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We propose a new class of Proca interactions that enjoy a nontrivial constraint and hence propagates
the correct number of degrees of freedom for a healthy massive spin-1 field. We show that the scattering
amplitudes always differ from those of the Generalized Proca. This implies that the new class of
interactions proposed here are genuinely different from the Generalized Proca and there can be no local
field redefinitions between the two. In curved spacetime, massive gravity is the natural covariantization, but
we show how other classes of covariantizations can be considered.
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I. INTRODUCTION

Ever since its original formulation, general relativity
(GR) has been tirelessly tested and so far, experiments and
predictions agree to an unexpected precision. GR is one of
the most successful physical theories, but it leaves some
cosmological questions unanswered. Indeed, the Universe’s
expansion can be explained by the introduction of dark
matter in addition to a cosmological constant, but its value
is not technically natural. Despite decades of efforts no
fully satisfying argument has been proposed to tackle the
cosmological constant problem [1]. This motivates the
study of modified theories of gravity as well as theories
endowed with additional degrees of freedom. A scalar field
can indeed lead to an accelerated expansion while preserv-
ing a homogeneous and isotropic matter distribution. In this
context, the Galileon was introduced in [2] and the
generalized Galileon in [3] as the most general interactions
for a scalar field that remain free from Ostrogradski
instabilities. It turns out that Galileons were introduced
much earlier in the context of scalar-tensor theories by
Horndeski [4] and are ubiquitous to many models of
modified gravity at large distances [2,5–11]. Finally, pure
Galileon interactions exhibit an interesting property at the
quantum level: the interactions are stable under quantum
corrections [2,6,7,10,12–15], which makes them techni-
cally natural.

Following this idea, modifications of general relativity
were then extended to Galileon-like theories of gauge-
invariant arbitrary p-forms in [16–18]. Nevertheless, a
no-go theorem was discovered proving that there is no
nontrivial gauge-invariant Galileon-like 1-form theory in
four dimensions. Interestingly, dropping out gauge invari-
ance and promoting the gauge vector field to a massive
Proca field, it becomes possible to construct derivative
self-interactions for such a massive spin-1 field without
Ostrogradski instabilities and thus propagating only three
physical degrees of freedom. Such theories, classified
under the name of generalized Proca (GP), or sometimes
vector-Galileons, were thoroughly investigated in [19–23].
GP is the most general Lagrangian for a massive spin-1
whose equations of motion for both the helicity-1 and -0
modes remain second order in derivatives hence ensuring
that the theory only propagates three degrees of freedom in
four dimensions, see [24] for a review. Within this
framework, a proof of the uniqueness of the GP action
can be derived. An interesting property of GP is the fact that
the pure Stückelberg field interactions precisely coincide
with the generalized Galileon ones.
Since its formulation GP has had a huge impact on

cosmology and gravity. Such theories have been considered
for applications to both astrophysical systems [25–37] and
cosmology [21,38–46]. The screening of the GP “fifth
force” was considered in [19,47]. Beyond-GP interactions
were considered in [48–50] and could potentially lead to
remarkable effects on deficit angles [51] and cosmology
[52]. The related question of interactions within the context
of tensor-vector theories was explored in [53]. Nonabelian
interactions were considered in [54,55] with an application
to cosmology in [56], and the generalization to multiple
spin-1 fields in [57–59]. The constraint algebra was
reinvestigated in [60] and the relation to the vector fields
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that enter the decoupling limit of massive gravity in anti–
de Sitter (AdS) in [61]. The quantum consistency of these
classes of interactions within the context of quantum
effective field theories were also considered in [62–64].
Scalar and vector Galileons are reviewed in [65].
Upon constructing the GP set of interactions [19,20], an

important implicit ingredient is that the equations of motion
for both the helicity-0 and -1 modes of the massive spin-1
field remain at most second order in derivatives. This
assumption appears to be related to the requirement that the
constraint is uniquely determined by the equation of motion
with respect to the component A0 of the vector field.

1 Under
this assumption, the theory is indeed unique as shown.
Phrased in this way, however, it is natural to explore
whether the constraint could manifest itself differently
while preserving the correct number of degrees of freedom.
The analogue of this possibility was successfully explored
within the context of massive gravity [66], first considered
in [9] and implemented in [67]. The possibility was then
also later implemented within the context of scalar-tensor
theories, coming under the name of “Beyond-Horndeski”
[68–71] and further degenerate higher-order theories were
considered in [70,72–76]. Implementations of constraints
can indeed be subtle in theories with multiple fields as
highlighted in [77,78]. With this perspective in mind, in this
paper we shall consider a new type of Proca interactions,
which manifest a constraint and hence only propagate three
dynamical degrees of freedom in four spacetime dimen-
sions but differ from the standard GP interactions. Since
massive gravity has provided an original framework for
exploring nontrivial implementations of constraints, it shall
serve us as a guiding tool in constructing consistent fully
nonlinear Proca interactions and will allow us to prove the
existence of a new type of massive spin-1 field theory that
is free of Ostrogradski instabilities and propagates the
required number of degrees of freedom.
The rest of the manuscript is organized as follows: in

