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We explore the covariance of redshift-space matter power spectra after a standard density-field
reconstruction. We derive perturbative formula of the covariance at the tree-level order and find that
the amplitude of the off-diagonal components from the trispectrum decreases by reconstruction. Using a
large set of N-body simulations, we also find the similar reduction of the off-diagonal components of the
covariance and thereby the signal-to-noise ratio (S/N) of the postreconstructed (postrec) power spectra
significantly increases compared to the prereconstructed spectra. This indicates that the information leaking
to higher-order statistics come back to the two-point statistics by reconstruction. Interestingly, the postrec
spectra have higher S/N than the linear spectrum with Gaussian covariance when the scale of reconstruction
characterized with the smoothing scale of the shift field is below ∼10 h−1 Mpc where the trispectrum
becomes negative. We demonstrate that the error of the growth rate estimated from the monopole and
quadrupole components of the redshift-space matter power spectra significantly improves by
reconstruction. We also find a similar improvement of the growth rate even when taking into account
the supersample covariance, while the reconstruction cannot correct for the field variation of the
supersample modes.
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I. INTRODUCTION

A biggest challenge in the modern cosmology is the
mystery of dark matter and dark energy [e.g., 1]. Large-
scale structure traced by galaxies is one of the powerful
cosmological probes to study the properties of the dark
components. The baryonic acoustic oscillation (BAO)
imprinted on galaxy distributions is a powerful cosmologi-
cal probe to study the expansion history of the Universe
[2–24]. Bulk motion of galaxies associated with the growth
of the large-scale structure generates the anisotropy in the
redshift-space galaxy distribution, i.e., the redshift-space
distortion, which probes the growth rate of the large-scale
structure and is useful to test general relativity and modified
gravity models [e.g., 25–31]. The full shape of the power
spectrum also has fruitful information of cosmology [e.g.,
32]. Upcoming spectroscopic galaxy surveys such as PFS
[33], DESI [34], HETDEX [35], Euclid [36], and WFIRST

[37] are expected to do precise cosmological studies to
clarify the nature of dark matter and dark energy.
In the linear perturbation theory, different wavelength

modes of the fluctuations of matter density field grow
independently. Since the gravitational growth of the large-
scale structure is a nonlinear process, different modes are
coupled with each other, which makes a precise cosmo-
logical analysis difficult. For example, the BAO signal in
the large-scale structure is degraded and the BAO scale is
biased at later times [e.g., 38]. The perturbation theory
breaks down in the nonlinear regime and thus precise
analytical prediction is difficult at small scale. The two-
point statistics such as the power spectrum characterize the
whole statistical properties in Gaussian fields. However,
non-Gaussianity increases in the evolved matter density
field and thereby higher-order moments/correlation func-
tions also become important. The information content of
the power spectrum is shown to be saturated on nonlinear
scale [39–41]. This indicates that the cosmological infor-
mation leaks to higher-order statistics beyond two-point*chiaki.hikage@ipmu.jp
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statistics, which makes our cosmological analysis more
complicated.
Density-field reconstruction aims for recovering the

initial or linearly evolved density field. A standard BAO
reconstruction method proposed by [42] shifts mass par-
ticles or galaxies toward their initial Lagrangian positions
to recover the original BAO signal. The shift field is
estimated using the inverse Zeldovich approximation
[43] from the observed (evolved) density field after
smoothing small-scale power. The reconstruction effec-
tively undoes the bulk motion and thereby the BAO signal
is successfully recovered [44–48]. The BAO reconstruction
method has been applied to various galaxy surveys
[18–24,49]. It was also shown that the correlation of the
reconstructed matter density field with the initial density
field extends to more nonlinear scale [47,50–56].
Reference [57] derived the one-loop perturbative formula
of the reconstructed matter power spectrum in real space.
They found that the amplitudes of the one-loop nonlinear
terms decrease substantially by reconstruction and the
perturbation theory works at more nonlinear scale. The
authors of Ref. [58] extended their formula to redshift-
space clustering and demonstrated that the growth rate
measurement from the redshift-space distortion is signifi-
cantly improved.
How does the reconstruction alter the covariance of the

matter power spectra? The covariance of matter power
spectra without reconstruction has been investigated both
from the perturbation theory and from N-body simulations.
The tree-level perturbative formula of the covariance of the
matter power spectra was derived to show that the non-
Gaussian effect generates the correlations between different
bands and thereby the covariance has nonzero off-diagonal
components [e.g., 3,39]. The matter covariance has been
also investigated from a large set of N-body simulations to
show that the non-Gaussian effects significantly suppresses
the signal-to-noise ratio (S/N) of the power spectrum and
thereby degrades the information content of the power
spectrum [40,59–62]. The non-Gaussian effects on the
matter covariance come from the mode coupling associated
with the nonlinear gravity. Since the reconstruction effec-
tively linearizes the field by partially removing the mode-
coupling effect, it is expected that the covariance of the
power spectrum is more diagonalized.
Here we first investigate the covariance of the redshift-

