DHOST theory, following the
approach called the effective field theory of dark energy
[24-32].

A. Effective quadratic action and EFT parameters

In the context of the EFT, the metric is usually written in
the ADM form,

ds* = —N?d* + h;;(dx' + N'dt)(dx) + Nidr).  (14)

To study the linear perturbations for gravity and matter,
we need to expand the action up to the second order around
the flat FLRW background given in Eq. (7) with the
gauge N = 1. In the unitary gauge, the perturbed variables
are the lapse 6N = N — 1, the extrinsic curvature 6K;; =
K;j— Hh;; and the three-dimensional Ricci curvature
(3>R,-j. To describe the effective action for the DHOST in
the EFT language, we need to introduce the time and space
derivatives of 6N in the effective Lagrangian. The effective
quadratic action in gravity sector is given as [24]

S@ = / d*x\/=gL?), (15)

with
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Mm? - 2
L) = - {51(,»,»51('/ - (1 + gocL>51<2

5
+ H?agdN? + 4HagdKSN + (1 + ay)RSN
ﬂz

+4B,6KSN + BrdN* + 53 (95N)? } (16)

where H is the Hubble parameter, M is the effective Planck
mass, and &, extracts the second-order terms of the
metric perturbations. We have introduced the eight time-
varying parameters characterizing the effective quadratic
Lagrangian, labeled as {a;, ar, ag, ag, ay, f1, 52, f3}. In
addition to them, we introduce a parameter characterizing
the time variation of the effective Planck mass,

1 dm?

HM?> Ot (17)

Ay =

With these nine EFT parameters, we can fully specify
the linear perturbations in the DHOST class of gravity
theories. In the unitary gauge, the scalar perturbations can
be defined as

SN=N-1, Ni= 5ifa-w,

hi; = a*e*s;; + a? (aa ~5; A) (18)

It would be convenient to change the gauge to compare the
results derived in the previous section where the scalar
perturbation, 6¢(t,x), is exposed. To recover the scalar
degree of freedom, we perform the time-coordinate trans-
formation ¢ — ¢+ z(t,x). In general, the infinitesimal

coordinate transformation, x* — x* = x* + ¢#, for the
metric perturbation &g, is given as
5_9;411()_6) = 5g;w(x) - v}lel/ - vl/eﬂ' (19)

For the infinitesimal time translation, ¢t - 7 = ¢ + z(t,x),
the displacement vector is given as ¢* = (z, 0), and its dual
vector is €, = g,,€’ = (—,0), where we truncate the
expansion at the first order of the perturbations. Hence,
the gauge transformation implies the relation between
Eqgs. (12) and (18) as

1
SN =Y + 7, {=®+ Hr, w=¢&——m  (20)
a

where 7 leaves unchanged under the gauge transformation.
Rewriting the quadratic Lagrangian (16) in terms of the
new perturbative quantities, we have

I 1
Lo =+ -+ L, (21)
a a

where Cl@ are shown in Appendix B.

As a result of the time-coordinate transformation, the
homogeneous scalar field in the unitary gauge acquires the
spatial dependence, (1) — ¢ () + 5¢(t,x). Thus, we can
identify the spatial fluctuation as [34]

= 5¢ (22)

b0

B. Euler-Lagrange equations for perturbations
with EFT parameters

Varying Eq. (21) with respect to ¥, @, &, , and 7z, we
obtain the Euler-Lagrange equations for them in the
Newton gauge. Respecting the relation Eq. (22), these
Euler-Lagrange equations in the EFT can describe those
derived from the original DHOST action without the
degeneracy conditions in Eq. (5). Comparing the coeffi-
cients of these equations in the two difference approaches,
one can easily find the correspondence between the EFT
parameters, {a; (), §;(¢)}, and the functions in the DHOST

theory, {P(¢.X). Q(¢.X). f2(¢.X). a;(¢. X)}. We found
the following relations:

=2(f2 + aihp). (23)
1. .
Mp, = 5‘17(2)(—202 —4fax + azdp). (24)

M?By = 25(ay + ay — (a3 + aq)di + 4156.{73)7 (25)

M2 = 262’%(—231 +4fox + 0445(2))7 (26)
My = =3(a + a)d, (27)
May =2(2f,x — a\)ds, (28)

HM?*ay = 2§'[)0(f2¢ + alqﬁ(b% +2(ay = fax — arxds)do).

(29)
M2ay = =2a,43, (30)
2HM?ap = 2f2¢¢0 —2H(2a, + 3a, - 2f2x)¢(2)
—2(2f2x + 0x)dt
H<—3a3 + 4a1X + lZaZX)éﬁg
+ (2(a; = 2a; = 6f2x)ho
+ (3a3 — 2a4 + 4ary + szxx)d’g
+2(as — asx )0 do. (31)
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and

M?*H?ay = 2(3H?(a; — 4f,x — 3K (as + 2f2x)) — Px + Q¢)¢% + 6H(=3ay; + 20x)¢%
+ (B3H?(9as — 10a,x — 18ayx + 16f,xx + K1 (5a5 + 4ary + 8faxx)) + 4Pxx — 2Q¢X)g'b3
+ 3H (4aspx + Sasy — 40xx)dt — 6H*(—2a,xx — 6asxy + (3 + K )azx ) — 6Ha3¢x%
+ 44’0(—3(“1 +ay)H = 2(ayy + a2¢)§'b0 +3H(2(as + as) +a;x + azx)%
+ (a1px + asyx + 3(azy + a4¢))¢8 —3H(3as + asx + a4x>fbé — (aspx + aspx + 4“5¢)¢(5)
+ 3Hasx gy + as¢x(z’(7))§7’o
+ (4(ay + ay) +2(3(as + ay) + Sayy + Sazy)dg — 2(12as + 2a,xx + 2a5xx + 9azy + Yaux )y
+(dasyy + daaxy + 26asy)dG — dasxxdy) i
+ (=8(ay + ax)po + 4(3(as + as) + ary + ax)dy — 4(4as + azy + asx) i + 4asxdy)do. (32)

Here, all the functions are evaluated at the background
values, that is, ¢ = ¢ (1) and X = —¢3(1), and we defined
the dimensionless time derivatives of the Hubble parameter,

1 d'H

= 33
n Hn+1 drt ( )

Lagrangian (3), compared with those from Eq. (21).
Following the EFT point of view, these residuals should
be rewritten in terms of the background quantities. We
actually confirm that all the residuals can be identified to be
a function of p,, p, and their time derivatives, and the
results of the full DHOST can be consistently reproduced.’