Sec. II, we start by reviewing the GP interactions and
provide their expression in the decoupling limit. We then
introduce the full nonlinear action for our proposed new
Proca interactions or Procanuevo in Sec. III before giving
its perturbative expansion up to quartic order and its
decoupling limit. We also prove that the theory carries a
constraint and give a nonperturbative and explicit formula
for the null eigenvector of the Hessian matrix. A by-product
of this analysis is a generic proof of the absence of ghost of
massive gravity in the Stückelberg language. Such proof
was indicated in [67] and carried out explicitly for a specific
model in [79]. On the other hand, the method provided in
Sec. III is general and carries beyond that specific model.

In Sec. IV, we compute tree-level 2 → 2 scattering ampli-
tudes and conclude that the S-matrix of GP never coincides
with that of Procanuevo no matter the choice of coeffi-
cients, hence proving that both types of theories genuinely
differ. We discuss the coupling of Procanuevo to gravity in
Sec. V. We end with an outlook in Sec. VI. Appendix A
provides the details proving the existence of a null
eigenvector for any class of Procanuevo theory hence
proving the existence of a constraint. Details used to
compute the 2 → 2 scattering amplitude are given in
Appendix B. Finally, Appendix C provides explicit expres-
sions for the vector-scalar interactions that arise in the
decoupling limit of massive gravity.
Throughout this paper, we work in four flat spacetime

dimensions with mainly positive ð−þþþÞ signature,
unless specified otherwise.

II. REVIEW OF GENERALIZED PROCA

A. Formulation

Generalized Proca is the most general theory of a
massive vector field Aμ including an arbitrary number of
derivative self-interactions such that its equations of motion
remain second order and is free of Ostrogradski instabilities
when including the helicity-0 part ϕ of the Stückelberg
field Aμ → Aμ þ ∂μϕ=m. This property ensures that the
theory has three propagating degrees of freedom in four
dimensions.2 In this language, the helicity-0 mode ϕ is then
nothing other than a Galileon.
Requiring the equations of motion to be at most second

order in derivatives implies that GP interactions include at
most one derivative per field at the level of the action and are
hence solely expressed in terms of Aμ and ∂μAν. In deriving
the full action, it is useful to separate out the gauge-invariant
building blocks, i.e., the Maxwell strength field Fμν and its
dual F̃μν and the gauge-breaking contributions that involve
the Stückelberg field ϕ. One can then parameterize the GP
Lagrangians in terms of the powers of the gauge-breaking
contribution ∂A. The advantage of this ordering is that it is
finite in the sense that all the interactions are listed, and the
remaining infinite freedom is captured by arbitrary functions.
In this language, we have [19]

LGP ¼
X6
n¼2

Ln; ð2:1Þ

where,

L2 ¼ f2ðAμ; Fμν; F̃μνÞ ð2:2Þ

1This specific assumption is not explicitly formulated as such
in the generic formalism of [58] but other implicit assumptions on
how the constraint ought to manifest itself effectively reduce the
formalism to the same type of GP interactions.

2As we shall see the requirement that the equation of motion
for ϕ remains second order in derivatives is a sufficient condition
for the absence of Ostrogradski instabilities but not always a
necessary one.
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L3 ¼ f3ðA2Þð∂ · AÞ ð2:3Þ

L4 ¼ f4ðA2Þ½ð∂ · AÞ2 − ∂μAν∂νAμ� ð2:4Þ

L5 ¼ f5ðA2Þ½ð∂ · AÞ3 − 3ð∂ · AÞ∂μAν∂νAμ

þ 2∂μAν∂νAρ∂ρAμ� þ f̃5ðA2ÞF̃μαF̃ν
α∂μAν ð2:5Þ

L6 ¼ f̃6ðA2ÞF̃μνF̃αβ∂αAμ∂βAν: ð2:6Þ

All the functions fn’s and f̃n’s are arbitrary polynomial
functions so these Lagrangians span an infinite family of
operators depending on the form of these functions.3 For
comparison with other theories, and to compute scattering
amplitudes, it is convenient to expand all the functions fn
and f̃n in the most generic possible way and repackage the
Lagrangian (2.1) perturbatively in a field expansion. In this
case, the theory is expressed perturbatively as

LGP ¼
X∞
n¼2

1

Λ2ðn−2Þ
2

LðnÞ
GP ; ð2:7Þ

where Λ2 is introduced as the dimensionful scale for the
interactions and where up to quartic order

