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Future high spectroscopic resolution galaxy surveys will observe galaxies with nearly full-sky footprints.
Modeling the galaxy clustering for these surveys, therefore, must include the wide-angle effect with narrow
redshift binning. In particular, when the redshift-bin size is comparable to the typical peculiar velocity field,
the nonlinear redshift-space distortion (RSD) effect becomes important. A naive projection of the Fourier-
space RSD model to spherical harmonic space leads to diverging expressions. In this paper we present a
general formalism of projecting the higher-order RSD terms into spherical harmonic space. We show that
the nonlinear RSD effect, including the fingers-of-God, can be entirely attributed to a modification of the
radial window function. We find that while linear RSD enhances the harmonic-space power spectrum,
unlike the three-dimensional case, the enhancement decreases on small angular scales. The fingers-of-God
suppress the angular power spectrum on all transverse scales if the bin size is smaller than Δr ≲ πσu; for
example, the radial bin sizes corresponding to a spectral resolution R ¼ λ=Δλ of a few hundred satisfy
the condition. We also provide the flat-sky approximation which reproduces the full calculation to
subpercent accuracy.
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I. INTRODUCTION

Future galaxy redshift surveys such as Euclid [1], Dark
Energy Survey Instrument (DESI) [2], and Spectro-
Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explorer (SPHEREx) [3] plan to
cover nearly full-sky footprints. With the line of sight
changing significantly over the survey footprint, it is clear
that full exploitation of the cosmological information in
these surveys requires analysis beyond the usual plane-
parallel (or distant observer) approximation that assumes a
single line of sight throughout the survey volume.
The galaxies’ peculiar velocities in the direction of the

line of sight complicate the analysis of wide, nearly full-
sky surveys; the peculiar velocities contribute to the
observed redshift in addition to the Hubble flow, causing
an offset between the actual distances and those inferred
from observed redshifts. This phenomenon is called
redshift-space distortion (RSD), and we have the theo-
retical templates for modeling RSD in the following
two regimes.
In the linear regime, or on large scales, galaxies’ peculiar

velocities are determined by the linear growth of the cosmic

density field. That is, the growth of the cosmic density field
derives coherent inflows to the overdensity and outflows
from the underdensity. Adopting the plane-parallel approxi-
mation, Ref. [4] has first derived the expression for the
observed galaxy power spectrum with RSD, and Ref. [5]
has found the corresponding expression for the galaxy two-
point correlation function (2PCF) in configuration space.
For wide-angle galaxy surveys, Refs. [6–13] have extended
the formulas to obtain the expressions for the linear two-
point correlation functions with RSD: ξðr1; r2; θÞ in con-
figuration space, Clðr1; r2Þ in spherical harmonic space, or
Clðk1; k2Þ in spherical Fourier-Bessel space.
In the highly nonlinear regime, or on small scales, where

galaxies predominantly reside in gravitationally bounded
structures such as galaxy clusters, the random peculiar
velocities of galaxies [14] manifest themselves in redshift
space by stretching the galaxy clusters. This effect creates
an observational illusion that artificially puts the observer
in a special location as if all galaxy clusters were pointing at
her: Tully and Fisher [15] called these the fingers of God
(FoG). Caused by the random velocities in virialized
clusters, one can model the elongated fingers by convolv-
ing the shape of the galaxy clusters with the line-of-sight
velocity distribution function [7,16]. In particular, convolv-
ing the 2PCF in real space with the line-of-sight pair-wise
velocity distribution function (LoSPVDF) yields the 2PCF
in redshift space. The two widely used phenomenological
models for the LoSPVDF in literature are the Gaussian [16]
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probability distribution function (pdf) and the exponential
[17] pdf.
Thus far, the use of the wide-angle formula for the

analysis of galaxy surveys has been limited to the following
few publications. References [7,18–20] have applied the
spherical Fourier-Bessel basis formula for the clustering
analysis of, respectively, the 1.2-Jy survey [21], PSCz
surveys [22] using The Infrared Astronomical Satellite
(IRAS), and 2dF Galaxy Redshift Survey (2dFGRS)
[23,24]. Focusing on large scales, k≲ 0.15 hMpc−1, and
on measuring the RSD parameter β ¼ f=b1, the ratio
between the linear growth rate [f ≡ d lnD=d ln a where
DðaÞ is the linear growth factor] and the linear bias
parameter b1, they find that the FoG effect hardly changes
the measurement of the RSD parameter. In these analyses,
the LoSPVDF is often assumed to follow a Gaussian pdf,
for which the FoG effect merely rescales the redshift
uncertainties. More recently, Ref. [25] has applied the
wide-angle formula in configuration space to the BOSS
DR12 [26,27] dataset. The harmonic space formula has
been used to analyze the galaxy clustering tomography in
[6,28,29], for example.
For the current generation of galaxy surveys, the

systematic effects of the plane-parallel (or distant-observer)
approximation are negligibly small [30,31]. Furthermore,
Ref. [31] has also shown that, even for future surveys such
as DESI and Euclid, one can reduce the wide-angle effect in
the 2PCF multipoles ξlðrÞ and PlðkÞ by employing the
local line-of-sight estimator [32].
We stress, however, that such an approximation is only

possible for the autocorrelation analyses of galaxies. The
cross-correlation between galaxy distributions at different
redshifts or between galaxies and various full-sky maps (for
example, cosmic microwave background (CMB) anisotro-
pies, weak gravitational lensing map) must be analyzed by
using the spherical bases, either in configuration (angular)
space or in spherical harmonic space. Otherwise, mimick-
ing the angular cross-correlation requires a clumsy coor-
dinate transformation, as we have done in Ref. [33]. The
spherical bases are also natural to incorporate the redshift
evolution of physical quantities such as the galaxy bias,
galaxy number density, and linear growth rates, which are
kept constant in the usual plane-parallel analysis. In the
companion paper (Ref. [34]), we shall show that including
the radial evolution of these quantities can improve the
accuracy of the geometrical measurement of the Hubble
expansion rate and the angular diameter distance.
In this paper, we shall focus on the angular 2PCF

in harmonic space Clðr1; r2Þ, which can be thought of as,
for large-scale spectroscopic surveys, a fine-radial-binning
version of the traditional 2D tomography analysis.
Reference [35] shows that a fine redshift binning with

