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We present the new recombination code HYREC-2, which achieves the same accuracy as the state-of-the-
art codes HYREC and COSMOREC and, at the same time, surpasses the computational speed of the code
RECFAST commonly used for cosmic microwave background (CMB) anisotropy data analyses. HYREC-2 is
based on an effective four-level atom model, accounting exactly for the nonequilibrium of highly excited
states of hydrogen, and very accurately for radiative transfer effects with a correction to the Lyman-α
escape rate. The latter is computed with the original HYREC and tabulated as a function of temperature,
along with its derivatives with respect to the relevant cosmological parameters. This enables the code to
keep the same accuracy as the original HYREC over the full 99.7% confidence region of cosmological
parameters currently allowed by Planck, while running in under one millisecond on a standard laptop.
Our code leads to no noticeable bias in any cosmological parameters even in the case of an ideal cosmic-
variance-limited experiment up to l ¼ 5000. Beyond CMB anisotropy calculations, HYREC-2 will be a
useful tool to compute various observables that depend on the recombination and thermal history, such as
the recombination spectrum or the 21-cm signal.
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I. INTRODUCTION

The recombination history of the Universe is a key part
of the physics of cosmic microwave background (CMB)
anisotropies, the epoch of the dark ages leading to the
formation of the first stars, as well as the formation of
cosmic structure. When exactly free electrons got bound in
the first helium and hydrogen atoms determines the epoch
of photon last scattering, and thus the sound horizon. This
scale is imprinted into CMB power spectra and the
correlation function of galaxies, and serves as a standard
ruler [1]. The abundance of free electrons also sets the
photon diffusion scale, and hence the damping of small-
scale CMB anisotropies [2]. Last, the free-electron fraction
determines the epochs of kinematic and kinetic decoupling
of baryons from photons, and hence the thermal history
of the gas, as well as the formation of the first stars and
structures.
The basic physics of hydrogen recombination was laid

out in the late 1960s in the seminal works of Peebles [3]
and Zeldovich, Kurt, and Sunyaev [4]. Their simple but
physically accurate effective three-level model was largely
unchanged until the late 1990s (see Ref. [5] for an overview
of recombination studies until then), except for improve-
ments in the atomic-physics calculations of case-B recom-
bination coefficients [6]. In 1999, motivated by the

approval of the WMAP [7] and Planck [8] satellites,
Seager, Sasselov, and Scott conducted the first modern,
detailed recombination calculation [9], explicitly account-
ing for the nonequilibrium of highly excited hydrogen
energy levels (but assuming equilibrium among angular
momentum substates). They found that the result of their
300-level calculation could be accurately reproduced by an
effective three-level atom model, with the case-B recombi-
nation coefficient multiplied by a “fudge factor” F ¼ 1.14
[10]. This model was implemented in the code RECFAST,
which was used for cosmological analyses of WMAP data
[11], for which it was sufficiently accurate.
It was realized in the mid 2000s that the RECFAST model

for hydrogen recombination would not be sufficiently
accurate for the analysis of Planck data, as it neglected a
variety of physical effects that matter at the required
subpercent level of accuracy (see Ref. [12] for an overview
of progress by the end of that decade). On the one hand, the
angular momentum substates of the excited states of
hydrogen are out of equilibrium, which leads to an overall
slow down of recombination [13–16]. On the other hand, a
variety of radiative transfer effects have to be accounted for,
such as feedback from higher-order Lyman transitions,
frequency diffusion due to resonant scattering, and two-
photon transition from higher levels [17–24].
While conceptually straightforward, the inclusion

of hydrogen’s angular momentum substates presented a
considerable computational challenge with the standard
multilevel method. Indeed, Refs. [15,16] showed that a
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recombination history converged at the level needed
for Planck requires accounting for at least 100 shells of
hydrogen energy levels, corresponding to about 5000
separate states. The standard multilevel approach required
solving large linear systems at each time step, and even the
fastest codes took several hours per recombination history
on a standard single-processor machine [16]. This aspect
of the recombination problem was solved conclusively a
decade ago in Ref. [25], where it was shown that the
nonequilibrium dynamics of the excited states can be
accounted for exactly with an effective few-level atom
model (in practice, four levels are enough), with effective
recombination coefficients to the lowest excited states
accounting for intermediate transitions through the highly
excited states (see also Refs. [26,27] for an independent
discovery of the method). In contrast with RECFAST’s
fudged case-B coefficient, these effective rates are exact,
temperature-dependent atomic-physics functions. Once
this computational hurdle was cleared, efficient methods
to solve the radiative transfer problem were developed
shortly thereafter, leading to the fast state-of-the-art public
recombination codes HYREC [28] and COSMOREC

[29], which achieved excellent agreement with one another
despite their different radiative transfer algorithms.
The residual theoretical uncertainty of these codes is
estimated at the level of a few times 10−4 during hydrogen
recombination, due to the neglect of subtle radiative
transfer effects [30] and collisional transitions [16], whose
rates are uncertain.
The accuracy requirement for helium recombination is

not as stringent as it is for hydrogen, given that it
recombines well before the time at which most CMB
photons last scattered. Still, a variety of important radi-
ative transfer effects must be accounted for at the level
of accuracy required for Planck, such as the photoioni-
zation of neutral hydrogen atoms by resonant 584 Å
photons and the emission of intercombination-line
photons at 591 Å [31–35]. These effects are included
numerically in COSMOREC and through fast analytic
approximations in HYREC, accurate within 0.3%, which
is sufficient for Planck. In the rest of this paper, we focus
on hydrogen recombination. We defer the task of extend-
ing our approach to helium to future work.
Both HYREC and COSMOREC are interfaced with the

commonly used Boltzmann codes CAMB [36,37] and
CLASS [38], and are able to compute a recombination
history in about half a second on a standard laptop. Still,
the default code for the cosmological analysis of Planck
data has remained RECFAST [39], further modified to
approximately reproduce the output of HYREC and
COSMOREC. The nonequilibrium of angular momentum
substates is approximately accounted for by lowering the
case-B coefficient fudge factor from 1.14 to 1.125.
Radiative transfer physics are approximately mimicked
by introducing a double-Gaussian “fudge function,”