Lð2Þ
GP ¼ −

1

4
FμνFμν −

1

2
m2A2 ð2:8Þ

Lð3Þ
GP ¼ a1m2A2∂μAμ þ a2F̃μαF̃ν

α∂μAν ð2:9Þ

Lð4Þ
GP ¼ b1m4A4 þ b2m2A2FμνFμν

þ b3m2A2½ð∂ · AÞ2 − ∂αAβ∂βAα�
þ b4m2FμαFν

αAμAν þ b5FμνFαβFμαFνβ

þ b6FμνFμνFαβFαβ þ b7F̃αβF̃μν∂αAμ∂βAν; ð2:10Þ

with the coefficients ai and bj being dimensionless con-
stants. The scaling is introduced so as to “penalize” the
breaking of gauge-invariance with the scale m (see [63] for
the appropriate scaling of operators in gauge-breaking
effective field theories). Note that there exists various
different but equivalent ways to express the Lagrangian
perturbatively depending on how total derivatives are
included, nevertheless irrespectively on the precise formu-
lation, there exists 2 linearly independent terms at cubic
order and 7 at quartic order (ignoring total derivatives).

B. Generalized Proca in the decoupling limit

For any theory, its decoupling limit (DL) is determined
by scaling parameters of the theory so as to be able to
focus on the irrelevant operators that arise at the lowest
possible energy scale while maintaining all the degrees
of freedom alive in that limit. Hence by definition,
the number of degrees of freedom remains the same in
the DL. Taking a DL is different from taking a low-energy
effective field theory and also differs from switching
off interactions or degrees of freedom. See for instance
Refs. [78,80,81] for more details on the meaning of
a DL.
In the particular case of GP, the DL is taken by first

introducing the Stückelberg field explicitly in a canonically
normalized way,

Aμ → Aμ þ
1

m
∂μϕ; ð2:11Þ

so that the kinetic term for the helicity-0 mode is explicitly

manifest in (2.8), indeed Lð2Þ
GP ⊃ − 1

2
ð∂ϕÞ2. We then take the

DL by sending the mass m to zero and Λ2 → ∞ in such a
way as to keep the lowest interaction scale finite in that
limit. Denoting generic interactions scales Λp by Λp ¼
ðmp−2Λ2

2Þ1=p (with Λ3 ≡ ðmΛ2
2Þ1=3), one can check that the

lowest scale at which interactions appear is Λ3. The Λ3-DL
of GP is then taken by sending

m → 0; Λ2 →∞ keeping Λ3 ≡ ðmΛ2
2Þ1=3 ¼ const;

ð2:12Þ

once all the fields are properly normalized.
Upon taking this DL, one notices that out of all the

interactions that entered the quartic GP Lagrangian Lð4Þ
GP

in (2.10) only terms proportional to b3 and b7 survive and
one ends up with

LDLGP ¼ Lð2Þ
DLGP þ

1

Λ3
3

Lð3Þ
DLGP þ

1

Λ6
3

Lð4Þ
DLGP þ

1

Λ9
3

Lð5Þ
DLGP;

ð2:13Þ

where the first 4 Lagrangians are given by

Lð2Þ
DLGP ¼ −

1

4
FμνFμν −

1

2
ð∂ϕÞ2 ð2:14Þ

Lð3Þ
DLGP ¼ a1ð∂ϕÞ2½Φ� þ a2F̃μαF̃ν

αΦμν

¼ a1ð∂ϕÞ2½Φ� þ a2FμαFν
α

�
Φμν −

1

2
½Φ�ημν

�
ð2:15Þ

3Notice that this formulation differs ever so slightly with that
originally introduced in [19]. For instance, the contribution to L4

proportional to c2 in Eq. (2.2) of [19] is here absorbed into the
function f2, however, both formulations are entirely equivalent.
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Lð4Þ
DLGP ¼ b3ð∂ϕÞ2ð½Φ�2 − ½Φ2�Þ þ b7F̃αβF̃μνΦαμΦβν

¼ b3ð∂ϕÞ2ð½Φ�2 − ½Φ2�Þ

þ b7FαβFμν

�
ΦμαΦνβ þ 2ηαβðΦ2

μν −Φμν½Φ�Þ

þ 1

2
ημαηνβð½Φ�2 − ½Φ2�Þ

�
; ð2:16Þ

where we used the notation Φμν ¼ ∂μ∂νϕ. In contrast with
the 9 parameters family of interactions up to quartic order
for GP, its DL up to quartic order only includes the cubic
and quartic Galileon interactions as well as two genuine
mixings between the helicity-0 and -1 modes parametrized

by a2 and b7. The quintic Lagrangian Lð5Þ
DLGP involves the

quintic Galileon and can include interactions between the
helicity-0 and -1 modes although the precise form of these
interactions is not relevant for this study.

