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We explore the consequences of including the repulsive three-particle interaction in the model of Bose-
Einstein condensate dark matter model or fuzzy dark matter. Such a model based on properly modified
Gross-Pitaevskii equation is intended to describe the distribution of dark matter particles in the highly dense
regions, which correspond to the galaxy core and/or to the overlap of colliding galaxies. Specifically, we
deal with the ϕ6-model in terms of the macroscopic wave function of the condensate, where a locality of
interaction is guaranteed by a large correlation length assumed to hold. After calculation of main
thermodynamical characteristics, we find strong evidence of the existence of two distinct phases of dark
matter, within its core, separated by the instability region lying between two differing special values of the
pressure acting in the model. Some implications stemming from the existence of two phases and the related
first-order phase transition are discussed.
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I. INTRODUCTION

The notion of dark matter (DM), though being rather old
one [1,2], is a widely accepted concept nowadays. A support
in favor of its existence stems fromboth gravitational-lensing
observation and the data on galaxy rotation curves. But,
despite a vast amount of theoretical (and experimental)
studies, the ultimate nature of DM remains still unknown.
In the last two decades or more, among a diversity of

approaches to DM, ever-increasing attention is focused on a
class of DM models known as Bose-Einstein condensate
(BEC) dark matter (also named “fuzzy DM” or FDM,
“quantum wave-function DM” or ψDM models, scalar-
field dark matter, ultralight dark matter), see [3–5] as well
as the reviews [6–11] with numerous references therein.
Also, superfluid dark matter models [12,13] are closely
related to this class.
The main point/feature of this class of models is that DM

constitutes a BEC subjected to a long range correlation.
There are some variations within this class, depending
on (i) the sort and the values of mass of fuzzy DM
constituents, ranging from 10−32 eV to 10−21 eV and even
higher in some cases, and on (ii) whether self-interactions
are neglected [3,5] or the DM particles experience some
repulsive self-interaction, small or not, quartic [14,15] or
more complex. (The case with neglected self-interactions is
the most restrictive one and requires the mass of FDM to be
10−22 eV for the DM core stability; on the other hand, more
freedom is admitted when certain self-interactions are taken

into account.) Among the explored self-interactions we
encounter, besides the most popular quartic one, are also
the logotropic [16], cos- and cosh-type ones [17–20]. The
studies of the role of diverse (orders, attractive/repulsive
cases of) self-interactions of ultralight scalar DM particles
are of utmost importance.
The FDM class surpasses the cold dark matter models

(CDM) models [21] in the sense that it succeeds to resolve
those problems of CDM that appear at the small (i.e.,
galactic or subgalactic) scales. In particular, it was shown
that the BEC DM scenario of DM, exploiting Gross-
Pitaevskii (GP) equation related with quartic term in the
self-interaction scalar potential, jointly with the Poisson
equation, enable to overcome [22,23] the well-known cusp/
core problem of CDM models. Besides, the intrinsic tools
of the BEC DM models are efficient enough to properly
treat the gravitational collapse [24] issue of the BEC dark
matter halos, see e.g., [20,25]. The very important obser-
vational realm of distribution of dark matter in galaxies [26]
and the galactic rotation curves can as well be described
with very good agreement [15,25,27–33]. In a number of
works, the BEC DM predictions are tested with the galaxies
kinematic observations using galaxies of diverse morpho-
logies. It starts from studying of ultracompact dwarf (UCD)
galaxies [34], wherein the new scenario of UCD origin was
proposed in the framework of BEC DM; or the sample of
eight brightest dwarf spheroidal satellites of Milky Way,
which was considered to constrain BEC halo size in the
model of BEC DM within the Thomas–Fermi approxima-
tion [27]. The model was applied as well to the largest
galaxies such as Milky Way, that together with 12 nearby*omgavr@bitp.kiev.ua
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dwarf galaxies from SPARC are used to test astrophysical
effect of BEC DM halo rotation [28]. It is worth to mention
that SPARC database of disk galaxies of Hubble type from
H0 to Irr (note, the most of galaxies belongs to low surface
galaxies class) is frequently used to compare BEC DM
predictions with the observed galaxies kinematics. The
samples of 12 dwarf galaxies from SPARC [29] and 139
galaxies of different types selected from the database
according to the data quality [30] are fitted well by the
slowly rotating BEC DM model. Besides, the BEC DM
with super-massive black hole in halo center was compared
to NFW density profile by fitting of 20 SPARC galaxies
with the desired accuracy of data [31], both models
describe the observations well, but it is not clear which
of two models is preferred by the data.
In addition, FDM is believed to manage successfully the

important theme of the core mass-halo mass relation
[20,32,35]. In general, the BEC approach to modeling
DM, based on (modified versions of) the Gross-Pitaevskii-
Poisson system, helps to describe the known and reveals
possible new features or phenomena characteristic of DM
core and halo.
It is worthwhile to note that diverse types of Bose-like

DM candidates (satisfying BEC paradigm) have been
studied in the literature: besides the widely explored usual
unspecified bosons, there are rather popular axions (with
masses ranging from 10−20 eV to 1 eV) [36–40], the
Stueckelberg bosons [41], or even the massive gravitons
[33,42] (for different bounds on graviton mass, see e.g.,
[43]). Moreover, in some recent papers, specific versions of
deformed bosons (obeying statistics differing from the pure
Bose one) are explored in the role of DM particles [44–47],
and these are admitted thanks to the fact of existence of
condensate phase analogous to usual BEC. Note that the
description of galactic rotation curves obtained within
the particular so-called μ-deformed approach turns out to
be quite successful [46], even without taking into account
the visible (baryonic) component of galaxies.
Recently, the interest is drawn to the role of six-order

repulsive self-interaction term in the scalar potential within
the BEC framework. Due to the sextic term, the situation
qualitatively changes [48]. In particular, this can lead to
nontrivial phase structure of the core in the central part of
the DM halo. Let us mention the work of Chavanis [17]
which has demonstrated the existence of two phases—one
“dilute” and the other “dense”—pictured through the mass-
radius relation (note that this was done in the context of
axion stars, with only a short remark added that analogous
features can occur in the system of axionic DM).
The goal of our paper is to explore the main conse-