correcting the net decay rate in the Lyman-α line.1 The
advantage of this refudged RECFAST over HYREC and
COSMOREC remains speed: by not explicitly solving a
radiative transfer problem, RECFAST computes a recombi-
nation history in about 0.03 seconds on a standard laptop.
The recombination calculation is not parallelizable, in
contrast with the computation of the transfer functions
of independent Fourier modes in a Boltzmann code.
Therefore, the additional time spent by HYREC and
COSMOREC can be the bottleneck of CMB anisotropy
calculations, which may explain the choice of using
RECFAST over its more modern, accurate, and versatile
counterparts for Planck analyses.
As we confirm in this work, the refudged RECFAST is

sufficiently accurate for the analysis of Planck data, in the
sense that it leads to biases in cosmological parameters
much smaller than their statistical uncertainties. However,
Planck is not the final CMB-anisotropy mission: the
Simons Observatory [40] and CMB stage-IV [41], which
are ground-based surveys, will have more than 10 times
better sensitivity with a comparable sky coverage; the
proposed CORE satellite [42] will have 10–30 times better
sensitivity with full sky coverage. It is unclear whether
RECFAST is sufficiently accurate for future CMB missions,
nor whether simple additional fudges would be sufficient.
In this paper, we describe the new recombination code

HYREC-22, able to compute a recombination history with
virtually the same accuracy as the original HYREC, in under
1 millisecond on a standard laptop. Our new code therefore
surpasses RECFAST in both accuracy and speed, and ought
to become the standard tool for the analysis of future CMB-
anisotropy data. HYREC-2 is based on an effective four-level
atom model, accounting exactly for the nonequilibrium of
excited states of hydrogen [25], and hence accurately
capturing the low-redshift tail of recombination, without
requiring any fudge factors. Radiative transfer effects are
accounted for with a redshift- and cosmology-dependent
correction to the Lyman-α net decay rate, exact up to errors
quadratic in the deviations of cosmological parameters
away from the Planck 2018 best-fit cosmology [39]. We
check the accuracy of our new code extensively by
sampling the full 99.7% confidence region of the Planck
posterior distribution (assuming a Gaussian distribution),
and verifying that the tiny difference with HYREC leads to
negligible biases, even for futuristic CMB missions for
which RECFAST would be insufficiently accurate.
The rest of this paper is organized as follows. In Sec. II

we briefly review hydrogen recombination physics
and lay out the exact effective four-level atom equations.

1To our knowledge, there is no publication describing how the
form of the fudge function and the best-fit parameters were
determined, nor quantifying the residual error and its impact on
cosmological parameter estimation for future experiments.

2
HYREC-2 is available at https://github.com/nanoomlee/

HYREC-2.
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In Sec. III we describe HYREC-2, and quantify its accuracy
in Sec. IV. We conclude in Sec. V. Appendix A provides
explicit equations for the correction functions used in
HYREC-2. In Appendix B we provide the equations used
in RECFAST in our notation, for completeness and ease of
comparison.

II. HYDROGEN RECOMBINATION PHYSICS

A. Recombination phenomenology

The basic phenomenology of hydrogen recombination
has been well understood since the late 1960s, with the
seminal works of Peebles [3] and Zeldovich, Kurt, and
Sunyaev [4]. We briefly summarize the essential physics
here (see, e.g., Ref. [43] for more details) and introduce
some of the notation along the way.
Direct recombinations to the ground state are ineffective,

as the emitted photons almost certainly reionize another
hydrogen atom. Therefore, recombinations proceed through
the excited states, with principal quantum number n > 1.
Once an electron and a proton bind together, the newly
formed excited hydrogen atom undergoes rapid transitions
to other excited states, and eventually either gets photo-
ionized again by thermal CMB photons, or reaches the
lowest excited state n ¼ 2, with angular momentum sub-
states 2s and 2p. The net flow of electrons to the 2s and 2p
states is described by effective recombination coefficients
A2sðTm; TrÞ, A2pðTm; TrÞ, which are pure atomic-physics
functions depending only on matter and radiation temper-
atures [25] (see also Refs. [26,27]).
Once in one of the n ¼ 2 states, a hydrogen atom has

three possible fates. First, it may be directly or indirectly
photoionized by thermal CMB photons, with effective
photoionization rates B2sðTrÞ, B2pðTrÞ, depending only
on the radiation temperature [25] and related to the effective
recombination coefficients through detailed balance rela-
tions. Second, it may indirectly transition to the other
n ¼ 2 state through intermediate transitions to higher
excited states; the effective transition rates R2s;2pðTrÞ ¼
3R2p;2sðTrÞ are also pure functions of atomic physics
which only depend on the radiation temperature [25].
Last, but not least, it may decay to the ground state.
From the 2p state, hydrogen can efficiently decay to the
ground state through the allowed Lyman-α transition; this
resonant line is highly optically thick, however, and the vast
majority of Lyman-α photons end up reexciting another
ground-state atom. The net transition rate in the Lyman-α
line is, therefore, approximately the rate at which photons
redshift out of the resonance due to cosmological expan-
sion. For a subpercent accuracy, one must calculate the net
decay rate by solving the radiative transfer equation for
resonant photons, accounting for feedback from higher-
order Lyman lines [17,18], two-photon transitions from
higher levels [19,20], time-dependent effects [21], and
frequency diffusion in Lyman-α [22–24]. From the 2s

state, hydrogen may directly decay to the ground state
through a “forbidden” two-photon transition. While this
transition is optically thin, the net decay rate is affected by
the reabsorption of nonthermal photons redshifting out of
the Lyman-α resonance [44], and the two-photon transition
rate must be computed within the radiative transfer calcu-
lation. We denote by _x2sj1s, _x2sj1s the net rates of change of
the fractional populations of n ¼ 2 excited states through
transitions to the ground state.
At z≳ 800, atoms reaching the n ¼ 2 states are more

likely to be photoionized than reach the ground state.
Transitions to the ground state are thus the bottleneck of
the recombination process at high redshifts, and as a
consequence any error on the rates _x2sj1s, _x2pj1s directly
translates to an error on the overall recombination rate. At
z≲ 800, atoms that reach n ¼ 2 almost certainly decay to
the ground state before being photoionized, and the recom-
bination dynamics is controlled by the rate of recombina-
tions to excited states, rather than decays to the ground state.