III. PROCANUEVO

A. Full nonlinear theory

We shall now build our intuition from massive gravity
to derive a new type of fully nonlinear Proca interactions.
The DL of massive gravity includes an infinite number of
scalar-vector interactions whose exact form was provided
in [82]. Interestingly, the scalar-vector sector of the DL of
massive gravity can in principle be thought of as the DL
of a Proca theory, similarly to what was considered in
Sec. II B for GP. On another hand, the scalar-vector
interactions included in the DL of massive gravity involve
higher derivatives acting on the fields and thus violate the
original assumption in deriving the most general GP
operators. Yet massive gravity has been proven to be
ghost free in many different languages [66,67,77,79,83]
and hence so is its DL. Indeed, as emphasized in
[67,77,78] the constraint can manifest slightly differently
in theories with multiple fields, and the existence of higher
derivatives in the equations of motion does not necessarily
imply an Ostrogradski ghost instability. For instance,
there can be a linear combination of the equations of
motion, which is free from higher derivatives so that
no higher-order Ostrogradski ghost instability occurs
[77,78]. This phenomenon is similar to what is observed
in Beyond-Horndeski theories and other extensions
[68–76,78].
Massive gravity is the theory of an interacting massive

spin-2 field hμν. In terms of a gravitational dynamical
metric gμν, the spin-2 field hμν is expressed as M−1

Pl hμν ¼
gμν − ημν in unitary gauge. The fact that the Minkowski
metric ημν is not diffeomorphism invariant implies that
expressed in this way hμν is not a tensor. However, gauge
invariance can be easily restored through the introduction
of four Stückelberg fields ϕa, which transform as scalars

under coordinate transformations. Indeed, expressed in
terms of the tensor fμν

M−1
Pl hμν ¼ gμν − fμν ð3:1Þ

with fμν ¼ ηab∂μϕ
a∂νϕ

b; ð3:2Þ

the quantity hμν is now a tensor under diffeomorphisms.
In the limit where MPl → ∞ we may identify the index a
as a Lorentz index. Splitting the fields ϕa as ¼ xa þ Aa,
the field Aa can then be associated with a Lorentz vector,
which is anchored in the very formulation of massive
gravity.
However, at this stage, the link between massive gravity

and Proca interactions is not necessarily immediately
manifest as massive gravity always includes the tensor
modes. In fact there is no limit of pure massive gravity that
would lead to a massive vector theory on Minkowski.
Indeed, for such a limit to occur, the helicity-0 mode of the
massive spin-2 field of massive gravity should play the role
of the helicity-0 mode of the massive vector field. However,
in pure massive gravity on Minkowski, the helicity-0 mode
only acquired its kinetic term from mixing with the tensor
mode [11].
Instead, one can consider the DL of massive gravity on

AdS [61] where the helicity-0 mode acquires its own
kinetic term without the need for a coupling with the
tensor modes. Alternatively, one can consider generalized
massive gravity [84,85] where the scalar mode also
acquires its own kinetic term. In both cases a new type
of Λ2-decoupling limit that only involves couplings
between the scalar and vector modes can be considered
[61,86–89]. In [61] it was shown that on AdS, the resulting
scalar-vector interactions could never be expressed as a
local and Lorentz invariant field redefinition of the scalar-
vector interactions that arise in the DL of GP, suggesting
that these classes of interactions were indeed distinct from
GP. In what follows we shall build from these results to
provide a new class of non-linear “Procanuevo” massive
Proca interactions that rely on the same structure as the
decoupling limit of massive gravity. We start with a Lorentz
vector field Aμ and just as was the case in the GP theory of
Sec. II, we continue working on flat spacetime with the
Minkowski metric ημν (coupling to gravity is considered
in Sec. V).
These considerations are mainly motivational for

this context and following our intuition from massive
gravity, we may consider the tensor fμν defined in (3.2)
where the ϕa’s are expressed in terms of the vector field as
follows:

ϕa ¼ xa þ 1

Λ2
2

Aa; ð3:3Þ
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so that in terms of the vector field, the quantity fμν is
expressed as4

fμν½A� ¼ ημν þ 2
∂ðμAνÞ
Λ2
2

þ ∂μAα∂νAβη
αβ

Λ4
2

: ð3:4Þ

Next, we introduce the (Poincaré) tensor Kμ
ν defined as

Kμ
ν ¼ Xμ

ν − δμν ð3:5Þ

with Xμ
ν½A� ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η−1f½A�

q �
μ

ν

i:e:

Xμ
αXα

ν ¼ fμν ¼ ημαfαν; ð3:6Þ
where, in the gravitational context, Kμ

ν would be playing
the role of the extrinsic curvature [81,90] and X that of the
vielbein [91].
In four dimensions, the theory of the vector field Aμ we

propose is then expressed as

LK½A� ¼ Λ4
2

X4
n¼0

αnðA2ÞLn½K½A��; ð3:7Þ

where the order by order Lagrangians are defined as
usual by

Ln½K� ¼ ϵμ1���μnμnþ1���μ4ϵν1���νnμnþ1���μ4K
ν1
μ1 � � �Kνn

μn : ð3:8Þ
More explicitly, we have

L0½K� ¼ 4! ð3:9Þ
L1½K� ¼ 3!½K� ð3:10Þ

L2½K� ¼ 2!ð½K�2 − ½K2�Þ ð3:11Þ
L3½K� ¼ ½K�3 − 3½K�½K2� þ 2½K3� ð3:12Þ

L4½K� ¼ ½K�4 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4�;
ð3:13Þ

and we use the standard notation for the trace, ½K� ¼ trðKÞ.
As mentioned before, the theory (3.7) has no gravitational

degrees of freedom, rather it is a pure vector theory with
an infinite tower of self-interactions. We shall prove in
Sec. III D that this vector-field theory corresponds to a
Proca theory with at most three propagating degrees of
freedom.
Note that L0 is just a potential for the vector field

α0ðA2ÞL0 ¼ VðA2Þ, which is where the vector field will
carry its mass from, and so it is essential for the consistency
of this theory that α0 includes at the very least a contri-
bution going as α0 ⊇ − 1

2
ðm2=Λ4

2ÞA2.

B. Perturbative action

The exact nonperturbative Lagrangian is expressed in
(3.8) but it is instructive to consider its perturbative
expression, and we shall provide it up to quartic order in
the field (as needed for the 2 → 2 tree-level scattering
amplitudes). To provide such a perturbative expression, we
first Taylor expand the functions αnðA2Þ as follows:

αnðA2Þ ¼ ᾱn þ
m2

Λ4
2

γ̄nA2 þm4

Λ8
2

λ̄nA4 þ � � � : ð3:14Þ

Plugging it into (3.7) and requiring the canonical normali-
zation for the quadratic Lagrangian (Maxwell with a mass
term) requires the following normalization:

ᾱ1 ¼ −
1

3
ð1 − 2ᾱ2Þ and γ̄0 ¼ −

1

48
: ð3:15Þ

The perturbative expansion up to quadratic order then takes
the form

LK ¼ Lð2Þ
K þ 1

Λ2
2

Lð3Þ
K þ 1

Λ4
2

Lð4Þ
K þ � � � ; ð3:16Þ

with

Lð2Þ
K ¼ −

1

4
FμνFμν −

1

2
m2A2 ð3:17Þ

Lð3Þ
K ¼ 1

4
ð2ᾱ2 − 3ᾱ3Þ½F2�½∂A� þ 1

4
ð1 − 4ᾱ2 þ 6ᾱ3ÞF2

μν∂μAν þ 6γ̄1m2A2½∂A� ð3:18Þ

Lð4Þ
K ¼ 1

32
ðᾱ2 − 3ᾱ3 þ 6ᾱ4Þ½F2�2 þ 1

64
ð5 − 20ᾱ2 − 12ᾱ3 þ 168ᾱ4ÞF2

μνF2μν þ 3

8
ðᾱ3 − 4ᾱ4Þ½F2�ð½∂A�2 − ∂αAβ∂βAαÞ

−
1

8
F2
μν∂βAμ∂βAν þ

�
1

2
ᾱ2 þ

3

4
ᾱ3 − 6ᾱ4

�
F2μνð∂βAμ∂βAν − ½∂A�∂μAνÞ þ

�
−
1

8
þ 1

2
ᾱ2 − 3ᾱ4

�
FμνFαβ∂μAα∂νAβ

þm2A2

�
2γ̄2½∂A�2 −

�
3

2
γ̄1 þ γ̄2

�
∂μAν∂νAμ þ

�
3

2
γ̄1 − γ̄2

�
∂μAν∂μAν

�
þ 24λ̄0m4A4; ð3:19Þ

where we use the notation F2
μν ¼ Fμ

αFνα and ½F2� ¼ FμνFμν.

4The object fμν is simply a Lorentz tensor constructed out of the first derivative of the Lorentz vector Aμ and at this level has no
connection with any type of auxiliary metric. Note that in this context of a massive vector field, introducing the quantity ϕa in terms of
the coordinate xa may be misleading as it suggests a breaking of Poincaré invariance, however, the quantity we shall be interested in, fμν,
is manifestly a Poincaré tensor if Aμ is itself a Poincaré vector as is clear from the expression (3.4).
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C. Decoupling limit

It will also be instructive to consider the DL of this
Procanuevo theory. Introducing the helicity-0 Stückelberg
field ϕ as in (2.11), using the same scaling as in (2.12),
we get

