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In this work, we extend the formalism of hybrid loop quantum cosmology for primordial perturbations
around a flat, homogeneous, and isotropic universe to the new treatment of Friedmann-Lemaître-
Robertson-Walker geometries proposed recently by Dapor and Liegener, based on an alternative
regularization of the Hamiltonian constraint. In fact, our discussion is applicable also to other possible
regularization schemes for loop quantum cosmology, although we specialize our analysis to the Dapor-
Liegener proposal and construct explicitly all involved quantum operators for that case.
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I. INTRODUCTION

The theory of primordial perturbations [1–4] in a spatially
homogeneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW)model is the cornerstone of modern cosmol-
ogy, since it allows us to connect theories of the very early
Universe with the most precise data obtained experimentally.
Combined with the inflationary paradigm [5–8], this satis-
factorily describes the evolution of the Universe from its
primeval stages and explains the formation of structures
observed nowadays at large scales [9]. The basic idea is that
primordial inhomogeneities around a smooth background
emerged from quantum vacuum fluctuations, and then
provided the seeds of cosmological structure formation under
the action of gravitational instability [10]. Therefore, one
expects that both quantum mechanics and general relativity
will be ultimately required in order to fully understand the
generation and evolution of fluctuations in an accurate
cosmological description.
The standard model is based on the conceptual frame-

work of quantum field theory (QFT) in a classical and fixed
curved spacetime, where perturbations are viewed as
quantum test fields propagating on a given geometry.
Present observations of the cosmic microwave background
(CMB) broadly lead to a solid confirmation of the pre-
dictions of this standard cosmology. Even so, there appear
to exist some puzzling discrepancies between the theoreti-
cal results and the observations for large angular scales
(around low multipoles, close to number 30 and below)
[11–13]. At these scales, however, all measurements are
affected by the errors caused by cosmic variance. In the
wait for new relevant advances in this front, both the

polarization signal of the CMB and the search for signals of
the gravitational wave background emitted during the
inflationary epoch may provide interesting new frontiers
in observational cosmology, as they might offer key
information about the early Universe and open a window
to new physics.
From a fundamental point of view, the hope is that these

data may encode information about phenomena caused by
the quantum nature of spacetime geometry itself, as
quantum gravity effects should be relevant in the extreme
conditions experienced in the early stages of the cosmos.
Since a definitive quantum theory of gravity has not yet
been established satisfactorily, in the past ten years an
original approach has been proposed to deal with the
quantization of inhomogeneous gravitational models.
The so-called hybrid quantum cosmology formalism [14]
combines two different types of quantum representations:
one of them is based on a genuine quantum theory of
geometry, used for the description of (at least) the homo-
geneous sector of the cosmological system, and the other
consists in a more conventional Fock quantum description,
employed for the inhomogeneities (typically identified with
perturbations) of both the geometry and the matter content.
This hybrid approach rests basically on the assumption that
there exists a regime of the quantum dynamics, between a
fully quantum gravity regime and the scheme of QFT in
fixed curved spacetimes, where the most relevant quantum
effects of the geometry are those affecting the zero modes
of the homogeneous sector. An important point for the
application of this formalism to cosmological perturbations
is the mathematically consistent truncation of the total
action at quadratic order in the perturbations. Indeed, this
truncation of the action allows one to maintain a symplectic
structure for the whole system, formed by the homo-
geneous degrees of freedom and the perturbations, while
keeping the restrictions imposed on this system by the
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gravitational constraints. In general, in the implementation
of this hybrid formalism, one assumes that the quantization
satisfies the canonical commutation relations inasmuch as
the operators for the homogeneous (and isotropic) geo-
metry commute with those representing the homogeneous
sector of the matter fields and, in turn, all of these commute
with the elementary operators corresponding to the varia-
bles that describe the inhomogeneities.
The hybrid approach was first put forward some ten

years ago to deal with cosmological universes with com-
pact sections that sustain gravitational waves. More spe-
cifically, the approach was introduced to attain a quantum
formulation of the so-called Gowdy cosmologies [15,16]
for the model with three-toroidal spatial sections and
linearly polarized waves [17–20]. The strategy was soon
extended to the analysis of the more realistic system of an
FLRW universe with cosmological perturbations, discus-
sing both scalar [21–23] and tensor perturbations [24]. In
principle, these original works were specialized to the case
where the homogeneous sector of the gravitational system
is quantized according to the rules of loop quantum
cosmology (LQC) [25,26]. LQC is the particularization
to cosmological reductions of general relativity of the
strategies of loop quantum gravity (LQG) [27,28],
a nonperturbative formalism for the quantization of the
Einsteinian theory. However, the hybrid approach can be
generalized and adapted to other candidates for the quan-
tum description of the homogeneous sector of cosmological
spacetimes, although this fact may not have been suffi-
ciently emphasized in the literature. Actually, the discus-
sion carried out in Ref. [14] for the gauge invariant
treatment of the cosmological perturbations in the hybrid
approach was already presented in a way that is suitable for
this generalization.
This versatility of the hybrid strategy is especially useful

in the situation that is found at present in LQC, where the
community is discussing possible alternatives for the
regularization of the geometric operators that appear in
the analysis of homogeneous cosmologies. In practice,
these alternatives, originated from regularization ambigu-
ities [29–31] in the symmetry reduction to homogeneity,
result in different quantization prescriptions for the homo-
geneous sector of the geometry. In this sense, they can be
regarded as different representations of the operators that
describe the effect of the zero modes of the geometry. The
discussed property of the hybrid approach (namely that it
can be accommodated to distinct representations of the zero
modes) then allows us to study the quantum inclusion of
inhomogeneities while permitting the consideration of any
of the mentioned alternatives in LQC. Apart from the
standard regularization followed so far in LQC [32,33],
most of the attention has been focused on a regularization
procedure recently put forward by Dapor and Liegener
(DL) [34], following pioneering works by Thiemann [29]
and Yang, Ding, and Ma [35]. This procedure adopts a

different regularization scheme for the Euclidean and
Lorentzian parts of the gravitational action, namely the
parts without and with quadratic dependence on the
extrinsic curvature, respectively [28], implementing this
regularization before proceeding to the symmetry reduction
to homogeneity and isotropy. This alternative for the
construction of the Hamiltonian of LQC has been consid-
ered in several papers in the past two years [36–43]. The
extension to anisotropic universes of the Bianchi type I has
also been studied [44]. An especially appealing property of
the new Hamiltonian constraint obtained in this manner for
flat FLRW cosmologies is that the effective solutions
typically present two branches with different cosmological
behavior: one of them corresponding to an asymptotically
de Sitter cosmology, even in the absence of a genuine
cosmological constant, and the other one describing an
FLRWuniverse. Therefore, one finds a physical scenario in
which a contracting de Sitter regime is followed by a
quantum bounce after which there may exist an inflationary
era leading to a universe like the one we observe. This
suggestive fact, with potential implications for the gener-
ation of primordial perturbations, together with the con-
venience of studying well-founded regularizations in LQC
other than the standard one (which seems desirable given
that we do not yet fully understand the relation between
LQG and this formalism of quantum cosmology [45–49]),
are the main motivations for our interest in investigating the
application of the hybrid approach to inhomogeneities in
spacetimes that are described quantum mechanically with
the DL proposal.
In more detail, in this work we construct a theoretical

framework for the treatment of cosmological perturbations
adopting the DL proposal for the quantization of the
FLRW sector of the geometry. We consider inhomogeneous
perturbations on top of a flat FLRW spacetime with a
minimally coupled scalar field, focusing on scalar and
tensor perturbations. In general, scalar perturbations are
physically the most important ones and, conceptually, the
most interesting ones, as they couple to energy density
fluctuations, and are ultimately responsible for most of the
inhomogeneities and anisotropies in the Universe. This also
complicates their mathematical description. Additionally,
inflation also generates tensor fluctuations in the spatial
metric, that can be viewed as gravitational waves. These are
not coupled to any other perturbation at the order of our
truncations. However, they do induce fluctuations in the
CMB which turn out to be a unique signature of the early
epochs of the Universe and offer a valuable window on the
physics driving in inflation. To deal with the problem of
gauge invariance [50] at the level of the perturbations while
maintaining a canonical set of variables for the entire
cosmological model, including the homogeneous FLRW
universe, we follow the formulation elaborated in Ref. [14].
In particular, the physical degrees of freedom of the scalar
perturbations will be described by Mukhanov-Sasaki (MS)
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variables [51–54], that are perturbative gauge invariants
and are directly related to the comoving curvature
perturbations. For the tensor perturbations, which are
directly perturbative gauge invariant variables, we adopt
the description of Ref. [24]. Finally, for the quantization
of the FLRW part of the geometry according to the
DL proposal, we follow the prescription introduced in
Ref. [43], that extends to this new alternative regularization
the quantization strategy that was detailed in Ref. [33] for
the standard regularization employed in LQC.
The rest of the paper is organized as follows. The basic