Δz
z

≲ πH
zkmax

≃ 0.008

�
0.2 h=Mpc

kmax

�
ð1Þ

is required for the angular-basis analysis to recover the full
information in the galaxy 2PCF. Here, kH ¼ aH is the
comoving horizon wave number, and the approximation
holds for 1≲ z≲ 5.
The future large-scale spectroscopic galaxy surveys with

high galaxy sample densities make the angular clustering
analysis possible with such a narrow radial binning. For
example, with the designed sensitivity, the Euclid satellite
can observe 50 million galaxies in the redshift range
0.9 < z < 1.8 [1], which translates to about a quarter-
million objects in a redshift bin of size Δz=z ∼ 0.005.
One of the challenges in analyzing the galaxy surveys in

harmonic space is that the calculation of the angular power
spectra Clðr1; r2Þ involves highly oscillating integrals of
the form

Cðn;n0;αÞ
ll0 ðr1; r2Þ ¼

2

π

Z
dkjðnÞl ðkr1Þjðn

0Þ
l0 ðkr2ÞkαPðkÞ; ð2Þ

where jðnÞl ðkrÞ is the nth derivative of the spherical Bessel
function, and PðkÞ is the power spectrum. For the full
analysis, one needs to evaluate Eq. (2) for all combinations
of r1 and r2; for the Euclid example above there are about
16,000 different combinations of r1 and r2. The recent
development of the 2-FAST algorithm [36] (see also [37])
resolves this issue by evaluating Eq. (2) fast and accurate.
The key ideas are the FFTlog-based transformation that
converts the integration to the hypergeometric function 2F1

and a stable recurrence relation that accelerates the evalu-
ation of 2F1.
Another challenge, which we address in this paper, is the

nonlinear RSD effect that becomes significant in Clðr1; r2Þ
with a fine radial binning satisfying the condition in Eq. (1).
The importance of the RSD effect shall become apparent
in the examples in later sections. However, it is simple to
understand: At redshift z ∼ 1, the redshift bin width Δz ≃
0.005 corresponds to a peculiar velocity of 750 km s−1.
That is the same order of magnitude as the typical peculiar
velocities of galaxies in the galaxy groups or clusters.
Therefore, the peculiar velocities move galaxies from one
radial bin to another, and the FoG effect is in action for
Clðr1; r2Þ with small radial binning.
Of course, when the FoG effect is important, the

modeling must also include the nonlinear Kaiser effect
[38,39] that captures the nonlinearities on intermediate
scales. Reference [40] compares several nonlinear exten-
sions using the flat-sky approximation. For modeling the
nonlinear Kaiser effect without the plane-parallel approxi-
mation, Ref. [41] works out the wide-angle formalism
including the nonlinear RSD transformation by assuming
that the velocity field follows Gaussian statistics, and recent
studies in Refs. [42,43] have developed the formalism in
quasilinear scales and Gaussian FoG by using the
Zel’dovich approximation.
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While the wide-angle formula corresponding to the full
nonlinear Kaiser effect in Refs. [38,39] is desirable to fully
exploit the galaxy power spectrum of large surveys, there is
a more straightforward, but perhaps more urgent, problem
that arises when extracting the baryon acoustic oscillations
(BAO) from Clðr1; r2Þ statistics. The details of the BAO
analysis will be presented in a forthcoming paper. Here, we
content ourselves with setting the context for the problem
of convergence. Given that the CMBmeasurement fixes the
sound horizon scale at the baryon-decoupling epoch, BAO
is a standard ruler used by all dark-energy driven galaxy
surveys (see [44] for a review). Because the late-time
nonlinearities do not shift the location of the peaks in the
real space 2PCF [45], the standard procedure of modeling
the BAO in Fourier space after the reconstruction [46] is to
model the anisotropic damping due to the bulk flow [47] by
introducing an anisotropic smoothing function

PBAO;nl ¼ PBAO;line
−k2ðμ2Σ2

kþð1−μ2ÞΣ2⊥Þ=2; ð3Þ

with Σk and Σ⊥ being rms displacements in Lagrangian
space, respectively, along the line-of-sight and perpen-
dicular directions [48], and μ≡ k̂ · n̂. Even before
reconstruction, we can also extract the phase of the BAO
in redshift space by modeling or subtracting the no-wiggle
part that can be captured by a polynomial expansion of the
form kaμb [33,49].
How do we calculate the harmonic space expression

corresponding to these treatments of nonlinearities in the
Fourier space? The problem occurs when one tries to obtain
the perturbative solution by Taylor expanding the expo-
nential function because the projection integral in Eq. (2)
does not converge for all powers α ≥ 5. The solution that
we suggest is to extend the convolution integral that, for
example, Ref. [7] has adopted to model the FoG effect.
Including the polynomial nonlinear Kaiser contributions,
one can define new convolution kernels. In this case, the
calculation of the harmonic space Clðr1; r2Þ boils down to
three convolutions: two from redshift-bin window func-
tions and one from the nonlinear Kaiser effect. Note,
however, that we can further reduce the number of con-
volutions to two by using integration by parts. This method
is similar to that of Refs. [37,50] simplifying the linear
Kaiser effect calculation. The net effect is distributing the
nonlinear Kaiser effect to redefine the window function; by
using these new window functions, we only need to
evaluate the convolution twice for each calculation of
Clðr1; r2Þ. The main goal of this paper is to study this
novel method and verify it by comparing the predictions to
the simulations [51].
For the calculations in Secs. IV and V, we use flat

ΛCDM Planck cosmological parameters [52,53] with
the fiducial values ΩΛ ¼ 0.69179, Ωb0h2 ¼ 0.022307,
Ωc0h2 ¼ 0.11865, Ων0h2 ¼ 0.000638, h ¼ 0.6778, and

ns ¼ 0.9672. We calculate the linear power spectrum
PðkÞ using the Eisenstein and Hu [54] fitting formula.
With these cosmological parameters, the linear growth rates
are f ¼ 0.541 and 0.706, respectively, for the comoving
radial distances of r0 ¼ 1

2
ðr1 þ r2Þ ¼ 100 h−1 Mpc and

r0 ¼ 1000 h−1 Mpc. We set the linear galaxy bias b ¼ 1.
This paper is organized as follows. In Sec. II, we

summarize the problem of calculating the nonlinear
Kaiser effect perturbatively for the harmonic space
power spectrum. In Sec. III we derive the method for
general nonlinear Kaiser terms, and in Sec. III A we work
out an example of the FoG effect. Finally, in Secs. IV
and V, we compare the results with, respectively, the
flat-sky and log-normal simulations. We conclude
in Sec. VI.