space matter power spectra after the field is reconstructed
and evaluate the information content of the matter power
spectrum by using the perturbation theory and a large set of
N-body simulations. The mode coupling between the
small-scale modes and the large-scale modes beyond
survey size has a significant contribution to the matter
covariance, which is known as “beat coupling” [63] or
“supersample covariance (SSC)” [64,65]. We also inves-
tigate the effect of SSC on the reconstructed covariance.
Finally, we show the improvement of the growth rate

measurement from the redshift-space power spectra when
using the covariance matrix of reconstructed spectra.
This paper is organized as follows: in Sec. II, we derive a

tree-level perturbative formula of the covariance of monop-
ole and quadrupole components of matter power spectra
after reconstructing the field. We see how the off-diagonal
components of their covariance are changed by recon-
struction with different smoothing scales. In Sec. III, we
also numerically estimate the covariance using a large set of
N-body simulations to see the behavior of the covariance of
reconstructed spectra. In Sec. IV, we evaluate the S/N of the
reconstructed power spectra to discuss how much the
information content is recovered. In Sec. V, we study
the impact on the growth rate measurement by using the
covariance of reconstructed spectra. We also study the
effect of the supersample covariance on our results in
Sec. VI. Section VII is devoted to the summary and
conclusions.
Throughout this paper, we assume a flat ΛCDM model

with the best-fit values of Planck TT;TE;EEþ lowP in
2015, i.e., Ωb ¼ 0.0492, Ωm ¼ 0.3156, h ¼ 0.6727, ns ¼
0.9645, and σ8 ¼ 0.831 [66].

II. PERTURBATIVE FORMULA OF
COVARIANCE OF MATTER POWER

SPECTRA IN REDSHIFT SPACE

In this section, we derive the covariance of the monopole
(l ¼ 0) and quadrupole (l ¼ 2) components of the
redshift-space matter power spectrum in a perturbative
approach. Our formula is applicable to higher-order multi-
poles such as hexadecapole (l ¼ 4); however, we do not
include them because their signal-to-noise ratios are small
relative to the monopole and the quadrupole and also their
signals are dominated by the nonlinear redshift-space
distortion.
The covariance can be generally decomposed into the

Gaussian and the non-Gaussian parts as

Cov ¼ CovðGÞ þ CovðNGÞ: ð1Þ

When neglecting the convolution with the survey geometry,
the Gaussian part is given by

CovðGÞll0 ðki; kjÞ ¼
ð2lþ 1Þð2l0 þ 1Þ

2

Z
1

−1
dμLlðμki

ÞLl0 ðμkj
Þ

×
2

V
ð2πÞ3
Vki

δKij

�
PzðkiÞ þ

1

n

��
PzðkjÞ þ

1

n

�
;

ð2Þ

where μk is the cosine angle between k and the line-of-
sight direction, Ll is the lth Legendre polynomial, i.e.,
L0 ¼ 1 and L2 ¼ ð3μ2 − 1Þ=2, V is the sample volume,
and n is the number density of mass particles. The volume
of k-binning shell Vki is approximated as 4πk2iΔkwhere the
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binning width Δk is much smaller the mean wave number
of ith bin ki. The redshift-space linear matter power
spectrum PzðkÞ is given by

PzðkÞ ¼ Z1ðkÞ2PLðkÞ; ð3Þ

where PLðkÞ is the linear matter power spectrum in real
space and Z1 is the first-order Eulerian kernel in redshift
space,

Z1ðkÞ ¼ 1þ fμ2k; ð4Þ

with the linear growth rate f ≡ d lnD=d ln a defined as the
logarithmic derivative of the linear growth factor.
Next, we derive the non-Gaussian covariance at tree

level. We do not take into account the higher-order
covariance such as the one-loop covariance for simplicity.
The one-loop covariance becomes important at higher k;
however, the shot noise usually dominates the error at
higher k in actual observed data. In Sec. VI, we take into
account the SSC.
The tree-level covariance comes from the tree-level term

of the trispectrum of matter power spectra given by [67]

TðtreeÞðk1;k2;k3;k4Þ ¼ 4½Z2ðk12;−k1ÞZ2ðk12;k3ÞPLðk12ÞZ1ðk1ÞPLðk1ÞZ1ðk3ÞPLðk3Þ þ ð11 perms:Þ�
þ 6½Z3ðk1;k2;k3ÞZ1ðk1ÞPLðk1ÞZ1ðk2ÞPLðk2ÞZ1ðk3ÞÞPLðk3Þ þ ð3 perms:Þ�; ð5Þ

where Zn is the nth order Eulerian perturbation kernel of the matter density field in the redshift space [68,69]. The tree-level
covariance of the multipole power spectra is written as [39,70]