results of previous works on the gauge invariant description
of the perturbed model are summarized in Sec. II. At the
end of that section, we specify the resulting zero mode of
the Hamiltonian constraint (the only constraint that remains
on the system after adopting suitable gauge invariant
variables for the perturbations), including terms that are
quadratic in the inhomogeneous perturbations. In Sec. III,
we proceed to the quantization of our constrained system
(formed by the homogeneous background and the pertur-
bations) following the hybrid approach and adhering to the
new formalism of LQC proposed by Dapor and Liegener
for the homogeneous geometry. In particular, an alternative
representation of the momentum of the scale factor
(or, equivalently, of the physical volume) is constructed.
In Sec. IV, we study a class of solutions to the quantum
Hamiltonian constraint for which the dependence on the
FLRW geometry and on the perturbations can be separated.
We then proceed to derive a master constraint for the gauge
invariant perturbations and obtain the time-dependent
masses that govern the dynamics of scalar and tensor
perturbations. To conclude, we present a summary of the
main results and some further discussions in Sec. V. We set
the speed of light and the reduced Planck constant equal to
one throughout our discussion.

II. GAUGE INVARIANT PERTURBATIONS
AROUND A FLAT FLRW COSMOLOGY

The theory of cosmological perturbations is complicated
by the issue of gauge invariance (see e.g., Ref. [50]).
By performing a small amplitude transformation of the
spacetime coordinates, one can introduce fictitious fluctu-
ations around a homogeneous and isotropic spacetime.
These fluctuations are gauge artifacts that carry no physical
significance. There are mainly two approaches to deal with
these gauge ambiguities: to perform a gauge fixing or to
work directly with gauge invariant variables. The formu-
lation in terms of these gauge invariants is especially
convenient for the passage to the quantum theory, since
they allow us to reach results that are not by-products of a
particular choice of gauge and because they already take
into account the effects of the fundamental uncertainties
about the gauge sector of the perturbations. In this section,
we review the construction of a gauge invariant description
of the perturbations around flat FLRW cosmologies and

explain how this description can be extended to include the
degrees of freedom of the FLRW universes while retaining
a canonical formalism for the entire system. This con-
struction follows the discussion presented in Refs. [14,24].
We refer the reader to those articles for further details.

A. The model

We consider the inhomogeneous gravitational system
resulting from the introduction of perturbations around
a flat FLRW cosmology with compact spatial sections
homeomorphic to a three-torus. To achieve a nontrivial
dynamics, we introduce a matter content given by a
minimally coupled scalar field subject to a generic poten-
tial. In the following, we focus our attention on perturba-
tions of scalar and tensor type (a natural classification in the
limit of continuous modes, that can be reached as explained
in Ref. [55]). At the lowest nontrivial perturbative order,
vector perturbations are purely a gauge artifact when no
matter vector field is present.
It is convenient to recast the perturbed metric functions

and scalar field as expansions in a complete set of scalar
and tensor harmonics, after which the dynamics of the
perturbations is encoded in the Fourier coefficients of these
expansions. The zero modes, which are treated exactly
[3,4,23,56], are regarded as a dynamical homogeneous
background that can be parametrized using the homo-
geneous lapse function N0, the logarithmic scale factor α,
and the zero mode of the scalar field φ. At the level of the
action, a truncation of the harmonic expansion at the lowest
nontrivial order in the Fourier coefficients (i.e., the quad-
ratic one) results in the following Hamiltonian [14,24]:

H ¼ N0

�
Hj0 þ

X
n⃗;ϵ

Hn⃗;ϵ
j2 þ

X
n⃗;ϵ;ϵ̃

THn⃗;ϵ;ϵ̃
j2

�

þ
X
n⃗;ϵ

gn⃗;ϵH̃
n⃗;ϵ
j1 þ

X
n⃗;ϵ

kn⃗;ϵH̃
n⃗;ϵ
1 ; ð2:1Þ

where the labels n⃗ ∈ Z3 − f0g, ϵ ¼ �, and ϵ̃ ¼ þ;×
characterize the scalar and tensor modes. Indeed, n⃗ desig-
nates the wave vector of the mode (its first nonvanishing
component is typically restricted to be positive to avoid
repetition), ϵ denotes the parity, and ϵ̃, that is exclusive to
tensor modes, labels the polarization [24].
The lapseN0 and the coefficients gn⃗;ϵ and kn⃗;ϵ in Eq. (2.1)

are Lagrange multipliers and their associated equations of
motion merely amount to constraints: the zero mode of the
Hamiltonian constraint, Hj0 þ

P
n⃗;ϵH

n⃗;ϵ
j2 þP

n⃗;ϵ;ϵ̃
THn⃗;ϵ;ϵ̃

j2 ,

and the linear perturbative constraints, H̃n⃗;ϵ
j1 and H̃n⃗;ϵ

1 . We

then realize that the Hamiltonian is composed by a linear
combination of constraints, which reflects the invariance
under spatial diffeomorphisms and time reparametrizations
that is inherited from the full theory of general relativity. On
the one hand, the zero mode of the Hamiltonian constraint is
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composed by two distinct pieces: the Hamiltonian corre-
sponding to the unperturbed flat FLRW background Hj0,
and two terms that collect quadratic contributions from the
inhomogeneities, Hn⃗;ϵ

j2 and THn⃗;ϵ;ϵ̃
j2 . The homogeneous con-

tribution is given byHj0 ¼ e−3α½−π2α þ π2φ þ 2e6αW̄ðφÞ�=2,
where πα and πφ are themomenta canonically conjugate to α
and φ, respectively. In addition, W̄ðφÞ is related with the
field potentialWðφÞ by W̄ðφÞ ¼ σ4Wðφ=σÞ, where we have
defined σ2 ¼ 4πG=ð3l30Þ and l0 is the period of the funda-
mental cycles of the three-tori, isomorphic to the spatial
sections. On the other hand, the two remaining constraints
H̃n⃗;ϵ

j1 and H̃n⃗;ϵ
1 are linear in the scalar perturbations.We notice

that there is no perturbative constraint linear in the tensor
perturbations, a fact which can ultimately be traced back to
the absence of couplings with tensor matter fields.
It is important to remark that the system is symplectic at

the discussed perturbative order. The canonical variables
that coordinatize the homogeneous phase space are
fwaga¼1;2 ≡ fwa

q;wa
pga¼1;2 ¼ fα;φ; πα; πφg. In the inho-

mogeneous sector, two sets can be distinguished: one of
them describes the dynamics of the scalar perturbations, for
which we use the notation fXn⃗;ϵ

l gl¼1;2;3≡fXn⃗;ϵ
ql ;X

n⃗;ϵ
pl gl¼1;2;3,

and the other describes the tensor perturbations,
fdn⃗;ϵ;ϵ̃; πdn⃗;ϵ;ϵ̃g. In both cases, they are composed by the
dynamical Fourier coefficients and their associated
momenta.

B. Gauge invariant formalism

As commented above, we wish to describe the pertur-
bations in a gauge invariant manner. The variables that
describe the tensor modes turn out to be already gauge
invariant in the sense of the Bardeen potentials [50]. Thus,
we only need to focus on the scalar sector.
Perturbative gauge invariants are characterized by being

invariant under a perturbative diffeomorphism when the
background is regarded as fixed, meaning that, in that
situation, they Poisson commute with the generators of
perturbative diffeomorphisms: the linear perturbative
constraints, H̃n⃗;ϵ

j1 and H̃n⃗;ϵ
1 . Following Ref. [14], we intro-

duce the so-called Mukhanov-Sasaki (MS) variables vn⃗;ϵ
[51–54], which are perturbative gauge invariants defined by
linear combinations of the configuration variables of the
scalar sector Xn⃗;ϵ

ql . Then, we can construct a complete set of
compatible, gauge invariant variables for the scalar pertur-
bations provided that we Abelianize the algebra of pertur-
bative constraints. This can be achieved at the considered
truncation order by replacing H̃n⃗;ϵ

j1 with a suitably redefined

perturbative constraint H̆n⃗;ϵ
j1 (see Ref. [14]). This procedure

leads to a Hamiltonian of the same form, once the lapse
function is also redefined,N0→ N̆0, by including in it terms
quadratic in the scalar perturbations [14]. Appropriate
variables canonically conjugate to the ones described above

can be found with relative ease [14], completing the change
of perturbative variables into a canonical transformation for
the inhomogeneous sector: Xn⃗;ϵ

l ↦ Vn⃗;ϵ
l ≡ fVn⃗;ϵ

ql ;V
n⃗;ϵ
pl g,

where fVn⃗;ϵ
ql gl¼1;2;3 ¼ fvn⃗;ϵ; Cn⃗;ϵ

j1 ; Cn⃗;ϵ
1 g are the new con-

figuration variables and fVn⃗;ϵ
pl gl¼1;2;3 ¼ fπvn⃗;ϵ ; H̆n⃗;ϵ

j1 ; H̃n⃗;ϵ
1 g

are the new momenta. Notice that we have included the
perturbative constraints as momentum variables, with con-
jugate variables Cn⃗;ϵ

j1 and Cn⃗;ϵ
1 that are pure gauge. This

facilitates their quantum implementation, as we discuss in
Sec. III.

