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We studied the formation of Y junctions for transonic elastic strings. In particular, using the general
solution for these strings, which is described by left- and right-moving modes, we obtained the dynamics of
kinks and Y junctions. Considering the linearized ansatz for straight strings, we constructed the parameter
region space for which the formation of Y junctions due to strings collisions is allowed.
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I. INTRODUCTION

Cosmic strings are hypothetical objects that were origi-
nally described by Kibble [1]. They appear as a prediction
of numerous models of early universe [2]. To highlight
some of them, it is worthwhile to mention brane inflation
[3–8], supersymmetric grand unified theory [9–13], and
theories of high energy particle physics [14–18].
Some types of cosmic strings allow the existence of

bound states, named as Y junctions. They might appear due
to collisions of distinct strings that form trilinear vertices. Y
junctions are common for non-Abelian strings [19], for
Abelian-Higgs strings of the I type [20], for Uð1Þ × Uð1Þ
models with specific value of parameters [21], and for
cosmic strings from brane inflation (cosmic superstrings)
[5]. Using approximation that cosmic strings are infinitely
thin, are described by Nambu-Goto action, it was demon-
strated that kinematic constraints must be satisfied in order
for the Y junctions to be produced [22–24]. The result of
kinematic constraints was confirmed by numerical simu-
lations in a framework of field theory [25,26]. The analytic
description of cosmic strings via Nambu-Goto action also
sheds light on dynamics of Y junctions. In particular, one
can estimate the average growth/reduction of string lengths
for multi-tension cosmic string networks. This phenome-
non is crucial for understanding the evolution of cosmic
(super)string networks [27,28].
Due to nontrivial interactions of fields that form a string

core, cosmic strings might become superconducting [29].
This situation naturally arises for supersymmetric [30–34]
and some non-Abelian strings [35,36]. To obtain an effec-
tive description of superconducting cosmic strings, models
for infinitely thin strings were developed [29,37–41]. It was
also suggested that some macroscopic properties can be
captured by such current carrying Nambu-Goto strings. In
particular, the barytropic cosmic string model, which also

comes out from dimensional reduction [42,43], provides
an accurate depiction of “wiggly” (noisy) cosmic strings
[44–47].
This study revisits the problem of Y junctions for

transonic elastic strings. We reexamine the exact solution
for these strings [44,47], obtain left-/right-moving modes,
and in line with [22] we describe evolution of kinks and Y
junctions. In addition, we obtain kinematic conditions
under which the production of Y junction is possible.
The problem of Y junctions for Nambu-Goto current

carrying strings was initially studied in [48]. The authors
developed a covariant formalism to investigate under which
conditions the production of Y junctions is possible. The
result of paper [48] claims that for magnetic (spacelike
current) and electric (timelike current) current carrying
strings the formation of Y-junction is impossible, unless the
newly formed string is described by a more general
equation of state. A detailed comparison of our result with
work [48] can be found in the Appendix.

II. SOLUTION IN MINKOWSKI SPACE FOR
TRANSONIC ELASTIC STRINGS

In this section, we revisit the exact solution for transonic
elastic strings, originally obtained in [44,47], with the
method developed in [49]. This approach allows us to
show that only elastic and chiral strings lead to wavelike
equations of motion.
We start consideration from the action

S ¼ −μ0
Z

fðκÞ ffiffiffiffiffiffi
−γ

p
dσdτ; ð1Þ

where μ0 is a constant defined by the symmetry breaking
scale, fσ; τg are coordinates on the string world sheet
(Latin indexes “a-d” run over 0, 1) with induced metric

γab ≡ xμ;axν;bηνμ and ð2aÞ*Ivan.Rybak@astro.up.pt
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κ ≡ φ;aφ;bγ
ab; ð2bÞ

γ ≡ 1

2
εacεbdγabγcd: ð2cÞ

εac is the Levi-Civita symbol, ημν is Minkowski metric
(Greek indexes run over space-time coordinates xμ from 0
to 3), xμ;a ≡ ∂xμ