LKDL ¼ Lð2Þ
KDL þ

1

Λ3
3

Lð3Þ
KDL þ

1

Λ6
3

Lð4Þ
KDL þ � � � ; ð3:20Þ

with

Lð2Þ
KDL ¼ −

1

4
FμνFμν −

1

2
ð∂ϕÞ2 ð3:21Þ

Lð3Þ
KDL ¼ 1

4
ð2ᾱ2 − 3ᾱ3Þ½F2�□ϕþ 1

4
ð1 − 4ᾱ2 þ 6ᾱ3ÞF2

μνΦμν

þ 6γ̄1ð∂ϕÞ2□ϕ ð3:22Þ

Lð4Þ
KDL ¼ 3

8
ðᾱ3 − 4ᾱ4Þ½F2�ð½Φ�2 − ½Φ2�Þ − 1

8
F2
μνΦ2μν

þ
�
1

2
ᾱ2 þ

3

4
ᾱ3 − 6ᾱ4

�
F2μνðΦ2

μν − ½Φ�ΦμνÞ

þ
�
−
1

8
þ 1

2
ᾱ2 − 3ᾱ4

�
FμνFαβΦμαΦνβ

þ 2γ̄2ð∂ϕÞ2ð½Φ�2 − ½Φ2�Þ: ð3:23Þ
In this DL, we see that the coefficients γ̄1;2 govern the pure
cubic and quartic Galileon interactions while the other
ᾱ2;3;4 coefficients govern the interactions between the
vector and the scalar sector. This scalar-vector mixing
matches precisely those that arise in the DL of massive
gravity [82] up to a trivial redefinition of the coefficients
(see Appendix C). While the DL of GP truncates at quintic
order [see Eq. (2.13)], we note that the DL of Procanuevo
does not truncate and involves an infinite number of
interactions in the scalar-vector sector. Moreover, one
can check that these interactions are never exactly of the
GP form even after local and Lorentz invariant field
redefinitions [61].
While GP was constructed so as to ensure that its DL

leads to second-order equations of motion, one can check
explicitly that the Procanuevo’s DL involves higher deriv-
atives in its equations of motion. At first sight, one may
worry that those higher derivatives are related to
Ostrogradski ghostlike instabilities, however, we shall
see below that the constraint remains in the Procanuevo
theory and in four dimensions, only three degrees of
freedom are excited. Since the theory enjoys the same
vacuum as a free Proca theory with no ghost, this ensures
that there can be no ghost excitations when working about
configurations that are connected to the standard Proca
vacuum when remaining within the regime of validity of
the theory. In what follows we start by proving that the
Hessian in two dimensions has a vanishing eigenvalue.
We then prove the existence of a null eigenvector for the

Hessian in arbitrary dimensions, hence signaling the
existence of a constraint. We note that since we are dealing
with a parity preserving Lorentz-invariance theory, there
can be no half number of propagating degrees of freedom
and hence the existence of a primary second class con-
straint automatically ensures the existence of a secondary
constraint (see Ref. [81] for more details on that point).

D. Hessian

We shall now show that the Hessian of Procanuevo
always includes a vanishing eigenvalue, hence implying the
existence of a constraint that removes the would-be
Ostrogradski ghost.

1. Example

To start with, we may consider the theory in two
dimensions and focus on the Lagrangian given by

Lð2dÞ ¼ −2½K� − 1

2
m2A2: ð3:24Þ

In two dimensions, an interactive massive vector field could
in principle excite two degrees of freedom, but a healthy
Proca theory should only excite one. We shall thus
determine the Hessian of Procanuevo in two dimensions
and prove that it only involves one nonvanishing eigen-
value. For simplicity we define

x ¼ 1

Λ2
2

∂μAμ and y ¼ 1

Λ2
2

F01 ¼
1ffiffiffi
2

p
Λ2
2

ffiffiffiffiffiffiffiffiffiffiffiffi
−½F2�

q
:

ð3:25Þ
Then the Lagrangian takes the very simple form

Lð2dÞ ¼ −2½K� − 1

2
m2A2

¼ −4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ x2 − y2

4

r
þ 4 −

1

2
m2A2 ð3:26Þ

¼ −4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μAμ

Λ2
2

þ 2ð∂μAμÞ2 þ ½F2�
8Λ4

2

s

þ 4 −
1

2
m2A2; ð3:27Þ

and the Hessian matrix is given by

Hab ¼ ∂2L

∂ _Aa∂ _Ab

¼ 2

½X �3Λ4
2

�
y2 yð2þ xÞ

yð2þ xÞ ð2þ xÞ2
�
:

ð3:28Þ
It is a straightforward to check that the determinant of the

Hessian does indeed vanish, signaling that one of the vector
components is nondynamical and leaving only one propa-
gating degree of freedom in two dimensions. The null
eigenvector simply reads

CLAUDIA DE RHAM and VICTOR POZSGAY PHYS. REV. D 102, 083508 (2020)

083508-6



va ¼
�
1

0

�
þ 1

2

�
x

−y

�
: ð3:29Þ

We see that this null eigenvector is perturbatively connected
with the vector (1,0) and still ensures that A0 is not
dynamical. Next, we shall prove the existence of a similar
type of null eigenvector for any Procanuevo theory in any
number of dimensions.