The explicit expression of the Euler-Lagrange equations
with the background term corrections is summarized in
Appendix C.

Let us consider the type-I degeneracy condition in the
context of the effective description of the DHOST theory.
In the EFT language, the fully nonlinear type-I degeneracy
condition Eq. (5) reduces to the simpler conditions for the
EFT parameters as

Before showing the Euler-Lagrange equations for the
perturbed variables in terms of the EFT parameters, we
should discuss the dependence on the background energy
density p, and pressure p,, which are related to the
background Euler-Lagrange quantities, £y and &,, through
Eq. (11). Even when the above relations, Egs. (23)-(32),
are taken into account, one finds that there are several
residuals in the equations derived in the full DHOST
|

B> = —6p7.

ar, =0, By = =262(1 + ay) + p1 (1 + ar)], (34)

reducing the number of the free EFT parameters to six. With this reduced degeneracy conditions, the Euler-Lagrange
equations for ¥, @, &, , and # in the Newton gauge are given as

1 . 2.\. 2
_W&P = —6p1¥ — 6Hp, ((3 + ay) B +Eﬂ1)q’ _?ﬂl(z +2ay + (1 +ar)p) AY
681 2p, .

+H2<6+12a3_aK_6(3+K1+aM)ﬂl_F]+H2M2>T+6ﬁlq)

B\ . 2 S 2.\,
+ 6H —(1+053—(3+O‘M)ﬁ1)+ﬁ ¢+;(1+GH)A(D—6ﬁ17T+6Hﬁ1 1_(3+aM)ﬂl_ﬁﬁl n

) .2 . 2H B
+H (6(13—(1K+6K1ﬂ1)”—;ﬂ1(1 + 2ay + (1 +aT)ﬂ1)A”+? —apg +ay + pi + ayp +ﬁ Ar
K, . Ibs

+ 6H? <—K1(1 +ap) + (Ky + K1 (34 ay))p +ﬁ1ﬂ1 +W>”’ (35)

'We expect that the above equations including these missing terms can be consistently derived from the full EFT action taking into
account the terms describing the background [27,28].
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1

—quy:6ﬂ1lP+6H<1+aB+(3+aM)ﬂ1 ﬁ1>T+ (1"’(1[.1)&‘1"

S+ )
+6H2((1+a3)(3+K1+aM)+B—p 2

. . 2

6 2
—1‘5;¢+6ﬂ1ﬂ+6['1<a3+ (3+01M)ﬁ1 f_}) aHAﬂ'+ H(—aM‘I’(ZT)A

Ps+p
—|—6H2<K1(—1 +(ZB) +aB<3+aM) +EB_2;{2M;

>' - 6H3 <K2+K1(3+aM)+ (36)

2H*M2>

1 . Ps + Ps
- W&’g =28, AY + 2H(1 4 ap) AY — 2AD + 24, Aii + 2Hap A — 2H? (Kl + 2H2M2) An, (37)

1 .
_WEVI = _ﬁ [(1 + aH)AA‘P + (1 + aT)AA(I) + aHAAn' - H(aM - aT)AAﬂ'], (38)
and

1 i 1
W5ﬂ=6ﬁ?‘P+6Hﬁ1(1+2(3+01M)/31 Z)\P+6H2< a3+6aK+ﬂ1(6+K1+2aM

1 . 2 . . .
+ @B +ay)3+K; +ay)p) +E(ﬂ%dM+2(1 +2(3+ay)p)b) +ﬁ(ﬁ%+ﬁ1ﬁ1)>q’

a

P

+%ﬂ1(1 +2ay +(1 +0‘T)/31)Ali'+2a—€l (—aB +ag+2(1+ay)(1+ay)p + (1 +ay)(1+a7)t

2
(20’H+ﬂlar) ﬁ(1+aﬂ+ﬂ1+arﬁl)ﬁ)A‘P+H3(T+(ak 6az)(3 +ay)

+6(Ky+ (3+ay)?)p1 +2K, (=3 —9ap +ax +9(3+ay)p)

6 12 6 26\ ..
_EaB+H+HﬁlaM+ (3+K1+0M)ﬁ1 Hﬂ)‘y 6ﬁ1q)+6H< —2(3+aM)ﬁ1—fIl>q>

s TP a a 2 51\
+6H2( Py 4 Ky + 3+ Kyag + apay — (3+aM)(3+K1+aM)ﬂ1+—B—’B‘—M——(3+aM)ﬂ %)cb

2H*M? H H

azaHA(b 2H<aM+aH(l+aM) aT+%”>Aq>+6ﬁ%};'+12ﬁ1H<(3+aM)ﬂ1 ﬂ‘)

2 a6 (2K 5 ) (34 Ky ) + S B 403+ )+ 2 G491 )7

+H3(aK(3+2K1+aM)—12(K2+K (3+aM))ﬁ1+.——2K1ﬁl>
zﬁl(ZaH—i-(l—i—aT)ﬂl)Aﬂ—f— (2/}( (I+ay)Ray+ (14 ar)py) +2ay + frar)

. 2H?
+4(ay +(1 +05T)ﬂ1)/)71>A72'+7 (Kl +(1+ Ky +ay)(ag—ay) —ay +ar

—(I+ay)(1+ Ky +ay)p +ﬁ<aB —ay —Pray —2(1 +ay)p) _F12+2H2M2> Arx

+ 6H* (Kyap — (K3 +2K,(3+ay)) 1 + K (3 +ay) (ap — B3+ ay)pi) + Ki(1+ap — (3+ay)pi)
Pstps P )

1 . . p
+—<K1(03—ﬂ1(1M)_2(K2+K1(3+0‘M))ﬁ1) Hzﬂl YH3M?  6H*M?

y (39)
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where p, and p, are evaluated through the background
evolution equations Eq. (11). Plugging Eqgs. (23)—(32) and
Eq. (11) into Egs. (35)-(39), one can straightforwardly
reproduce the Euler-Lagrange equations derived from the
full DHOST theory.