quences of including the (repulsive) sextic self-interaction
term in the potential of gravitating BEC dark matter model.
The basic aspect of our study consists in dealing not with
the system of Gross-Pitaevskii (GP) and Poisson equations,
but with a single properly modified form of the GP equation

in which the gravitational potential enters nonlocally,
through the action of inverse Laplacian. That suggests
the extensive usage of numerical methods to study the
density profiles of the BEC dark matter along with their
stability properties. On their base, we are able to obtain the
major thermodynamical functions of BEC DM. Detailed
analysis of the latter, especially of their mutual dependen-
cies, yields the most valuable information about the
appearing phases (stable, metastable, and unstable regions)
and the presence of first-order phase transition.
The paper has the following structure: in Sec. II, main

arguments in favor of the adopted particular choice of the
model are presented, with special attention to the role of
sixth order repulsive self-interaction term in the potential of
fuzzy or BEC dark matter. In Sec. III, within the appro-
priately modified version of the Gross-Pitaevskii equation
we treat the sextic self-interaction term jointly with (the
potential of) gravitational interaction employed in a non-
local fashion. Due to the latter circumstance, we deal with a
single equation instead of the nonlinear Schrödinger-
Poisson system. As an important step of the whole analysis,
we restrict ourselves with the Thomas-Fermi approxima-
tion (when, due to sending ℏ → 0, kinetic term is elimi-
nated). Then, the complete form of the model is explored in
Sec. IV. Namely, with inclusion of quantum processes, the
calculation of the relevant thermodynamical functions is
performed. On this base, in Sec. V we establish the
existence of, and analyze in detail, the two distinct phases
that are realized in the dark matter core. The final section is
devoted to discussion of implications, concluding remarks
and outlook.

II. CONSTRUCTING A MODEL

In this section, we present the criteria that allow us to
formulate a model of dark matter (together with the
conditions of its applicability), which we then further
study. Our arguments stem from a comparison of empirical
data for galaxies and the properties of some theoretical
models of dark matter formed by Bose particles (and
fields).

A. The scaling criterion for interactions

As a kind of the criteria that justifies the ability of a
theoretical model to describe observables, we use scaling
reasonings. By implementing the scaling in practice, we
intend to choose a more realistic model for our study.
Considering a sample of observed galaxies in a wide

mass range, it allows us to relate core size r0 and mass
density ρ0 in the center. Such a relation is found to be close
to ρ0 ∝ r−β0 with β ≈ 1. In fact, β ¼ 1.3 for the studied
galaxies sample. A close result is obtained in [49] from
analysis of dwarf spheroidal galaxies, which gives a similar
correlation between halo radius and mass density, that is,
ρ0 ∝ r−1.20 .
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Let us first review the scaling relations of fuzzy dark
matter (FDM), where DM particles are described by
complex-valued wave function ψðrÞe−iγt=ℏ and individual
mass m. Accordingly to FDM, stationary Schrödinger–
Poisson equations are

γψ ¼ −
ℏ2

2m
Δψ þmVgrψ ; ΔVgrðrÞ ¼ 4πGρðrÞ; ð1Þ

where Δ is a Laplace operator; ρ ¼ mjψ j2.
The system possesses exact scaling symmetry with

parameter λ:

r → λ−1r; ρ → λ4ρ; ψ → λ2ψ ; γ → λ2γ: ð2Þ

It leads to the scaling relation ρ0 ∝ r−40 between DM halo
radius r0 and central density ρ0. As it is shown in [23], this
relation strictly contradicts the observations. Indeed, β ¼ 4
is far from β ¼ 1.3 already noted above. Although, a
realistic model should be applicable to the DM description,
as is expected, for a large sample of galaxies, but not only
exceptions.
An important conclusion results from the FDM model:

In order to reach β ≃ 1 we need to take self-interaction
among DM particles into account.
Including repulsive or attractive ψ4 self-interaction into

the FDM model, the scaling relation takes the form with
β ¼ 2 for a large range of disk size, that is close to the value
derived in [23]. However, the solutions found are unstable
and thus do not resolve the issue. Nevertheless, there is a
possibility to obtain stable solutions in the required range of
parameters, combining repulsive and attractive potentials in
some way to prevent a halo collapse or outward flow of
particles.
Continuing the analysis, let us now test ψ6-model in

details. Clearly, the FDM equation with repulsive ψ6 term
does not obey the scaling symmetry (2) any more as well as
any other scaling relations. Thus, it becomes more com-
plicated to find relation between r0 and ρ0.
We are forced to apply a hint, indicating that solution of

problem can be found within the framework of ψ6-model.
Following [40], we estimate the contribution of several
terms to a total energy of halo using an exponential ansatz.
This trick has already been used in the literature to study a
stability of scalar field DM halos.
Thus, let the total energy E (in infinite volume, with its

element dVðrÞ ¼ 4πr2dr) and its density E of spherically
symmetric DM halo be

E ¼
Z

∞

0

EðrÞdVðrÞ; E ¼ Eq þ Eint þ Egr; ð3Þ

where

Eq ¼
ℏ2

2m

����dψdr
����
2

; Eint ¼
U
3
jψ j6; Egr ¼

1

2
ρVgr: ð4Þ

The wave function ψ is normalized so as to give the total
number of particles N:

N ¼
Z

∞

0

jψðrÞj2dVðrÞ: ð5Þ

Further, we adopt the exponential ansatz for ψ :

ΦðrÞ ¼
ffiffiffiffiffiffiffi
N
πr30

s
e−

r
r0 ; ð6Þ

which satisfies (5).
This is a simple ansatz to simulate field behavior in the

inner region when an exact solution is unknown. It is valid
in the range of r≲ rs for some finite rs, but breaks down in
the outer region.
Substituting (6) instead of ψ into (3), one gets

E ¼ a
N
r20

þ b
N3

r60
− c

N2

r0
; ð7Þ

a ¼ ℏ2

2m
; b ¼ U

81π2
; c ¼ 5Gm2

16
: ð8Þ

To calculate the action of operator Δ and its inverse on
function fðrÞ in the spherically symmetric case (what is
needed for finding Vgr), it is enough to use their radial parts
defined as