II. DIVERGING INTEGRALS IN THE ANGULAR
POWER SPECTRUM OF GALAXIES

In this section, we illustrate the difficulty of calculating
the harmonic space power spectrum Clðr1; r2Þ with a
perturbative modeling of the nonlinear Kaiser effect, for
example, as shown in Ref. [55]. We use the FoG effect as an
example, but the same applies to the general nonlinear
expression beyond the linear Kaiser effect. In Fourier
space, the observed density contrast δRSDg ðkÞ is expressed
in terms of the real-space density contrast by

δRSDg ðkÞ ¼ ÃRSDðμ; kμÞδrealg ðkÞ; ð4Þ

where μ≡ k̂ · n̂ with the line of sight (n̂), and we break
down the operator ÃRSD into the linear Kaiser part and the
nonlinear part Ãnl:

ÃRSDðμ; kμÞ ¼ ð1þ βμ2ÞÃnlðμ; kμÞ: ð5Þ

Here, β≡ b=f with the linear galaxy bias b and the
linear growth rate f ≡ d lnD=d ln a.
As an illustrative example, we consider the following

three functional forms for the nonlinear operator:

Ãa
nlðkμÞ ¼ e−

1
2
σ2uk2μ2 ; ð6Þ

Ãb
nlðkμÞ ¼

1

1þ 1
2
σ2uk2μ2

; ð7Þ

Ãc
nlðkμÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2uk2μ2

p ; ð8Þ

where σ2u is the one-dimensional velocity dispersion in
units of length
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σu ¼ 1 Mpc=h

�
σv

100 km=s

��
1þ z

HðzÞ=ð100 h km=s=MpcÞ
�

≃ 0.88 Mpc=h

�
σv

100 km=s

��
1þ z
4

�
−0.4

; ð9Þ

where σv is in km=s−1 and the last line holds approximately
for 1 < z < 5. Note that the tilde attached to the Ãnl
operators signifies that they are defined in Fourier space.
The three forms in Eqs. (6)–(8) correspond to three models
for the FoG, a Gaussian suppression [16], a Lorentzian
suppression [17,20,56,57], and a square-root Lorentzian
suppression [20]. References [58,59] find that a Lorentzian
FoG is in better agreement with measurements.
Now, let us consider the harmonic-space transformation

of Eq. (4),

δRSDg ðrn̂Þ ¼
X
lm

δRSDlm;gðrÞYlmðn̂Þ; ð10Þ

with the harmonic-space coefficients

δRSDlm;gðrÞ ¼
Z

dΩY�
lmðn̂Þ

Z
d3k
ð2πÞ3 e

irk·n̂ÃRSDðμ; kμÞδrealg ðkÞ:

ð11Þ

We then may write a generic RSD term in perturbation
theory as an expansion in knμp, i.e.,

ÃRSDðμ; kμÞ ¼
X
np

dnpknμp; ð12Þ

with some coefficients dnp which are proportional to σnu
for the case of FoG terms listed in Eqs. (6)–(8). The
angular power spectrum using the perturbative expansion is
given as

hδRSD�
lm;g ðrÞδRSDl0m0;gðr0Þi ¼

Z
dΩn̂Ylmðn̂Þ

Z
dΩn̂0Y�

l0m0 ðn̂0Þ
Z

d3k
ð2πÞ3 e

ik·ðr0n̂0−rn̂ÞÃ�
RSDðμ; kμÞÃRSDðμ0; kμ0ÞPgðkÞ

¼
X
np

X
n0p0

dnpdn0p0

Z
dΩn̂Ylmðn̂Þ

Z
dΩn̂0Y�

l0m0 ðn̂0Þ
Z

d3k
ð2πÞ3 e

ik·ðr0n̂0−rn̂ÞPgðkÞknþn0μpμ0p0

¼
X
np

X
n0p0

dnpdn0p0

Z
dΩn̂Ylmðn̂Þ

Z
dΩn̂0Y�

l0m0 ðn̂0Þ

×
∂p0

∂ðikr0Þp0
∂p

∂ð−ikrÞp
Z

d3k
ð2πÞ3 e

iðkr0μ0−krμÞPgðkÞknþn0 ; ð13Þ

where we convert the μ dependences to derivatives. We then
use Rayleigh’s formula

eik·r ¼ 4π
X
lm

iljlðkrÞY�
lmðk̂ÞYlmðn̂Þ; ð14Þ

and the orthonormality of the spherical harmonicsZ
dΩn̂Ylmðn̂ÞY�

l0m0 ðn̂Þ ¼ δKll0δKmm0 ; ð15Þ

where δKij is the Kronecker delta. That simplifies the angular
integrations and leads to the expression for the angular
power spectrum

Clðr; r0Þ ¼
X
npn0p0

ip−p
0
dnpdn0p0Cðp;p0;nþn0þ2Þ

ll ðr; r0Þ; ð16Þ

where we use Cðn;n0;αÞ
ll0 ðr; r0Þ defined earlier in Eq. (2). The

fundamental problem we encounter here is that, for the
galaxy power spectrum that scales as limk→∞PðkÞ∝ek−α,the expression in Eq. (16) does not converge for terms with
nþ n0 ≳ α. That is, for the linear galaxy power spectrum

(α ¼ 3), the sum in Eq. (16) diverges for all RSD terms
with nþ n0 ≳ 3.
This problem has not been addressed in literature

thus far. Rather, in angular power spectrum analyses
literature, the FoG are often ignored, since they mainly
manifest themselves as a reduction in power on small scales
[42,60]. Others include the FoG as an additional redshift
uncertainty [29].

III. DIVERGENT-FREE EXPRESSION FOR THE
ANGULAR POWER SPECTRUM OF GALAXIES

In this section, we resolve the problem by transforming
the diverging integration appearing in Eq. (16) to calculate
the angular power spectrum including the nonlinear Kaiser
effect. To do so, let us introduce the radial window function
WrðxÞ normalized asZ

∞

0

dxWrðxÞ ¼ 1; ð17Þ

with which we write the observed spherical harmonic
coefficients as
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δ̄RSDlm ðrÞ ¼
Z

dr0δRSDlm ðr0ÞWrðr0Þ

¼
Z

dr0Wrðr0Þ
Z

dΩY�
lmðn̂Þ

Z
d3k
ð2πÞ3 e

ikr0μ

× ÃRSDðμ; kμÞδrealg ðkÞ: ð18Þ

Here, ÃRSDðμ; kμÞ is the RSD operator defined in Eq. (5).
Hereafter, we use δ̄RSDlm to refer to the harmonic coefficients
of the density field binned with the radial-window function.
For the sharp window function, Wrðr0Þ ¼ δDðr − r0Þ, we
recover the expression for δRSDlm;g in Eq. (11).
The key observation here is that we can make replace-

ments, μ → −ik−1∂r0 and kμ → −i∂r0 both of which act on
the exponential eikr

0μ, to rewrite Eq. (18) as

δ̄RSDlm ðrÞ ¼
Z

dΩY�
lmðr̂Þ

Z
d3k
ð2πÞ3 δ

realðkÞ

×
Z

dr0Wrðr0ÞÃRSDð−ik−1∂r0 ;−i∂r0 Þeikr0μ:

ð19Þ

We then use the integration by part [37,50,61] to move
the derivative operator ÃRSDð−ik−1∂r0 ;−i∂r0 Þ acting on the
exponential onto the window function. That is, for each
term in the series expansion, Eq. (12), performing the
integration-by-parts p times leads to

δ̄RSDlm ðrÞ ¼
Z

dΩY�
lmðr̂Þ

Z
d3k
ð2πÞ3 δ

real
g ðkÞ

×
Z

dr0eikr0μÃRSDðik−1∂r0 ; i∂r0 ÞWrðr0Þ: ð20Þ

The swap of the differential operator is valid as long as
the window function Wrðr0Þ vanishes at the boundaries
(r ¼ 0;∞), which is true for all practical cases. Other than
the constraints at the boundaries, we have the freedom to
choose the shape of the window function, or radial binning,
for the analysis.
Finally, using Rayleigh’s formula [Eq. (14)] and the

orthogonality of the spherical harmonics [Eq. (15)], we find
the expression for the angular power spectrum as

hδ̄RSDlm ðr1Þδ̄RSD;�l0m0 ðr2Þi
≡ δKll0δ

K
mm0CRSD

l ðr1; r2Þ

¼ δKll0δ
K
mm0

Z
dr

Z
dr0

2

π

Z
dkk2jlðkrÞjl0 ðkr0ÞPgðkÞ

× ½ÃRSDðik−1∂r; i∂rÞWr1ðrÞ�
× ½ÃRSDð−ik−1∂r0 ;−i∂r0 ÞWr2ðr0Þ�: ð21Þ

The Kronecker deltas signify the statistical homogeneity
and isotropy. It is obvious that the troublesome divergent

integrals in Eq. (16) disappear in Eq. (21) for a sufficiently
differentiable radial window function. Instead, Eq. (21)
shows that the effect of RSDs can be captured by a
k-dependent change of the window function. That is, in
spherical harmonic space, RSD distorts the shape of the
redshift binning, or radial window function; we can model
the RSD effect by taking into account the distortion of the
window function.
From the fact that the RSD effect comes as the derivative

operator acting on the window function, we can already
deduce some useful facts. If the window function is sharply
peaked, then the derivatives will be large, and the RSD
effect should be large. Conversely, a broader window
function would yield a smaller RSD effect.
As each k from a higher-order term adds a derivative on

the window function, Eq. (21) converges only if the
window function is sufficiently smooth (differentiable)
so that the high-k limit is suppressed. Indeed, as we show
later in Eq. (37) for the flat-sky approximation, even a
top-hat window function leads to some suppression of
high-k modes. For the nonlinear RSD that we consider
here, the FoG introduce a natural high-k cutoff so that
Eq. (21) is finite even for a Dirac-delta window function.
For more general cases, a phenomenological expansion
containing progressively higher powers in k due to high-
order terms can be compensated by choosing a sufficiently
smooth window function.
Considering the derivation in Eqs. (19) and (20), note

that it is by no means necessary to move all derivatives in
ÃRSDðik−1∂r; i∂rÞ onto the window function. For example,
we may choose to leave the operators related to the
linear Kaiser effect Ãlinear

RSD ¼ 1 − βk−2∂2
r [see Eq. (5)] as

a derivative on the Fourier kernel eikrμ:

δ̄RSDlm ðrÞ ¼
Z

dΩY�
lmðr̂Þ

Z
d3k
ð2πÞ3 δ

real
g ðkÞ

×
Z

dr0½Ãnlðik−1∂r; i∂r0 ÞWrðr0Þ�

× ½ð1 − βk−2∂2
r0 Þeik·r

0 �: ð22Þ

In fact, we find that separating the linear and nonlinear
RSD effects as in Eq. (22) eases the numerical implemen-
tation and simplifies the subsequent analysis. In practice,
that also allows us to treat the FoG and other nonlinear
corrections as a modification to the window function
entirely separate from the linear Kaiser effect.
Equations (21) and (22) are the main results of this paper.

In the rest of the paper, we shall present the result of
numerical implementation of these equations. Comparing
the result with the small-angular scale correlation function,
we also find a simple interpretation of the harmonic-space
galaxy power spectrum in terms of the usual Fourier-space
power spectrum.
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One note on the implementation of Eq. (21) is in order
here. Often in literature to calculate the linear RSD effect,
the integrations over the window functions in Eq. (21) are
pulled under the k integral. That would have the advantage
that the integration over the window function needs to
be performed only once. In the new formalism for the
nonlinear Kaiser effect, this is not true anymore with the
k-dependent modification of the window function.
Moreover, in that way, the k integral still requires integra-
tion over a highly oscillatory function and it precludes the
use of the 2-FAST algorithm. To take full advantage of the
2-FAST algorithm, we shall execute the k integral first, and
then apply the window functions afterwards.

A. Convolved window function

The nonlinear RSD kernels Ãnlðμ; kμÞ in Eqs. (6)–(8)
depend only on kμ, which yields one further simplification
when computing the modified window function
Ãnlði∂r0 ÞWrðr0Þ. Expressing the window function in terms
of its Fourier transform W̃ðqÞ, we find that the modified
window function is given as a convolution

Ãnlði∂r0 ÞWrðr0Þ ¼
Z

∞

−∞

dq
2π

Ãnlð−qÞW̃rðqÞeiqr0

¼
Z

∞

−∞
dyAnlðr0 − yÞWrðyÞ

≡ Anlðr0Þ �Wrðr0Þ: ð23Þ

In deriving Eq. (23) we assumed that the domain of the
window function, which is strictly speaking only defined
for r ≥ 0, can be extended to negative r as well, and that it
vanishes there.
Here, AnlðrÞ is the inverse Fourier transform of ÃnlðqÞ.