C. Perturbed matter energy-momentum tensor

The perturbations of the energy-momentum tensor given
in Eq. (9) are calculated as

Zm

1 .
70 = — E + L
al (pr1 PI)”I

o 5
ST = —2¥), 6TV = ;Z(ép, —2p,;®)5,

I

(40)

For the baryons and CDM, the pressure and its perturbation
satisfy pj, . = op,. = 0, whereas those for the photons and

where Q; := p;/3M?*H? and &, are given in Egs. (35)—(38).
In the last equation, ©,, and ©,, are the multipoles of
the temperature fluctuations of photons and neutrinos,
respectively, and in the first three equations, 6, =40,
and V, = -30,; where we define the velocity potential
V= —ikv't k.

As for the scalar field, the governing equation is given as

: &

“ptr =0

(45)
with Eq. (39).

D. Reduction of higher-derivative equations

For later convenience, we define 5’,: = k2E /M2, 5’,1 :
—k™E,/M?, and &; := —&;/M? for other equations, and

1

neutrinos satisty p,, = p,,/3 and ép,, = dp,,/3. Then, 5’5 = _PS‘S
performing the Fourier transformation for Egs. (35)-(38), 7
we find = —a—- (3Q:V: +3Q,V, +4Q,V, +4Q,V,).  (46)
—LS\{,:ST:=—3H2(Q<S + Q8 +Q,8, +Q,5,) 2 1 H?
M? «Te rro T Sy = F‘Sﬂ - 4? (2,0,, +Q,0,,) (47)
2py
+-5 ¥, (41) in the Fourier space. Then the evolution equations become
M P q
simpler form, SA = SA for A=W¥,d,¢,n, and g',, =0.
_ L Ep = Sg =3 HZ(Q 5,+9,0,) - %q) (42) This equation, however, contains time derivatives of ¥, @,
M? m M? and 7 up to the fourth order as given in Eq. (39). As the
1 kinetic matrix of the highest derivatives of ¥, ®, and 7 are
——& =8¢ degenerated, we can eliminate such higher-order derivative
M terms. To do so, we define
= kaH*(3Q.V, +3Q,V, +4Q,V, +4Q,V,), '
43)  E6=—E+File + (H(-ag + 3+ ay)pi) +201)E0.
| (48)
———&, =8, =4H’kK*(Q,0,, +Q,0,,), (44
M2 " (2,0, +Q,0,,) (44) which reads
|
5 2 . . 6 _ ,
&g = ) (ag + (1 +ap)p)(AD - B AY - B Akt) + e (Hps(ag —3p1) = p1ps — 2pfr)@
2H H 2H
+?(_GB(1 +ar) +73) AD — (aBaH + prs)Ax — (ag(1+ag) +pi(1 + 73 +ar)) AY
2aBﬁl /}laB Zﬁl Ps +ps 2[75 +ps .
+6H3<_71+y2+ w2 e T\ e TP e )
. Ps + s 26\ ps + ps
+6H3(K1(1+GB) 1+72+H+ (2055,31+510!B ﬁl)‘ﬁlm+<1+%—3ﬂ1 1) 2H2M2>lP
a ﬁl Ps Ps -
- 6H*( K, (1 £ 2 )
< 1( +aB)+H H? +( + ﬁl) H2M2+2H2M2>
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2H?

1.
+7<73_Kl(l_aH+aB_(1+aT)ﬂl)_aB(1+aT)_ﬁaB +5 -

1
— 6H? (0‘% tgo% Kipi(1+ 2ap) — ap(3 + ay)p

K. K 251\ by 2
_6H4<K%(1+QB>+#QB_ﬁ;ﬁI_<1+aB_3ﬂ1_71>2

where

71 = <a% + 10}() (3 + (ZM) - aB(KZ + (3 + aM)z)ﬂl + % <C(]( + 3(13(—1 + ag — 3(3 + aM)ﬂ|)>,

6

7/2 =

| -

1 .
v3 = ay —ar + (1 +ay)(ay + (1 +ar)py) +— (ay + prar +2(1 +ar)py).

This expression will be used after the Fourier transforma-
tion. The corresponding source term is given as Sg :=

Bi1Se + (H(—ag + (34 ay)f1) + 281)Se. The resultant
field equations for ¥, @, and 7 contain the time derivatives
up to the second order for z and the first order for ¥ and ®.
We note that the highest order of the derivative depends on
the gravity theory of interest.

E. Evolution equations to solve

In what follows, we explain how to solve the set of
equations in the type-I DHOST theory. As the unknown
variables in the gravity sector are ¥, ®, and z, we need
three independent equations. In this study, we choose

gq(q)’ Y, 7, ”) = Sn(erZ)v (53)
E:(D, W, i1, ¥, 7, 7) = S:(V)), (54)
Eo(D, W, 7, @, W, 7, 71) = Sg(®.5,.V,),  (55)

where the right-hand sides of the first two equations are
defined in Eqs. (46) and (47), and we shortly write §; =
{5bv Oc, 5}” 5v}’ Vi= {va Ves V},, Vu}? and O; = {®yi’®vi}'
The first time derivative of Eq. (53) becomes

£, (W, 7.0, 71.7) = 85,(V,.0,.0,5),  (56)

where we have used the Boltzmann equation for ©,, and

®,,. Since the coefficient matrix of ®, ¥, and # in
Egs. (54)-(56) is invertible, we can solve these equations

with respect to fb, ‘i‘, and 7, and obtain

1
H

1 .
{2(3 + Ky +ay)prag — gdK —ag(ap — Pray —2(3 + Ky + aM)ﬁl):| .

. . ﬂ ﬁ Ps +ps .. -
(2p1ap + apPy) + ;121 + B M (7 +'P)
/')'s - 3/}1ps

- - , 49
HM. 2HM2  6H*M? >” (49)
(50)
(51)
52
I (52)
D = Foo(P, W, 7,78, V.01, 0.), (57)
Y= Fy(®, Y, 7,16, V;.0.0,), (58)
= F (O, 7,78V}, 0, 04). (59)

These equations can be straightforwardly derived, though
the right-hand sides of these equations are too long to show
here. Once one solves this set of equations numerically, one
can obtain the time evolution of @, ¥, z. Unfortunately,
however, it is failed since the equation for ¥ seems to be
unstable at late time. The easiest way to avoid the numerical
instability is to replace Eq. (58) by a constraint equation
Eq. (53), and we compute ¥ from Eq. (53) after updating ®
and 7 by solving Eqgs. (57) and (59).