ΔrfðrÞ ¼ ∂2
rfðrÞ þ

2

r
∂rfðrÞ; ð9Þ

Δ−1
r fðrÞ ¼ −

1

r

Z
r

0

fðsÞs2ds −
Z

R

r
fðsÞsds: ð10Þ

where R is radius of the ball, where the matter is located.
We put R → ∞ here.
Energy E can be presented in the form:

E ¼ b
N
r60
ðN − N−ÞðN − NþÞ; ð11Þ

N� ¼ cr50
2b

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ab
c2r60

s �
> 0: ð12Þ

In the bound state, it should be −∞ < E < 0 what leads to
condition N− < N < Nþ. Evaluating N as geometric meanffiffiffiffiffiffiffiffiffiffiffiffiffi
N−Nþ

p
, we obtain that N ∝ r20.
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Now we can estimate the central density:

ρ0 ∝
N
r30

∝ r−10 : ð13Þ

This dependence with β ¼ 1 is obtained through a
series of rough approximations and does not claim to be
a final answer. However, the estimation obtained here is
encouraging and stimulates us to study the model with
potential ψ6.

B. “Core+Tail” profile

Since the ψ6-model actually takes into account the three-
particle interaction that is relevant under certain conditions
in a small region of space (like a core), finding the
distribution of dark matter in a large region of space
requires an extension of the model. To extend this, we
borrow ideas already applied to other models.
The large-scale structure simulation within the ψDM

model shows that there are structures (like filaments and
voids) which are similar to the CDM outcomes. At the same
time, DM distribution on a smaller, galactic scales differs
due to the wave nature of ψDM. Its prominent feature is
formation of the coherent standing waves of DM that form
a flat core in the center of galactic DM halo. Such cores are
described very well by the solitonlike solution of
Schrödinger-Poisson equation also known as boson star
solution. These cores are also surrounded by an envelope
of incoherent phase, that mimics Navarro-Frenk-White
(NFW) profile [8,50].
Therefore, ψDM profile is often represented as

ρðrÞ ¼ ρcoreðrÞθðra − rÞ þ ρNFWðrÞθðr − raÞ; ð14Þ

where θðrÞ is a Heaviside theta-function. At the point
r ¼ ra, we require ρcoreðraÞ ¼ ρNFWðraÞ. Value of ra is
selected, for instance, to relate the mass of central soliton to
the mass of whole DM halo as

Ms ∝ M1=3
halo: ð15Þ

This relation occurs in [35,50] and reflects also equality of
the energy per unit mass for the central core and the NFW
envelope [32].
A particular “extension” (14) of the FDM model, which

is described by

−ΔrψðrÞ þ ϰUgrðrÞψðrÞ ¼ γ̃ψðrÞ; ð16Þ

UgrðrÞ ¼ −
1

r

Z
r

0

ψ2ðsÞs2ds −
Z

∞

r
ψ2ðsÞsds; ð17Þ

is sketched in Fig. 1 for central density ρ0 ¼ 0.15 M⊙ pc−3

and particle mass m ¼ 1.6 × 10−23 eVc−2;

ϰ ¼ 8πG
ℏ2

ρ0m2r4� ≃ 1.106; r� ¼ 1 kpc: ð18Þ

We would like to prove that a form (14) of DM profile,
consisting of both solitonlike solution to the field equations
in the inner region and NFW tail in the outer region of halo,
remains correct for the self-interacting field. It is justified
by evaluating the contribution of each term to the total
energy. The same can be done by considering a ratio of
these terms in the Schrödinger–Poisson equations.
Let us consider the decay rate gðrÞ for the self-interaction

Eint with respect to the gravitational term Egr, which are
given by (4). Thus, we introduce

gðrÞ ¼ qðrÞ
qð0Þ ; qðrÞ ¼ EintðrÞ

EgrðrÞ
: ð19Þ

Evaluating gðrÞ, we use (6) again and obtain

gðrÞ ¼ Vgrð0Þ
VgrðrÞ

e−4
r
r0 ≃

r
r0
e−4

r
r0 ; r > r0: ð20Þ

On the other hand, there is the inner region r < rs with
gðrÞ ∼ 1, where rs is some characteristic radius. This region
should contain rather 1=4 of total halo mass like in a
noninteracting field model.
Since gð1.2r0Þ ≈ 0.01 and gð1.9r0Þ ≈ 0.001, self-inter-

action can be neglected with a high accuracy in the outer
region of halo. At the same time, the NFW approximation
remains valid for the outer part of halo even in the case of a
self-interacting field.

III. THE CASE OF TOMAS-FERMI
APPROXIMATION

Although the distribution (14) is promising from the
point of view of observations, a ψ6-model and its properties

FIG. 1. The numerical FDM core solution with the NFW outer
part.
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are of independent interest. In fact, we intend to study the
boson subsystem formed by gravity and three-particle
interaction, which can prevail at a high particle density
in a small region of space like a galactic core.
Let us start from a macroscopic model of gravitating

Bose-Einstein condensate with three-particle interaction,
limiting ourselves by the spherically symmetric case and by
the absence of hydrodynamic flows.
Introducing a constant chemical potential μ̃, we will

describe the condensate by real function ψðrÞ of radial
variable r ¼ jrj. Thus, a starting point of our study is the
energy functional in a ball B ¼ fr ∈ R3jjrj ≤ Rg:

Γ ¼ 4π

Z
R

0

�
ℏ2

2m
ð∂rψðrÞÞ2 þmψ2ðrÞVextðrÞ

þU
3
ψ6ðrÞ − μ̃ψðrÞ2

�
r2dr; ð21Þ

ΔrVextðrÞ ¼ 4πGmjψðrÞj2; ð22Þ

where Δr is the radial part of Laplace operator (9).
For the sake of simplicity, let us introduce dimensionless

variables:

ψðrÞ¼ ffiffiffiffiffi
ϱ0

p
χðξÞ; r¼ r0ξ;

A¼ 4π
Gm3ϱ0r40

ℏ2
; B¼U

ϱ20r
2
0m

ℏ2
; u¼ μ̃

mr20
ℏ2

; ð23Þ

where χðξÞ is a real dimensionless field; ϱ0 and r0
characterize typical measures of the central particle density
and the system size, respectively.
Thus, we arrive at

Γ
Γ0

¼
Z

ξB

0

�
1

2
ð∂ξχÞ2 − uχ2 þ Aχ2φþ B

3
χ6
�
ξ2dξ;

Γ0 ¼
4πℏ2r0ϱ0

m
; ΔξφðξÞ ¼ χ2ðξÞ; ð24Þ

where R ¼ r0ξB; Δξ and Δ−1
ξ are given by (9), (10) in terms

of ξ replacing r; also, χðξÞ ¼ ψðrÞ= ffiffiffiffiffi
ϱ0

p
, see (23).