CovðtreeÞll0 ðki; kjÞ ¼
1

V

Z
k̂il

Z
k̂0
jl0
TðtreeÞðk;−k;k0;−k0Þ

¼ 1

V

Z
k̂il

Z
k̂0
jl0
½12Z3ðk;−k;k0ÞZ1ðkÞ2Z1ðk0ÞPLðkÞ2PLðk0Þ þ 8Z2ðk − k0;k0Þ2Z1ðk0Þ2PLðk0Þ2PLðjk0 − kjÞ

þ 8Z2ðk − k0;k0ÞZ2ðk0 − k;kÞPLðjk0 − kjÞZ1ðkÞPLðkÞZ1ðk0ÞPLðk0Þ þ ðk ↔ k0Þ�; ð6Þ

where the integral denotes

Z
k̂il

¼
Z
k∈ki

dk
Vki

ð2lþ 1ÞLlðμkÞ: ð7Þ

The tree-level covariance after reconstruction can be obtained by replacing Zn with the kernel of postreconstructed (postrec)

spectra ZðrecÞ
n derived by [58]. The first-order kernel is not changed by the reconstruction

ZðrecÞ
1 ðkÞ ¼ Z1ðkÞ: ð8Þ

The relation of the second- and third-order postrec kernels to the prereconstructed (prerec) kernels is given as [58]

ZðrecÞ
2 ðk1;k2Þ ¼ Z2ðk1;k2Þ þ

1

2
½ðk · Szð1Þðk1ÞÞðk2 ·Lzð1Þðk2ÞÞ þ ðk · Szð1Þðk2ÞÞðk1 ·Lzð1Þðk1ÞÞ� ð9Þ

and

ZðrecÞ
3 ðk1;k2;k3Þ ¼ Z3ðk1;k2;k3Þ þ

1

6
½2ðk · Szð1Þðk1ÞÞZ2ðk2;k3Þ þ ðk · Szð1Þðk1ÞÞðk · Szð1Þðk2ÞÞðk3 ·Lzð1Þðk3ÞÞ

þ ðk · Szð2Þðk1;k2ÞÞðk3 ·Lzð1Þðk3ÞÞ þ ð2 perms:Þ�; ð10Þ

where k ¼ k1 þ � � � þ kn in the nth order kernel. In the above equations, LzðnÞ represents the nth order Lagrangian kernel
in redshift space, which is related to the same order of Lagrangian kernel in real space LðnÞ as [69]

LzðnÞ ¼ RðnÞLðnÞ: ð11Þ

The redshift-space distortion tensor at nth order RðnÞ is given by
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RðnÞ
ij ¼ δij þ nfẑiẑj; ð12Þ

where δij is the Kronecker delta and ẑi the ith component of
the unit vector in the line-of-sight direction. In a standard
reconstruction [42], the shift field is estimated from the
smoothed density field using the inverse Zeldovich
approximation. The nth order kernel of the shift field
SzðnÞ is then given by

SzðnÞðk1;…;knÞ ¼ −n!WðkÞLð1ÞðkÞZnðk1;…;knÞ; ð13Þ

whereWðkÞ is the smoothing kernel and we adopt Gaussian
kernel, i.e., WðkÞ ¼ expð−k2R2

s=2Þ with different smooth-
ing scales Rs ¼ 5 h−1Mpc, 10 h−1Mpc, and 20h−1 Mpc.
Figure 1 compares the tree-level non-Gaussian

covariance of the monopole spectra before and after
the reconstruction. The plotted covariance is normalized
with their Gaussian components, i.e., CovðtreeÞ00 ðki; kjÞ=
½CovðGÞ00 ðki; kiÞCovðGÞ00 ðkj; kjÞ�1=2. The off-diagonal compo-
nents have positive values for the prerec spectra, which
means that the different modes are positively correlated by
the mode coupling of gravity. After reconstruction, we find
that the positive correlation decreases and becomes neg-
ative at Rs less than 10 h−1 Mpc. This comes from that the
values of the tree-level trispectra shift from positive to
negative by replacing the perturbative kernels with the
reconstructed one. This is related to our previous finding
that the amplitudes of the one-loop terms of the power
spectrum given by the same perturbative kernels decrease
after the reconstruction [58].

III. N-BODY SIMULATIONS

We measure the covariance of the multipole components
of matter power spectra over an ensemble of dark matter
N-body simulations as follows:

Covll0 ðk; k0Þ

¼ 1

Nreal − 1

XNreal

i

½Pl;iðkÞ − P̄lðkÞ�½Pl0;iðk0Þ − P̄l0 ðk0Þ�;