B. General recombination equations

Once helium has fully recombined, the following equa-
tion governs the evolution of the free-electron fraction xe:

_xe ¼
X
l¼s;p

ðx2lB2l − nHx2eA2lÞ; ð1Þ

where nH is the total hydrogen density (both neutral and
ionized), and x2s, x2p are the fractional abundances of
hydrogen in the first excited states. They are in turn
determined by solving the coupled quasi-steady-state rate
equations

0 ≈ _x2l ¼ nHx2eA2l − x2lB2l þ x2l0R2l0;2l

− x2lR2l;2l0 þ _x2lj1s; ð2Þ

where l0 ¼ p if l ¼ s and vice versa.
The state-of-the-art recombination codes HYREC [25,28]

and COSMOREC [29] accurately compute the rates _x2lj1s,
and hence the populations of the first excited states x2l and
the net recombination rate from Eq. (1) in their default
modes (in HYREC, the default mode is the “FULL” mode).
They do so by solving the time-dependent radiative transfer
equation, with different numerical algorithms, and agree
with each other within their quoted uncertainty of a few
parts in 104. While they are much faster than the previous
generation of recombination codes, the ∼1 second per
recombination history can become the bottleneck of CMB
power spectra calculations, as it is not parallelizable.

C. Exact effective four-level equations

Wemay always formally write the net decay rate from 2l
to the ground state in the form
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_x2lj1s ¼ −R2l;1sðzÞðx2l − g2lx1se−E21=TrÞ; ð3Þ

where g2s ¼ 1 and g2p ¼ 3 are the statistical weights of the
2s and 2p states, and E21 ≈ 10.2 eV is the energy differ-
ence between the first excited state and the ground state. In
contrast with the effective rates A2l, B2l, and R2l;2l0 , the
rates R2l;1sðzÞ are not just functions of temperature: they
depend on cosmological parameters through the expansion
rate and hydrogen abundance, as well as on the full
recombination history up to redshift z, due to the time-
dependent nature of radiative transfer.
Inserting Eq. (3) into the steady-state equations, one can

find explicit expressions for x2l:

x2l − g2lx1se−E21=Tr

¼ nHx2eA2l − g2lx1se−E21=TrB2l

Γ2l −R2l;2l0R2l0;2l=Γ2l0

þR2l0;2l

Γ2l0
×
nHx2eA2l0 − g2l0x1se−E21=TrB2l0

Γ2l0 −R2l0;2lR2l;2l0=Γ2l
; ð4Þ

where Γ2l is the effective inverse lifetime of 2l,

Γ2l ≡ B2l þR2l;2l0 þR2l;1s: ð5Þ

Inserting these expressions into Eq. (1), one finds [25]

_xe ¼ −
X
l¼s;p

C2lðnHx2eA2l − g2lx1se−E21=TrB2lÞ; ð6Þ

where the C2l factors are given by

C2l ≡
R2l;1s þR2l;2l0

R2l0 ;1s
Γ2l0

Γ2l −R2l;2l0
R2l0 ;2l
Γ2l0

: ð7Þ

The C2l factors generalize Peebles’ C factor [28]: they
represent the effective probabilities that an atom starting in
2l reaches the ground state rather than the continuum,
either directly, or after first transitioning to the other n ¼ 2
state. This is best seen by rewriting them in the form

C2l ¼
R2l;1s þR2l;2l0

R2l0 ;1s
Γ2l0

B2l þR2l;2l0
B2l0
Γ2l0

þR2l;1s þR2l;2l0
R2l0 ;1s
Γ2l0

: ð8Þ

These simple equations are exact, provided that one uses
exact rates R2l;1s. They form the basis of HYREC-2, which
we describe in the next section.

III. HYREC-2 EQUATIONS

The computational bottleneck of the exact calculation of
the recombination history comes from the evaluation of the
net decay rates from the first excited states to the ground

state, _x2sj1s and _x2pj1s, or, equivalently, the coefficients
R2s;1s,R2p;1s. The basic idea of HYREC-2 is to use a simple
analytic base model for these rates, along with numerical
corrections pretabulated with HYREC. We now describe the
simple base model.

A. The base approximate model

Neglecting stimulated two-photon decays [19] and the
absorption of nonthermal photons redshifted out of the
Lyman-α line [44,45], as well as Raman scattering [45] and
higher-order Lyman transitions3 [17,18], the net 2s − 1s
decay rate can be approximated as the spontaneous 2s − 1s
2-photon decay rate Λ2s;1s [46], as was originally done in
Refs. [3,4]:

R2s;1s ≈ Λ2s;1s ≈ 8.22 s−1: ð9Þ

In the limit of an infinitely narrow Lyman-α resonance,
and neglecting corrections due to higher-order two-photon
transitions [45,47,48], frequency diffusion [23,24], and
feedback from higher-order Lyman transitions [17,18],
the net 2p − 1s decay rate can be approximately obtained
with the Sobolev approximation [9]:

R2p;1s ≈ RLyα ≡ 8πH
3nHx1sλ3Lyα

; ð10Þ

where H is the Hubble rate, λLyα ≈ 1216 Å is the wave-
length of the Lyman-α transition, and x1s ≈ 1 − xe is the
fraction of hydrogen in the ground state.