It is useful to evaluate immediately the range of model
parameters. Turning to the known data for galactic cores,
we assume that the central mass density ρ0 ¼ mϱ0 is of the
order of magnitude 10−20 kgm−3 and the light-boson mass
m is of the order of 10−22 eVc−2. Further, we use a
definition of parameter A to determine the characteristic
radius r0, defining a total radius R ¼ r0ξB. One obtains

r0 ≃ 0.824 kpc
�
A
10

�
1=4

�
mc2

10−22 eV

�−1=2

×

�
ρ0

10−20 kgm−3

�
−1=4

: ð25Þ

Since the realistic values of r0 are smaller than 1 kpc, we
estimate the measure of gravitational interaction as A ∼ 10.
Note that (25) cannot be regarded as relation between r0
and ρ0 discussed in the previous section.
While the gravity looks like a cumulative effect of a

whole system, (thermo)dynamics of internal processes is
strongly determined by repulsive interaction among
bosons, represented by parameter B > A.
The characteristic energy density is ε0 ¼ ℏ2ϱ0=ðmr20Þ.

Combining this formula with (25), one gets

ε0 ≃ 33.82 eV cm−3
�
A
10

�
−1=2

�
mc2

10−22 eV

�−1

×

�
ρ0

10−20 kgm−3

�
3=2

: ð26Þ

In the pressure units, 33.82 eV cm−3 ≃ 5.42 × 10−12 Pa.
A detailed analysis of the model based on Γ will be

performed in the next section. However, before exploring
the model in most general situation and in order to get an
idea of the basic properties of the model, we first turn to the
Thomas-Fermi approximation (at ℏ → 0):

ΓTF

Γ0

¼
Z

ξB

0

�
−uηþ Aηφþ B

3
η3
�
ξ2dξ; ð27Þ

where ηðξÞ ¼ χ2ðξÞ determines a local particle density.
The particle distribution ηðξÞ is found by extremizing

functional ΓTF, δΓTF=δηðξÞ ¼ 0, that gives us an integral
equation:

Bη2ðξÞ þ AφðξÞ − u ¼ 0; φðξÞ ¼ Δ−1
ξ ηðξÞ: ð28Þ

We are interested in a solution which satisfies the
following conditions:

ηð0Þ ¼ η0; η0ð0Þ ¼ 0; ηðξBÞ ¼ 0: ð29Þ

A chemical potential μðξÞ of the system in gravitational
field [51] is such that

μðξÞ þ AφðξÞ ¼ u; ð30Þ

which is needed for further purposes. Taking (28) into
account, μðξÞ determines a particle density ηðξÞ as

μðξÞ ¼ Bη2ðξÞ; μðξBÞ ¼ 0: ð31Þ

Combining, μðξÞ satisfies an equation:

Δξμ ¼ −
Affiffiffiffi
B

p μ1=2; μð0Þ ¼ Bη20; μ0ð0Þ ¼ 0: ð32Þ
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To compute η (and μ), we first transform φðξÞ as

φðξÞ ¼ −
1

ξ

Z
ξ

0

ηðsÞs2ds −
Z

ξB

ξ
ηðsÞsds

¼ −υðξBÞ þ
1

ξ

Z
ξ

0

υðsÞds; ð33Þ

where an auxiliary field υðξÞ is defined by

∂ξυðξÞ¼ ξηðξÞ; υð0Þ¼ 0; υðξÞ¼
Z

ξ

0

ηðsÞsds: ð34Þ

Thus, Eq. (32) is solved at μð0Þ ¼ ν, where new
parameter

ν ¼ AυðξBÞ þ u > 0 ð35Þ

absorbs unknown υðξBÞ due to arbitrariness of u < 0.
Transformation (33) allows us to rewrite ΓTF in an

alternative form:

ΓTF

Γ0

¼
Z

ξB

0

�
−uηðξÞ þ B

3
η3ðξÞ

�
ξ2dξ

−
A
2

Z
ξB

0

½υðξBÞ − υðξÞ�2dξ: ð36Þ

Here, the contributions of repulsive and attractive inter-
actions are easily recognized.
To obtain (28) by varying (36) with respect to η, we

should take the relations (34) into account. Thus, using our
notations, (28) can be reduced to the set of equations:

∂ξυðξÞ ¼ ξηðξÞ; υð0Þ ¼ 0; ð37Þ

ηðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 −

k
ξ

Z
ξ

0

υðsÞds
s

; η0 ¼
ffiffiffiffi
ν

B

r
; ð38Þ

where parameters η0 and k ¼ A=B should be given.
Equation (38) indicates that function ηðξÞ vanishes at some
ξ ¼ ξB, depended on the parameters used (see Fig. 2,
dashed curves).
In a consistent way, we get at the boundary ξ ¼ ξB:

A
ξB

Z
ξB

0

υðξÞdξ ¼ ν; u ¼ −
A
ξB

Z
ξB

0

ηðξÞξ2dξ: ð39Þ

Therefore, a negative chemical potential u coincides with
the (dimensionless) gravitational potential of a whole
system at the boundary.
We solve numerically the set of equations (38), using the