IV. NUMERICAL SETUP

We developed a Boltzmann solver implementing the
framework of the DHOST theory. Our numerical code
CMB2ND" solves the Boltzmann equations for photons, ©,,,
and massless neutrinos, ®,,, the continuity equations and
the Euler equations for baryons and CDM, 6, V;, 6., V.,
the modified Einstein equations for ¥, @ in the conformal
Newtonian gauge, and the field equation for z given in
Eqgs. (57) and (59) with Eq. (53). One can find the basic
equations in the matter sector in a standard textbook,
e.g., Ref. [37].

*This Boltzmann code is not public yet, but we have confirmed
that the numerical results with it precisely agree with those from
CAMB (https://camb.info/). See also Refs. [35,36] in which one
of the authors of this paper used the same code.
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Respecting the scaling of the EFT parameters in Eq. (1),
we can totally neglect the scalar field and its influence on
the metric perturbations in the early time. Hence, we can
impose the same initial conditions for the perturbative
quantities as those given in GR,

1 4 1
\11:_70@7 @:_Mg,
4f, + 15 4f, + 15
1 k2
@ = -—-e—-——m—e—— ) :0, 60
2= g e " (60)

where ¢ is the curvature perturbation generated during
inflation and f, = p,/(p, +p,).

To follow the same setup as in Ref. [26], we assume the
ACDM background as a demonstration and ag g, ary < 0,
P10 amo.ayo > 0,and ag o = 1. The choices of signature
of the EFT parameters and their values are restricted to a
certain range arising from the avoidance of the super-
luminality, ghost instability, and gradient instability of the
scalar perturbation [24] (see also [26] in the GLPV theory).
To put constrains on these parameters from the real
observations, we have to take care of the appropriate range.
Our aim in the present study, however, is to demonstrate the
impact of these parameters on the angular power spectra.
Hence, we adopt the above weak assumptions on the EFT
parameters.

At this stage, we can freely choose the present values of
the EFT parameters, a;o for i = K, B, T, M, H and f3, .
However the time-dependent functions «;(¢) and f;(¢)
are primarily described by the arbitrary functions
{P(,X),0(,X), (¢, X),a;(¢,X)} introduced in the
original DHOST Lagrangian [see Eq. (3)], and thus the
EFT parameters should be related with each other. As we
shall explain later, we also demonstrate this situation by
adopting a model proposed by Crisostomi and Koyama
[33] (CK) in which there is a cosmological solution
exhibiting the late-time self-acceleration regime. In this
model, o; for i = K, B, M, H and 3, are described by four
constants c¢,, ¢z, ¢4, f, while ar is fixed to be 0.

V. RESULTS IN EFT FRAMEWORK

In Fig. 1, we show the angular power spectra of the CMB
temperature anisotropies, CZT (left), E-mode CEF (middle),
and the lensing potential C‘;"s (right). The gray band
indicates the cosmic variance. To magnify the changes
from the ACDM case, we also show the power spectra
divided by those in ACDM model in Fig. 2. From the top to
bottom, we show the parameter dependence on j o, ay .
a0, ar o, and ago. We vary a; with the order of O(0.1)
and f; o with that of 0(0.01). In the present parametriza-
tion, a small change of f3; yields a significant effect on the
power spectra.

We find that these parameters affect the angular power
spectrum of the temperature anisotropies only on the large

scales through the integrated Sachs-Wolfe (ISW) effect as
expected. In contrast, as the scalar metric perturbations do
not directly couple to the photon’s E-mode polarization
with # = 2, the changes of CEF are highly suppressed. In
this sense, the information from the E-mode does not
improve the constrains on the EFT parameters as far as we
focus on the scalar metric perturbations. Taking a look at
the power spectrum of the lensing potential provided in the
top-right panel in Fig. 2 and the panel below this, the large
influences from the two beyond-Horndeski parameters, ay
and f;, appear on the different scales; nonzero ay yields the
significant deviation from ACDM at £ ~ 30, while f; does
at £ ~ 3.

To understand the behavior of CZ7 and C%? with nonzero
p1 or ay, we show the time evolution of the gravity
potential, ¥, in Fig. 3. The time derivative of the gravity
potentials, Y- dD, sources the ISW effect. In the late time,
as we can completely neglect the contribution of the
anisotropic stress induced by the photons and massless
neutrinos, ® ~ —¥ is achieved and therefore ¥~ 2P
in this regime. Hence, the ISW effect on the CMB photons
is characterized by ¥ as [37]

OIW (k. o) ~ 2 /0 " (k. n)jo ko — m)dn.  (61)

where 7 is the present conformal time and j,(x) is the
spherical Bessel function. In the same time, the lensing
potential, ¢, is also determined by ¥ — ® ~2%¥ in the
integration with respect to time [38],

ass Y1ss — X Jelky
0 XLSSX 4

where y = 1y — 1 is the comoving distance measured from
the observer and yj g5 is that to the last-scattering surface.

In the case with nonzero f#; (upper panels), the gravity
potential does not deviate from that in the ACDM case for
k = 0.001 ”Mpc~" (upper left), while it rapidly tends to be
zero at the low redshift for k = 0.01 A-Mpc~! (upper right).

Hence, the time derivative, \‘I‘|, becomes larger than that in
the ACDM case, which significantly enhances the angular
power spectrum of the temperature anisotropy, CZLT,
through the ISW effect as shown in Fig. 2 (top-left panel).
Regarding with the lensing potential which is determined
by ¥ instead of ¥, the decay of the potential suppresses the
lensing potential in the case with nonzero f; comparing
with that in the ACDM case. This property can be observed
in the top-right panel of Fig. 2.

On the other hand, in the case with nonzero ay (lower
panels in Fig. 3), one can find the almost same degree of the
deviation from the ACDM case on both the large scale
(lower left) and the intermediate scale (lower right). The
distinctive feature in this case is that the deviation from the
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FIG. 1. Angular power spectra with varying f, o, ag o, a0, @7, and ag o from top to bottom. From left to right, we show the angular

power spectra of temperature (C;T), E-mode (CfE), and lensing potential (C?d’). The gray band indicates the cosmic variance (CV).
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FIG. 2. The same power spectra in Fig. 1 divided by those in ACDM.
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-0.46

-0.48

-0.5

FIG. 3.
k =0.001 2”Mpc~! (left) and k = 0.01 AMpc~! (right).