∂σa, and φ is a scalar function on the string
world sheet. The function fðκÞ will be defined below.
The stress-energy tensor for the action (1) can be written

as

Tμν ≡ −2
δS
δgμν

¼ μ0ffiffiffiffiffiffi−gp
Z

δð4Þðy − xðσÞÞ

×
ffiffiffiffiffiffi
−γ

p ðUuμuν − TvμvνÞdσdτ; ð3Þ

where uμuμ ¼ 1 and vμvμ ¼ −1 are orthonormal timelike
and spacelike vectors. Mass per unity length U and tension
T in (3) are given by expressions

U ¼ f − 2κf0κΘ½−κf0κ�;
T ¼ f − 2κf0κΘ½κf0κ�; ð4Þ

where Θ½…� is a Heaviside function and f0κ ¼ ∂f
∂κ (for more

details about the stress-energy tensor, see Sec. IV in [50] or
alternatively Sec. II in [51]).
We can introduce the speed of “wiggles” cE (propagation

of transverse perturbations) and “woggles” cL (propagation
of longitudinal perturbations) according to [39,47]

c2E ¼ T
U
; c2L ¼ −

dT
dU

: ð5Þ

In this way, for the standard Nambu-Goto string, both
propagations have the speed of light, cE ¼ cL ¼ 1. It is
anticipated to have supersonic strings (cE > cL) for most of
regimes of superconducting strings [38,52]. Meanwhile,
the transonic model

cL ¼ cE ≤ 1 ð6Þ

can be considered as an effective description of wiggly
strings [46,47] and some particular limits of superconduct-
ing strings (see Secs. 5.8 and 5.9 in [50]).
Using (4), the explicit form of (5) can be written as

c2E ¼ f − 2κf0κΘ½κf0κ�
f − 2κf0κΘ½−κf0κ�

;

c2L ¼ −
f0κ − 2ðf0κ þ κf00κκÞΘ½κf0κ�
f0κ − 2ðf0κ þ κf00κκÞΘ½−κf0κ�

: ð7Þ

Substituting (7) into condition (6) for transonic strings,
one can obtain the equation for fðκÞ,

ðf0κÞ2 þ ff00κκ ¼ 0 ⇒ f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1κ þ c2

p
; ð8Þ

where c1 and c2 are constants of integration.
One can write down the equation of state for transonic

strings using the expressions (4) together with (8),

UT ¼ fðf − 2κf0κÞ ¼ c2 ¼ m2; ð9Þ

where m is a mass dimensional constant.
We can define c1 ¼ �m2 and absorb m2 into the

definition of μ0. These manipulations allow us to establish
the function fðκÞ for transonic elastic strings in the
following form, as also presented in [44,47]:

fðκÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
; κ ∈ ð−∞; 1�; UT ¼ 1: ð10Þ

It is known that the transonic model has the general
wavelike solution [44]. Let us use the method from [49] to
demonstrate that there are only two types of strings, whose
equations of motion can be reduced to the wave equation:
chiral (see [40,53]) and transonic elastic strings. We start
consideration by writing down the equations of motion for
the action (1) in Minkowski space [54],

∂a½T abxμ;b� ¼ 0; ð11aÞ

∂a½ ffiffiffiffiffiffi
−γ

p
γabf0κφ;b� ¼ 0; ð11bÞ

where

T ab ¼ ffiffiffiffiffiffi
−γ

p ðγabf − 2f0κγacγbdφ;cφ;dÞ
¼ ffiffiffiffiffiffi

−γ
p ðγabf þ θabÞ ð12Þ

(notice the change of the sign in (12) due to misprint in
Eq. (6) of [54]).
Parametrization invariance of the string world sheet

allows us to make the transformation,

T ab ↣ ηab; ð13Þ

if their determinants are equal [49],

det T ab ¼ det ηab ¼ −1: ð14Þ

Let us expand the determinant of T ab,

det T ab ¼ −f2 − fTrθac − det θac: ð15Þ

It is easy to check that det θac ¼ 0; hence, we are left only
with
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det T ab ¼ −f2 þ 2ff0κTr½γacγbdφ;cφ;d�
¼ −fðf − 2f0κκÞ ¼ −UT: ð16Þ