Euler’s method, to find fields ηðξÞ and υðξÞ. It is because
this set is not integrable analytically.
Particularly, at A ¼ B ¼ ν, what can be achieved by

rescaling, the problem coincides with the Lane-Emden

equation with polytopic index p ¼ 1=2 for θðξÞ ¼ η2ðξÞ
[see (32)]:

ΔξθðξÞ ¼ −θpðξÞ; θð0Þ ¼ 1: ð40Þ

Note that it has ξexactB ≃ 2.75269805 [52].
In the general case, we are interested in looking for

macroscopic characteristics of the system like an extreme
Γex
TF, obtained from ΓTF by inserting the solution ηðξÞ.
Technically, varying A, B and ν, functions ηðξÞ and υðξÞ

[together with the values of ξB and υðξBÞ] can be found
(numerically) in accordance with (37) and (38). Using the
relation u ¼ ν − AυðξBÞ and (36), we are able to compute
Γex
TF and the others.
Finding macroscopic characteristics, we appeal to the

thermodynamic relations at T ¼ 0:

dpðξÞ ¼ ηðξÞdμðξÞ; pðξBÞ ¼ 0; ð41Þ

εðξÞ ¼ ηðξÞμðξÞ − pðξÞ; εðξBÞ ¼ 0; ð42Þ

where functions pðξÞ and εðξÞ determine the (dimension-
less) mean pressure P and the internal energy E:

P ¼ 3

ξ3B

Z
ξB

0

pðξÞξ2dξ; E ¼
Z

ξB

0

εðξÞξ2dξ: ð43Þ

Hereafter, ξ3B=3 represents the volume of the system.
Therefore, we need to integrate first the Gibbs-Duhem

relation (41) and to substitute pðξÞ into the Euler relation
(42) in order to find εðξÞ. Thus, one obtains the explicit
expressions:

pðξÞ ¼ 2

3
Bη3ðξÞ; εðξÞ ¼ 1

3
Bη3ðξÞ; ð44Þ

FIG. 2. Spatial development of particle density ηðξÞ ¼ χ2ðξÞ in
the models with both quantum fluctuations (solid) and in TF
approximation (dashed) at A ¼ 10 and the same initial condition.
Black and red curves correspond to B ¼ 20 and B ¼ 30,
respectively. For solid curves see the text after Eq. (60) below.
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which give us the equation of state by inserting the solution
ηðξÞ of (37)–(38).
It is instructive to express the gravitational energy Egr,

Egr ¼
A
2

Z
ξB

0

ηðξÞφðξÞξ2dξ; ð45Þ

the internal energy E and the total energy Etot ¼ Eþ Egr in
terms of gravitational potential u at the boundary:

uN ¼ −A
N 2

ξB
; N ¼

Z
ξB

0

ηðξÞξ2dξ: ð46Þ

Using the auxiliary notations and formulas:

nðξÞ ¼
Z

ξ

0

ηðsÞs2ds; N ¼ nðξBÞ; ð47Þ

φðξÞ ¼ −
N
ξB

−
Z

ξB

ξ

nðsÞ
s2

ds; ð48Þ

∂ξ

�
n2ðξÞ
ξ

�
þ n2ðξÞ

ξ2
¼ 2

nðξÞ∂ξnðξÞ
ξ

; ð49Þ

1

ηðξÞ ∂ξpðξÞ ¼ ∂ξμðξÞ ¼ −A
nðξÞ
ξ2

; ð50Þ

one obtains

Z
ξB

0

pðξÞξ2dξ ¼ 2A
9

N 2

ξB
; Egr ¼ −

2A
3

N 2

ξB
; ð51Þ

E ¼ A
9

N 2

ξB
; Etot ¼ −

5A
9

N 2

ξB
; ð52Þ

which agree with the general results [51] for gravitating
systems with polytropic equation of state at T ¼ 0.

IV. THE PROCESSES DRIVEN BY
QUANTUM FLUCTUATIONS

Let us return to the model with the included quantum
kinematics, which is initially described by functional (24).
The field equations read

1

2
Δξχ þ uχ − Aχφ − Bχ5 ¼ 0; Δξφ ¼ χ2: ð53Þ

We combine the model equations in the spirit of the
previous section by introducing field υðξÞ. It gives us

2
Γ
Γ0

¼
Z

ξB

0

�
ð∂ξχÞ2 − u�χ2ðξÞ þ

B�
3
χ6ðξÞ

�
ξ2dξ

−
A�
2

Z
ξB

0

½υðξBÞ − υðξÞ�2dξ; ð54Þ

Δξχ þ νχ − χ
A�
ξ

Z
ξ

0

υðsÞds − B�χ5 ¼ 0; ð55Þ

∂ξυðξÞ ¼ ξχ2ðξÞ; υð0Þ ¼ 0; ð56Þ

ν ¼ A�υðξBÞ þ u�; ð57Þ

where A� ¼ 2A, B� ¼ 2B and ν (instead of u� ¼ 2u) are
arbitrary positive parameters. The system boundary ξB is
defined from condition χðξBÞ ¼ 0 and is the first zero of
oscillating function χðξÞ. Of course, the values of ξB would
differ from those in the TF approximation at the same A and
B that can be seen in Fig. 2.
Aiming to obtain a solution with a finite initial value

χ0 ¼ χð0Þ < ∞, it is naturally to require χ0ð0Þ ¼ 0. In order
to obtain a decaying solution (finite for admissible ξ), we
formulate the following conditions which fix χ0.
Expanding χðξÞ ¼ χ0 þ C2ξ

2 þ � � � at ξ → 0 and sub-
stituting it in (55), (56), the set of algebraic equations
arises:

6C2 þ νχ0 − B�χ50 ¼ 0;

νC2 −
A�
6
χ30 − 5B�χ40C2 ¼ 0: ð58Þ

Combining, the initial value χ0 should satisfy the
equation SðA�; B�; ν; χ0Þ ¼ 0, where