Equation (23) shows that the effective real-space window
function is the radial convolution of the window function
with the nonlinear RSD operator. The meaning of the
RSD modification of the window function may be most
apparent when applying the fingers-of-God operators in
Eqs. (6)–(8), for which the corresponding real-space
functions are given by

AGauss
FoG ðr0 − rÞ ¼ 1ffiffiffiffiffiffi

2π
p

σu
e
−ðr0−rÞ2

2σ2u ; ð24Þ

ALor:
FoGðr0 − rÞ ¼ 1ffiffiffi

2
p

σu
e−

ffiffi
2

p
σu
jr0−rj; ð25Þ

A
ffiffiffiffiffiffi
Lor:

p
FoG ðr0 − rÞ ¼ 1

πσu
K0

�jr0 − rj
σu

�
; ð26Þ

where KnðxÞ is a modified Bessel function of order n [62].
Note that Eqs. (24)–(26) are simply the assumed 1D radial
velocity distribution for each FoG model. The modified

window function, therefore, incorporates the galaxies
moving from the adjacent bins with the probability given
by the velocity dispersion function [20,29,63].
For definiteness, we consider a case of radial binning

with a top-hat window function of widthΔri centered on ri:
WiðrÞ ¼ 1

Δri
when rloi ≤ r ≤ rhii and vanishes otherwise,

where rloi ¼ ri − 1
2
Δri and rhii ¼ ri þ 1

2
Δri are the lower

and upper bounds of the bin i. Then the modifed window
functions given by the convolution in Eq. (23) are

AGauss
FoG �WiðrÞ ¼

erfðrhii −rffiffi
2

p
σu
Þ

2Δri
−
erfðrloi −rffiffi

2
p

σu
Þ

2Δri
; ð27Þ

ALor:
FoG �WiðrÞ ¼

1

2Δri
rhii − r
jrhii − rj

�
1 − e−

ffiffi
2

p
σu
jrhii −rj

�

−
1

2Δri
rloi − r
jrloi − rj

�
1 − e−

ffiffi
2

p
σu
jrloi −rj

�
; ð28Þ

A
ffiffiffiffiffiffi
Lor:

p
FoG �WiðrÞ ¼

1

πΔri

Z rhi
i
−r

σu

rlo
i
−r

σu

dx K0ðjxjÞ; ð29Þ

where erfðxÞ≡ 2ffiffi
π

p
R
x
0 dt e

−t2 is the error function. The

integration of the modified Bessel function in Eq. (29)
can be expressed using the following identity:

1

π

Z
x

0

dx0K0ðx0Þ¼
1

2
xK0ðxÞL−1ðxÞþ

1

2
xK1ðxÞL0ðxÞ; ð30Þ

where LnðxÞ is the modified Struve function of order n.
Should one use the phenomenological nonlinear RSD

terms such as
P

a;b k
aμb multiplied with the FoG factors,

for example, as done in [49], one may need to calculate
higher-order derivatives of the convolved window func-
tions in Eqs. (27)–(29).
The left panel of Fig. 1 illustrates the convolution kernels

Eqs. (24)–(26) for (r0¼100Mpc=h) and σu¼3.8 h−1Mpc.
For comparison we also show a wide top-hat bin of width
Δr ¼ 40 h−1Mpc (blue shaded box) and a narrow bin with
Δr ¼ 8 h−1Mpc (orange shaded box). We also show the
modified window functions for the three FoG models and
for the same two example top-hat functions in the right
panel of Fig. 1.
The edges of the top-hat window function are smoothed

by the convolution. This means that the galaxies contained
in the top-hat bin WðrÞ defined in the redshift space are
selected with a probability proportional to ARSD �WðrÞ in
real space. As expected, the modification of the window
function (thus, the nonlinear RSD effect) is bigger for
narrower window functions. For the narrow-window-
function example (Δr ¼ 8 h−1Mpc), about one-third of
the galaxies come from outside the top-hat boundaries.
For the wide example (Δr ¼ 40 h−1 Mpc), only the edges
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are changed, so that only ∼8% of galaxies are different
between real space and redshift space. These effects are
largest for Gaussian FoG and smallest for square-root
Lorentzian FoG.

IV. RESULT: Cl AND Pðk⊥Þ
With the modified window functions shown in Fig. 1, we

now compute the shape of the harmonic-space power
spectrum with nonlinear redshift-space distortion. To apply
the 2-FAST algorithm [36], we transform the integral over
r0 in Eq. (21) to an integral over the ratio R ¼ r0=r.
Along with the full harmonic space expression, we also

compute the power spectrum with the flat-sky appro-
ximation. In the flat-sky calculation, we keep a constant
ẑ direction throughout the volume and compute the
harmonic space power spectrum by projecting the
three-dimensional power spectrum along the parallel
(line-of-sight) direction. The implementation of the
flat-sky approximation is easier as two of the three
integrals in Eq. (21) can be done analytically. As we
show in the following section, the flat-sky approximation
provides a good approximation when matching l ¼
k⊥r0 − 1

2
between the multipole moment and three-dimen-

sional transverse Fourier wave number.

A. Fourier-space expression
with the flat-sky approximation

With the flat-sky approximation, we obtain the tangential
two-dimensional (x⊥) density contrast by integrating the
three-dimensional density contrast along the line of sight,

δsðx⊥Þ ¼
Z

dzWðzÞδsðxÞ; ð31Þ

where δsðxÞ is the redshift space density contrast andWðzÞ
is the radial window function. The Fourier-space density
contrast is then

δsðk⊥Þ ¼
Z

d2x⊥δsðx⊥Þe−ik⊥·x⊥ : ð32Þ

Expressing the density contrast δsðxÞ in terms of its
Fourier components δsðkÞ allows us to perform the integrals
over x⊥ analytically. We get

δsðk⊥Þ ¼
Z

d2x⊥
�Z

dzWðzÞ
Z

d3q
ð2πÞ3 δsðqÞe

iq·x

�
e−ik⊥·x⊥

¼
Z

dkz
2π

δðkÞÃRSD

�
kz
k
; kz

�
W̃�ðkzÞ; ð33Þ

where we used Eq. (4), μ≡ ẑ · k̂, and W̃ðkzÞ is the Fourier
transform of the window function. Defining the perpendi-
cular two-dimensional power spectrum as

hδsðk⊥Þδ�sðk0⊥Þi ¼ ð2πÞ2δDðk⊥ − k0⊥ÞCðk⊥Þ; ð34Þ

we find that

Cðk⊥; r1; r2Þ ¼
Z

dkz
2π

PðkÞW̃�
1ðkzÞW̃2ðkzÞ

× Ãr1
RSD

�
kz
k
; kz

�
Ãr2�
RSD

�
kz
k
; kz

�
; ð35Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
, and the superscript ri in ÃRSD

indicates the radial dependence of the coefficients, for
example fðriÞ and σuðriÞ, of ÃRSD. Note that in Eq. (35) we
assume that the power spectrum PðkÞ does not depend on
redshift, but we can easily include the time dependence into