ACDM case begins at relatively high redshift, z ~ 5, and
the potential decays in the similar manner to the above case.
However, at z <1, the potential grows again, and its
absolute value finally becomes larger than that in the
ACDM case. It can be clearly seen for ay, = 0.24, 0.48
(blue and magenta lines, respectively) at z = 0. The time

derivative of the potential, |‘P|, is larger than that in the
ACDM case over its whole life, enhancing C?T in the same
manner of the previous case, though the enhancement is not
so significant as shown in the second from top and left

panels in Fig. 2. Regarding with C?(p, the decay of the
gravity potential comparing with that in the ACDM case
basically suppresses C?‘/’ in the whole range of Z in the
second from top and right panels. However, the regrowth of
the potential at the late time promotes the recovery of the
lensing potential to the ACDM case on the angular large
scale, say # <30. For the smaller angular scales, this
recovery property does not work, since the spherical
Bessel function with a relatively large # is exponentially
suppressed for the small argument ky. As a result, there is a
clear peak in the second from top and right panels in Fig. 2.

This fact indicates that, in principle, we can distinguish
the effect from f; with that from aj using the lensing
potential, whereas it is difficult to do it only from the
temperature anisotropies since the two effects on CL” are
quite similar as shown in the left panels in Fig. 2. Note that

the angular power spectra, CIT and C‘Lff‘/’, depending on ay ¢

-0.05

=
-0.1 =0. —
° e —
0.15 0.096 —
0.2 i
0.25 i
=
0.3 4
0.35 i
04 F i
-0.45 4
0.5 1 1 1 1 1
0 1 2 3 4 5 6

The time evolution of ¥ with nonzero f; (upper) and with nonzero ay (lower). In each case, we show the modes with

(the second panels from the top) and ap (the bottom
panels) in Figs. 1 and 2 reproduce the results in the
pioneering work by D’ Amico et al. [26] (and see also [39]).

To understand the suppression of C?"b with #; > 0 on
large scales in a different way, we define the following
quantity [25,26]:

2V2(Y - @)

Hwr = 3a2H29m5m . (63)
Here we focus on the case that matter is nonrelativistic:
Q,,6,, = Q,0, + Q.6, with Q,, & Q;, + Q. Since puw;, = 2
for the case of the ACDM, puw; —2 characterizes the
deviation from the ACDM in weak lensing observations.
To evaluate this quantity, we study the quasistatic evolution
of the perturbations inside the sound horizon scale. Under
such approximation, it is enough to consider the highest
spatial derivative contributions in Egs. (41), (42), and (45).
Combining the governing equation of the density fluctua-
tions, &y + 2H&y — L V2¥ =0, we obtain puw as a
function of @; and f; in addition to Q,,.

If ay is nonzero and the others set to be zero, we recover
the result in Ref. [26],

ap(8-99,(14+9Q,))
2439, (1—ay)

HwL — (64)
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where we have assumed Sm =~ Ho,, for simplicity. When the denominator of the right-hand side is close to zero, the
deviation from the ACDM, puw; — 2, can be very large. However, it is the case only if ay ~ O(1).
The situation drastically changes in the case with f; # 0. If f; is the only nonzero parameter, we obtain

661121 = Q,)(2 +3Q,,(11

- 450,,))

-96,Q2,(22 + Q,,(19 + 3Q,,))]

wL— 2=

In this case, pw; — 2 can be very large even if f; ~

That is why small $; has a large impact on C{Lf{’a
with the other cases as shown in Fig. 2.

Next, we estimate the 1-sigma uncertainty in estimating
the EFT parameters in the Fisher analysis. In the present
study, we do not aim at putting constraints on the EFT
parameters by assuming a realistic setup such as Planck
or CMB-S4, but quantify the significance of the changes
from the ACDM case. So we compute the Fisher matrix for
each EFT parameter in the cosmic-variance-limited case with
Sy = 1. Besides, we fix the other cosmological parameters
according to the Planck 2015 data best fit, h2Qcpy = 0.120,
h?Q, = 0.0222, 7 =0.078, h = 0.673, A, = 2.14 x 107°
at k = 0.05 Mpc™!, and n, = 0.967 [40]. This treatment
will certainly give the minimum values of the 1-sigma
uncertainties. We here consider CZ7, CZE, and CEE. The

inclusion of C?’ﬁ would possibly improve the forecast.
However, we have to take care of the error arising from
the reconstruction of the lensing potential. For simplicity, we
here do not use Cd;ﬁ to estimate the 1-sigma uncertainties.

The Fisher matrix for an EFT parameter at the present
time, @ = ag g, A7, Apr0. A0, P10, 15 defined as

imax o X o
F = ZZ ¢ I)XY 8% (66)

where X,Y =TT, TE, EE and

(R cFer
— TE ~TT TETE EE ~TE

Cr=577| CFCl ¢ CEECIE |, (67)
(CPPR - crCl (s

TABLE I. The 1-sigma uncertainties for the estimation of the

EFT parameters, Aa; o and A (, in the cosmic-variance-limited
case with fg, = 1. The fiducial model is ACDM. The values in

this table scale roughly as Aa; o, Af o x f;(ly/z.

Parameter TT TT + pol
i 0.17 0.13
ay 0.92 0.56
ay 0.66 0.47
ar 0.73 0.29
agp 0.15 0.12

. 65
24 30,3 + 30,(=3 + f1) + 85,2 + 992, (1 =3, 1 (3 + 2,)f) (©3)
[
0(0.1).  with
comparing
eyl ——(C“bCCd CacCld). (68)

2

As the major change on the angular power spectra in Figs. 1
and 2 appears on the large scales, we fix £, = 1000.
The 1-sigma uncertainty of each parameter is given by
AO = F~'/2. The derivative 9CX /00 is computed as

ack| —C¥(250) +4C¥(50) - 3CX(0)
96 |,y 250 ’

(69)

where the fiducial value in our study is € = 0. If the
1-sigma uncertainty of an EFT parameter, Aa; o or Af) o, is
small, the corresponding EFT parameter has strong impacts
on the angular power spectra. In other words, even small
a;o or B, results in the significant change of angular
power spectra on the large scale from the ACDM case. In
Table I, we show the 1-sigma uncertainties in estimating
ajo for i =B, T, M, H and f;, with keeping ago = 1.
Then we find that #; could be constrained stronger than ay,
and that, if #; < O(0.1), the deviation from the ACDM
case is too small to be observed from the large-scale CMB
observations.