SðA�; B�; ν; zÞ ¼ A�z2 − ð5B�z4 − νÞðν − B�z4Þ; ð59Þ

together with condition 2C2 ¼ χ00ð0Þ ≤ 0. These con-
straints limit χ0 as ðν=5B�Þ1=4 < χ0 < ðν=B�Þ1=4.
In practice, three regimes (for given A�, B�, and ν) are

observed: (1) no solution; (2) single solution; (3) pair of
(positive) solutions. Usually, for fixed A� and B�, but
increasing ν, the indicated sequence of all three modes
occurs.
The absence of a solution of (58) in step (1) leads to the

only possible solution to the autonomous equation (55):
χðξÞ ¼ 0. At the stage (2), we obtain a minimal admissible
value νmin. Starting from this threshold, the system begins
to evolve. At the stage (3), one of the values of χ0, which
corresponds to a minimal of these, should be chosen
[because the other leads to divergent χðξÞ].
Actually, all quantities of the model, computed at fixed A

and B, are supposed to be functions of free parameter ν.
Thus, dependence, say, of a on b should be treated in
parametric form: aðbÞ ¼ fðbðνÞ; aðνÞÞjν ≥ νming.
The possible dependencies of χ0 on ν are shown in

Fig. 3(a). We present also the values of ξB in Fig. 3(b),
which are used in order to limit the system size. Particular
distributions of particles at ξ ≤ ξB can be seen in Fig. 2
(solid lines).
Figure 3 reveals two different modes of model behavior,

which are separated by a turning point. We assume that the
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change of regime is associated with a phase transition,
which we will study. Moreover, the system size in Fig. 3(b)
does not depend completely on parameters A and B of
interactions (in contrast to [22]), but is affected also by ν
which defines the dominant phase of matter.
For a deeper understanding of the model properties, let

us define a chemical potential μqðξÞ as

μqðξÞ þ AφðξÞ − 1

2χðξÞΔξχðξÞ ¼ u: ð60Þ

Accordingly to the equation of motion (53), μq determines
χ as

μqðξÞ ¼ Bχ4ðξÞ; μqðξBÞ ¼ 0: ð61Þ

Replacing μ with μq in (41)–(42), we reproduce the
expressions (44) for the internal energy density εðξÞ and the
local pressure pðξÞ at η ¼ χ2.
Internal pressure pðξÞ evolves spatially as

∂ξpðξÞ
ηðξÞ ¼ ∂ξμqðξÞ ¼ −A

nðξÞ
ξ2

þ ∂ξ

�
1

2χðξÞΔξχðξÞ
�
; ð62Þ

what is in contrast with (50) in the TF approximation. This is
a complicated hydrostatic equation (similar to Eq. (15) in
[53]), andwe do not find its solution.Moreover, all necessary
fields can be found directly on the base of (55)–(57).
Nevertheless, (62) says that internal pressure p is bal-

anced by the resulting pressure caused by gravity and
quantum fluctuations. It is interesting to evaluate the
contributions of these effects.
To do this, we turn to more simple and known relations:

p ¼ 2

3
Bχ6 ¼ 2

3

�
1

2
χΔξχ þ uχ2 − Aχ2φ

�
; ð63Þ

where (53) is inserted.
Since the chemical potential u consists here of two parts,

accordingly to (57), we introduce the following compo-
nents of pressure:

pν ¼
1

3
ðχΔξχ þ νχ2Þ; ð64Þ

pgr ¼ −
2

3
Aη½υðξBÞ þ φðξÞ�; ð65Þ

which give us pν þ pgr ¼ p by construction. We can see
that pν ∼ χ2 and corresponds to the wave fluctuations,
regulated by free parameter ν, while pgr ∼ χ4 and describes
pair interaction which is controlled by gravitational con-
stant G absorbed by parameter A.
Average value of pressure pgr is given by expression:

VPgr ¼ −
2

3
A
Z

ξB

0

υðξÞ½υðξBÞ − υðξÞ�dξ < 0: ð66Þ

This means that the pressure created by interactions is
P − Pgr > 0. At the same time, Pν > 0 supports the
pressure inside the system. From another point of view,
action of Pν (mean value of pν) is equivalent to external
influence on the system.
Let us show how pν can be related with an external field

h of Landau theory [51]. First of all, we assume that the
unperturbed theory is given by ΓTF. Associating a pertur-
bation with including quantum fluctuations and field ν,
given by hands, a perturbation part of a total functional Γ is
presented in the form:

2
Γpert

Γ0

¼ −
Z

ξB

0

ηðξÞhðξÞξ2dξ; ð67Þ

hðξÞ ¼ 1

χðξÞΔξχðξÞ þ ν: ð68Þ

Therefore, the equation of motion here reads
ðδΓ=δηðξÞÞh¼const ¼ 0, what leads to (53). It immediately
means also that the particle density ηðξÞ is an order
parameter (conjugated to h) of such a theory. To assign

FIG. 3. Characteristics of χðξÞ versus parameter ν at A ¼ 10.
Black and red lines correspond toB ¼ 20 andB ¼ 30, respectively.
Panel (a) represents the initial values χ0 determined from (58).
Panel (b) shows the values of first zero, when χðξBÞ ¼ 0. These are
built at νblackmin ≃ 2.066 and νredmin ≃ 1.805 found numerically.
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a physical meaning to this perturbation, we see a product
ηðξÞhðξÞ is nothing but the pressure pν.
Often phase transitions are associated with changes of

intensive parameters like temperature and pressure (in the
absence of magnetic and electric fields). Since T ¼ 0 in our
model, changes are stimulated by pressure.Microscopically,
our assumption of a phase transition in themodel can nowbe
justified by the presence of a perturbation Pν related to
quantum fluctuations as well as the form of interaction that
allows the existence of two nonequivalent phases of matter.