ð14Þ

where Nreal is the number of realizations and P̄l is the
averaged multipole components of matter power spectra.
The binning width of k is uniformly set to be 0.01 h=Mpc
and the minimum value of k is set to be 0.01 h=Mpc. We
perform N-body simulations using a publicly available
code GADGET-2 [71]. The initial distribution of mass
particles is based on the 2LPT code [72,73] with
Gaussian initial conditions at the input redshift of 31.
The initial redshift does not affect (less than 1%) the power
spectrum at k < 0.3 h=Mpc and z ¼ 0 (see Fig. 35 of [74]).
The initial linear power spectrum is computed by CAMB
[75]. We adopt 4000 realizations with 5123 mass particles
in a cubic box with a side length of 500 h−1 Mpc and two
output redshifts of z ¼ 0 and z ¼ 1.02.
The N-body particles are assigned to 5123 grid cells with

the clouds-in-cell (CIC) method to calculate the density
contrast. We then perform the Fourier transform [76] to
measure the multipole components of the power spectra Pl
after the pixel window effect is corrected [e.g., 77]. The
reconstructed density field is computed as follows [42]:

(i) The shift field for the reconstruction is computed from
the smoothed redshift-space mass density field using
the inverse Zeldovich approximation, i.e., s̃ðkÞ ¼
−ðk=k2Þδ̃ðzÞm ðkÞWðkÞ with Gaussian smoothing ker-
nel WðkÞ ¼ exp ð−k2R2

s=2Þ at Rs ¼ 5 h−1 Mpc,
10h−1 Mpc, and 20 h−1 Mpc. Note that we leave
the reconstructed field anisotropic on large scales to
constrain the growth rate from the anisotropy due to
the redshift-space distortion.

FIG. 1. Tree-level non-Gaussian covariance of the monopole component of the matter power spectrum normalized with their Gaussian

covariance, i.e., CovðtreeÞ00 ðki; kjÞ=½CovðGÞ00 ðki; kiÞCovðGÞ00 ðkj; kjÞ�1=2 for prerec and postrec spectra with Rs ¼ 20 h−1 Mpc, 10 h−1 Mpc,
and 5 h−1 Mpc from left to right panels. As Rs is smaller, the off-diagonal terms are changed from positive to negative values. The output
redshift is z ¼ 1.02.
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(ii) Each mass particle is displaced following the above
shift field at the position interpolated from the shift
field at neighboring grids with the CIC scheme.

(iii) Random particles are also displaced using the same
shift vector field in the same manner as the mass
particles.

(iv) Reconstructed density field is obtained by the
displaced random field subtracted from the displaced

data field as δðrecÞ ¼ δðrecÞd − δðrecÞr .
We also compute the matter power spectra from eight

realizations of large-box N-body simulations with a side
length of 4 h−1 Gpc. Each realization contains 40963 mass
particles and they are assigned to 20483 grid cells with the
CIC method. We confirm that the averaged spectra from

500 h−1 Mpc box is consistent with those from 4 h−1Gpc
box; however, we find a large fluctuation of the quadrupole
spectrum from 500 h−1 Mpc box due to a low resolution in
k-space. We therefore adopt the power spectrum from
4 h−1 Gpc-box simulations and add the following correc-
tion to the covariance from 500 h−1 Mpc box simulations as

Covll0 ðk; k0Þ ¼ Covð500h
−1 MpcÞ

ll0 ðk; k0Þ

×
�
P̄ð4h−1 GpcÞ
l ðkÞ

P̄ð500h−1 MpcÞ
l ðkÞ

��
P̄ð4h−1 GpcÞ
l0 ðk0Þ

P̄ð500h−1 MpcÞ
l0 ðk0Þ

�
;

ð15Þ

FIG. 2. Correlation coefficients of the monopole components of the matter power spectrum with fixed ki ¼ 0.085 h=Mpc (upper) and
0.175 h=Mpc (lower) at z ¼ 1.02 (left) and z ¼ 0 (right). Different symbols denote the results for prerec and postrec spectra with
different Rs. Off-diagonal components of postrec spectra significantly decrease and have negative values at Rs less than 10 h−1 Mpc,
which is consistent with the behavior of the perturbation theory in Fig. 1.
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where P̄ðLboxÞ
l is the averaged multipole power spectrum

from N-body simulations with a side length of Lbox.
Figure 2 shows the correlation matrix of the mono-

pole spectra computed from the simulations at fixed ki ¼
0.085 h=Mpc and 0.175 h=Mpc at z ¼ 1.02 and 0. Prerec
spectra are positively correlated among different modes and
thus the off-diagonal components are positive [3,39].
We find that the off-diagonal components substanti-
ally decrease to be nearly zero by reconstruction with
Rs ¼ 10 h−1Mpc. At Rs ¼ 5 h−1Mpc, the off-diagonal
components become negative values. This behavior is
qualitatively consistent with the perturbation theory shown
in the previous section.