As we mentioned before, we do not use C?(/’. The
estimation of Aa;o, A, when we take into account
C(L/,f‘/’ is beyond the scope of our present study, since
it highly depends on how we reconstruct the lensing
potential. Note that the values in the table scale as

Aa;g, Ao fs_kly/z
is dominated by the cosmic variance, and thus the instru-
mental noise depending on observatories is not important.
Hence, one can roughly reproduce the 1-sigma uncer-
tainties of the EFT parameters with, for example, the
Planck observations (fgy, = 0.75) [23] and CMB-S4

(Faey = 0-4) [41].

. On the large scales, the noise source

VI. DEMONSTRATION IN A SPECIFIC MODEL
IN DHOST THEORY

A. Background evolution and EFT parameters

Up to here, we treat the EFT parameters as free functions
of time. In the DHOST theory, however, these parameters
are described by the arbitrary functions P(¢, X), Q(¢, X),
fa2(p,X), and a;(¢p,X) for i =1,...,5. They are thus
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FIG. 4. Time evolution of 3, a; with i = H, M, B, K (solid
line) and y(=¢,) (dashed line) in the CK model with
(¢p, €3, ¢4, ) = (3.0,5.0,1.0,-5.3). As ay is an order of mag-
nitude larger than the others, we multiply it by 1/10.

related with each other, and the cosmic expansion history
also depends on these functions. We demonstrate the case
in which the arbitrary functions are parametrized so that
the resultant cosmic expansion is self-accelerated at late
time. To do it, we adopt a parametrization proposed by
Crisostomi and Koyama where the propagation speed of
gravitational waves strictly coincides with the speed of
light, a7 = 0. [33].

To solve Egs. (8) and (11), we fix the arbitrary functions,
P, O, f,, and a;. The condition, a7 = 0, reads a; = a, =0
from the first condition in Egs. (5) and (30) [8]. Respecting
this additional condition and the degeneracy condition
given in Eq. (5), one finds that the remaining free functions
are P, Q, f,, and as. In Ref. [33], the authors propose the
following parametrization:

M X2
_ _ G M
P_C2X1 Q_A3X7 f2—_2 +C4—A6,
X X2 B
) Jp— X)=- L 70
1 4f2(f2x+a3 ) i, 2 4A6 ( )

This model has the shift symmetry, ¢p — ¢ + const., and is
parametrized by four constants, ¢, c3, ¢4, and . The new
energy scale A is given as A = (M H?*)'/3.

Rescaling the time coordinate and the scalar field as
t— M;I/ A2t and ¢ — Mo, we can reduce the

equations (8) and (11) to those without any scales. The
acceleration equation in Eq. (11) can be solved with res-
pect to H. Using this, we can eliminate H and H in Egs. (8)
and (11). Eventually, these equations can be expressed
in a simpler form as U;(y,a)y + Us(y,a) =0,a/a =
Us(y.a) where y := ¢by. We do not explicitly show U,,
but they are given as functions of the cosmological
parameters as well as the model parameters c;, 3. The
initial value of y is not sensitive to the final results since y
follows its attractor solution in the later time. After solving
these equations, we can then rewrite the EFT parameters,
a;(1) and B,(t), in terms of y(z), c;, and p.

The time evolution of ;, 1, and y are depicted in Fig. 4.
As is shown in this figure, the EFT parameters become
significant only at small z. In particular, in this model, | =
(B/16¢c4)ay is always satisfied. In the present case, 3, ay,
and ag are monotonically growing in time, while ), and
ag are not. The nonmonotonic behavior of the EFT
parameters has been pointed out in Ref. [42], where
is “oscillated” at low z.

B. Angular power spectra

The angular power spectra, CZT, CEE, and C‘ﬁ¢, in the
CK model with (¢,,c3,¢4,) = (3.0,5.0,1.0,-5.3) are
shown in Figs. 5 and 6. Although £, and ay deviate from
zero more than the range that we show in Fig. 1, CL7 and
CEE are not significantly deviated from those in ACDM on
large scales. That is because these parameters are correlated
so that the large negative ay cancels the large positive j3;.

In contrast, one can observe the large deviation from
ACDM on small scales. The choice of parameters, c,, c3,
¢4, and f, in this demonstration recovers the cosmic
expansion history in ACDM as reported in Ref. [33].
There is, however, a small change of expansion history

10 T T T
— CK
— - LCDM

107 x [0(¢ + 1)]*Cy/(27)

0.01 L L L

FIG. 5.
(CEE), and lensing potential (C";‘f’).

100 1000 10 100 1000
4 4

Angular power spectra in CK model. From left to right, we show the angular power spectra of temperature (C27), E-mode
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FIG. 6. The same power spectra in Fig. 5 divided by those in ACDM.

around the beginning of the dark energy epoch at z < 1.
This fact induces a small change of the angular diameter
distance of the horizon scale at the last scattering surface
measured from us, and thus the peak location of the
acoustic oscillations on small scales is a little bit shifted.

The small change of the angular diameter distance
significantly affects C”;‘ﬁ over the whole range of ¢ that
can be observed in the present time. However, it does not
immediately lead to the observability of these signals, since

we cannot directly observe Cﬁ'ﬁ, but it is reconstructed from
the combination of other observations such as the large-
scale structure. We thus envisage that a large error induced
from the reconstruction process makes it difficult to

constrain the CK model only from C(;{/'. Our present study
does not intend to mention how well we can constrain
the CK model from these angular power spectra. Hence,
we leave the detail analysis for the observability for
future study.

VII. CONCLUSION

In the present study, we have investigated the impact of
the deviation from GR on the angular power spectra of
CMB anisotropies using the type- DHOST theory. We first
formulated the linear perturbations in the DHOST theory
and their effective description parametrized by time-vary-
ing EFT parameters, resulting in the governing equation of
the metric perturbation @ in Eq. (57) and that of the scalar
perturbation 7 := —6¢/ éﬁo in Eq. (59). Based on the
effective description, we developed a Boltzmann solver
implementing the DHOST theory. Solving the equations
for the scalar perturbation, baryon, CDM, photon, massless
neutrinos, and the metric perturbations in the conformal
Newtonian gauge, we particularly focused on the impact of
the EFT parameter characterizing the DHOST theory, f,
on the angular power spectra.