FIG. 1. Left: Illustration of a wide top-hat window function W1ðrÞ (blue shaded area), a narrow top-hat [W2ðrÞ, orange shaded area],
and the three convolution kernels Eqs. (24)–(26) corresponding to the three models Eqs. (6)–(8). Right: The shaded areas are the same as
in the left plot. If the window function in redshift space is a top hat, then the real-space window function is a smoothed top hat given by
the convolution AFoG �WðrÞ, shown here for the same window functions and FoG models as in the left plot; see Eqs. (27)–(29).
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the ÃRSD. For example, the linear growth factorDðr1ÞDðr2Þ
would introduce a constant multiplication factor to ÃRSD.
In order to relate Eq. (35) to the angular power spectrum,

we convert the two-dimensional Fourier wave number k⊥
to the harmonic space moment l as lþ 1

2
¼ k⊥r0 [36],1

where r0 ≡ 1
2
ðr1 þ r2Þ, and

Cl ¼ 1

r1r2
C

�
k⊥ ¼ lþ 1=2

r0

�
: ð36Þ

For a top-hat window function of width Δri centered
around ri, we have WiðzÞ ¼ 1=Δri, and the Fourier trans-
form is

W̃iðkzÞ ¼ e−ikzri j0

�
kzΔri
2

�
; ð37Þ

where j0ðxÞ≡ sinðxÞ=x is the spherical Bessel function of
order 0. Therefore, the cross-correlation between two bins
of widths Δr1 and Δr2 centered on r1 and r2 is in the flat-
sky approximation given by

Cðk⊥; r1; r2Þ ¼
Z

dkz
2π

PðkÞ cos ðkzðr1 − r2ÞÞ

× j0

�
kzΔr1
2

�
j0

�
kzΔr2
2

�

× Ãr1
RSD

�
kz
k
; kz

�
Ãr2�
RSD

�
kz
k
; kz

�
; ð38Þ

where the imaginary part vanishes since all terms other than
the exponential are even in kz, and we assume that the RSD
factor is real, e.g., as in Eqs. (5)–(8). Using Eq. (38), we
find the autocorrelation function as

Cðk⊥; r0Þ ¼
Z

dkz
2π

PðkÞ
�
j0

�
kzΔr
2

�
Ãr0
RSD

�
kz
k
; kz

��
2

;

ð39Þ

where we set r0 ¼ r1 ¼ r2 and Δr ¼ Δr1 ¼ Δr2.

B. Small-scale (k⊥ → ∞ or l → ∞) limit

In the small-tangential (angular) scale limit where
k⊥ → ∞, we get for the autocorrelation

lim
k⊥→∞

Cðk⊥Þ ¼ Pðk⊥Þ
Z

dkz
2π

jÃRSDð0; kzÞW̃ðkzÞj2: ð40Þ

That is, the suppression of the power spectrum due to
FoG becomes independent of k⊥ or l. As the flat-sky
approximation is valid on small scales, we expect that
the same is true for the exact calculation as well. The
suppression factor for a top-hat window function and
Gaussian FoG relative to real space only depends on the
width of the window function Δr and the velocify
dispersion σu:R dkz

2π jÃRSDð0; kzÞW̃ðkzÞj2R dkz
2π jW̃ðkzÞj2

¼ erf

�
Δr
2σu

�
−

2σuffiffiffi
π

p
Δr

�
1 − e

−Δr2

4σ2u

�
: ð41Þ

Similar expressions can be found for other forms of
the FoG.

C. Nonlinear RSD in harmonic space Cl

In Fig. 2 we show the harmonic-space power spectra
calculation for a window function of width Δr ¼
8 h−1Mpc centered around r0 ¼ 100 h−1Mpc (top panels)
and we repeat this for a window function of the same width
centered around r0 ¼ 1000 h−1Mpc (bottom panels). For
each case, we show the real-space power spectrum, the
RSD power spectrum with only the linear Kaiser effect
[without Ãnl in Eq. (5)], and the power spectrum that
includes the linear Kaiser effect and Gaussian FoG.
In Fig. 2, we notice a few RSD features in harmonic

space with narrow radial binning. First, as we expect from
the three-dimensional RSD, the linear Kaiser effect enhan-
ces the power spectrum on large scales. The linear Kaiser
effect, however, in harmonic space shows a strong scale
dependence, and the enhancement vanishes on small scales.
Second, unlike the three-dimensional RSD, the fingers-of-
God effect reduces the power spectrum on all scales, but
more so on small scales. This is because the modified
window function affects the angular clustering on all scales.
In addition, Fig. 2 shows that the flat-sky approximation

(dashed line) agrees quite well with the exact result in
harmonic space (solid line) on all scales. As shown in the
right panels of Fig. 2, Eq. (39) leads to an agreement
between the full formula and the flat-sky formula better
than 0.8% for the narrow window function considered here.
The bottom panel shows that the flat-sky approximation
proves to be more accurate at the larger radius
r0 ¼ 1000 h−1 Mpc. With a wider window function Δr ¼
40 h−1Mpc as shown in Fig. 3 the differences become
larger. We also find that the agreements between the
exact and flat-sky calculations hold the same for the
Lorentzian and square-root-Lorentzian FoG cases.
Note the subpercent deviation at high l for the Δr ¼
40 h−1Mpc case shown in the top-right panel of Fig. 3. As
the analysis in Sec. IV D below shows, the discrepancy

1In short, it is motivated by matching the eigenvalues of
the angular Laplacian ∇2

θ and the two-dimensional Laplacian
∇2⊥: r20k

2⊥¼lðlþ1Þ: k⊥r0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp ¼lð1þ1=lÞ1=2≃

lþ1=2þOð1=lÞ.
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comes from the large Δr=r for which the flat-sky approxi-
mation breaks. Nevertheless, the difference stays quite
small even for this rather pathological example with r ¼
100 h−1 Mpc and Δr ¼ 40 h−1 Mpc.
Given the excellent agreement between the exact calcu-

lation and the flat-sky approximation, we can understand
the FoG effect on large angular scales as follows. In the
k⊥ → 0 limit, the flat-sky formula gives (for Gaussian FoG
as an example here)