C. Redefinition of the gauge invariant variables

Before reintroducing the dynamics of the homogeneous
background, we want to address an extra freedom that
exists in the formalism: the perturbation variables are not
uniquely fixed and, indeed, we can perform transformations
that leave the canonical structure of the perturbations
invariant while changing those variables. In this subsection
we discuss a criterion that allows us to eliminate this
freedom up to unitary transformations.
In Sec. III, we perform a Fock quantization of the MS

and tensor fields. If we carry out a partial reduction (and
time deparametrization) of the system, the MS and tensor
fields can actually be interpreted as fields propagating in an
ultrastatic compact background. There exist a series of
works that guarantee the uniqueness, up to unitary equiv-
alence, of the Fock quantization of fields that propagate in
such spacetimes and satisfy a dynamical equation of the
Klein-Gordon type, with a mass that can be time-dependent
[57–62]. This result holds when the Fock representation is
required to exhibit the two following properties: (i) the
vacuum is invariant under the isometries of the spatial
sections and (ii) the quantum evolution associated with the
Klein-Gordon equation can be implemented unitarily.
Therefore, the background symmetries and the unitary
implementability of the dynamical (Heisenberg) evolution
pick out a single family of Fock representations that are
unitarily equivalent. However, for this statement to apply to
the case under consideration, the scalar and tensor gauge
invariant fields (as well as their associated momenta) need a
suitable transformation, that effectively fixes the freedom
mentioned above up to unitary equivalence.
Once we perform the rescaling dn⃗;ϵ;ϵ̃ → d̃n⃗;ϵ;ϵ̃ ¼ eαdn⃗;ϵ;ϵ̃

(and the inverse scaling πdn⃗;ϵ;ϵ̃ → πd̃n⃗;ϵ;ϵ̃ to preserve the
canonical structure), the fields defined by the scalar and
tensor modes do in fact satisfy a Klein-Gordon equation of
the desired form. Nonetheless, we can still redefine the
momentumvariable of each gauge invariantmode by adding
a term proportional to the corresponding configuration
mode, up to a multiplicative function of the homogeneous
background. This ambiguity in the definition of Vn⃗;ϵ

p1
and

πd̃n⃗;ϵ;ϵ̃ can be removed by requiring that such a function of the
homogeneous background be chosen so that the
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Hamiltonian no longer contains linear terms in the momen-
tum variables. Actually, this is a necessary and sufficient
condition for the unitary implementability of the quantum
dynamics. Hence, this criterion resolves the ambiguity in the
definition of the perturbation variables up to unitary trans-
formations. For the sake of simplicity, in the rest of our
discussion we denote the modified momentum variables
using the same notation Vn⃗;ϵ

p1
and πd̃n⃗;ϵ;ϵ̃ as above.

D. Canonical transformation in the homogeneous sector

In the previous subsections, we regarded the background
variables fwaga¼1;2 as fixed, in order to concentrate our
attention on the treatment of the inhomogeneous sector. In
this way, we determined a canonical transformation in that
sector, fXn⃗;ϵ

l ; dn⃗;ϵ;ϵ̃; πdn⃗;ϵ;ϵ̃g ↦ fVn⃗;ϵ
l ; d̃n⃗;ϵ;ϵ̃; πd̃n⃗;ϵ;ϵ̃g. Now, we

proceed to extend this transformation to include the back-
ground variables, that then also undergo a modifica-
tion fwag ↦ fw̃ag≡ fα̃; φ̃; πα̃; πφ̃g.
We want a transformation that leaves invariant the

symplectic structure, the information of which is encoded
in the Legendre term of the action, that we callK. We seek a
set of background variables fw̃aga¼1;2 such that K retains
its canonical form (up to terms of order higher than
quadratic in the perturbations) when expressed in terms
of our new variables. As shown in Ref. [14] (see also
Refs. [63,64]), the result is that the homogeneous back-
ground variables receive corrections that are quadratic in
the perturbations.
By reexpressing the zero mode of the Hamiltonian in

terms of the variables fw̃a; Vn⃗;ϵ
l ; d̃n⃗;ϵ;ϵ̃; πd̃n⃗;ϵ;ϵ̃g, new contri-

butions appear in it that are of quadratic perturbative
order. It is clear that, since Hn⃗;ϵ

j2 and THn⃗;ϵ;ϵ̃
j2 are already

quadratic, they adopt the same expression at this order of
perturbative truncation. Nonetheless, this is not the case for
Hj0: it receives second-order corrections from our change
of variables. These corrections effectively add to the terms
Hn⃗;ϵ

j2 and THn⃗;ϵ;ϵ̃
j2 . Writing the homogeneous contribution to

the constraint as Hj0 ¼ e−3α̃ðπ2φ̃ −Hð2Þ
0 Þ=2, where Hð2Þ

0 ¼
π2α̃ − 2e6α̃W̄ðφ̃Þ, the zero mode of the Hamiltonian con-
straint turns out to be given by e−3α̃H̃, where [14,24]

H̃ ¼ 1

2
ðπ2φ̃ −Hð2Þ

0 − ΘS
e − ΘS

oπφ̃ − ΘTÞ: ð2:2Þ

The Θ-functions introduced in this equation are defined as

ΘS
o ¼ −ϑo

X
n⃗;ϵ

ðVn⃗;ϵ
q1 Þ2;

ΘS
e ¼ −

X
n⃗;ϵ

½ðϑeω2
n þ ϑqeÞðVn⃗;ϵ

q1 Þ2 þ ϑeðVn⃗;ϵ
p1
Þ2�; ð2:3Þ

ΘT ¼ −
X
n⃗;ϵ;ϵ̃

½ðϑeω2
n þ ϑqTÞðd̃n⃗;ϵ;ϵ̃Þ2 þ ϑeðπd̃n⃗;ϵ;ϵ̃Þ2�; ð2:4Þ

with ω2
n ¼ −4π2jn⃗j2=l20 and

ϑo ¼ −12e4α̃W̄0ðφ̃Þ 1

πα̃
; ϑe ¼ e2α̃; ð2:5Þ

ϑqe ¼ e−2α̃Hð2Þ
0

�
19 − 18

Hð2Þ
0

π2α̃

�
þ e4α̃½W̄00ðφ̃Þ − 4W̄ðφ̃Þ�;

ð2:6Þ

ϑqT ¼ e−2α̃Hð2Þ
0 − 4e4α̃W̄ðφ̃Þ; ð2:7Þ

that do not depend on πφ̃. Here, the prime denotes the
derivative with respect to φ̃. The quadratic contributions to
the zero mode of the Hamiltonian constraint are obviously
gauge invariant. The sums of these quadratic terms for the
scalar and tensor perturbations are usually called the MS
Hamiltonian and the tensor Hamiltonian, respectively. We
emphasize as well that there is no linear contribution from
Vn⃗;ϵ
p1

or πd̃n⃗;ϵ;ϵ̃ to these Hamiltonians, as we had anticipated in
Sec. II C. In the only instances in which these momenta
appear, they contribute quadratically.
Finally, let us comment that, when the quadratic con-

tributions to the zero mode of the Hamiltonian are explicitly
computed, additional terms appear which can be reab-
sorbed through redefinitions of the Lagrange multipliers
(see Refs. [14,24] for details). This process leads finally to a
total Hamiltonian that, with an obvious notation for the
modified Lagrange multipliers, can be written in the form