It is seen from (16) that the transformation (13) is
possible due to parametrization invariance only if the
function fðκÞ is defined as for transonic elastic strings
(10), or fðκÞ is defined as for chiral strings, where the
current is a null vector κ → 0 [54].
The relation (16) together with (10) guarantees that the

equations of motion for the string world sheet (11a) has the
general wavelike solution. Choosing the gauge where
the world sheet coordinate τ coincides with physical time
t, one can write down the solution for (11a) in the form of
left- and right-moving modes,

x0 ¼ τ; x ¼ 1

2
ðaðσþÞ þ bðσ−ÞÞ; ð17Þ

where σþ ¼ τ þ σ and σ− ¼ τ − σ.
Up to this point, we demonstrated how to obtain the

result of [44] in a different manner. Let us study the
equation of motion for the function φ (11b). To do so, we
plug ff0κ ¼ 1

2
in (11b),

∂a½ ffiffiffiffiffiffi
−γ

p
γabf2f0κφ;b� ¼ ½using ð13Þ�

¼ ∂a½fðηab þ 2f0κ
ffiffiffiffiffiffi
−γ

p
γacγbdφ;cφdÞf0κφ;b�

¼ ∂a½ff0κðηab þ 2κ
ffiffiffiffiffiffi
−γ

p
γabf0κÞφ;b�: ð18Þ

Transferring the right-hand side term with
ffiffiffiffiffiffi−γp

γab to the
left-hand side in (18), one obtains

∂a½
ffiffiffiffiffiffi
−γ

p
γabf0κfðf − 2κf0κÞφ;b�

¼ ∂a½
ffiffiffiffiffiffi
−γ

p
γabf0κφ;b� ¼ ∂a½ff0κηabφ;b� ¼ 0: ð19Þ

Taking out the constant ff0κ from the differentiation
operation in (19), we derive the following equation:

∂a½ηabφ;b� ¼ 0; ð20Þ

which general solution is given by

φ ¼ 1

2
ðFðσþÞ þGðσ−ÞÞ: ð21Þ

The normalization of ja0j and jb0j is connected with
values of the current as

a02ðσþÞ ¼ 1 − F02ðσþÞ; b02ðσ−Þ ¼ 1 −G02ðσ−Þ ð22Þ

for right- and left-moving modes.
Alternative treatment of elastic strings, as a Kaluza-Klein

projection of standard Nambu-Goto strings in a space-time
of five-dimensions, can be found in [55]. In this approach,

the relation (22) can be seen as a normalization for unity of
four-dimensional vectors of left- and right-moving modes.
Using relations (22), one can write down the current (2b)

as

κ ¼ 2F0G0

1þ F0G0 − a0 · b0 ; ð23Þ

which is shown in Fig. 1 for different values of F0 and G0.
It is seen that if the left(or right)-moving mode of the

current is independent of σ− (or σþ), the expression (23)
goes to zero,

κ ¼ 0; if∶ F0 ¼ 0; ðor G0 ¼ 0Þ: ð24Þ

The situation (24) reproduces the chiral string properties,
where only left(or right)-moving mode is allowed
[40,49,53,54].

III. JUNCTIONS FOR TRANSONIC
ELASTIC STRINGS

To study Y junctions for transonic elastic strings, we start
with the action for three connected current carrying strings
[48],

FIG. 1. The current κ defined by (23) for different values of
scalar moving modes G0, F0 and for angles 0, π between vectors
a0 and b0.
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S ¼ −
X3
i¼1

μi

Z
fðκiÞ ffiffiffiffiffiffiffi

−γi
p

ΘðsiðτÞ − σiÞdσidτ

þ
X3
i¼1

Z
fμiðxμi ðsiðτÞ; τÞ − XμðτÞÞdτ

þ
X3
i¼1

Z
giðφiðsiðτÞ; τÞ −ΦðτÞÞdτ; ð25Þ

where the function fðκÞ is given by (10), μi are constants
defined by the symmetry breaking scale, fμi, gi are
Lagrange multipliers for strings and currents, time func-
tions XμðτÞ andΦðτÞ define values for xμi and φi at the point
where strings are connected, the index i ¼ 1, 2, 3 denotes
each of the three strings (the summation over index i is
carried out only when it is written explicitly).
Varying the action (25) with respect to xμi and φi, we

obtain the equations of motion (11a) and (11b) for each
type of strings. Using (16) and (20), the boundary terms
from equations of motion, which are proportional to
δðsiðtÞ − σiÞ, can be expressed as