Cð0; r0Þ ¼ ð1þ βÞ2
Z

dkz
2π

PðkzÞj20
�
kzΔr
2

�
e−σ

2
uk2z : ð42Þ

The spherical Bessel ensures that all modes up to kz ≲ π
Δr

contribute, while the FoG suppression factor, on the other
hand, affects scales kz ≳ 1=σu. The large-angular scale
power spectrum is affected by the FoG effect if 1=σu ≲
π=Δr or Δr≲ πσu. For example, when σu ∼ 3 Mpc=h, the
large angular-scale power spectrum for Δr ¼ 8 Mpc=h <
πσu ¼ 10 Mpc=h must be affected by FoG, but not for

Δr ¼ 40 Mpc=h > πσu ¼ 10 Mpc=h. That is consistent
with what we observe in Figs. 2 and 3.
In Fig. 4, we compare the three forms for the FoG

by showing the ratio of the RSD angular power spectrum
to the real-space angular power spectrum in each case.
Additionally, the figure shows the ratio for the Kaiser effect
only, and in the left panel we use r0 ¼ 100 h−1 Mpc and in
the right panel r0 ¼ 1000 h−1 Mpc.
Again, Fig. 4 shows that the Kaiser effect vanishes

on small scales, and the FoG, while present on all
scales, is strongest on small scales. Furthermore, the
three forms of the FoG are very similar. As may be
expected from Fig. 1, Gaussian FoG are strongest while
a square-root Lorentzian is weakest for the same σu.
The functional form is also different in that a Gaussian
FoG has a larger difference between large and small
scales than the other two. We have checked that this
also holds true even if σu is adjusted so that the three
forms agree on small scales using the analytical formula
in Sec. IV B.

FIG. 2. Comparison between the harmonic-space power spectra and the flat-sky approximation. The top two panels are for a top-hat
window function of width Δr ¼ 8 h−1 Mpc centered around r0 ¼ 100 h−1 Mpc, the bottom two panels are for r0 ¼ 1000 h−1 Mpc with
the same width. Left panels: Solid lines show the exact calculation, and the dashed lines assume the flat-sky approximation. Right
panels: The ratio between the flat-sky approximation and the exact calculation for the same narrow window function. To achieve below-
percent-level agreement we use the correspondence Eq. (36). This same level of agreement is achieved with the Lorentzian and square-
root-Lorentzian FoG models. All plots show the corresponding flat-sky k⊥ mode on top.
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FIG. 3. Same as Fig. 2 but with a bin width Δr ¼ 40 h−1 Mpc.

FIG. 4. Ratio of RSD angular power spectra to the real-space angular power spectrum, for r0 ¼ 100 h−1 Mpc (left) and r0 ¼
1000 h−1 Mpc (right). The bin width for both plots is Δr ¼ 8 h−1 Mpc. For the three FoG models, the velocity dispersion is the same,
and it is chosen according to Eq. (49). The limited width of the redshift bin introduces nonlinearities such as the FoG on all transverse
scales l. The corresponding transverse k⊥ mode is shown at the top.
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D. Limber’s approximation

The top-right panel of Fig. 3 shows a constant
discrepancy between the full calculation and the flat-sky
approximation. In this section, we study the origin of this
difference by comparing the flat-sky approximation and the
Limber approximation which provides an accurate approxi-
mation for large l.
Limber’s approximation may be written as [64]

jlðkrÞ →
ffiffiffiffiffiffiffi
π

2kr

r
δD

�
kr − l −

1

2

�
: ð43Þ

Then, Eq. (21) in real space for an autocorrelation can be
approximated as

CReal space
l ¼

Z
dr

W2ðrÞ
r2

Pg

�
lþ 1

2

r

�
; ð44Þ

and narrow window functions will enforce that
k ≃ 1

r0
ðlþ 1

2
Þ, where r0 is the radius to the bin center.

For a power-law power spectrum PðkÞ ∝ k−ð3þϵÞ and top-
hat window we then get, to first order,

CReal space
l ¼ 1

r20Δr
Pg

�
lþ 1

2

r0

��
1þ ϵ

Δr2

8r20

�
ð45Þ

¼ Cðk⊥Þ
r20

�
1þ ϵ

Δr2

8r20

�
; ð46Þ

with the flat-sky approximation Cðk⊥Þ. Here, we assume
that both Δr=r and jϵj are small so that lnðrþ Δr=2Þ ≃
lnðrÞ þ Δr

2r and rϵ0 ≃ 1þ ϵ lnðr0Þ. The last equality follows
from the flat-sky Eq. (40) when ARSD ¼ 1 and the window
is a top hat.
Equation (45) clearly shows that the flat-sky approxi-

mation has an intrinsic inaccuracy on small scales that is
proportional to the relative bin width Δr2=r2 and depends
on the slope of the power spectrum −ð3þ ϵÞ. This is the
source of the discrepancy on small scales between the exact

FIG. 5. The real-spaceCl calculated using three different formulas: In blue the exact formula, in orange the flat sky (almost directly on
top of the blue line), and in green Limber’s approximation. Limber’s approximation works better when the bin width is large. The
corresponding k⊥ mode is obtained by k⊥ ¼ ðl − 1

2
Þ=r0.
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calculation and the flat-sky calculation in the top-right
panel of Fig. 3. This is somewhat complementary to
Limber’s approximation which works better for larger
radial bins [65].
Physically, the flat-sky discrepancy on small scales comes

from treating transverse separations for a given angle the
same, whether they are at the far end or the near end of the
redshift bin. However, the ratio of these transverse separa-
tions is ðr0 þ 1

2
ΔrÞ=ðr0 − 1

2
ΔrÞ ≈ 1þ Δr=r0 for small

angles. Hence, the ratio Δr=r0 appears in Eq. (45). The
shape of the power spectrum also clearly matters, as
evaluating the power spectrum at smaller-than-center-of-
bin scales at the near end and larger-than-center-of-bin scales
at the far end cancel only when PðkÞ ∝ k−3. We, however,
stress here that the difference stays subpercent level even
for the pathological case (Δr=r0 ¼ 0.4) shown here.
The real-space comparison in Fig. 5 among the full

calculation (blue solid lines), flat-sky approximation
(orange dashed lines), and Limber approximation (green
dot-dashed lines) clearly shows that the flat-sky approxi-
mation outperforms the Limber approximation. While the
flat-sky and exact calculations lie virtually on top of each
other with percent-level discrepancies (also see Figs. 2
and 3), Limber’s approximation does not approach the
exact calculation until very large l.
Incidentally, this large l is also when the flat-sky

approximation starts to break down. Figure 6 compares
the flat-sky and Limber’s approximation up until such
high l that the ratio becomes constant and is in rough
agreement with Eq. (45) as well as the discrepancy shown
in the top-right panel of Fig. 3.