H ¼ N̄0e−3α̃H̃ þ
X
n⃗;ϵ

Gn⃗;ϵV
n⃗;ϵ
p2

þ
X
n⃗;ϵ

Kn⃗;ϵV
n⃗;ϵ
p3
: ð2:8Þ

III. HYBRID LOOP QUANTIZATION

In this section, we address the quantization of our model
following the approach of hybrid loop quantum cosmology
or, for short, hLQC [14,21–23]. This quantization strategy
is based on the assumption that there exists a certain regime
of the quantum dynamics where the most relevant quantum
geometric effects are those encoded in the zero modes of
the (homogeneous) geometry, while the perturbations may
be described using a more standard quantum representa-
tion. In view of this hypothesis, it seems reasonable to
adopt two different quantum representations: one, of a
quantum gravitational nature, for the homogeneous sector
and another more conventional for the inhomogeneities,
e.g., a QFT-like Fock representation. Thus, our objective is
to quantize the symplectic manifold that describes our
cosmological system as a whole, employing quantum
representations of different nature for the homogeneous
and inhomogeneous sectors, and imposing the constraints
quantummechanically (according to Dirac’s program [65]).
We assume a quantization of the homogeneous variables

that provides a representation of the canonical commutation
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relations such that the operators that describe the back-
ground FLRW geometry commute with the homogeneous
scalar field operators (as it already happens at the level of
the Poisson brackets algebra). Let these geometric and
scalar field operators be defined on the kinematical Hilbert
spaces Hgrav

kin and Hmatt
kin , respectively. Then, provided our

assumption on the commutation properties of the homo-
geneous operators, we can write the kinematical Hilbert
space associated with the full homogeneous sector as the
tensor product of the two mentioned representation spaces.
Concerning the perturbations, we assume a Fock quantiza-
tion (although this formalism is easily extensible to account
for different choices [14]) such that the operators repre-
senting the basic variables for the inhomogeneities also
commute with the homogeneous ones. These, together with
a suitable prescription for a symmetric factor ordering upon
quantization, are essentially the only building blocks
necessary for the general quantum theory that was intro-
duced in Ref. [14], that in fact does not require at all that the
methodology be particularized to a concrete quantization of
the homogeneous geometry. In this sense, although in the
present work we focus our attention on the case where we
select a polymeric representation of the geometry, inspired
by LQG, we emphasize that this is only a particular case.
Whereas it is especially interesting owing to the physics
emerging from LQC and the reasons discussed in the
Introduction, it is by no means necessary in order to
construct a formalism of hybrid quantum cosmology, that
in a more general context might rest on a different quantum
representation of the background degrees of freedom.

A. Quantum representation of
the homogeneous sector

Let us now detail the quantum representation that we are
going to choose for the zero mode of the scalar field and for
the homogeneous FLRW geometry. We also specify the
quantum counterpart of the homogeneous contribution to
the zero mode of the Hamiltonian constraint, and discuss
some ambiguities that appear in its definition.
As far as the homogeneous matter scalar field is

concerned, we consider a standard Schrödinger represen-
tation, in which the operator ˆ̃φ acts by multiplication and
the momentum operator π̂φ̃ acts as a generalized derivative.
The kinematical Hilbert space corresponding to the matter
content is Hmatt

kin ¼ L2ðR; dφ̃Þ.
Regarding the homogeneous geometry, we henceforth

particularize our discussion to the case where it is described
quantum mechanically by employing the formalism of
LQC [25,26]. More concretely, we follow the so-called
“improved dynamics prescription” introduced in Ref. [32],
which accounts for the existence of a minimum non-
vanishing eigenvalue Δ allowed for the area in LQG
[27,28]. Among the possible factor ordering prescriptions
for the quantum representation of the Hamiltonian con-
straint, we adopt the symmetric prescription put forward in

Ref. [33], usually referred to as Martín-Benito–Mena
Marugán–Olmedo (or MMO, for short) prescription.
Furthermore, we want to study the application of the
hybrid formalism to the particular case where the back-
ground is described using the DL procedure for the
regularization of the homogeneous Hamiltonian constraint,
as we will explain below.
In homogeneous and isotropic LQC, instead of describ-

ing the geometry using the scale factor and its conjugate
momentum, the gravitational degrees of freedom are
encoded in the Ashtekar-Barbero suð2Þ gauge connection
and the densitized triad, which compose a canonical pair (in
the sense that their Poisson bracket is proportional to the
identity). However, given the homogeneous and isotropic
nature of the spatial sections of the cosmologies under
study, all the relevant information is actually contained
in two dynamical variables, c and p, coming from the
connection and the triad, respectively. The consideration of
the improved dynamics scheme motivates a change of
variables ðc; pÞ → ðb; vÞ, where b is classically propor-
tional to the expansion rate and v is the physical volume of
the Universe, up to a constant multiplicative factor. This
new set of variables remains canonical and their Poisson
bracket is fb; vg ¼ 2. Their precise relation to the scale
factor and its canonically conjugate momentum is

eα̃ ¼
�
3γ

ffiffiffiffi
Δ

p

2σ
jvj

�1=3

¼
�

3l0
4πG

�
1=2

V1=3; ð3:1Þ

πα̃ ¼ −
3

2
bv; ð3:2Þ

where γ is the Immirzi parameter and V ¼ 2πGγ
ffiffiffiffi
Δ

p jvj is
the physical volume of the Universe.
Since the connection does not have a well-defined

quantum analog in LQG, one chooses the holonomies of
the connection instead as basic variables which, together
with the triad, play the role of fundamental operators in the
quantum theory. The holonomy elements are given by
complex exponentials of b. With the typical notation of the
improved dynamics formulation, we denote these expo-
nentials byN �nμ̄ ¼ expð�inb=2Þ. Although we may allow
n to be real, in the rest of our discussion we mainly restrict
our attention to integer values of n. The kinematical Hilbert
space Hgrav

kin for the geometry of flat FLRW in LQC is
formed by the linear span of all the eigenstates of the
volume variable, jvi with v ∈ R, Cauchy-completed
with respect to the norm defined by the discrete inner
product hvjv0i ¼ δv;v0 [26]. On the basis states jvi, the
volume simply acts by multiplication, whereas the holon-
omy operators produce constant shifts in their label,
N̂ �nμ̄jvi ¼ jv� ni.
Let us now discuss the quantization of the Hamiltonian

constraint of flat FLRW cosmologies in LQC, that will
determine precisely the homogeneous contribution to the
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zero mode of the quantum Hamiltonian constraint in our
perturbed model. The first step in this process is to
reexpress the Hamiltonian Hj0 in terms of the basic
variables of the theory, which have a well-defined quantum
analog. In the LQC literature, this procedure is usually
understood as a regularization process, on account of the
fact that it involves the replacement of the connection and
its associated curvature tensor by holonomies around
closed circuits with a nonvanishing physical area, thereby
dealing with ultraviolet divergences of the classical theory.
The key point in this regard is that there is not full
consensus in the regularization of the Hamiltonian; indeed,
different proposals exist in the literature that lead to
different loop quantum theories. Actually, there are two
prominent regularization proposals in LQC: the most
frequent or standard one [32] and the DL proposal [34].
To comprehend the main difference between these

regularization proposals, it is important to understand the
basic structure of the Hamiltonian constraint in full general
relativity. When written in terms of Ashtekar-Barbero
variables, the Hamiltonian constraint is essentially com-
posed by two pieces, namely the Euclidean and the
Lorentzian parts, that can respectively be expressed in
terms of the curvature of the connection and of the extrinsic
curvature (apart from the triad), and that receive their names
from the fact that only the first of these parts appears in
Euclidean gravity. Traditionally, the community of LQC
has employed a regularization scheme that exploits the high
symmetry of the most commonly considered cosmological
spacetimes, namely homogeneity and spatial flatness
[32,33]. Indeed, in homogeneous and spatially flat scenar-
ios, the Lorentzian part of the Hamiltonian constraint turns
out to be classically proportional to the Euclidean part and,
thus, the full Hamiltonian can be expressed in terms of the
Euclidean part alone. Hence, regularizing the Euclidean
part suffices to rewrite the full Hamiltonian as a function
of holonomies (and triads) in this kind of systems.
However, conceptually, this prescription may not seem
totally satisfactory, since it cannot be applied to more
general scenarios, where the aforementioned symmetries
fail to exist.
As we have commented, recently Dapor and Liegener

put forward an alternative regularization scheme which
does not rely on these symmetry considerations [34,38,39].
Indeed, it is based on the independent regularization of the
two terms in the Hamiltonian constraint (through the use of
two Thiemann identities). The subsequently modified
model of LQC, sometimes referred to as the DL formalism
of LQC, appears to lead to physical predictions which differ
from the ones attained with the standard formalism of LQC,
e.g., concerning the bounce mechanism that is expected to
resolve the big bang singularity in the quantum theory.
Results of this type raise the question of whether the
standard approach to LQC faithfully captures the actual
cosmological dynamics and singularity resolution picture

within full LQG. In this sense, it seems enlightening to
examine alternative loop quantizations of cosmological
spacetimes, like the one that results in the DL formalism,
in order to analyze whether the standard physical predic-
tions are robust independently of the regularization process
adopted to construct the formulation of LQC.
With this motivation in mind, we now study the

hybrid quantization of perturbative inhomogeneities that
propagate on a homogeneous and isotropic background
described by the DL formalism of LQC. The Hamiltonian
constraint operator for a flat FLRW cosmology was first
constructed and analyzed employing the MMO quantiza-
tion prescription in Ref. [43]. As shown in that reference,
the densitized version of the Hamiltonian operator for
the unperturbed flat FLRW background is given by