2. Null eigenvector in arbitrary dimensions

We shall now give a nonperturbative proof of the absence
of ghost in four or any other dimensions, for the full theory
by deriving analytically the Hessian matrix and giving an
expression for a null eigenvector. The proof for the absence
of ghost follows from the arguments provided in
[67,84,85,87] and generalizes the proof given in [79]
beyond the minimal model. We recall that K¼X −1 with
X ¼

ffiffiffiffiffiffiffiffiffiffi
η−1f

p
, and we introduce the matrix Z defined as

Z ¼ X−1η−1: ð3:30Þ
One can check that Z is symmetric, using the same
similarity transformation as introduced in [92],

Z−1¼ηX ¼
�
η

ffiffiffiffiffiffiffiffiffiffi
η−1f

q
η−1

�
η¼

ffiffiffiffiffiffiffiffiffiffi
fη−1

q
η¼XTη¼ðZ−1ÞT:

ð3:31Þ

It follows that Z ¼ ZT and

Zαβfβγ ¼ Xα
γ ð3:32Þ

ZμνfναZαβ ¼ ημβ: ð3:33Þ

Now if we evaluate the 00-component of (3.33) and
differentiate it with respect to the time derivative of the
vector field _Aa, we find

∂
∂ _Aa ðZ0μfμνZν0Þ ¼ 2

∂Z0μ

∂ _Aa fμνZν0 þ 2

Λ2
2

Z00Z0μ∂μϕa ¼ 0

⇒
∂Z0μ

∂ _Aa X0
μ ¼ −Λ−2

2 Z00Va; ð3:34Þ

where ϕa ¼ ηabϕ
b is introduced in (3.3) and where we have

introduce the normalized timelike vector Va defined as

Va ¼ Z0μ∂μϕa; ð3:35Þ
so that VaVa ¼ −1. It is then straightforward to show that

∂μϕaVa ¼ X 0
μ: ð3:36Þ

Using these relations, we find the following expressions for
the generic derivatives,

∂
∂ _Aa ½Xn� ¼ nΛ−2

2 ðXn−2Þ0μ∂μϕa; ð3:37Þ

for any n ≥ 1. In particular for n ¼ 1, this implies
∂

∂ _Aa ½X � ¼ Λ−2
2 Va. Now that every element has been intro-

duced, we can compute the momenta first and then the
Hessian matrices for each order in K or X. Since K and X
are linearly related to one another, the Ln½K� can be
expressed as linear combinations of the Ln½X � as summa-
rized in [81], and we may use either choice for the
following argument without loss of generality. We will
then show that Va is actually the null eigenvector for the
Hessian derived for any linear combination of Ln½K�
or equivalently any linear combination of Ln½X �, hence
proving the existence of a constraint.
Let us start with the easiest case by considering L1½X �.

The conjugate momentum associated to ϕa is already given
in (3.37), and we have

pð1Þ
a ¼ Λ4

2

∂L1½X �
∂ _Aa ¼ Λ2

2Va: ð3:38Þ

The Hessian associated with this Lagrangian is then

Hð1Þ
ab ¼ Λ4

2

∂2L1½X �
∂ _Aa∂ _Ab ¼ Λ2

2

∂Va

∂ _Ab : ð3:39Þ

Rather than computing this Hessian explicitly, it is actually
easier to simply make use of the property of Va (and the
fact that it has constant norm),

Λ−2
2 Hð1Þ

ab V
a ¼ ∂Va

∂ _Ab V
a ¼ 1

2

∂ðVaVaÞ
∂ _Ab ¼ 1

2

∂ð−1Þ
∂ _Ab ¼ 0;

ð3:40Þ

hence proving that Va is indeed a null eigenvector of Hð1Þ
ab .

Generalizing this result for any Procanuevo Lagrangian
is straightforward and the details are provided in
Appendix A, where we show that for any Lagrangian of
the form (3.7), the associated Hessian carries the same null
eigenvalue Va for all linear combinations of Lagrangians
Ln½X �. It follows that any linear combination of Ln½X � or
Ln½K� carries a constraint and only excites three degrees of
freedom in four dimensions. Interestingly, the way the
constraint manifests itself differs from the way it does in
GP (their respective null eigenvectors differ). This implies
that considering a hybrid theory composed of GP and
Procanuevo interactions would not enjoy a constraint.
Remarkably, the existence of a constraint is now mani-

fest irrespectively of the choices of αn. The argument
provided here, therefore, extends prior proofs for the
absence of ghost in massive gravity in the Stückelberg
language beyond what was proposed in [67,79]. Such a
general proof was previously missing in the literature.
Interestingly, with the exact form of the null eigenvector
at hand, one should now be able to determine the full
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nonlinear version of the Stückelberg field in terms of
which massive gravity and Procanuevo can be manifestly
expressed in first-order form.