HYREC’s EMLA2S2P mode consists in solving the four-
level equations (6)–(7), with R2s;1s ¼ Λ2s;1s and R2p;1s ¼
RLyα. While this mode neglects a variety of radiative
transfer effects (listed earlier), it accounts exactly for the
nonequilibrium of the excited states of hydrogen, up to an
arbitrarily high number of states, through the effective rates
A2l, B2l, and R2l;2l0 .
Figure 1 shows the difference between the time deriv-

atives _xe in the FULL and EMLA2S2P modes, both evaluated
at the same redshift and same value of xe. We see that the
difference becomes negligible at z≲ 800. This is expected,
as at low redshifts the net recombination rate is controlled
by the efficiency of recombinations to the excited states
(which are modeled exactly through the effective recombi-
nation coefficients), rather than decays to the ground state.
We see that the fractional difference Δ_xe=_xe (blue dotted
curve) remains at the level of a few percent even at
z ∼ 1700. Nevertheless, the difference Δ_xe=Hxe (orange
solid curve) becomes negligible at z≳ 1600. As a conse-
quence, this high-redshift fractional difference does not

3Since the 3p state is very nearly in thermal equilibrium with
the 2s state at early times, Ly-β decays can be recast in terms of
effective 2s − 1s transitions; see Ref. [28].
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result in significant absolute differences in the free-electron
fraction, let alone observable effects in CMB anisotropies.

B. Correction function

The idea behind HYREC-2 is simple: we want to find a
correction to the net 2p − 1s decay rate that reproduces
exact calculations as accurately as possible. Our approach is
similar in spirit to the analytic approximations presented in
Refs. [23,45], except that the correction we compute is
numerical and exact, for a given cosmology. Similar
corrections are implemented in the current version of
RECFAST, as well as in RECFAST++ [29], but our implemen-
tation improves on both of these codes in the following
ways. First and foremost, the base model of HYREC-2
accounts exactly for the effect of highly excited states,
through the effective rates, while the base model of RECFAST
and RECFAST++ is Peebles’ effective three-level atom. We
describe this model in Appendix B for completeness.
Second, we tabulate the corrections as a function of radiation
temperature, rather than fit them with phenomenological
functions, as is done in RECFAST. Third, we implement
corrections directly at the level of the free-electron fraction
derivative _xe rather than at the level of the free-electron
fraction, as done in RECFAST++. Last, but not least, we
compute the correction function not just at a fiducial
cosmology, but also around it, by also tabulating its
derivatives with respect to relevant cosmological parameters.

In more detail, HYREC-2 solves the four-level equa-
tions (6)–(7), with

R2s;1s ¼ Λ2s;1s; R2p;1s ¼
RLyα

1þ ΔðzÞ : ð11Þ

The dimensionless correction ΔðzÞ is solved for by
imposing that _xHYREC−2

e ðz; xFULL
e Þ ¼ _xFULL

e ðz; xFULL
e Þ. Note

that the two derivatives are evaluated at the same
value of the free-electron fraction, computed in
HYREC’s default FULL mode. This enforces that the two
solutions are also identical (within machine precision),
xHYREC-2
e ¼ xFULL

e . Given that the EMLA2S2P mode is
obtained by settingΔ ¼ 0, the correctionΔ is proportional
to _xEMLA2S2P

e − _xFULL
e . For completeness, we provide the

explicit equation for Δ in Appendix A.
In principle, one could define two correction functions:

one for the two-photon decay rate R2s;1s in addition to the
correction to the net Lyman-α decay rateR2p;1s. One could
solve for the two corrections by imposing that Eq. (4)
reproduces the fractional abundances x2s, x2p computed in
HYREC’s FULL mode. We have opted to not follow this
route, however, as one single correction function is suffi-
cient to reproduce the exact _xe. Moreover, at z≳ 800 the
populations of the excited levels depend only weakly on the
rates of decay to the ground state, as they are subdominant
to photoionizations and indirect transitions to the other
excited state, and thus the problem may be numerically ill-
posed; in other words, corrections in the 2s − 1s and 2p −
1s net decay rates are essentially degenerate at high
redshift, and thus it is more robust to only compute one
single correction.

C. Cosmology dependence

The recombination rate, and thus the correction function
ΔðzÞ, depend not only on redshift, but also on cosmological
parameters, through the hydrogen abundance nH, radiation
temperature today T0, and the Hubble rate H. It was shown
in Ref. [49] that the dependence on T0 can be fully
reabsorbed by expressingH and xe as functions of radiation
temperature Tr ¼ T0ð1þ zÞ rather than redshift, and as
functions of the baryon-to-photon and matter-to-photon
number ratios, proportional to the rescaled parameters

ω̂b ≡ ωbðTFIRAS
0 =T0Þ3; ð12Þ

ω̂cb ≡ ωcbðTFIRAS
0 =T0Þ3; ð13Þ

where TFIRAS
0 ≡ 2.7255 K is the fiducial CMB temperature

measured by FIRAS [50], and ωb, ωcb are the density
parameters for baryons and baryonsþ cold darkmatter,
respectively.
The Hubble rate, expressed as a function of photon

temperature, then only depends on ω̂cb, the effective
number of relativistic species Neff (assuming the standard

FIG. 1. Blue dotted curve: fractional difference in the rate of
change of the free-electron fraction as a function of redshift
between HYREC-EMLA2S2P and HYREC-FULL. Note that this
difference is computed at the same value of xe. This difference
shows the additional effect of solving radiative transfer equations
for the photon population. Orange solid curve: absolute differ-
ence in the logarithmic derivative d ln xe=d ln a ¼ _xe=ðHxeÞ.
This shows that at low redshifts z≲ 800 and high redshifts z≳
1600 the EMLA2S2P model is accurate enough, but in the
intermediate region a detailed radiative transfer calculation is
important.
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neutrino-to-photon temperature ratio), and neutrino masses.
Given the current upper limits on the sum of neutrino
masses

P
mν < 0.12 eV [39], neutrinos are relativistic at

the relevant redshifts z≳ 800, and thus the Hubble rate and
Δ is very weakly dependent on