ðπ̂2φ̃ − Ĥð2Þ
0 Þ=2, with [43]

Ĥð2Þ
0 ¼−

�
3

4πG

�
2
�
Ω̂2

2μ̄−
1þ γ2

4γ2
Ω̂2

4μ̄þ
3l30
2πG

V̂2 ˆ̄W

�
: ð3:3Þ

In the previous expression, the field potential operator is to

be understood as the multiplicative operator ˆ̄W ¼ W̄ð ˆ̃φÞ
(like any function of the zero mode of the scalar field, for
that matter). The operator Ω̂nμ̄ (for any integer number n) is
defined as1

Ω̂nμ̄ ¼
1

4i
ffiffiffiffi
Δ

p V̂1=2½ dsgnðvÞ; N̂ nμ̄ − N̂ −nμ̄�þV̂1=2; ð3:4Þ

where ½·; ·�þ denotes the anticommutator.
This operator, which is densely defined on the tensor

product Hgrav
kin ⊗ Hmatt

kin , satisfies a number of properties
which are relevant to our present discussion. In the first
place, it annihilates the quantum state of vanishing volume
(i.e., the quantum analog of the classical singularity) and
leaves invariant its orthogonal complement H̃grav

kin ⊗ Hmatt
kin ,

where H̃grav
kin is the Cauchy completion of the span of the

volume eigenstates with a nonzero volume. This decou-
pling of the singular state, together with the fact that
positive and negative volumes are not connected by the
repeated action of the constraint, leads to the Hilbert
subspaces spanned by the eigenstates with positive or
negative volumes being left invariant. Furthermore, the
action of the constraint superselects for the FLRW geom-
etry Hilbert subspaces H�

ε with support on discrete semi-
lattices of step four f�ðεþ 4nÞ; n ∈ Ng [43,44], that have
a strictly positive minimum ε or a strictly negative
maximum −ε for the volume. For the sake of definiteness,

1We notice a slight modification in the quantum representation
of the powers of the volume with respect to the one presented in
Ref. [43]. This is due to the choice of a different prescription for
the representation of the inverse of the minimum coordinate
length μ̄. For further details, consult the Appendix of Ref. [44].
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from now on we restrict our discussion to Hþ
ε with a

fixed ε ∈ ð0; 4�.
Since we regard the inhomogeneities of our system as

perturbations, it seems reasonable to demand that their
introduction does not alter the superselection sectors of the
unperturbed model. For this reason, we will take into
account the details about the invariant Hilbert subspaces in
the quantization of the quadratic contributions to the zero
mode of the Hamiltonian constraint, which must preserve
these subspaces as well.

B. Fock representation of the inhomogeneities and
implementation of the perturbative constraints

For the perturbations, we consider a Fock quantization,
which is selected up to unitary equivalence by the criteria of
invariance of the vacuum under the spatial isometries
and unitary implementability of the quantum dynamics.
Additionally, we may require that the chosen Fock quan-
tization satisfy other conditions that would further restrict
the representation (for instance, we could demand that the
operators constructed out of elements of the Weyl algebra
and other relevant operators be well defined at the quan-
tum level).
The representation where the associated creation and

annihilationlike variables correspond just to harmonic
oscillators of constant frequency ωn belongs to the family
of unitarily equivalent Fock quantizations picked out by our
criteria of symmetry invariance and dynamical unitarity.
Let us consider this representation for simplicity, although
one may instead use another representation in its equiv-
alence class with better physical properties, according to
our comments above. The corresponding Fock spaces for
the MS and tensor modes are denoted by F S and F T ,
respectively. An orthonormal basis of these spaces is given
by the occupancy-number states, labeled by a positive
integer per mode. Creation and annihilation operators act
on this basis in the standard way, namely, by increasing or
decreasing the occupancy number corresponding to a
particular mode by one unit.
In order to complete the quantum description of the

system, we still have to represent the constraints and
impose them quantum mechanically. Notice that, in the
gauge invariant formulation presented in the previous
section, the constraints Poisson commute, a fact which
allows us to impose them without the introduction of
inconsistencies (at least if their quantum analogs commute
as well [65]). Let us deal, in the first place, with the linear
perturbative constraints. Our classical formalism was
already designed to facilitate their imposition at the
quantum level. For the part of the inhomogeneous sector
parametrized by fVn⃗;ϵ

l gl¼2;3, we select a quantization such
that the momenta (i.e., the linear perturbative constraints
under discussion) act as generalized derivatives with
respect to the configuration variables fVn⃗;ϵ

ql gl¼2;3. In such

a quantization, the vanishing of the classical constraints has
a straightforward quantum counterpart: the physical
states cannot depend on the configuration variables of this
part of the inhomogeneous sector, since generalized deriv-
atives with respect to them must be equal to zero.
Therefore, imposing these quantum constraints amounts
to the restriction to a representation space which is
simply Hgrav

kin ⊗ Hmatt
kin ⊗ F S ⊗ F T. Notice, however, that

this Hilbert space is not the physical one yet, since the
zero mode of the Hamiltonian constraint still remains
to be represented and imposed (something considerably
more complicated than imposing the linear perturbative
constraints).
We focus our attention here on the densitized version of

the zero mode of the Hamiltonian constraint, H̃ [33,43]. By

virtue of Eq. (2.2) and the definition of Ĥð2Þ
0 (3.3), we

obtain that a straightforward quantization leads to

ˆ̃H ¼ 1

2
ðπ̂2φ̃ − Ĥð2Þ

0 − Θ̂S
e − Θ̂T − dΘS

oπφ̃Þ; ð3:5Þ

where the different operators involved will be constructed
in detail in the following subsections.

C. Factor ordering prescriptions

Notice that the presence of classically noncommuting
quantities in Eq. (3.5) (in particular, in the last three terms)
makes it necessary to specify a proposal for the factor
ordering that must be taken upon quantization. For the sake
of clarity, we now explain and discuss the details of this
proposal. We adopt the following prescriptions:

(i) The products of the form fðφ̃Þπφ̃ are represented
quantum mechanically by 1

2
½fðφ̃Þ; π̂ ˆ̃φ�þ, where f is

an arbitrary function. In particular, this impliesdΘS
oπφ̃ ¼ 1

2
½Θ̂S

o; π̂φ̃�þ in Eq. (3.5).
Moreover, in the products of any real power of the

volume with any function of bv (that typically arises in the
regularization with holonomy elements), we adopt an
algebraic symmetrization for the powers of the volume
(or the inverse volume). Explicitly:
(ii) The products of the form VrgðbvÞ, where r is a real

number and g is an arbitrary function, are repre-
sented by V̂r=2ĝV̂r=2.

The only remaining issue to be addressed is the quan-
tization of the functions of bv themselves, which requires
further comments. To begin with, the quantity bv is
classically proportional to the momentum variable asso-
ciated with the logarithmic scale factor. The formalism
presented in the previous sections provides us with a
straightforward and natural definition of the quantum
analog of the square of πα̃. Indeed, given the definition

of Hð2Þ
0 and the DL proposal (3.3), we can simply set

LAURA CASTELLÓ GOMAR et al. PHYS. REV. D 102, 083524 (2020)

083524-8



π̂2α̃ ¼ Ĥð2Þ
0 þ 2ce6α̃ ˆ̄W ¼ Ĥð2Þ

0 þ 2

�
3l0
4πG

�
3

V̂2 ˆ̄W

¼ −
�

3

4πG

�
2
�
Ω̂2

2μ̄ −
1þ γ2

4γ2
Ω̂2

4μ̄

�
: ð3:6Þ

Since Ω̂2μ̄ and Ω̂4μ̄ produce shifts of two and four units in
the label of the volume eigenstates [see Eq. (3.4)], respec-
tively, it is immediate to conclude that this quantum
representation of π2α̃ leaves invariant Hilbert subspaces
with support on discrete lattices of step four (indeed, it
is essentially the Hamiltonian constraint that would corre-
spond to vacuum flat FLRW cosmology).
We note that, while we might adopt for π̂2α̃ the same

prescription as in Ref. [14] (that is, we might represent π2α̃
as being proportional to Ω̂2

2μ̄), that alternative definition
seems less natural and convenient than the one that we have
proposed above. On the one hand, even though Ω̂2