IV. SIGNAL-TO-NOISE RATIO OF MULTIPOLE
POWER SPECTRA

In this section, we evaluate the information content of
redshift-space matter power spectra from the following
signal-to-noise ratio (S/N):

ðS=NÞ2 ¼
X0;2
l;l0

Xki;kj≤kmax

i;j

PlðkiÞðCov−1Þll0 ðki; kjÞPl0 ðkjÞ:

ð16Þ

The multipole spectra Pl and their covariance are directly
estimated from the simulations as explained in the previous
section. The inverse covariance matrix is computed by
multiplying a so-called Hartlap factor α¼ðNreal−Nbin−2Þ=
ðNreal−1Þ with the inverse of the covariance matrix
[Eq. (14)] [78].
Figure 3 compares the S/N of prerec spectra and postrec

spectra with different Rs as a function of the maximumwave
number kmax.We find that the postrec spectra have higher S/N
than the prerec spectra. The improvement is larger at higher k.
For example, the S/N of the postrec spectra with Rs ¼
10 h−1Mpc is improved by 7% (kmax ¼ 0.1 h=Mpc) and
30% (kmax ¼ 0.2 h=Mpc) at z ¼ 1.02 relative to the prerec
spectra. The improvement is more significant at z ¼ 0: 18%
(kmax ¼ 0.1 h=Mpc) and 69% (kmax ¼ 0.2 h=Mpc). Since
the diagonal components of the covariance matrix are
dominated by the Gaussian terms, the improvement of the
S/N mainly comes from the decrement of the off-diagonal
components as shown in Figs. 1 and 2.
We also plot the S/N estimated from the linear spectra

and the Gaussian covariance as a reference. Lower panels
focus on the differences of S/N from the linear Gaussian
one. Interestingly, it is found that the S/N of the postrec
spectra at Rs ¼ 10 h−1Mpc and 5 h−1Mpc is comparable
to or higher than the linear Gaussian one. The similar trend

FIG. 3. Comparison of the S/N of the sum of the monopole and quadrupole components of redshift-space matter power spectra before
reconstruction and after reconstruction with Rs ¼ 20 h−1 Mpc, 10 h−1 Mpc, and 5 h−1 Mpc at z ¼ 1.02 (left) and z ¼ 0 (right). For
comparison, we plot the S/N of the linear power spectrum using the analytical Gaussian covariance (CovðGAÞ) with dotted lines. We find
that the postrec spectra have a better S/N than prerec one and also that the postrec spectra with Rs ¼ 10 h−1 Mpc and 5 h−1 Mpc have
higher S/N than the Gaussian one. Lower panels focus on the differences of the S/N for the linear Gaussian one. For comparison, the S/N
of the linear power spectra using the tree-level perturbative covariance (CovðGAÞ þ CovðtreeÞ) is plotted with dashed lines and shows the
similar behavior.
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FIG. 4. Monopole and quadruple components of the matter power spectrum from N-body simulations (filled circles) before
reconstruction (upper-left) and after reconstruction with Rs ¼ 20 h−1 Mpc (upper-right), 10 h−1 Mpc (lower-left), and 5 h−1 Mpc
(lower-right). Error bars denote the 1σ sample variance from 4000 N-body simulations where each volume is ð500 h−1 MpcÞ3. For
comparison, the one-loop perturbative formula is plotted with solid lines using the best-fit values of the lowest-order counterterms αl
(l ¼ 0, 2) up to kmax ¼ 0.2 h=Mpc. The linear power spectra are also plotted with dashed lines. All of the plotted spectra are divided
with the no-wiggle spectra. Small panels show the differences between the simulated spectra and the one-loop perturbative formula with
the best-fit values of αl. The output redshift is z ¼ 1.02.
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is found from the perturbative predictions where the linear
spectra and the tree-level covariance [Eq. (6)] are applied to
calculate the S/N [Eq. (16)], though the agreement of the
perturbation with the numerical results is limited to be at
k ≤ 0.1 h=Mpc. The S/N from the perturbation rapidly
increases at high k because the determinant of tree-level

covariance diverges [40]. As shown in Figs. 1 and 2,
the off-diagonal components become negative at Rs ≲
∼10 h−1Mpc and thereby the S/N of the postrec spectra
becomes higher than the linear Gaussian one.
Information of nonlinear growth of structure can be

normally captured by higher-order statistics beyond

FIG. 5. Same as Fig. 4 but for the output redshift of z ¼ 0.
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two-point statistics. The reconstruction returns the infor-
mation leaking to higher-order statistics back to the two-
point statistics. The return is larger at smaller Rs where
smaller scales can be reconstructed and thereby the S/N
increases at smaller Rs. The growth information is however
buried on strongly nonlinear regime, and thus the increment
of S/N from Rs ¼ 10 h−1Mpc to Rs ¼ 5 h−1 Mpc at z ¼ 0
is limited.