V. THERMODYNAMICAL QUANTITIES AND
TWO PHASES OF DARK MATTER

To analyze the macroscopic properties of the model, we
use a set of dimensionless quantities:

P ¼ 2B
ξ3B

Z
ξB

0

χ6ðξÞξ2dξ; ð69Þ

Πν ¼ −
ðB=AÞ
ξ3B

Z
ξB

0

½ð∂ξχðξÞÞ2 − νχ2ðξÞ�ξ2dξ; ð70Þ

σ ¼ 3

ξ3B

Z
ξB

0

χ2ðξÞξ2dξ; ð71Þ

τ ¼ 3

ξ3B

Z
ξB

0

ð∂ξχðξÞÞ2ξ2dξ; ð72Þ

which are obtained by averaging over volume V ¼ ξ3B=3 of
pðξÞ (internal pressure), ðB=AÞpνðξÞ (perturbation pressure
rescaled for convenience), ηðξÞ ¼ χ2ðξÞ (particle density),
and −χðξÞΔξχðξÞ (measure of fluctuations), respectively.
Since the functions of our interest are depended on ν, χ0
and ξB, we also pay attention to their behavior. We omit
consideration of the quantities associated with the already
given, such as internal energy E ¼ VP=2.
To convert the dimensionless quantities τ, ε, p, P and Πν

into physical units, we should multiply these by ε0 from
(26). The value of mean mass density is ρ0σ.
Before a detailed description of the processes in the

system, we want to check the hypothesis of a phase
transition. Since the only characteristic of matter here is
its density σ, let us trace its changes under different
(external) factors like ν and Πν. Results of numerical
calculations are presented in Fig. 4. Note immediately that
the dependence of σ on measure of fluctuations τ (given by
graphic σðτÞ ¼ fðτðνÞ; σðνÞÞjν ≥ νming) looks similar to
Fig. 4(a) and, thus, is omitted here.
First of all, we note a steep change of σðνÞ in Fig. 4(a) at

νmin ≃ 2.066. As was argued above, χðξÞ ¼ 0 and, as a
result, σ ¼ 0 at ν < νmin, while σðνminÞ > 0. It can be
interpreted as a first-order phase transition. This phenome-
non appears due to the rule of finding initial condition χ0
(58). However, this is not the subject of our study. More

interesting for us is a behavior of the matter near a turning
point O, that is, at ν → νmin.
To understand the processes near the point O, we appeal

to Fig. 4(b). Indeed, backbending in Fig. 4(b) reveals the
first-order phase transition, which exhibits existence of
“gaseous” and “liquidlike” phases of the matter. This
process differs from the familiar boiling water due to
our consideration of the quantum system at T ¼ 0 and
the mechanism which is based on quantum fluctuations or,
alternatively, associated with compression Πν (that may be
convenient further when considering variations in macro-
scopic parameters).
The characteristics, computed numerically, are depicted

in Fig. 5 and behave as multivalued functions of Πν.
These graphics represent isotherms at T ¼ 0. Varying the
parameter B (and A), we can conclude that the region of
backbending presence, projected onto Πν axis, remains the
same due to scale factor B=A, appeared by defining Πν.
It means that there is no possibility to achieve the
critical point of phase transition, when ∂Πν=∂f ¼ 0 and
∂2Πν=∂f2 ¼ 0 simultaneously for any f of these functions,

FIG. 4. Discontinuity of mean density σ at fixed A ¼ 10, B ¼
20 and at varying ν (a) and Πν (b). Panel (b) shows the metastable
(AB and A0B0) and unstable (BB0) states. Straight line AA0 is
constructed by the Maxwell rule. The connections between key
points in Panel (b) are schematically transferred to Panel (a).
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by changing B (and A). Comparing with water, in this
model there is no natural parameter analogous to temper-
ature, the increase of which would lead to boiling. We
admit that by considering T > 0, one cannot also observe a
similar process, because a vaporization temperature here is
expected to be much higher than the critical temperature of
the condensate and to be comparable (in the energy units)
with the gravitational energy of the system. Nevertheless,
Fig. 5 allows us to extract the conditions of transition
between gaseous and liquid-like phases at T ¼ 0, if such a
situation is realized in nature.
Considering Πν as external compression for convenience

and omitting a physical interpretation of the region of
instability (like BB0 in Figs. 4), 5 permits us to conclude
the following. By intensifying the compression Πν,
starting from the minimum, we can see the size ξB (b)
of the system decreases, and the mean density σ
(c) increases throughout the process. At the same time,
the central density χ20 (see (f)) and fluctuations τ (a) do not
noticeably change at the first stage, but begin to grow
significantly after the transition to a more dense, liquidlike
phase. A similar behavior is observed for chemical
potential u (e) and internal pressure P (see (d), where
curves with different B overlap). As it could be expected
the point of two phases coexistence, u ¼ 0, lies in the
instability region.
Note that in all the figures wherein the dependence on

compression Πν is involved, we observe the common
feature—existence of the same pair of special/distinguished

values of Πν, that is Π
ð1Þ
ν ≃ 9.65 × 10−3 and Πð2Þ

ν ≃ 13.65 ×

10−3 in dimensionless units (or, in physical units, Πð1Þ
ν ≃

5.23 × 10−14 Pa and Πð2Þ
ν ≃ 7.40 × 10−14 Pa). Due to that,

the curves are separated in three regions of qualitatively
differing behavior: two “normal” parts filled with stable
states of the system, which correspond to compressions

such that Πν ≤ Πð1Þ
ν and Πν ≥ Πð2Þ

ν respectively, and the
interval/region of instability. As seen from the figures, for
the latter interval there appears an obvious backbending
which shows the opposite behavior of the considered
functions as compared to the normal (stable) parts of the
curves.
Our results predict significant fluctuations τ in the denser

state of dark matter. Physically, this is due to the increasing
role of repulsion χ6 among particles by growing σ.
Although, associating τ with the effective temperature,
the liquidlike phase of DM can be assumed to be in
thermalized state what is already noted in [54] within the
SIDM model. A simultaneous increase in “temperature” τ
and density σ resembles the behavior of water in the
temperature range t ¼ 0 ÷ 4°C.
Isothermal compressibility K, playing the role of sus-

ceptibility, and its inverse K−1 defined here as

K ¼ ∂σ
∂Πν

; K−1 ¼ ∂Πν

∂σ ; ð73Þ

are also important characteristics and can be computed
numerically (with high precision loss) by using depend-
encies in Fig. 5(c). The result is sketched in Fig. 6(a).
The most important positive (or regular) part, with

K−1 > 0, consists of two branches which describe the
two distinct phases of matter with their individual proper-
ties. It is interesting to remark that the incompressibility
behaves like a constant for lower values of compression,

say for Πν ≤ Πð1Þ
ν , whereas it shows rising property for

higher values when Πν grows, including the region

with Πν > Πð2Þ
ν .