μiη
abxμi;aλbi ¼ fμi ;

2μifif0κiη
abφ;aλbi ¼ gi; ð26Þ

where λai ¼ f_si;−1g.
The variation of the action (25) with respect to Xμ

i andΦ
gives us

X3
i¼1

fμi ¼ 0;

X3
i¼1

gi ¼ 0; ð27Þ

which can be rewritten using solutions (17) and (21)
together with expressions (26) in the following way:

X3
i¼1

μi½a0ið1þ _siÞ − b0
ið1 − _siÞ� ¼ 0;

X3
i¼1

μi½F0
ið1þ _siÞ −G0

ið1 − _siÞ� ¼ 0: ð28Þ

Finally, variation of the action (25) with respect to fμi and gi
provides us the following relations:

xμi ðsiðτÞ; τÞ ¼ XμðτÞ;
φiðsiðτÞ; τÞ ¼ ΦðτÞ: ð29Þ

Differentiating (29) using the exact solutions (17) and (21),
we obtain

ð1þ _siÞa0i þ ð1 − _siÞb0
i ¼ 2 _XðtÞ;

F0
ið1þ _siÞ þG0

ið1 − _siÞ ¼ 2 _ΦðtÞ: ð30Þ

Manipulating vectors a0i, b
0
i and using (28) with (30), it is

possible to obtain the following equations:

a0kð1þ _skÞ ¼
2

μ

X3
i¼1

ð1 − _siÞμib0
i − ð1 − _skÞb0

k;

F0
kð1þ _skÞ ¼

2

μ

X3
i¼1

ð1 − _siÞμiG0
i − ð1 − _skÞG0

k ð31Þ

and

_X ¼ 1

μ

X3
i¼1

ð1 − _siÞμib0
i: ð32Þ

Zero component of the vector equation in (26) provides
energy conservation relation, which is identical to the
standard Nambu-Goto scenario [22],

X3
i¼1

μi _si ¼ 0: ð33Þ

The relation (33) does not provide an additional constraint,
but is a consequence of equations of motion. Hence, the
relation (33) can be used as a check of numerical calcu-
lations that are carried out below.
We parametrize the string in such way that modes

a0iðσþÞ, F0
iðσþÞ move outward the string connection, while

b0
iðσ−Þ and G0

iðσ−Þ move toward the string connection.

FIG. 2. Dynamics of Y junctions represented by _si of strings
with μ1 ¼ 1 (blue), μ2 ¼ 1.2 (red), μ3 ¼ 1.4 (green) and oriented
with angles 2π=3 between them. Dashed lines show the values of
_si depending on G0

1, dashed-dotted on G0
2, solid on G0

3. Black
dashed lines demonstrate no changes of _si when all G0

i increase
simultaneously.
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Such choice means that b0
iðσ−Þ andG0

iðσ−Þ are initial values
that define a0iðσþÞ and F0

iðσþÞ by Eq. (31). The first three
equations for vectors a0iðσþÞ in (31) can be squared and
using the normalization conditions (22) we eliminate
a0iðσþÞ. Hence, we have the system of six independent
algebraic equations (31) and six variables that can be
found: three variables _si and three variables F0

iðσþÞ.
It is illustrative to compare values of _si for strings with

currents and without. For this purpose, we fix angles
between b0

iðσ−Þ, define string constants μi, and evaluate
the system of equations (31) for different values of G0

iðσ−Þ.
An example of such dependence is shown in Fig. 2.
The description above demonstrates that dynamics of Y

junctions for transonic elastic strings can be described
within Nambu-Goto approximation.