2μ̄ is
indeed a representation of the classical quantity ðbvÞ2 (up
to some constant multiplicative factor), it would not agree
with our choice of regularization procedure for the homo-
geneous Hamiltonian. Furthermore, even if we ignored this
issue and admitted the use of different regularization
procedures to provide quantum representations of the same
object, the definition that we have proposed behaves better
upon inversion. Indeed, while zero is known to belong to
the spectrum of Ω̂2μ̄ (which might lead to problems when
computing the inverse), our present proposal fares better in
this regard. Actually, on physical solutions to the homo-

geneous Hamiltonian constraint, Ĥð2Þ
0 is nonnegative and,

a fortiori, Ĥð2Þ
0 þ 2ce6α̃ ˆ̄W is also nonnegative if so is the

scalar field potential, as it is often the situation in the most
interesting physical scenarios (e.g., a mass term). Hence, it
is not difficult to conclude that the only case in which we
might encounter then a problem for physical states is at the
zeros of the field potential, and only if the kinetic energy of
the scalar field vanishes there quantum mechanically at
zeroth-order in the perturbations, a possibility which is in
any case much more stringent than the situation that we had
found with the alternative representation (another argument
supporting our proposed choice of representation can be
found at the end of Sec. III D).
Taking into account the above arguments, we choose to

represent π2α̃ as in Eq. (3.6) and, thus, any even power of πα̃
can be quantized in a simple way as follows:
(iii) The even powers of the canonical momentum

associated with the logarithmic scale factor, π2kα̃
(for any integer k), are represented by

ðπ̂2α̃Þk ¼ ðĤð2Þ
0 þ 2ce6α̃ ˆ̄WÞk

¼
�

3

4πG

�
2k
�
−Ω̂2

2μ̄ þ
1þ γ2

4γ2
Ω̂2

4μ̄

�
k

: ð3:7Þ

The quantum representation of the odd powers of πα̃,
however, is not so immediate. The extra difficulty arises
owing to the fact that, unlike the case of π̂2α̃, there is no
definition of π̂α̃ that is straightforwardly provided by the
formalism. Thus, we need to introduce one ourselves. Let
us denote by Λ̂ the operator that results from the quantiza-
tion of πα̃. It is obvious that any odd power of the
momentum can be rewritten as an even power (for which
we already have a representation) times πα̃ itself. Then, we
are in a position to adopt an algebraic symmetrization for
the even powers and represent the single remaining factor
by Λ̂, the form of which is yet to be discussed. As a result,

dπ2kþ1
α̃ ¼ jπ̂2α̃jk=2Λ̂jπ̂2α̃jk=2; ð3:8Þ

where jÂj is the absolute value of the operator Â. We recall
that π̂2α̃ is a nonnegative operator on physical states when
the perturbations are absent or ignored, so that in this
situation the absolute values in our definition would be
spurious.
To conclude, let us discuss a possible way to define Λ̂.

A formal restriction on Λ̂ is that it must only produce shifts
in the volume which are integer multiples of four.
Otherwise, the resulting operator would not leave invariant
the superselection sectors H�

ε . In Ref. [14], it was sug-
gested to represent Λ̂ by Ω̂4μ̄, up to multiplicative constants,
an operator which did not appear in principle in the
homogenous Hamiltonian (recall that Hj0 was constructed
in that work using exclusively the standard regularization),
although it is often employed in LQC to represent the
Hubble parameter. Indeed, this operator has the good
property of respecting the superselection sectors of the
unperturbed model. Since there is no longer any need to
define Ω̂4μ̄ ad hoc, it seems reasonable to adopt the same
representation of Λ̂ within our DL formulation. In total,
thus, we adopt the following prescription:
(iv) The odd powers of the canonical momentum asso-

ciated with the logarithmic scale factor π2kþ1
α̃ (for

any integer k) are represented by

dπ2kþ1
α̃ ¼ jπ̂2α̃jk=2Λ̂jπ̂2α̃jk=2

¼
�

3

4πG

�
2k
����Ω̂2

2μ̄ −
1þ γ2

4γ2
Ω̂2

4μ̄

����k=2
× Λ̂

����Ω̂2
2μ̄ −

1þ γ2

4γ2
Ω̂2

4μ̄

����k=2; ð3:9Þ

where Λ̂ is an appropriately chosen operator that
leaves invariant the Hilbert subspaces with support
on discrete semilattices of step four, such as
−3Ω̂4μ̄=ð8πGγÞ.

This completes the characterization of the factor ordering
prescriptions required to quantize the contributions arising
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from the perturbations in the zero mode of the Hamiltonian
constraint.

D. Quantization of the perturbative contributions
to the Hamiltonian constraint

Let us finally analyze the result of quantizing the
quadratic perturbative contributions to the Hamiltonian
constraint of the system employing the proposal that we
have detailed in the previous subsection. With this aim, we
now represent the functions of the homogeneous phase
space given in Eqs. (2.5)–(2.7), as densely defined oper-
ators on H�

ε ⊗ L2ðR; dφ̃Þ.
We consider first the function ϑo, defined in Eq. (2.5).

This is the only instance where an odd power of π̂α̃ appears.
Representing the four powers of the scale factor by the
appropriate powers of the volume operator and following
our prescriptions, we arrive at

ϑ̂o ¼ −12l20
ˆ̄W0V̂2=3

����Ω̂2
2μ̄ −

1þ γ2

4γ2
Ω̂2

4μ̄

����−1=2
× Λ̂

����Ω̂2
2μ̄ −

1þ γ2

4γ2
Ω̂2

4μ̄

����−1=2V̂2=3; ð3:10Þ

where Λ̂ is the operator discussed above.
The remaining functions are considerably simpler. The

classical function ϑe is nothing but the square of the scale
factor and, thus, its quantum counterpart is proportional to a
power of the volume operator,

ϑ̂e ¼
3l0
4πG

V̂2=3: ð3:11Þ

The two remaining functions are very similar, since one
is the analog of the other: ϑqe is found within the context of
scalar perturbations and ϑqT is related to tensor perturbations
instead. The scalar one, which was introduced in Eq. (2.6),
is quantized as

ϑ̂qe¼
4πG
3l0

�
1̂

V

�1=3

×Ĥð2Þ
0

�
19þ32π2G2

�
Ω̂2

2μ̄−
1þγ2

4γ2
Ω̂2

4μ̄

�−1
Ĥð2Þ

0

	�
1̂

V

�1=3

þ
�

3l0
4πG

�
2

ð ˆ̄W00−4 ˆ̄WÞV̂4=3; ð3:12Þ

where the inverse volume operator is defined in the way
which is standard in LQC, namely

�
1̂

V

�1=3
¼ 3

4πGγ
ffiffiffiffi
Δ

p dsgnðvÞ
× V̂1=3ðN̂ −μ̄V̂

1=3N̂ μ̄ − N̂ μ̄V̂
1=3N̂ −μ̄Þ: ð3:13Þ

The quantum counterpart of ϑqT , defined in Eq. (2.7), is less
involved and, in fact, does not require the additional factor
ordering and polymeric corrections encountered in ϑ̂qe [see
the term between the inverse volume operators in
Eq. (3.12)]. Explicitly,

ϑ̂qT ¼ 4πG
3l0

�
1̂

V

�1=3
Ĥð2Þ

0

�
1̂

V

�1=3
−
�

3l0
2πG

�
2
ˆ̄WV̂4=3: ð3:14Þ

At this point, we can present a further argument that
supports our choice of π̂2α̃. Classically, the first term of
ϑqT is obtained from the analogous term of ϑqe in the limit of
vanishing potential. Indeed,

19 − 18
Hð2Þ

0

π2α̃
¼ 19π2α̃ − 18Hð2Þ

0

π2α̃
¼ π2α̃ þ 36e6α̃W̄

π2α̃
; ð3:15Þ

that tends to one as W̄ → 0, leading to a successful recovery
of the first term of Eq. (2.7). This relation trivially holds at
the quantum level if we represent π2α̃ as proposed in
Eq. (3.6). Nonetheless, this classical relation is violated
if we keep the proposal of Ref. [14].
In conclusion, we have been able to represent the

functions ϑo, ϑe, ϑ
q
e , and ϑqT as densely defined operators

on H�
ε ⊗ L2ðR; dφ̃Þ, which amounts to providing a quan-

tization of the perturbative contributions to the zero mode
of the Hamiltonian constraint (recall that the gauge invari-
ant perturbative variables are represented in terms of
creation and annihilation operators on F S ⊗ F T). This,
together with the quantization of the homogeneous con-
tribution, completes the quantum representation of the
whole Hamiltonian at the considered perturbative order.