P
mν. We checked

explicitly that the dependence of Δ on neutrino masses
is completely negligible, given the current upper limits.
In principle, the correction function ΔðzÞ depends on

both ω̂b and the helium mass fraction YHe: the hydrogen
density is proportional to ω̂H ≡ ω̂bð1 − YHeÞ, and the
evolution of the matter temperature depends on the total
number density of free particles, and hence on the helium-
to-hydrogen number ratio fHe ¼ ðmH=mHeÞYHe=ð1 − YHeÞ.
However, the matter temperature only starts to depart from
the radiation temperature at z≲ 200, and is in tight
equilibrium with it at z≳ 800, during which the radiative
transfer correction is relevant. The dominant effect of
helium abundance variations is therefore included in the
parameter ω̂H, and we do not account for any dependence
of ΔðzÞ on YHe beyond this parameter. To be clear, the code
does self-consistently include the YHe dependence on the
matter temperature evolution, but we do not propagate
this dependence to ΔðzÞ, as it is negligible at z≳ 800.
Throughout this paper, YHe is set by the big bang
nucleosynthesis (BBN) constraint [51] and not considered
as a free parameter for the bias analysis in Sec. IV C.
However, our formulation of the cosmology dependence in
terms of ω̂H is fully general and allows for arbitrary values
of YHe, including outside the BBN relation.
Last, the recombination history can be affected by a

variety of processes that might have injected energy, such
as particle annihilation [52–54] or decay [55–59], and
primordial black hole evaporation [60,61] or accretion
[62–64]. These effects are accounted for in HYREC-2 by
adding source terms in the differential equations for xe and
Tm (see, e.g., Refs. [54,64] for details). In principle, the
correction function Δ also depends on these effects. For
instance, Δ does depend on the dark matter annihilation
parameter pann ¼ hσvi=mχ. We checked explicitly that
neglecting this dependence leads to a fractional error in
xe under 3 × 10−4 when pann is increased up to Planck’s 3σ
upper limit. This error is comparable to the estimated
uncertainty in HYREC and is certainly well below the
theoretical uncertainty on the effect of dark matter anni-
hilation on the recombination history. It is therefore safe to
neglect the dependence of the correction function on pann
and other energy-injection parameters.
In summary, the correction function ΔðzÞ ¼ ΔðTr; p⃗Þ

depends on cosmology through three cosmological param-
eters, which we group in the vector p⃗:

p⃗≡ ðω̂H; ω̂cb; NeffÞ: ð14Þ

Since cosmological parameters are already tightly deter-
mined by CMB observations, the correction function at any

set of cosmological parameters p⃗ is well approximated by a
linear expansion around the Planck best-fit parameters p⃗f,
which we refer to as the fiducial model:

ΔðTr; p⃗Þ ≈ ΔðTr; p⃗fÞ þ ðp⃗ − p⃗fÞ ·
∂Δ
∂p⃗

����
p⃗f

: ð15Þ

We therefore compute and store a total of four functions
of radiation temperature or, equivalently, fiducial redshift

TABLE I. Cosmological parameters relevant to hydrogen
recombination, along with the adopted fiducial values (derived
from the Planck 2018 results [39]) at which we compute the
correction function and its first derivatives. For neutrinos, we
adopt the same fiducial cosmological model as the Planck
Collaboration, with two massless neutrinos, one massive neutrino
with mass 0.06 eV, and Neff ¼ 3.046. Note that we only use
derivatives of the correction function with respect to ω̂H, ω̂cb, and
Neff , as we found that its dependence on neutrino masses is
negligible.

Parameter Fiducial value

ω̂H ≡ ωbð1 − YHeÞðTFIRAS
0 =T0Þ3 0.01689

ω̂cb ≡ ωcbðTFIRAS
0 =T0Þ3 0.14175

Neff 3.046
ðmν1; mν2; mν3Þ (0, 0, 0.06) eV

FIG. 2. Correction to the Lyman-α decay rate ΔðzÞ for the
fiducial cosmology, defined in Eq. (11) (orange). Note that the
correction function is technically a function of radiation tem-
perature ΔðTrÞ; it is shown as a function of redshift for the
fiducial value of T0 ¼ TFIRAS

0 . The gray band shows the span of
the correction function when varying cosmological parameters
within Planck’s full confidence region (see Fig. 4). For reference,
the blue dashed curve shows the cosmology-independent fudge
function adopted in RECFAST, which is a sum of two Gaussians in
redshift. Note that the base models used in HYREC-2 and RECFAST

are different, so the two correction functions do not strictly have
the same definition; see Appendix B for more details.
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zf ≡ Tr=TFIRAS
0 − 1. We list the adopted fiducial para-

meters in Table I. We show the function Δðz; p⃗Þ for
parameters near the fiducial model in Fig. 2, and its deri-
vatives with respect to cosmological parameters in Fig. 3.
We tabulate the correction functions over the fiducial
redshift range 650 ≤ zf ≤ 1620.

D. Numerical integrator and runtime

The radiative transfer equation solved in HYREC’s
default FULL mode is a partial differential equation,
and as a consequence the time step is tied to the
frequency resolution, and must be sufficiently small to
ensure convergence. For reference, the default logarithmic
step in scale factor is Δ ln a ¼ 8.49 × 10−5 (to compute
the correction functions at high redshift, we used an even
smaller time step for increased accuracy). On the other
hand, HYREC-2 only solves an ordinary differential
equation (ODE), and the time step can be considerably
increased at no noticeable cost in accuracy, provided one
uses a sufficiently high-order numerical integrator. We
found that we could safely increase the logarithmic step
in scale factor to Δ ln a ¼ 4 × 10−3 at virtually no loss of
accuracy, using a third-order explicit integrator. At early
times, when the ODE is stiff, we use an expansion
around the Saha equilibrium solution (see Ref. [28]). To
make the code stable we use a smaller time step during
and slightly after this phase. With our setup, we checked
that the fractional difference in xe due to the increased
time step is less than 10−4 at all redshifts, comparable to
the estimated uncertainty in HYREC.
The simple ODE solved in HYREC-2, combined

with a larger time step, considerably reduces the recurring
computation time to less than 1 millisecond per

cosmological model on a standard laptop; see Table II
for a comparison with HYREC-FULL and RECFAST. With this
short run time, the recombination history calculation is
never the bottleneck of CMB anisotropy Boltzmann codes.