A. Kinks for elastic strings

Having considered the Y junctions, we can treat the
formation and evolution of kinks for elastic strings. To do
so, we need simply change the sum in previous equations
for two strings instead of three. Let us consider the situation
when parameters for strings are μ1 ¼ μ2. Hence, from
Eqs. (30) and (31), one can deduce the following relations
for two possible situations that satisfy conditions for the
kink:

_s1 ¼ −1 ¼ −_s2; F0
2 ¼ G0

1; ð34aÞ

or _s1 ¼ 1 ¼ −_s2; F0
1 ¼ G0

2: ð34bÞ

Illustrative example of two strings intercommutation is
shown in Fig. 3. After collision, two kinks propagating in
opposite direction are formed on each of the strings. The
kink _sA corresponds to situation (34a) with F0

sA ¼ G0
1,

while another kink _sB to (34b) with F0
sB ¼ G0

2.
The velocities of kinks follow from Eq. (32), that is,

_X2
A ¼ ð1 −G02

1 Þ; ð35aÞ

_X2
B ¼ ð1 −G02

2 Þ; ð35bÞ

which are different from the speed of light if the corre-
spondent current component is nonzero.
It should be noted that if an elastic string collides with a

standard Nambu-Goto (or chiral with G0
1 ¼ 0) string, the

intermediate growing section, between kinks _sA and _sB, is
described by the chiral model.
In the same manner, kinks appear when colliding strings

form Y junction: from the discontinuity of corresponding
modes. The formation of kinks for elastic strings qualita-
tively is identical to the standard Nambu-Goto model
considered in [23], except of the fact that the speed of
kinks propagation is not equal to the speed of light, but
given by (35a) and (35b).

IV. COLLISIONS OF TRANSONIC
ELASTIC STRINGS

It is always possible to choose small region, where
collided strings can be considered straight. We are going to
study kinematic conditions for straight strings to produce a
Y junction.
We decompose the straight string solution as a linear

combination of “bare” and current carrying parts [54],

xi ¼ yi þ zi; ð36Þ

where the bare part is given by

y1;2 ¼ f−γ−1v σ cos α;∓ γ−1v σ sin α;�υτg;
y3 ¼ fγ−1u σ cos θ; γ−1u σ sin θ;uτg; ð37Þ

while the current carrying part is described by

zi ¼ −giσ−ð_yi − y0iÞ − fiσþð_yi þ y0iÞ; ð38Þ

with γ−1v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

Constants fi and gi in (38) represent the current con-
tribution for left- and right-moving modes.

FIG. 3. The upper panel demonstrates two cosmic strings
before the collision. Arrows with G0 and F0 define left- and
right-moving modes of currents on cosmic strings. The bottom
panel represents the situation when collided strings intercom-
mute, exchange their moving modes.
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From (36) to (38), one can find that

a0i ¼ ð1 − 2fiÞð_yi þ y0iÞ; ja0ij2 ¼ ð1 − 2fiÞ2;
b0
i ¼ ð1 − 2giÞð_yi − y0iÞ; jb0

ij2 ¼ ð1 − 2giÞ2: ð39Þ

Comparing constants fi and gi in (39) with (22), we
establish the relations

fi ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F02

i

q �
;

gi ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −G02

i

q �
: ð40Þ

Parameters v and α define orthogonal velocity and
orientation of noncurrent carrying string [23], but for
elastic (and chiral [49]) strings it is not the case. It happens
due to the presence of longitudinal component of velocity
in considered parametrization. Hence, we will treat v and α
as some constant parameters combination of which provide
string velocity and orientation. Alteration of parameters
interpretation does not affect the validity of applied method.
In order to find out for which values of v and α, the third

string can be produced (which means that _s3 > 0), we need
to derive the orientation and velocity of a newly created
string, i.e., θ and u parameters. To obtain these variables,
we follow the procedure of [23], i.e., we write down the
expression for _X, given in (32), by substituting σ → s3ðτÞ
in (37) and (38),

_X ¼ fT1ðτÞγ−1u cos θ;T1ðτÞγ−1u sin θ;T2ðτÞug; ð41Þ

where T1ðτÞ ¼ _s3ðτÞ þ g3ð1 − _s3ðτÞÞ − f3ð1þ _s3ðτÞÞ and
T2ðτÞ ¼ 1 − f3ð1þ _s3ðτÞÞ þ g3ð1 − _s3ðτÞÞ.
Combining (41) with (32), one can obtain the vector

equation, from which θ and u are determined via b0
i.