We then obtain the angular power spectra of the CMB
temperature  anisotropies (C.T), E-mode polarization
(CEE), and the lensing potential (C%”) using the para-
metrization given in Eq. (1). In Figs. 1 and 2, we show these
angular power spectra and those normalized by the spectra
in ACDM model as our main results. In Eq. (65), we

derived the deviation in weak lensing observations from the
ACDM model, pyw; — 2, when f; # 0 and the other EFT
parameters are set to be zero. From this, we found that the
deviation becomes significant even if ; is small. The top-
right panel in Fig. 2 clarifies this fact from our numerical
computation, and the large change of growth history of the
metric perturbations gives a significant impact on the CMB
temperature anisotropies as shown in the top-left panel in
Fig. 2. On the other hand, the E-mode polarization is not so
sensitive to this, since the polarization mode does not
directly couple to gravity but is affected only through the
quadrupole moment of the temperature anisotropy. To
quantify the impact of the EFT parameters on the angular
power spectra, we estimate the 1-sigma uncertainty in
estimating them by computing the Fisher matrix assuming
the ACDM model as the fiducial model. The results in the
cosmic-variance-limited case are summarized in Table I
We found that, in principle, we can reach ; ~ O(0.1) from
the large-scale CMB observations.

Finally, we demonstrate a specific model proposed by
Ref. [33] which is a subclass of the DHOST theory with
ar = 0. In our EFT approach, the background is fixed to
be ACDM, while in this specific model all of the EFT
parameters as well as the cosmic expansion history are
consistently determined from the time evolution of the
background scalar field ¢ (). The resultant angular power
spectra with (c», ¢3, ¢4, ) = (3.0,5.0, 1.0, =5.3), a param-
eter set proposed in Ref. [33] realizing the self-accelerating
Universe, are shown in Figs. 5 and 6. As there are
degeneracies among the EFT parameters, the parameters
can vary in a larger range keeping the cosmic expansion
history similar to that in ACDM model as shown in Fig. 4.
This is not the case when only one of the parameters can be
varied with ag o = 1. In this specific model, we find the 8%
suppression from ACDM in the temperature anisotropies
on large scales, and O(10)% deviation on small scales
caused by the small change of the angular diameter distance
to the last-scattering surface due to the tiny change of the
cosmic expansion history around the transition to the dark
energy domination epoch. As for the lensing potential,
there are huge deviation from the ACDM model over the
whole range of angular scales. However, this fact does not
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immediately conclude that it is easy to put a strong
constraint on the deviation from ACDM, since the lensing
potential should be reconstructed through a statistical
process. In addition, it depends on how to parametrize
the arbitrary functions in the DHOST theory to put
constrains on the deviation from ACDM. Hence, we leave
the quantitative study for the future.
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APPENDIX A: EULER-LAGRANGE EQUATIONS
FOR THE BACKGROUND VARIABLES

The variations of the Lagrangian in the gravity sector
defined in Eq. (6) with respect to N, a, and ¢ are
computed as

Ey =P+ 6f,H? + 6Hf 5po + (=9a,H? + 2Py — Qp + 12f2x (2H? + H) + ay(=9H? + 6H)) ¢
+ 6H (az — Ox)o + (6H?(arx + 3ary) — 3a3(3H? + H)) g — 3H€l3¢€?’8

+ (6H(ay = 2f2x)¢o + 2(ay, + a2¢)é§(2) —3(ay + 2a4)Hpy — 2(az, + a4¢)f.ﬁé + 6asHepy + 2a5¢¢8)¢0

+(—a; —ay + (a3 —ay = 2(a)x + Clzx))‘l}’% + (3as + 2(azx + a4x))¢3 - 2615)(&’8)‘.15(2)

+ (2(ay + ap)o — 2(as + as) iy + 2asdi) do.

(A1)

a . . .. .
—§5a = —P —2f,(3H?* 4+ 2H) — 4H f24ho + (—2f 299 — Qp + (a1 + 3a,) BH* + 2H)) 5 + 2H(ayy + 361245)(158

+ (=2f2p +4H(a; + 3a, + 2f2x)do + 2(azy +4f2px + Qx)d’(z) —4H (a,x + 3612)()4’8 - a3¢d’3)¢0

+ (=ay + ay +4fox + (=2a3 + ag — 4(agx + 2foxx)) b5 + (=as + 2a3x)d0) B3

+ (2(ay + 2fax) o — as ) do.

and

(A2)

Ep =Py +6f25(2H> + H) + 6(12H fox + HPy — HQy + 14H fox H — ay (3H? + 2HH) + 2f o5 H + a,(3HH + H)) ¢,
+ (2Pyx —3H?*(ayy — 9asy — 8f2px +60x) — Qpp — 6(=2(azg + fapx) + Ox)H) s
+ (6H (a2 — Qx + (arx + 3aox) BH? + 2H)) = 343 (9H (H? + H) + H))
+ (6H?(aypx + 3asgy — 3asy) — 6asyH) o — 3Hazyy o + (2(Px — Oy + 3ay(2H? + H) + 625 (2H? + H)
+ ay(9H? + 6H)) + 6H (2a,4 + Saz, — 20x)po + (30H?ay + 2(a1p + azgy — 2Pxx + Opx)
+ 6ayx(9H? = 2H) — 24 £ )xx (2H? + H) — 3(5a3 + 2a4) 3H? + H))y + 3H(=9as,, — 4(argx + asy) + 40xx) i
+ (6H?(=2a,xx — 6asxx + 3asx) = 2asyy + dugy) + 6asyH + 6as(3H? + H)) g
+ 6H (asyx + 2asy) 0 + 2asgp0) o + (3(ary + azy) — 18H(az + ay + arx + asy) o — 3(2(arpx + azgx)
+3asy + 3a4y) 5 + 18H(2as + azy + agy )P + (6(aspx + aapx) + 15as4) 6 — 18Hasx gy — 6asyxd®) 3
+ (=2(as + ag + arx + asy) +2(6as + 2(aixx + rxx) + Sazx + Sasx)Po — 2(2(asxx + daxx)
+ 9asy ) o + dasxxdd)dy + (12(ay + ap)H + 4(ayy + azy)do — 12(az + ag) Hps — 4(asy + asy)di