V. IMPACTS ON GROWTH RATE
MEASUREMENTS

In this section, we explore if the estimates of cosmo-
logical parameters are improved by reconstruction, par-
ticularly focusing on the growth rate. We evaluate the error
of the growth rate including the systematics when using the
one-loop perturbative formulas as a theoretical modeling of
the matter power spectra. The likelihood is estimated as
follows:

L ∝ exp

�
−
χ2

2

�
; ð17Þ

χ2ðpÞ ¼
X0;2
l;l0

Xki;kj≤kmax

i;j

½Ptheory
l ðki;pÞ − Psim

l ðkiÞ�

× ðCov−1Þll0 ðki; kjÞ½Ptheory
l0 ðkj;pÞ − Psim

l0 ðkjÞ�:
ð18Þ

For the theoretical model, we adopt the one-loop perturba-
tive formulas derived in our previous work [58]. In order to
correct the effects from small-scale physics on large-scale
modes, we include the lowest-order counterterms given by
αlðl ¼ 0; 2Þ multiplied with k2 times the linear power
spectrum Plinear

l as suggested from the effective field theory
[e.g., 79],

Ptheory
l ¼ P1−loop

l þ αlk2Plinear
l ðkÞ: ð19Þ

The set of free parameters p is the growth rate f and two
counterterms αl and other cosmological parameters are
fixed for simplicity. In the theoretical covariance, Pl is
again estimated from simulations with the survey
volume V ¼ ð500 h−1 MpcÞ3 and the number density n ∼
1½ðh−1MpcÞ−3� including a volume-size correction
[Eq. (15)], which fully takes into account the mode coupling
between different bins of k. Note that in our previous paper
[58] we assumed the Gaussian covariance with different
volumes and number density for simplicity to estimate the
impact of the growth rate measurement. We estimate the
posterior distribution using a nested sampling algorithm
MULTINEST [80], implemented in MONTE PYTHON [81].
Figures 4 and 5 compare the monopole and quadrupole

spectra from N-body simulations with the one-loop pertur-
bation theory at z ¼ 1.02 and 0.We adopt the best-fit values
of αl by fitting the spectrum out to k ¼ 0.2 h=Mpc. Each
panel shows the results of prerec (upper-left) and postrec
spectra with different Rs ¼ 20 h−1Mpc (upper-right),

FIG. 6. Linear growth rate relative to the input value obtained by fitting the one-loop perturbative formulae of the monopole and
quadrupole power spectra to the simulated spectra with the maximum wave number kmax varied [Eq. (17)]. The counterterms αl (l ¼ 0
and 2) are freely fitted, while other cosmological parameters are fixed. Different plots show the prerec spectra (x-shaped crosses) and
postrec spectra with Rs ¼ 20 h−1 Mpc (circles), 10 h−1 Mpc (triangles), and 5 h−1 Mpc (+-shaped crosses) at z ¼ 1.02 (left panels) and
z ¼ 0 (right panels). Covariance of the multipole power spectra is estimated from 4000 realizations of N-body results with
ð500 h−1 MpcÞ3 volume. The error bars denote the 1σ uncertainty.
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10 h−1Mpc (lower-left), and 5 h−1 Mpc (lower-right). We
find that the fitting to the simulated spectrum is best for the
postrec spectra with Rs ¼ 20 h−1Mpc, while the postrec
spectra with Rs ¼ 5 h−1 Mpc is the worst fitting. More
quantitatively speaking, the minimum chi-squared values
are 0.76 (prerec), 0.09 (postrec with 20 h−1Mpc), 0.88
(postrec with 10 h−1Mpc), and 3.6 (postrec with
5 h−1Mpc) at z ¼ 1.02 and 8.9 (prerec), 0.7 (postrec with
20 h−1Mpc), 4.7 (postrec with 10 h−1Mpc), and 27 (post-
recwith 5 h−1Mpc). The authors inRef. [58] have described
that the reconstruction partially suppresses the nonlinearity
of the gravitational growth and thereby the perturbation
works at higher k. However, when Rs is too small, the shift
field estimated from the evolved density field becomesmore
nonlinear and thereby the perturbation does not work well.
This is consistent with our previous work in real-space
matter clustering [57].
Figure 6 shows the best-fit values of f against the input

value finput and its 1 sigma error. We find that the value of
f=finput is consistent with unity up to kmax ∼ 0.3 h=Mpc at
z ¼ 1.02 and kmax ∼ 0.2 h=Mpc at z ¼ 0 for both prerec
and postrec spectra. Note that since the one-loop approxi-
mation does not work at such high kmax, the input value of f
can be recovered by chance. It is found that the statistical
error decreases after reconstruction over all range of k. For
example, the error decrements of f from the postrec spectra
relative to that from the prerec spectra at z ¼ 1.02 are 11%
(Rs ¼ 20 h−1Mpc), 20% (Rs ¼ 10 h−1Mpc), and 17%
(Rs ¼ 5 h−1 Mpc) at kmax ¼ 0.2 h−1 Mpc and 13%
(Rs ¼ 20 h−1Mpc), 33% (Rs ¼ 10 h−1Mpc), and 33%
(Rs ¼ 5 h−1 Mpc) at kmax ¼ 0.3 h−1Mpc. The error dec-
rements at z ¼ 0 are 18% (Rs ¼ 20 h−1 Mpc), 33%
(Rs ¼ 10 h−1Mpc), and 22% (Rs ¼ 5 h−1Mpc) when
kmax ¼ 0.2 h−1Mpc. We find that the error of f is signifi-
cantly improved and the error improvement is almost
maximized around Rs ∼ 10 h−1 Mpc where the covariance
is almost diagonal by reconstruction. Table I summarizes
the minimum chi-squared values and the reduction of

statistical errors for prerec and postrec spectra with three
different smoothing scales.