To summarize, we have nine equations: six equations
from (31) and three equations from (32). Therefore, we can
derive eight variables F0

i, _si, u, θ defining another eight
variables μi, G0

i, v, α. The vector equality (32) with (41)
does not provide three independent equations, but only two,
similarly as in [23]. Having all this information, we can
numerically solve this system of algebraic equations. As a
result, one can obtain the region of values v and α for which
colliding strings give rise to Y junctions (_s3 > 0); see Fig. 4
for symmetric string collision and Fig. 5 for asymmetric
string collision.
Production of Y junction also leads to creation of kinks,

K1;2 ¼ ð1 − 2g1;2Þfγ−1v cos α;�γ−1v sin α;�υgτ; ð42Þ

that propagate along collided strings, similarly as it
happens for standard noncurrent Nambu-Goto strings [23].
It is important to note that for all strings the constants μi

were fixed, and we assumed that there is a relation between
tensions of strings Ti. This assumption allows us to

eliminate 1 degree of freedom and treat G0
3 as known

value [it might be done through relation (23)]. A possible
bound between tensions of current carrying strings needs
further investigation for particular models and goes beyond
the scope of this paper.

V. CONCLUSIONS

We revisited the exact solution for elastic transonic
strings in Minkowski space [44,47] with the method
developed in [49]. The exact solution allowed us to

FIG. 4. Symmetric case. Range of parameters v and α, which
allow for colliding strings with μ1 ¼ μ2 ¼ 1 to produce the Y
junction (_s3 > 0 corresponds to areas below lines) with μ3 ¼ 1.2.
The solid blue line corresponds to G0

1 ¼ G0
2 ¼ 0.7, red line to

G0
3 ¼ 0.99, while all others G0

i are zeros. Dashed black line
represents the case when all G0

i ¼ 0.

FIG. 5. Asymmetric case. Range of parameters v and α, which
allow for colliding strings with μ1 ¼ 1 and μ2 ¼ 1.2 to produce
the Y junction (_s3 > 0 corresponds to areas below lines) with
μ3 ¼ 1.4. The solid blue line corresponds to G0

1 ¼ 0.99, red line
to G0

2 ¼ 0.99, green line to G0
3 ¼ 0.99 while all others G0

i are
zeros. Dashed black line represents the case when all G0

i ¼ 0,
while black solid when G0

1 ¼ G0
2 ¼ 0.65, G0

3 ¼ 0.
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consider left- and right-moving modes, which made it
possible to treat the dynamics of Y junctions in a similar
manner as it was done in [23].
The system of equations (31) allowed us to obtain the

rate of string lengths change _si, see Fig. 2, requiring the
definition of incoming components of the current G0

i. The
values of incoming current components G0

i should be
determined by strings properties. Thus, in the case of
cosmic superstrings, the values of G0

i might be defined
similarly to saturated Bogomol’nyi-Prasad-Sommerfield
state (see [5,56] for details), given by

μp;q ¼ μF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qC0Þ2 þ q2=g2s

q
:

For superconducting and wiggly cosmic strings with Y
junctions, the definitions of G0

i should arise from the values
of tensions and mass per unit lengths (4). The exact
definition of G0

i for particular type of strings needs further
investigation and goes beyond the scope of this paper.
We studied the kink dynamics for elastic strings in

Sec. III A. We obtained values of _si that are essential for
existence of kinklike discontinuity. We also demonstrated
an example of elastic strings intercommutation and deter-
mined the velocities of these kinks.
In Sec. IV, we found kinematic constraints that should be

satisfied to give rise to a Y junction for elastic strings. In
particular, we obtained a range of parameters v, α, and G0

i
of collided strings (36) for which _s3 > 0. The symmetric
case of elastic strings collision is shown in Fig. 4 and the
asymmetric case is shown in Fig. 5.
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APPENDIX: COMPARISON WITH [48]

In Sec. IV, we considered the formation of Y junctions
for transonic model of straight strings determined by the
action (1) with fðκÞ defined in (10). It was shown that for
collision of transonic elastic straight strings there are
kinematic conditions that should be satisfied to form a Y
junction. In our study, we did not face overdetermined
system of equations, in contrast to result in [48]. The
general approach of [48] claims that for magnetic and
electric superconducting strings the formation of Y junction
is impossible. On the other hand, the result in Sec. IV states
that formation of Y junction is possible for a particular type

of current, described by transonic elastic model. This
appendix is intended to provide detailed comparison of
our result with result obtained in [48]. For the sake of
clarity, we denote equations related to work [48] as (…�).