+ 12asHej + 4a5¢€?’8 + (=8(az + a4 +a;x + azx)qbo +8(2as + asx + a4x)¢?) - 8“5X¢8)¢)¢0

+ (2 + ) =2(a + )i + 20568

(A3)

where we set N = 1, and the subscripts ¢ and X stand for the derivative with respect to them. Here all the functions are
evaluated at the background values, ¢ = ¢y(r) and X = —¢j(1).
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APPENDIX B: QUADRATIC LAGRANGIAN IN NEWTONIAN GAUGE

The quadratic Lagrangian defined in Eq. (21) after x is recovered by the coordinate transformation ¢ — ¢ + z(z,x) is
given as

2 . .
Wﬁff) = —H>(12a5 — agx + 6(1 + a;))¥2 — 12HB, VY + 12H?K 3, ¥n + 2H?(—60ap + ag )iV

+ 12H3K (1 + ag + a )7 + H2agi® + 12H(1 + ag + a, )O¥ + 12,0 ¥ +4,¥° — 12HS #¥
+ 26, W =6(1 4 a; )@ + 12Hap® 7 —12H*K, (1 4 a; )Pr + 128, D 7
+4<—H(1 +ap+a)¥ -5+ (1 +aL)d>—%A§—HaBiz+H2K1(1 +aL)n'—ﬂ17'i')A§
1 ) 2 . 3 . D 2 . 4 12 2
+€(A;7) —gA.fAn—l— 12H K apiin + pyit* + 12H*K  fliin — 6H K1 (1 + a; )7, (B1)
2
=LY = B WAY + 2% Ai + #AR] = 22(1 + a)¥ 4+ 2(1 + a)it + (1 + ap)® + 2(1 + ar) Ha] AD

2 1
+3 ((1 +ar)A® + H(1 +ar)An _E(l +ar)AAp+ (1 4+ ay) AY + (1 + aH)Air> An

.4 2
2
MZE gaL(Aﬂ)z, (B3)

where we integrate by part with respect to the spatial coordinates.

APPENDIX C: EULER-LAGRANGE EQUATIONS FOR METRIC AND SCALAR PERTURBATIONS
Varying the effective quadratic Lagrangian Eq. (16) with respect to W, @, &, 5, and #, and taking into account the terms
describing the background, we obtain the Euler-Lagrange equations,
_W&P = por + P + 641D + (H(681 + (3 + ay)Ba) + B2)it + (H(3 + ay)pr + f2)¥
+6(—H(1 +ap +ar) + HB + ay)p + 1)@ + H*(6ap — ag + 6K )i

2p 1
—2—6Hﬁ1> ;(2,51 + p3) A

+ <H2(6 + 12ap — ag + 6a, —6(3+ K, + ay)p;) + v

1 2 2 .
+;ﬂ3A‘P +;(1 +ay) AP +;(H(—OCB +ay —ap + P +ayp) + ) Ax

+ <6H2(H(—K1(1 +ag+ay) + (Ko + K (3+ay)p) + Kip)) + A'b/p)”’ (C1)
1

_W&I’ = 617+ 68, W —6(1 4 a, )D + 6(H(ag + 3+ ay)py) + f1)it + 6(H(1 +ag + ap + 3+ ay)py) + B1)¥

+ (=6H(1 + a)(3 + ay) — 6a,)® + <6H(H(K1(—1 Vap—ay) +ag(3+ay)) +ag) - 3(p3; px))h

2 .2 2 2 .
P (ay — aL)Athr?(] +aH)A‘P+;(1 +aT)A<D—?(H(aM+aL(1 +ay) —ar) +a)Ax

3(ps + m)) w_%Ps g

< +a3+aL)(3+K1+aM)+dB+dL)— M2 M2

1
— <(1+aL)(K2+K1(3+aM))+HK1aL+2H3M2>
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1 . . . 2

+ <—2H2K1(1 tay) -2 “'A;p > A, (C3)
1 1 .
—WE,, =37 [ag AAT + (1 + apg) AAY + (1 + ar) AAD — H(ay, — ar) AAx], (C4)

and the equation for 7z becomes

1

— &= —Par— ¥ — 6>~ 2(H H(3 + ay)py + Bo)7 + (6HBy — 2H (3 + ay) By — 25,) ¥

+ (6H(ap —2(3 + ay)py) — 128,)®
+H? (aK —12K,p1 = (3 + ay)(3 + Ky + ay)pr - —ﬁzaM - (3 + au)pa - %)
- 12 Sy — = 6(6-+ Ky -+ 20y + (3 )3+ Ky +
1
b i = 1241+ 26+ ) + 22 )

+6H2<(3 +ay)(ag — (3 +ay)p) + K\ (1 +ag+ap — (3+ay)p)

+

L. : - b | pstps
E(aB_ﬁlaM_2(3+aM)ﬁl) H12+2M2H2>q)

+ H?(H(ag (3 + 2K, +ay) = 12(Ky + K (3 + ay))B)) + ax — 12K, )7 +§%AA”
1 2 . 1 . .
— (45 +/53)A7T——(2/)’1 +ﬁz)A\P——( —ay)A® _;(HU +ay) (4B + B3) + 4P + ) Ax

1 2
—— (HQ2(ag —ay +a) + (1 +ay)p3) + B3) AW —;(H(O‘M +ay(l +ay) —ar) + ay) A®

Q

S

2

+— a (Kl + (1 +K1 +aM)<aB _aH) +2K1(1L — Oy +aT - (1 +aM>(1 +K1 +aM)ﬂ1

[\)

. . . S+S
+— (ép — dyy — Préy —2(1+ ay) ) — +p p>Aﬂ

H? ' 2M?H?

x| =

+H? <(0‘K —6ap)(3+ ay) +6(Ky + 3+ ay)?)p + 2K, (-3 = 9ap + ax —3a;, +9(3 + ay)p))

Hzﬂ NVE:E

+
T~

(—=6ap + ax + 6p1ay + 12(3 + K| + aM),Bl) s >‘I’

+ 6H* (Kzag — (K3 +2K,(3 4 ay))py + K1 (3 + ay)(ap — (3 + ay)py) + Ki(1 +ap +ap — (34 ay)fy)

E(Kl( —Pray) = 2(Kr + K1 (3 +ay))pr) — Hzﬁl M2H3 Y
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