IV. ACCURACY OF HYREC-2

A. Sample cosmologies

To check the accuracy of HYREC-2, we randomly
generated 10 000 sample cosmologies from the eight-
dimensional Gaussian likelihood derived from the
Planck 2018 covariance matrix [39] (TT, TE, EE+lowE+
lensing+BAO, two-parameter extension),4 shown in Fig. 4.
As can be seen in Fig. 4, most samples are within the
99.7% confidence region, and there are a handful of
samples outside, as expected. We use these sample cos-
mologies to check the accuracy of HYREC-2 compared to the
reference model—the original HYREC.

B. Accuracy of the free-electron fraction

The fractional difference in the free-electron fraction
xeðzÞ computed in HYREC and HYREC-2 is shown in the top
panel of Fig. 5, for a broad range of cosmological
parameters. As the plots show, the fractional difference
is less than 10−4 when cosmological parameters are varied
within Planck’s 99.7% confidence region. This is lower
than the estimated uncertainty in HYREC.
The ∼5 × 10−5 feature at z ≈ 1600 is due to the different

times at which stiff approximations are turned on, and has
no observational consequence whatsoever. Note that even
though we neglect the dependence of the correction
function on neutrino masses, the code remains accurate
even when they are varied away from their fiducial values,
within Planck’s 3σ limits.
For comparison, we show the fractional difference

between RECFAST and HYREC in the lower panel of
Fig. 5, for the same parameters. This difference is up to
2 orders of magnitude larger: it gets as large as∼4 × 10−3 at
z≳ 200, and grows to ∼1% at z≲ 100. As we will show in
more detail in Sec. IV C, this difference is negligible for

FIG. 3. First derivatives of the correction function ΔðzÞ with
respect to the three relevant cosmological parameters p, multi-
plied by Δp corresponding to Planck’s 3σ confidence interval.

TABLE II. Default run time of each code. Note that this is the
recurring run time, which does not account for the loading of data
in HYREC-2, as this needs to be done once and for all. The run
times are calculated on a standard laptop (2.0 GHz Intel i5
processor, 16 GB of RAM).

Code HYREC HYREC-2 RECFAST

Run time (ms) 409 0.76 23

4base_nnu_mnu_plikHM_TTTEEE_lowl_lowE_lensing_BAO
.covmat from https://wiki.cosmos.esa.int/planck-legacy-archive/
index.php/Cosmological_Parameters.
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Planck, but can lead to nontrivial biases for next-generation
CMB experiments.

C. Bias of cosmological parameters

The metric with which the accuracy of an approximate
recombination code is to be measured is the biases it
induces on cosmological parameters. In the limit of small
errors, these biases are directly proportional to the error in
CMB anisotropy angular power spectra, Cl. For illustra-
tion, we show in Fig. 6 the error in the temperature power
spectrum CTT

l for a variety of cosmological parameters
varied within the Planck 99.7% confidence region. We see
that HYREC-2 is more accurate than RECFAST by more than 1
order of magnitude at small angular scales.
We can estimate the biases from a simple Fisher analysis.

We denote by C≡ fCTT
l ; CTE

l ; CEE
l ; Cdd

l g the vector con-
taining all the temperature and polarization power spectra
and cross-spectra, as well as the power spectrum of lensing
deflection. We denote by Σ their covariance matrix, which
we describe in more detail below. The chi-square of a set of
cosmological parameters p⃗ is

χ2ðp⃗Þ ¼ ðCðp⃗Þ − ĈÞ · Σ−1 · ðCðp⃗Þ − ĈÞ; ð16Þ

where Ĉ is an estimator ofC constructed from the data, with
covariance Σ. The best-fit cosmology p⃗bf is found by
minimizing the χ2. Taylor expanding around some fiducial
cosmology p⃗0 and neglecting the terms proportional to
second derivatives of Cl [65], we get

pi
bf − pi

0 ¼ Biðp⃗0Þ · ðCðp⃗0Þ − ĈÞ; ð17Þ

Bi ≡ −ðF−1Þij ∂C∂pj · Σ
−1; ð18Þ

where Fij is the Fisher matrix, whose inverse is the
covariance of the best-fit cosmological parameters, and
whose elements are

Fij ¼
∂C
∂pi · Σ

−1 ·
∂C
∂pj : ð19Þ

Suppose the data is a (noisy) realization of the
cosmology p⃗0, i.e., that, upon averaging over realizations,
hĈi ¼ Cðp⃗0Þ. If the theoretical model is unbiased, then the
best-fit parameters are also unbiased, i.e., such that, on
average over realizations, hp⃗bf − p⃗0i ¼ 0.
Now suppose that the theoretical model for Cðp⃗Þ has a

systematic error ΔC:

FIG. 4. Ten thousand sample cosmologies used to check the accuracy of HYREC-2, and for the bias analysis in Fig. 7. These samples are
drawn from a Gaussian distribution with covariance matrix provided by the Planck Collaboration [39]. As expected, most of the samples
are within the 99.7% confidence region.

NANOOM LEE and YACINE ALI-HAÏMOUD PHYS. REV. D 102, 083517 (2020)

083517-8



Cðp⃗Þ ¼ Ctrueðp⃗Þ þ ΔCðp⃗Þ: ð20Þ

The biased theoretical model leads to a systematic bias in
the best fit, with average

hpi
bf − pi

0i ¼ Biðp⃗0Þ · ΔCðp⃗0Þ ð21Þ

≈Biðp⃗fidÞ · ΔCðp⃗0Þ; ð22Þ

where Bi was given in Eq. (18). For simplicity, we
approximated Bðp⃗0Þ ≈ Bðp⃗fidÞ in Eq. (22); this will not

affect the results since ΔCðp⃗0Þ is already a small quantity.
The error to this approximation would be a small correction
to a correction. The advantage of this approximation is that
we need to compute B only at the fiducial cosmology.