A. Comparison of equations

Let us write down equations of motion for Y junction
used in work [48] (above Eqs. (16*) and (17*) in [48]),

∂að ffiffiffiffiffiffiffi
−γi

p
Tab
i xμi;bΘðs̃iðτiÞ − σ̃iÞÞ ¼ fμi δðs̃iðτiÞ − σ̃iÞ; ðA1aÞ

∂að ffiffiffiffiffiffiffi
−γi

p
zaiΘðs̃iðτiÞ − σ̃iÞÞ ¼ giδðs̃iðτiÞ − σ̃iÞ; ðA1bÞ

where zai ¼
ffiffiffiffiffiffi
κ0i

p
cai , c

a
i ¼ −2f0κiγ

ab
i φi;b,

ffiffiffiffiffiffiffi−γi
p

Tab
i ¼ T ab

i ,
κ0i is a constant multiplier, and all derivatives are taken with
respect to conformal gauge parameters τi and σ̃i, which are
different for each string (in contrast to the gauge of the
present study, where τ is the same for all strings) and
provide the relations

∂τi x
μ
i ∂ σ̃ixiμ ¼ 0; ð∂τix

μ
i Þ2 ¼ −ð∂ σ̃i x

μ
i Þ2:

Equations (A1) are parametrization invariant, namely, one
can chose any σ̃i and τi. If one chooses the gauge (τ, σi) of
this work and uses expressions (13) and (19) for elastic
strings, defined by function (10), the system of Eq. (A1) is
reduced to

∂aðηabxμi;bΘðsiðτÞ − σiÞÞ ¼ fμi δðsi − σiÞ; ðA2aÞ

∂aðηabφi;bΘðsiðτÞ − σiÞÞ ¼ giδðsi − σiÞ: ðA2bÞ

Substituting exact solutions (17) and (21) in (A2) and using
condition (27), one can see that boundary terms of
equations (A2) are identical to Eq. (28).
In case of conformal gauge (σ̃i; τi), boundary terms of

Eq. (A1) have the form of equations (16*) and (17*) of
Ref. [48], given by

X
i

ffiffiffiffiffiffiffi
−γi

p ðT0b
i
_̃si − T1b

i Þxμi;b ¼ 0; ðA3aÞ

X
i

ffiffiffiffiffiffiffi
−γi

p ðz0i _̃si − z1i Þ ¼ 0; ðA3bÞ

where _̃si ≡ ds̃i
dτi
.

TABLE I. Correspondence between equations of the manu-
script and work [48].

Gauge of this work Conformal gauge in [48]

Eq. (27) = = Eq. (15*)
Eq. (28) = = Eq. (14*)
Eq. (29) = = Eqs. (16*) and (17*)
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We demonstrated that Eqs. (16*) and (17*) for Y
junction in [48] coincide with Eq. (28) of the main text.
There is a full agreement between equations of [48] and
equations of the paper; see Table I for correspondence.
Equations (25*), (28*), and (29*) of [48] should be
identical to (A3) and to (28), but just written in a preferred
rest frame. Hence, the amount of equations in our study and
work [48] are the same.

B. Straight string solution and number
of unknown variables

To understand where the disagreement with [48] comes
from, we also need to count the number of unknown
variables, since the number of equations in our study and in
work [48] are the same.
To start, let us write down the solution for straight

strings, which satisfies equations of motion (11) and can be
considered as a linear term of Taylor expansion close to the
point of strings collision, i.e., for gauge of this work,

xμi ðσi; τÞ ¼ Aμ
i σi þ Bμ

i τ þOðσ2i ; τ2Þ;
φiðσi; τÞ ¼ Ciσi þDiτ þOðσ2i ; τ2Þ

or for conformal gauge

xμi ðσ̃i; τiÞ ¼ Ãμσ̃i þ B̃μτi þOðσ̃2i ; τ2i Þ;
φiðσ̃i; τiÞ ¼ C̃iσi þ D̃iτi þOðσ̃2i ; τ2i Þ; ðA4Þ