On the other hand, there is a negative part of incom-
pressibility, K−1 < 0, that means the instability region,
which corresponds to the intermediate values of compres-

sion, i.e., for Πð1Þ
ν < Πν < Πð2Þ

ν . Using equilibrium statis-
tics, this is usually neglected in the physical picture.
However, as shown in some papers, there exist in reality
the structures (materials) characterized by negative K, see,
e.g., [55–58]. Besides, as some works demonstrate, the
vanishing value of the effective speed of sound (that would

happen in our model at Πν ¼ Πð1Þ
ν and Πν ¼ Πð2Þ

ν ), may be
also of importance [59,60]. Therefore, the peculiar insta-
bility region, together with vanishing property in some
points, may be taken into account more seriously in the
context of the present model, and the physical meaning of
all these unusual properties deserves more detailed study.

FIG. 5. Dependence of dimensionless characteristics on Πν at
A ¼ 10. Black and red lines correspond to B ¼ 20 and B ¼ 30,
respectively.
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Dependence of internal pressure P (and internal energy
E) on mean density σ in Fig. 6(b) indicates rather a second-
order phase transition with a turning point at ∂2P=∂σ2 ¼ 0.
Studying numerically the dependencies P on σ for different
values of A and B, which are not shown here, the presence
of a backbending (accompanying a first-order phase tran-
sition) was not confirmed.
Thus, the visualized equation of state also reveals two

phases. However, it does not permit us to explain in details
a mechanism of phase transition. Moreover, increasing a
parameter B, the system jumps into liquid-like phase at
smaller values of σ. This probably witnesses enhanced role
of three-particle interaction.
There is one further feature of the role of parameter B (at

fixed A < B) clearly seen from Figs. 2,3,5,6. Namely, its
influence on the studied thermodynamical quantities is the
following: the greater is (the value of) B the higher are the
quantities ξBðΠνÞ, K−1ðΠνÞ and PðσÞ; on the contrary,
regularity is inverse for the density ηðξÞ, χ0ðΠνÞ, χ0ðνÞ,
ξBðνÞ, τðΠνÞ, uðΠνÞ and σðΠνÞ. At last, there is a special
case—the quantity PðΠνÞ, see Fig. 5(d), which shows
(almost) no dependence on the value of B.

Adiabatic speed of sound cs can be found (in physical
units) as

cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
ε0
ρ0

∂p
∂η

s ����
η¼χ2

0

¼ ℏ
ffiffiffiffiffiffi
2B

p

mr0
χ20: ð74Þ

Thus, the magnitude of cs is evaluated as

cs ≃ 2.36 × 106 cm s−1
�
A
10

�
−1=4

�
B
20

�
1=2

�
χ0
0.4

�
2

×

�
mc2

10−22 eV

�−1=2� ρ0
10−20 kgm−3

�
1=4

: ð75Þ

This value is in accordance with the predictions of other
models [53].

VI. CONCLUDING REMARKS

The results obtained above witness clearly that the
inclusion of sixth order repulsive self-interaction of ultra-
light darkmatterwithin the particularmodification ofGross-
Pitaevskii equation leads to highly nontrivial properties of
BECDM and thus to unexpected galactic core structure and
dynamics. The main results of the study, obtained numeri-
cally, are presented in the form of Figs. 3–6, equipped with
comments in the text, which we do not repeat here.
There is a principal issue of whether the BEC dark

bosons are viewed as elementary or composite: the answer
to this could give some guess toward revealing the nature of
dark matter. If deformed bosons are dealt with, then (i) some
additional interaction between bosons, besides the familiar
pure bosonic attraction of quantum-statistical origin, can be
effectively taken into account [61], also (ii) a rather simple
effective account of compositeness aspects is as well at our
disposal [62–64], and (iii) these two issues can be treated
jointly [65–67]. It is important to emphasize that compos-
iteness and the related deformation significantly affect
[45,68] the critical temperature of condensation, depending
on the constituent particles so that the case of Bose-Bose
composites basically differs from that of Fermi-Fermi
composites.
As mentioned in the Introduction, the nontrivial phase

structure of the core in the central part of DM halo was
noticed in the work of Chavanis [17] (namely the existence
of dilute and dense phases, and the related zero’s order
phase transition seen through the mass-radius relation).
Unlike that, in the present work we have demonstrated both
the presence of two phases (consisting of stable, metasta-
ble, and unstable branches) and of the first-order phase
transition.
It was already pointed out that phase transitions in dark

matter can trigger gravitational waves [69–71], see also
[72]. Especially this can hold if one takes into account that
the nontrivial phase structure can even more naturally occur

FIG. 6. Behavior of incompressibility K−1 and internal pressure
P at A ¼ 10. Black and red lines correspond to B ¼ 20 and
B ¼ 30, respectively.
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when we deal with the colliding (or merger of) two
galaxies, see e.g., [71,73,74]. In this context, it would be
interesting to investigate possible generation of gravita-
tional waves caused by the phase transitions (in DM core)
of the form described in this paper, possibly with extension
of the model through inclusion of dynamical aspects. Till
that will be performed, the results described above, in
particular those visualized in Figs. 3–6, can be viewed as a
“screen-shot” (or fixed-time slice) of the whole picture. The
complete dynamics (continuous time evolution) is obvi-
ously needed, and separate work will be devoted to this
subject.
No doubt of importance is the necessity to consistently

study the simultaneous presence of both quartic and sextic
terms in the scalar potential. If both the terms are repulsive,
the inclusion of the 4th order term should somewhat
enhance the effects of the sixth order self-interaction term

studied above. Not less interesting and important task is to
establish the exact nature (structure) of the appearing two
distinct phases manifested by the DM core. To this end, the
role of three-particle interactions should be studied within
the quantum-mechanical framework. In this context,
knowledge of the second and third virial coefficients of
μ̃, q-deformed Bose gas model [67] could be helpful. We
hope to report on such results elsewhere.
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