IV. MASTER CONSTRAINT
FOR THE PERTURBATIONS AND

TIME-DEPENDENT MASSES

In this section, we investigate the existence of solutions
to the zero mode of the Hamiltonian constraint (3.5) that
satisfy the following ansatz of separation of variables [14]:

Ψ ¼ Γðα̃; φ̃ÞψðN ; φ̃Þ: ð4:1Þ

This ansatz entails that the wave functions of the quantum
states under consideration can be factorized in such a way
that their dependence on the homogeneous geometry
(symbolically represented by α̃) and on the modes of the
perturbations (collectively denoted byN , that is understood
to refer to the occupancy numbers of the Fock states
corresponding to both the scalar and tensor perturbations)
can be separated. In principle, different rates of variation
might be allowed in the two factors with respect to φ̃, that in
certain intervals of the evolution might be regarded as an
emergent internal time; nevertheless, it is important to
emphasize that these assumptions about the use of an

LAURA CASTELLÓ GOMAR et al. PHYS. REV. D 102, 083524 (2020)

083524-10



internal clock and the relative rates of variation are
not needed for the analysis and derivation of the quantum
dynamics of the perturbations thatwe present in the following.
Moreover, as part of our ansatz, we only consider states

of the FLRW geometry that evolve unitarily with respect to
φ̃, namely Γðα̃; φ̃Þ ¼ Ûðα̃; φ̃Þχðα̃Þ, where Û is a unitary
operator and χðα̃Þ is to be understood as an initial condition
that is normalized to the unit in Hgrav

kin . Introducing our

ansatz in the quantum constraint equation ˆ̃HΨ ¼ 0, we
arrive at the following expression:

fðð ˆ̃H0Þ2 − Ĥð2Þ
0 þ ½π̂φ̃; ˆ̃H0�ÞΓgψ þ 2ð ˆ̃H0ΓÞðπ̂φ̃ψÞ

þ Γðπ̂2φ̃ψÞ −
1

2
½π̂φ̃ − ˆ̃H0; Θ̂S

o�ðΓψÞ

−
�
Θ̂S

e þ
1

2
½Θ̂S

o;
ˆ̃H0�þ þ Θ̂T

	
ðΓψÞ

− Θ̂S
ofΓðπ̂φ̃ψÞg ¼ 0; ð4:2Þ

where ˆ̃H0 is a self-adjoint operator defined as ˆ̃H0 ¼
½π̂φ̃; Û�Û−1.
Let us now assume that, with our choice of FLRW state,

it is a good approximation to neglect quantum transitions in
the homogeneous geometry mediated by the zero mode of
the Hamiltonian. This implies that, when taking the inner
product of the left-hand side of Eq. (4.2) with Γ in Hgrav

kin ,
the nondiagonal terms are irrelevant and only the expect-
ation values on Γ remain important. This assumption holds
as long as the relative dispersions of the relevant geometric
operators that appear in the zero mode of the Hamiltonian
be small on the quantum state Γ under consideration. The
operators that must satisfy this condition are those accom-
panying the independent terms π̂2φ̃ψ , π̂φ̃ψ , and ψ , in the
case of this last term distinguishing also between the two
existing types of contributions of the perturbative modes:
either quadratic on configuration variables or on their
momenta. From our previous discussion, it is immediate
to check that these are just a finite number of operators,
acting on the FLRW geometry. Actually, their expression in
our formalism can be straightforwardly derived as in
Sec. 5.3 of Ref. [14], the only differences being the
modified definitions of the ϑ-operators as a result of the
DL regularization and the contribution of tensor modes,
which were absent in that work.
Then, with this assumption, we obtain the master

constraint equation

π̂2φ̃ψ þ ð2h ˆ̃H0iΓ − hΘ̂S
oiΓÞπ̂φ̃ψ

¼
�


Θ̂S
e þ

1

2
½Θ̂S

o;
ˆ̃H0�þ þ Θ̂T

�
Γ
þ i



dφ̃

ˆ̃H0 −
1

2
dφ̃Θ̂S

o

�
Γ

þ hĤð2Þ
0 − ð ˆ̃H0Þ2iΓ

�
ψ ; ð4:3Þ

that is indeed quadratic on the perturbation variables and
their momenta. Here, hÔiΓ denotes the expectation value

on Γ inHgrav
kin and dφ̃Ô≡ i½π̂φ̃ − ˆ̃H0; Ô�, for any operator Ô.

Notice that, with the explained procedure, all the original
dependence of the zero mode of the Hamiltonian constraint
on the FLRW geometry has been replaced with expectation
values over this geometry, quantized according to the rules
of LQC (including the definition of the kinematical Hilbert
space on which the expectation values are computed).
The above equation governs the dynamics of the

perturbations for states that satisfy our ansatz, accepting
that the transitions in the FLRW geometry are ignorable.
This equation can be reinterpreted as the result of imposing
the vanishing of a constraint operator Ĉper acting on
Hmatt

kin ⊗ F S ⊗ F T of the form

Ĉper ¼ π̂2φ̃ þDΓðφ̃Þπ̂φ̃ þ EΓðφ̃Þ

−


Θ̂S

e þ
1

2
½Θ̂S

o;
ˆ̃H0�þ −

i
2
dφ̃Θ̂S

o þ Θ̂T

�
Γ
; ð4:4Þ

whereDΓ and EΓ are two Γ-dependent functions of only the
zero mode of the scalar field, the expressions of which are
not relevant for our analysis. This constraint operator
immediately provides us with the Heisenberg equations

for the modes of the perturbations: V̂n⃗;ϵ
q1 , V̂

n⃗;ϵ
p1
, ˆ̃dn⃗;ϵ;ϵ̃, and

π̂d̃n⃗;ϵ;ϵ̃ . These equations are linear, and can be recast as their
direct classical analogs in order to study the propagation of
the gauge invariant perturbations on the FLRW background
within our approximate description.
On the light of the considered densitization of the

constraint and the definition of the lapse function, it is
straightforward to realize that Ĉper generates reparametri-
zations in a time T̄ that is related classically to the
coordinate time t via dt ¼ σe3α̃dT̄. Moreover, the form
of the constraint suggests the definition of a conformal time
ηΓ adapted to the quantum FLRW geometry associated with
the state Γ. Indeed, one can define l0dηΓ ¼ hϑ̂eiΓdT̄, which
is a monotonous change of time given that ϑ̂e is a positive
operator. Notice that this change of time would be mean-
ingless if the derivative dηΓ=dT̄ were an operator itself. In
this regard, the expectation value on Γ plays a fundamental
role in ensuring that the dynamics of the perturbations
presented hereunder is mathematically well defined.
We are now in an adequate position to compute the

dynamical equations for the perturbation variables by
taking commutators with the generator of the evolution
as discussed above, or by taking directly Poisson brackets if
we prefer to consider the classical analog of these equa-
tions. According to our comments,

dηΓV
n⃗;ϵ
q1 ¼ l0

2hϑ̂eiΓ
fVn⃗;ϵ

q1 ; Cperg ¼ l0V
n⃗;ϵ
p1
; ð4:5Þ

dηΓ d̃n⃗;ϵ;ϵ̃ ¼
l0

2hϑ̂eiΓ
fd̃n⃗;ϵ;ϵ̃; Cperg ¼ l0πd̃n⃗;ϵ;ϵ̃ ; ð4:6Þ
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where Cper denotes the straightforward classical counter-
part of Ĉper (obtained by treating the scalar field momentum
and the modes of the perturbations as classical quantities),
and dηΓ denotes the derivative with respect to the introduced
conformal time [14]. Hence, calculating another derivative
with respect to ηΓ, we obtain

d2ηΓV
n⃗;ϵ
q1 ¼ l20

2hϑ̂eiΓ
fVn⃗;ϵ

p1
; Cperg ¼ −ðω̃2

n þMSÞVn⃗;ϵ
q1 ; ð4:7Þ

d2ηΓ d̃n⃗;ϵ;ϵ̃¼
l20

2hϑ̂eiΓ
fπd̃n⃗;ϵ;ϵ̃ ;Cperg¼−ðω̃2

nþMTÞd̃n⃗;ϵ;ϵ̃; ð4:8Þ

where ω̃2
n ¼ l20ω

2
n and MS and MT are the time-dependent

masses that govern the propagation of the perturbations:

MS ¼ l20
hϑ̂qeiΓ þ 1

2
h½ϑ̂o; ˆ̃H0�þiΓ − i

2
hdφ̃ϑ̂oiΓ

hϑ̂eiΓ
;