where Aμ
i , B

μ
i , Ã

μ
i , B̃

μ
i , Ci, Di, C̃i, and D̃i are constants with

possibly different physical meaning. The form of solution
(A4) provides left- and right-moving modes, similarly to
(17) and (21).
Mass per unit length U and tension T, given by (4), are

dynamical parameters that are constructed from left- and
right-moving modes of (A4) for the corresponding gauge.
WhenU, T (or current κ with action) are fixed, one can still
chose different left- and right-moving modes. This fact is
well seen from expression (23), where the same value of the
current κ can be constructed by different values of F0
and G0.
Expressing all parameters, such as mass per unit length

U, tension T, and current κ by left- and right-moving
modes, we can count number of unknown variables. All
derivatives of outgoing modes, can be determined through
conditions (29), introducing _Φ and _X. The last variable can
be substituted by expression with parameters α, u, and _s3 of
newly created string. Hence, there are four equations from
(A3) and energy conservation condition (which is auto-
matically satisfied), two independent equations come from
first expression of (29), providing six independent equa-
tions for six variables: u, α, _si, and _Φ. Thus, expressing all
parameters as left- and right-moving modes, one obtains
the system of equations, which has the same amount of
equations and unknown variables (as it is mentioned in the

end of Sec. IV, one also needs to define the incoming
mode G3).

C. The difference with work [48]

The process of strings collision for elastic transonic
strings is illustrated in Fig. 6. The upper panel demonstrates
left- and right-moving modes of strings before the collision,
the lower-after. Modes denoted by question symbol should
be obtained from Y-junction equations at J. Two kinks,
illustrated in Fig. 6 as K1 and K2, are formed after strings
collision and, according to Sec. III A, incoming modes
propagate without modification through kinks K1 and K2

for special choice of parametrization, i.e., modes G1, b1,
G2, and b2 can pass directly to Y junction. Kinks for elastic
transonic straight strings (36) are described by (42).
Schematic Fig. 6 of strings collision with particular choice
of parametrization is valid for elastic transonic strings as
well as for standard Nambu-Goto strings [22,23] and chiral
strings [54].
For conformal gauge choice, which was used in [48],

incoming modes for J − K1 and J − K2, in general, are not
the same as modes before kinks and should be determined
by equations for kink discontinuity. As a result, to obtain
similar parameter region space, which allows Y-junction
formation, one should solve the system of equations that
includes equations for kinks K1, K2, and junction J

FIG. 6. Schematic picture of left- and right-moving modes of
elastic transonic strings for the gauge described in the main text,
Sec. II. The upper panel shows left- and right-moving modes
before the collision of strings, and the lower panel shows modes
after. Moving modes with question symbol should be determined
by equations for Y junction (31) and (32).
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simultaneously. This fact demonstrates that the gauge
choice, which was used in this work, simplifies equations
allowing to consider incoming modes for Y junction the
same as modes before K1 and K2 kinks.
To summarize the comparison, it was demonstrated in

Sec. VI A that equations for Y junctions of this study and
work [48] are in agreement, one system of equations can be
transformed to the other; see Table I. In Sec. VI B, it was
shown that any type of straight strings can be represented
by the form (A4) and split for left- and right-moving
modes. Defining string parameters, such as T, U and
current through left- and right-moving modes, one obtains
the system of equations that has the same amount of
unknown variables and equations for Y junction. Hence,
equations of work [48] written via left- and right-moving

modes (which do not require separated consideration of
electric and magnetic types of current) are reduced to (31)
and (32) providing the same range of parameters that allows
formation of Y junction. In study [48], equations are not
written in terms of left- and right-moving modes, but in
terms of tension T, mass per unit length U, and electric (or
magnetic) current. Each value of U and T (as well as
current) can be represented by different left- and right-
moving modes. It means that there are more unknown
variables in equations written via left- and right-moving
modes than in equations written via U and T. Fixing mass
per unit length U and tension T, as it was done in [48], one
also fixes corresponding outgoing and incoming modes
obtaining overdetermined system of equations, i.e., less
unknown variables than equations for Y junction.
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