FIG. 5. Fractional differences in the free-electron fraction xe of
HYREC-2 (upper panel) and RECFAST (bottom panel) with respect
to the reference model HYREC-FULL. The small (< 10−4) frac-
tional difference between HYREC-2 and HYREC for the Planck
best-fit cosmology is due to the different time steps in the two
codes. (Moreover, the correction function was computed using a
higher-accuracy mode of HYREC, with a smaller-than-default time
step.) The differences are calculated by changing each parameter
with Planck �3σ. The shaded area corresponds to the differences
calculated with the 10 000 sample cosmologies shown in Fig. 4.

FIG. 6. Fractional error in CTT
l when using HYREC-2 (top) or

RECFAST (bottom) instead of HYREC (in its default FULL mode).
The shaded area corresponds to the differences calculated with
the 10 000 sample cosmologies shown in Fig. 4. In all cases, the
Cl’s are computed with the Boltzmann code CLASS [38]. Note
that with the default precision settings of CLASS, for a few sample
cosmologies the Cl’s show relatively large errors at low l (still
≲4 × 10−4); we checked that these errors disappear once the
precision of CLASS is increased.

TABLE III. Noise parameters and the fraction of sky adopted in
the Fisher matrix estimates.

Experiment Stage-IV CVL

NTT
0 ðμK2) 3.38 × 10−7 0

NEE
0 ðμK2) 6.77 × 10−7 0

θT , θE (arcmin) 1 lmax ¼ 5000
fsky 0.4 1
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FIG. 7. Bias in cosmological parameters when using HYREC-2 and RECFAST, assuming that HYREC (in its default FULL mode) provides
the exact model. The top panel corresponds to CMB Stage-4 settings, and the bottom panel to an idealized CMB experiment, CVL in
temperature and polarization up to lmax ¼ 5000. In both cases, HYREC-2 generates biases that are negligibly small relative to the
statistical uncertainty. For a CMB Stage-4 setup, the biases from RECFAST remain within the 68% confidence region. For the CVL
experiment, however, RECFAST leads to biases reaching beyond the 68% confidence region in some instances.

NANOOM LEE and YACINE ALI-HAÏMOUD PHYS. REV. D 102, 083517 (2020)

083517-10



Let us now evaluate these systematic biases for a few
idealized CMB observations. The covariance matrix Σ has
components [66]

ΣXY;WZ
ll0 ≡ cov½ĈXY

l ; ĈWZ
l0 �

¼ δll0
C̃XW
l C̃YZ

l þ C̃XZ
l C̃YW

l

fskyð2lþ 1Þ ; ð23Þ

where, for X ¼ T, E, d,

C̃XW
l ≡ CXW

l þ δXWNXX
l ; ð24Þ

where NXX
l is the instrumental noise, of the form [41]

NXX
l ¼ NXX

0 exp

�
lðlþ 1Þθ2X

8 ln 2

�
: ð25Þ

We adopt the noise parameters of Ref. [67] for Planck and
of Ref. [68] for a CMB Stage-4 (CMB S-4) experiment,
which we summarize in Table III. Further, we consider an
idealized cosmic-variance-limited (CVL) case for which
we assume no instrumental noise in both temperature and
polarization up to l ¼ 5000 and full sky, fsky ¼ 1. In both
cases the lensing reconstruction noises are calculated using
the code developed in Ref. [69].
We randomly choose various cosmologies from the

Planck full confidence level (as shown in Fig. 4) and fit
each input data (HYREC-FULL mode) to get the best fit of
cosmological parameters using each code: RECFAST and
HYREC-2. We first checked that if we use the Planck settings
[39] both codes lead to biases well below statistical
uncertainties, which confirms that RECFAST is good enough
for Planck data as established in Refs. [39,51].
The difference between the best-fit parameters and the

input parameters are shown in Fig. 7. The results in the
upper panel of Fig. 7 are obtained with the CMB S-4 setting
described in Ref. [41], which is 2 ≤ l ≤ 3000 for TT and
2 ≤ l ≤ 5000 for TE, EE, and dd. The bottom panel shows
the corresponding biases for the idealized experiment,
assumed to be CVL for 2 ≤ l ≤ 5000 both in intensity
and polarization. Note that in principle the Gaussian
approximation for the Cl’s (on which the simple χ2

analysis implicitly relies) is inaccurate at low l; however,
we checked that by changing lmin, i.e., lmin ¼ 10, the low
multipoles do not contribute much to the biases and should
not greatly affect the answer. We see from Fig. 7 that in
some cases biases fall outside of the 68% confidence region
of the CVL experiment when using RECFAST. With
HYREC-2, all biases remain much smaller than statistical
uncertainties for the full range of cosmologies allowed
within the 99.7% confidence region of Planck.

V. CONCLUSION

We have developed the new recombination code HYREC-
2, which combines high accuracy with extreme computa-
tional efficiency. This new code is as accurate as the
original HYREC across the full range of currently allowed
cosmological parameters, and is 30 times faster than
RECFAST, with a recurring runtime under one millisecond
on a standard laptop. This makes HYREC-2 the fastest
recombination code currently available, by far.