VI. SUPERSAMPLE COVARIANCE

The SSC comes from the mixing between the long-
wavelength modes beyond the survey window and the
short-wavelength modes inside the survey area. The
response of the power spectrum to the change in back-
ground density δb is given as [64,65]

CovðSSCÞll0 ¼ σ2b
∂PlðkÞ
∂δb

∂Pl0 ðk0Þ
∂δb ; ð20Þ

where the variance of δb in the survey window is defined as

σ2b ¼
1

V2

Z
dq

ð2πÞ3 jW̃ðqÞj2PLðqÞ; ð21Þ

with the Fourier transform of the survey mask field WðxÞ
given as W̃ðqÞ. The response of the multipole power
spectrum to δb is given by [82]

∂ lnPlðkÞ
∂δb ¼ Gl þDl

d ln k3PlðkÞ
d ln k

; ð22Þ

where the first term is the growth modulation by the
background density, which is also known as beat coupling
[63], and the second term is the dilation effect that comes
from the change of the local expansion rate depending on
the background density [65]. Here we neglect the response
of the background tide for simplicity. The growth and
dilation term for l ¼ 0 and 2 are given in Tables 1 and 2 of
[82] as

G0 ¼
68
21
ð1þ fÞ þ 164

105
f2 þ 4

15
f3

1þ 2
3
f þ 1

5
f2

; ð23Þ

G2 ¼
122
21

f þ 656
147

f2 þ 58
63
f3

4
3
f þ 4

7
f2

; ð24Þ

TABLE I. A summary of the minimum chi-squared values and the reduction of statistical errors for prerec and
postrec spectra with three different smoothing scales Rs. For the reduction of statistical errors at z ¼ 1, the results
with two different kmax are shown. The error reduction for Rs ¼ 10 h−1 Mpc shown in the bracket is the case with
the supersample covariance.

Prerec 20 h−1 Mpc 10 h−1 Mpc 5 h−1 Mpc

χ2min z ¼ 1 0.76 0.09 0.88 3.6
z ¼ 0 8.9 0.7 4.7 27

Error z ¼ 1

Reduction 0.2 h−1 Mpc � � � 11% 20(13)% 17%
z ¼ 1

0.3 h−1 Mpc � � � 13% 33(30)% 33%
z ¼ 0

0.2 h−1 Mpc � � � 18% 33(28)% 22%
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and

D0 ¼ −
1
3
ð1þ fÞ þ 1

5
f2 þ 1

7
f3

1þ 2
3
f þ 1

5
f2

; ð25Þ

D2 ¼ −
2
3
f þ 4

7
f2 þ 10

63
f3

4
3
f þ 4

7
f2

; ð26Þ

where the linear bias is set to be unity here. The density
fluctuation in a given survey is defined against the mean
within the survey window rather than the global mean and
thereby the normalization of the power spectrum is altered
as [64]

Pw
l ðkÞ ¼

PlðkÞ
ð1þ δðzÞb Þ2

; ð27Þ

where δðzÞb is the background density in redshift space and
thereby the response is changed to

∂ lnPlðkÞ
∂δb →

∂ lnPw
l ðkÞ

∂δb ≃
∂ lnPlðkÞ

∂δb −
�
2þ 2

3
f

�
: ð28Þ

The non-Gaussian covariance is computed as the sum of the
tree-level term [Eq. (6)] and the SSC as

CovðNGÞ ¼ CovðtreeÞ þ CovðSSCÞ: ð29Þ
In Sec. III, we numerically compute the covariance from

the ensemble average over N-body simulations with the

volume of ð500 h−1MpcÞ3; however, the fluctuations
beyond the box size are not taken into account. We compute
the covariance including SSC by extracting subboxes with
the volume of ð500 h−1 MpcÞ3 from eight realizations of
large simulation boxes with the volume of ð4 h−1GpcÞ3
containing 40963 particles. The total number of sub-
boxes becomes 8 × ð4 h−1Gpc=500 h−1MpcÞ3 ¼ 4096.
The mean density field is computed in each subbox and
the shift field for reconstruction is computed from the
smoothed density field using particle data in each subbox.
The reconstructed density field is also computed in each
subbox data including mass particles shifted from neigh-
boring subboxes. Strictly speaking, the fluctuation beyond
the large simulation box size 4 h−1Gpc is not included in
the covariance; however, the SSC is dominated by the
fluctuations below this size. Reference [61] also addressed
the question of what box size is needed to model the large-
scale structure and argued that modes larger than 1 h−1Gpc
do not contribute. For the purpose of comparison with the
perturbation theory, however, we integrate k from
2π=ð4 h−1GpcÞ in the calculation of σb [Eq. (21)].
Figure 7 shows the comparison of the S/N for prerec and