V. RSD IN LOG-NORMAL SIMULATION

Finally, in this section we compare the harmonic-space
nonlinear RSD expression Eq. (21) with the result from a
log-normal simulation [51]. Again, we adopt a top-hat

window function of width Δr ¼ 8 h−1Mpc and consider
two radii of r0 ¼ 100 h−1Mpc and r0 ¼ 1000 h−1Mpc.
For the r0 ¼ 100 h−1Mpc simulation, we generate a

cubic box with length Lx ¼ Ly ¼ Lz ¼ 300 and grid size
N ¼ 600 so that the resolution is 0.5 h−1Mpc. We draw
∼2 × 106 galaxies. We then position the observer at the
center of this box, and we shift the galaxies according to
their line-of-sight velocity using

s ¼ rþ v · r̂
aH

; ð47Þ

where r̂ is the line-of-sight unit vector. We then apply a top-
hat radial window function by limiting the sample to
galaxies with redshift-space distances r0 − 1

2
Δr ≤ r ≤

r0 þ 1
2
Δr, where Δr¼8 h−1Mpc and r0 ¼ 100 h−1Mpc.

This results in a sample of Ngal ¼ 7.7 × 105 galaxies in a
spherical shell around the observer. The angular power
spectrum is measured from the simulation using the
HEALPY

2 software with Nside ¼ 1024 and distributing
galaxies to their nearest grid point on the sky. To measure
the real-space angular power spectrum, we repeat this
without shifting the galaxies according to Eq. (47).
For the second simulation we repeat this procedure

with a cube of side length L ¼ 2160 h−1 Mpc, grid size
N ¼ 2160, nside ¼ 2048, and a total of 109 galaxies. We
then draw galaxies around r0 ¼ 1000 h−1Mpc, leading to a
sample of Ngal ¼ 9.9 × 106 galaxies in a shell around the
observer.
We estimate the measurement uncertainty by

ΔCl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

r �
Cl þ

4π

Ngal

�
; ð48Þ

FIG. 6. Ratio of flat sky to Limber in real space. Only at very high l is the predicted difference between flat sky and Limber Eq. (45)
reached. This figure assumes that the power spectrum remains a power law far into the nonlinear regime.

2https://github.com/healpy/healpy.
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but for the examples that we show here, the shot-
noise contribution is negligibly small: that is what we
have intended in order to test the RSD predictions on
smaller scales.
In Fig. 7, we show the harmonic-space nonlinear

RSD power spectrum from the log-normal simulations at
low redshift (r0 ¼ 100 top panel) and high redshift
(r0 ¼ 1000 bottom panel), along with corresponding theo-
retical predictions from Eq. (21). For both cases, the
left panels show the power spectra for two cases (1) without
RSD (real space), and (2) with RSD (Kaiser effectþ
Gaussian FoG model). To facilitate the comparison, we
show various ratios of the angular power spectrum in the
right panels: the ratio of the log-normal simulation to the
theoretical calculation both in real space and in redshift
space, and the ratio of redshift space to real space for both
the log-normal simulation and theoretical calculation.

For all cases, we find an excellent agreement between

the simulation result and the result from Eq. (21).
For the solid lines in Fig. 7, we use the FoG model with

the theoretical prediction for the one-dimensional velocity
dispersion,

σ2u ¼ hs2i − hsi2 ¼ hðv · r̂Þ2i
a2H2

¼ f2

3

Z
d3k
ð2πÞ3

PmðkÞ
k2

; ð49Þ

where PmðkÞ is the matter power spectrum used as input to
the simulations. This results in the values indicated by
“theory” in the top-right corners of the panels on the left.
We, however, find that we can achieve a better match by
fitting the velocity dispersion σu. The values we chose are
labeled “fit” in the figure, and the fitting results are shown
as the dashed lines.

FIG. 7. Comparison between theoretical calculation and log-normal simulations for a top-hat window function of width
Δr ¼ 8 h−1 Mpc, at r0 ¼ 100 h−1 Mpc (top) and r0 ¼ 1000 h−1 Mpc (bottom). The left plots show the angular power spectrum
with and without RSD, and the right plots show the ratios between angular power spectra as indicated in the legend. For the solid theory
lines we used Eq. (49) to calculate σu, and for the dashed line we chose a value that leads to a better match to the simulation result. The
corresponding k⊥ mode is obtained by k⊥ ¼ ðl − 1

2
Þ=r0.
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VI. CONCLUSION

In this paper, we present a novel method of calculating
the harmonic-space galaxy power spectrum including the
nonlinear Kaiser effect. The general formula in Eq. (21)
states that the nonlinear Kaiser effect can be modeled by
modifying the radial window function.
We then apply the formula to model the nonlinear FoG

effect. We show that the FoG is equivalent to a smoothing of
the radial window function, and, unlike the three-
dimensional RSD effect in Fourier space, the FoG changes
the harmonic-space power spectrum on all scales. We
considered Gaussian, Lorentzian, and square-root-
Lorentzian forms [Eqs. (6)–(8)] for the FoG. We show that
for narrow window functions the flat-sky approximation
agrees with the wide-angle analysis within a few tenths of a
percent on all scales l ≥ 2 if we make the identification
k⊥r0 ¼ lþ 0.5. We also show that the flat-sky approxima-
tion has a residual inaccuracy proportional to ðΔr=rÞ2 on all
scales. The flat-sky approximation, therefore, is most suit-
able for narrow radial bins and is complementary to Limber’s
approximation which is suitable for broader radial bins.

Comparing with the log-normal simulations shows an
excellent agreement, provided that the velocity dispersion
parameter σ2u is chosen to fit the resulting power spectrum.
The best-fitting σ2u differs from the measured variance in the
line-of-sight pairwise velocity distribution function.
Note that the present paper only considers the autocor-

relation with a thin redshift bin. As the flat-sky approxi-
mation has indicated, we are, therefore, primarily probing
the clustering on the tangential directions, and we lost
radial correlation among different radial bins. To fully
exploit the three-dimensional galaxy distribution, it is
therefore necessary to consider cross-correlations as well.
Equation (21) can also be used for such a task, and we leave
the details for a future investigation.
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