HYREC-2 is based on an effective four-level atom model,
which exactly captures the late-time (z≲ 800) recombi-
nation dynamics. Radiative transfer effects, which are
relevant at early times, are accounted for through a
numerical correction to the Lyman-α net decay rate,
tabulated as a function of temperature using HYREC. In
order to achieve sub-0.01% accuracy across a broad range
of cosmologies, we also tabulated the derivatives of the
correction function with respect to cosmological param-
eters. We have checked explicitly that the ∼10−4 fractional
differences with HYREC result in no bias for any cosmo-
logical parameters for current, planned, and even futuristic
CMB missions, for which RECFAST would not be suffi-
ciently accurate.
Our new recombination code will be most useful for fast

and accurate CMB-anisotropy calculations, which are
required to extract unbiased cosmological parameters from
CMB anisotropy data. In addition, it will be a key tool to
study the CMB signatures of dark matter decay or anni-
hilation [52–54], other sources of energy injection
[55,59,64], or in general any nonstandard physics that
may affect the recombination and thermal history [70].
Last, but not least, in combination with the effective

conductance method [71] HYREC-2 can be used to effi-
ciently compute the cosmological recombination spectrum
[72]. This minute but rich signal is a guaranteed distortion
to the CMB blackbody spectrum [13,73]. Looking ahead, it
may eventually become a powerful probe of the early
Universe [74–77], complementing CMB anisotropies and
opening up a new window into the Universe’s early thermal
history.
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APPENDIX A: EXPLICIT EXPRESSION FOR THE
CORRECTION FUNCTION

Equation (6) can be rewritten as _xe ¼ −
P

l C2lX2l,
where

X2l ≡ nHx2eA2l − g2lx1se−E21=TrB2l: ðA1Þ
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In HYREC-2, R2s;1s ¼ Λ2s;1s and R2p;1s ¼ RLyα=ð1þ ΔÞ;
the EMLA2S2P mode has Δ ¼ 0. We therefore have

_xHYREC-2
e ðΔÞ ¼ _xEMLA

e þ AΔ
1þ BΔ

; ðA2Þ

with

A ¼ −
Λ2s;1s½ðB2p þR2p;2sÞX2s þR2p;2sX2p�

Γ2sΓ2p −R2s;2pR2p;2s
; ðA3Þ

B ¼ Γ2sðB2p þR2p;2sÞ −R2s;2pR2p;2s

Γ2sΓ2p −R2s;2pR2p;2s
: ðA4Þ

The correction Δ is set such that _xHYREC-2
e ðΔÞ ¼ _xFULL

e .
Solving, we find

Δ ¼ _xEMLA
e − _xFULL

e

B_xFULL
e − A

: ðA5Þ

APPENDIX B: EQUATIONS FOR RECFAST

IN OUR NOTATION

1. Peebles’ effective three-level model

Peebles’ effective three-level model [3] relies on two
additional assumptions relative to the effective four-
level model that we use. First, the two states 2s, 2p are
assumed to be in thermal equilibrium, x2s ¼ x2p=3≡ x2=4,
with x2 ≡ x2s þ x2p. The recombination rate (1) then
simplifies to

_xe ¼ x2BB − nHx2eAB; ðB1Þ

BB ≡ 1

4
ðB2s þ 3B2pÞ; ðB2Þ

AB ≡A2s þA2p: ðB3Þ

The population x2 of the first excited state is then obtained
by solving the steady-state equation,

0 ≈ _x2 ¼ nHx2eAB − x2BB þ _x2sj1s þ _x2pj1s
≈ nHx2eAB − x2BB þ 1

4
ðΛ2s;1s þ 3RLyαÞ

× ð4x1se−E21=Tr − x2Þ; ðB4Þ

where here again we used the simple approximations (9)
and (10) for the net decay rates to the ground state. This
equation can be easily solved for x2, which, upon insertion
into Eq. (B1), gives the closed form

_xe ¼ −CðnHx2eAB − 4x1sBBe−E21=TrÞ; ðB5Þ

where the Peebles C factor is given by

C≡ Λ2s;1s þ 3RLyα

4BB þ Λ2s;1s þ 3RLyα
: ðB6Þ

This result can also be obtained from Eqs. (6) and (8) using
the detailed balance relation R2s;2p ¼ 3R2p;2s, and assum-
ing that R2s;2p ≫ Λ2s;1s þ B2s and R2p;2s ≫ RLyα þ B2p.
This assumption is required to enforce equilibrium between
2s and 2p regardless of the relative values of the other rates,
and implies C2s ¼ C2p ¼ C. In practice, it does not hold at
low enough temperature, z≲ 700.
In addition to this equilibrium assumption, the

effective rates ABðTm; TrÞ and BðTrÞ are approximated
as follows:

ABðTm; TrÞ ≈ αBðTmÞ≡ABðTm; 0Þ; ðB7Þ

BBðTrÞ ≈ βBðTrÞ≡ ð2πμeTrÞ3=2
4h3

eE2=TrαBðTrÞ; ðB8Þ

where E2 ≈ −3.4 eV is the energy of the first excited state.
In other words, the effective recombination coefficient is
computed in the zero-radiation-temperature limit and the
photoionization rate is assumed to be given by detailed
balance, even though this is not self-consistent with the
zero-radiation-temperature assumption.

2. Fudge factors and functions

Since the zero-radiation-temperature effective recom-
bination coefficient systematically underestimates the
exact effective recombination coefficient, the code
RECFAST introduces a “fudge factor” F > 1, and substitutes
αB → F × αB. The fudge factor was first estimated as
F ≈ 1.14 when enforcing equilibrium between angular
momentum substates of excited states [9,10]. Based on
the study of Ref. [12], which accounts for the nonequili-
brium of angular momentum substates, the current version
of RECFAST uses an updated fudge factor F ≈ 1.125. It was
shown in Ref. [25] that AB=αB indeed lies in the range
1.12–1.14, though it is not a constant, but rather depends on
redshift.
The latest version of RECFAST corrects the net decay rate

in Lyman-α which is in our Eq. (11). (Note, however, that
the base model is different.) The function ΔðzÞ is a sum
of two Gaussians, whose amplitudes and widths were
chosen to best mimic detailed calculations of HYREC and
COSMOREC.
It should be clear that the three-level simplification (and

especially the fudging of AB) does not provide any
computational advantage over the already very simple
effective four-level model on which HYREC-2 is based.
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