MT ¼ l20
hϑ̂qTiΓ
hϑ̂eiΓ

: ð4:9Þ

The imaginary term in MS depends on derivatives of the
scalar field potential and, in practice, it is very small in
situations of physical interest [14]. Therefore, we assume
that we can ignore it in the following. On the other hand,
although the label Γ has been left out for the sake of
simplicity, it is clear that these masses depend on time
through their dependence on the dressed FLRW geometry
associated with the quantum state Γ.
The derived equations of motion are of the generalized

harmonic oscillator type, with no friction and with time-
dependent masses that encode the main corrections of
quantum geometric nature. Furthermore, they are hyper-
bolic in the ultraviolet limit, where the contribution of the
frequency dominates.
At this point of our discussion, it may be helpful to list

concisely all the assumptions that are involved in the
derivation of the presented dynamical equations (4.7) and
(4.8) for theperturbations. To beginwith,wehave considered
a particular ansatz for solutions to the Hamiltonian con-
straint, such that their wave functions can be factorized
separating their dependence on the homogeneous geometry
and on the perturbations. Second, on these solutions, or more
specifically for their FLRW part, we have neglected the
quantum transitions of the homogeneous geometrymediated
by the zero mode of the Hamiltonian constraint. The validity
of this assumption mathematically depends on the smallness
of the relative dispersions of a finite number of concrete
geometric operators on the FLRW part of the quantum state
under consideration. Finally, we have also implicitly
assumed that the Heisenberg equations for the modes can
be directly deduced in the Fock representation that is
naturally associated with the chosen Mukhanov-Sasaki

and tensor variables, so that the corresponding quantum
field evolution of the gauge invariant perturbations has a
direct classical analog generated by Cper.
To conclude, let us focus our attention on FLRW states

that are highly peaked on the trajectories of effective LQC.
In that case, the expectation values on Γ can be estimated by
evaluating them on such trajectories. This estimation results
in the so-called scalar and tensor effective masses, that
according to our comments adopt the following expressions
within effective LQC:

MS ¼ l20
ϑqe þ ϑoH̃

ϑe
; ð4:10Þ

MT ¼ l20
ϑqT
ϑe

: ð4:11Þ

From the expression of ϑqT (2.7), it is obvious that the tensor
effective mass is unaffected by the commented potential
ambiguity in the regularization of the inverse powers of the
momentum of the logarithmic scale factor. However, this is
not the case as regards the scalar effective mass: it contains
contributions of ϑo (2.5) and ϑ

q
e (2.6), both of which depend

on inverse powers of πα̃. The fact that these need to be
regularized in order to be quantized and subsequently
evaluated on the trajectories of effective LQC entails that
the regularization procedure adopted for their definition
does leave an imprint in the mode dynamics. Thus, an
analysis of the scalar effective mass enables a direct
comparison between the two proposed prescriptions.

V. CONCLUSION

We have discussed the generalization of the hybrid
approach for the quantization of cosmological perturba-
tions around a flat FLRW universe, with compact sections,
and minimally coupled with a scalar field, to possible
alternative regularization schemes in LQC, showing how to
combine the Fock quantization of the physical degrees of
freedom of the perturbations with the quantum formalism
obtained with such regularizations for homogeneous and
isotropic spacetimes.
In order to construct our formulation, we have started

with a truncation of the action to second order in the
perturbations of the metric and the matter fields, treating the
zero modes that describe the FLRW cosmologies exactly in
this procedure. Following previous work by Langlois [66]
and Refs. [14,24], we have then adopted a set of canonical
variables for the perturbations formed by gauge invariants,
Abelianized perturbative constraints, and suitable canonical
momenta. We have shown that this set can be completed
into a canonical one for our whole cosmological system,
including the sector of FLRW backgrounds as part of the
total phase space. The resulting formulation permits an
almost straightforward imposition of the perturbative con-
straints, leading to the conclusion that physical states may
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only depend on perturbative gauge invariants and FLRW
zero modes, but are still subject to one global constraint: the
zero mode of the Hamiltonian constraint of the entire
perturbed cosmology. This formulation is robust and valid
for any quantum description of the FLRW degrees of
freedom that one decides to adopt, as far as one assumes
that the canonical Poisson structure that we have obtained
is preserved in the passage to quantum commutators.
Supposing that one has at hand a satisfactory Fock

quantization of the gauge invariant perturbations and a
consistent quantum theory for the FLRW zero modes in
which one of the basic operators represent the volume of
the compact spatial sections (or, alternatively, their scale
factor), the hybrid quantization of the studied system
essentially rests on the definition of two geometric oper-
ators that are necessary to obtain the quantum representa-
tion of the subsisting Hamiltonian constraint. The first one
is the operator corresponding to the square of the canonical
momentum of the logarithmic scale factor. This operator is
already needed to define the Hamiltonian constraint of the
unperturbed FLRW cosmology. In other words, it is an
operator which is fundamental to attain a quantization of
homogeneous and isotropic universes. Its explicit form
depends on the regularization scheme that one adopts for
the gravitational Hamiltonian, but once this regularization
is chosen or fixed by suitable criteria, the natural choice is
to adopt the same operator representation in the perturba-
tive contributions to the global Hamiltonian constraint.
The second geometric operator that appears in these

perturbative terms and requires a definition is a represen-
tation of the genuine canonical momentum of the loga-
rithmic scale factor, rather than its square. This is important
because the already defined square does not contain
information about the sign of the momentum. Moreover,
while the operator representing the square momentum
preserves by construction the superselection sectors that
might exist in the homogeneous and isotropic reduction, the
conservation of the superselection sectors is a requirement
that one must impose on the operator corresponding to the
actual momentum if one wants to regard the perturbative
contributions to the zero mode of the Hamiltonian con-
straint as genuine perturbations, not changing the basic
structure of the quantum model that describes the back-
ground. In spite of the ambiguity introduced by the choice
of an operator for this momentum, one can argue that the
effect in most of the physical situations of interest is not
relevant. Indeed, the operator in question is needed exclu-
sively to quantize the only term of the perturbative
contributions that contains the momentum of the homo-
geneous scalar field (actually in a linear way). This term
appears only for scalar perturbations, and not for the tensor
modes. Moreover, the term contains also a factor that is the
derivative of the scalar field potential [see Eq. (2.5)], and
that in many of the situations of interest is small, such as if
the scalar field is kinetically dominated, as it is usually the

most appealing scenario in LQC [67], or in inflationary
regimes driven by a cosmological constant.
Once we have represented the zero mode of the

Hamiltonian constraint quantum mechanically, we have
explored the existence of solutions to this quantum con-
straint which satisfy a particularly appealing ansatz, that
permits us to separate the dependence of the wave function
on the perturbations from its dependence on the homo-
geneous FLRW geometry. This ansatz, together with the
assumption that any transition in the homogeneous geom-
etry mediated by the constraint can be neglected in the
considered states, is enough to obtain a master constraint
for the perturbations that involves the expectation values of
the relevant geometric operators over the quantum FLRW
geometry. In this way, the main quantum effects remain
encoded in these expectation values and influence the
quantum evolution of the perturbations. We have discussed
the time parameter with respect to which this master
constraint generates evolution and we have deduced the
corresponding propagation equations for the gauge invari-
ant perturbations. These equations incorporate the quantum
effects of the FLRW background via expectation values on
the part of the state that describes the homogeneous
geometry. We have identified the time-dependent masses
that determine the behavior of the perturbations, estimated
them in the regime of validity of effective LQC, and noted
how they are affected by the regularization ambiguities that
appear in the definition of the inverse powers of the
momentum of the logarithmic scale factor. Consequently,
the analysis of the properties of these masses in scenarios of
physical interest seems to be a good procedure to discern
the genuine effects of selecting a given representation for
those geometric quantities. In this regard, our results show
that the scalar mass is especially interesting, because the
tensor mass does not contain any contribution that depends
on the commented ambiguity.
From our exposition, we see that our formulation can be

adapted essentially to any reasonable proposal for the
quantization of the flat FLRW cosmologies. Given the
remarkable properties of the physical states in LQC,
including the avoidance of the big bang singularity (that
is replaced with a bounce), our interest has been focused on
this quantization procedure. According to our comments,
the main ambiguity in the quantum description of the
primordial perturbations within this framework is the same
that one encounters in homogeneous and isotropic LQC,
namely the freedom in the choice of a quantum represen-
tation for the geometric part of the Hamiltonian constraint
of the FLRW universes, owing to the ambiguity in the
choice of a regularization scheme. In this paper we have
adopted the DL proposal for this regularization. The
remaining freedom that we have encountered in our
quantization process can be understood as the selection
of certain prescriptions in the factor ordering and the
representation of the Hubble parameter (proportional to
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the momentum of the logarithmic scale factor). This
freedom seems much less important in the selection of a
quantum theory, since the choice of an operator for the
Hubble parameter only affects a term that is not physically
relevant in the most interesting physical situations, as we
have explained above, and because one would expect that
the factor ordering should not affect the fundamental
properties of the formalism.
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