postrec spectrawithRs ¼ 10 h−1 Mpc.We find that both S/N
decrease when including SSC. Since the reconstruction is
performed within the survey area, the bulk motion of super-
sample modes cannot be corrected by the reconstruction.
The postrec spectra, however, have still higher S/N than the
prerec spectra. The reconstruction improves S/N by 5%
(kmax ¼ 0.1 h=Mpc) and by 19% (kmax ¼ 0.2 h=Mpc) at

FIG. 7. Same as Fig. 3 but for the S/N of prerec and postrec spectra with Rs ¼ 10 h−1 Mpc and the SSC is included in the simulated
covariance. The predictions from the one-loop perturbative formulas are also estimated from the covariance including SSC, i.e.,
CovðGAÞ þ CovðtreeÞ þ CovðSSCÞ.
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z ¼ 1.02 and by 14% (kmax ¼ 0.1 h=Mpc) and by 40%
(kmax ¼ 0.2 h=Mpc) at z ¼ 0. The perturbation formulas
also show the consistent results with the numerical one and
they quantitatively agree up to k ∼ 0.1 h=Mpc.
Figure 8 shows the impact on the growth rate measure-

ments when including SSC. The input value of growth rate is
again recovered up to kmax ∼ 0.3 h=Mpc at z ¼ 1.02 and
kmax ∼ 0.2 h=Mpc at z ¼ 0 for both prerec and postrec
spectra. The improvements of the error by the reconstruction
with Rs ¼ 10 h−1Mpc are 13% when kmax ¼ 0.2 h=Mpc
and 30% when kmax ¼ 0.3 h=Mpc at z ¼ 1.02 and 28%
when kmax ¼ 0.2 h=Mpc at z ¼ 0, which are comparable to
the improvement without SSC.

VII. SUMMARY AND CONCLUSIONS

We investigated the covariance of the redshift-space
matter power spectra after a standard density-field
reconstruction that is commonly used in the BAO analysis.
We derived the perturbative formula of the covariance of
the multipole components of the power spectra at tree level.
We find that the positive off-diagonal components of the
covariance from the tree-level trispectra decrease after the
reconstruction and have negative values at the smoothing
scale of the shift field Rs less than ∼10 h−1Mpc. We also
computed the covariance of the multipole power spectra
directly from a large set of N-body simulations. We find the
significant decrease of the off-diagonal components and the
behavior is consistent with the perturbation theory. In
consequence, the information content of the postrec power
spectra evaluated with the S/N of their monopole and
quadrupole components significantly increase compared to
the prerec power spectra. Interestingly, the S/N of the
reconstructed spectra with Rs less than 10 h−1Mpc exceeds
to that of the linear spectrum with the Gaussian covariance,

which comes from the negative off-diagonal components of
the covariance matrix. The enhancement of the S/N is more
significant at later times. We also studied the supersample
covariance effect both from perturbative and numerical
approaches. We find that the S/N reduces even after the
reconstruction because the reconstruction performs within
the survey area and thus the bulk motion of the supersample
modes cannot be corrected by reconstruction. Even when
the SSC is included, the postrec spectra still have higher
S/N than the prerec spectra.
We find that the tree-level perturbative approach is limited

to describe the simulated covariance at k ≤ 0.1 h=Mpc. This
indicates that higher-order mode coupling needs to be taken
into account to describe the covariance more accurately.
There are several works to describe mode couplings at higher
k based on the effective field theory [83], the response
approach [84], and also semianalytical models [85–87]. It
may be interesting to apply these methods to describe the
covariance of reconstructed spectra.
Recovery of cosmological information in the two-point

statistics makes the cosmological analysis simpler. We
demonstrated that the reconstruction significantly reduced
the error of growth rate inferred from the redshift-space
power spectrum. So far, the reconstruction has been mainly
applied to the BAO analysis due to the lack of theoretical
understandings of the reconstructed spectrum. Since it is
found that the error of the full shape of the power spectrum is
improved, it is interesting to investigate how the other
cosmological parameters are improved by using the infor-
mation of the full shape of power spectra after reconstruction.
We also have to take into account the galaxy bias and the shot
noise as well as various observational effects such as survey
geometry to apply the actual observational data (e.g., [70]).
The shot noise increases the statistical uncertainties in the
power spectrum [Eq. (2)] and also in the shift field for

FIG. 8. Same as Fig. 6 but for the SSC effect is included. Here we fix the smoothing scale Rs for the postrec spectra 10 h−1 Mpc.
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reconstruction particularly when the smoothing scale is
small. We leave this for future work.
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