IV. INEQUIVALENCE WITH
GENERALIZED PROCA

The aim of this section is to show that the Procanuevo
theory provided in (3.7) does not enter the scope of GP. It is
clear that Procanuevo includes an infinite number of
operators with arbitrarily high order in (∂A) while GP
only includes a finite number of those (putting aside the
gauge-invariant interactions). However, by itself this does
not imply that both theories may not still be the same in
disguise, for instance, through a sophisticated field redefi-
nition or even an analogue to the Galileon duality proposed
in [84,93]. In [61] it was shown that on AdS, there were no
local and Poincaré invariant field redefinitions between GP
and the DL of massive gravity. In what follows we shall
show that this result is generic and even account for more
subtle types of space-dependent field redefinitions like
generalized Galileon dualities; there can be no local field
redefinition that maps GP with Procanuevo theories. This
will be done in full generality by computing and comparing
the S matrix of both theories in Sec. IV B but to start with
we shall start by recalling that the very way the constraint
gets satisfied differs in GP and Procanuevo theories as can
be seen very easily in two dimensions.

A. Appetizer

By definition, a GP is a theory carrying a constraint
and thus propagating only d − 1 degrees of freedom in d
spacetime dimensions. However, the existence of a con-
straint can take various different forms and the nondynam-
ical variable does not necessarily need to be A0 itself, it may
be a linear combination of A0 and other components of the
vector field. In GP, the Hessian is always of the form

H̃ðGPÞ
ab ¼

�
0 0

0 #

�
: ð4:1Þ

In Procanuevo, on the other hand, while the Hessian still
carries a null eigenvalue, its form differs from (4.1) at least
when expressed in terms of the components of the field Aμ,
indeed, the Hessian for the two-dimensional Lagrangian

Lð2dÞ (3.24) is expressed in (3.28) and is not of the form
(4.1) even though both Hessians have a null determinant.
Let us now suppose there could exist a field redefinition

Aμ → ÃμðAÞ such that the Hessian for Ã is of the form (4.1).
After the field redefinition, the Hessian matrix takes
the form

H̃ab ¼
δÃa

δAc
Hcd

δÃb

δAd
: ð4:2Þ

Asking for H̃ to be of the form (4.1) would require the field
redefinition to be such that

ð _A1 − A0
0Þ
δÃ0

δA0

¼ ð2Λ2
2 þ A0

1 − _A0Þ
δÃ0

δA1

; ð4:3Þ

which cannot be satisfied without imposing a nonlocal
expression for Ã0 in terms of A0 and A1. At this stage, one
can already expect there to be no local field redefinition that
brings Procanuevo back to a GP form. The same conclusion
was highlighted in AdS in Ref. [61]. We shall make this
statement more rigorous in what follows.

B. Scattering amplitudes

To consolidate the previous argument on the absence of
local field redefinition that would bring Procanuevo into a
GP form, we shall compare here the tree-level 2 → 2
scattering amplitudes for both theories.
First, we emphasize that at the linear level, GP and

Procanuevo are identical, indeed Lð2Þ
GP in (2.8) is identical to

Lð2Þ
K in (3.17). This implies that the free asymptotic states

defined in both theories are the same and one can mean-
ingfully compare the amplitudes computed for each model.
Computing the indefinite 2 → 2 tree-level amplitudes in
both theories is straightforward, but for conciseness, we
only present here the results for scatterings of some specific
definite helicity states. As we shall see, these definite
amplitudes are by themselves sufficient to show that the
new Proca interactions we introduced in Sec. III differ from
those of GP theories.
For simplicity, we choose to describe the kinematic

space with the Mandelstam variable s (center of mass
energy2) and the scattering angle θ, see Appendix B.
Starting withþþ → −−, the respective scattering ampli-

tudes in Procanuevo and GP are given by

Aþþ→−−
K ðs; θÞ ¼ −

i
64Λ4

2

�
s3

m2
ð1þ 4ᾱ2 − 6ᾱ2Þ2 − 2s2ð4ðᾱ2 − 3ᾱ3 þ 6ᾱ4Þ þ ð1þ 8ᾱ2 − 12ᾱ3Þ2 − 96ð1þ 4ᾱ2 − 6ᾱ3Þγ̄1Þ

þ 8m2sð1þ 4ðᾱ2 − 3ᾱ3 þ 6ᾱ4 − 12γ̄1 þ 8γ̄2Þ þ 2ð4ᾱ2 − 6ᾱ3 − 24γ̄1Þ2Þ
− 16m4ð1 − 48γ̄1 þ 32γ̄2 þ 768λ̄0Þ þ ðs − 4m2Þð−8ð1 − 4ᾱ2 þ 6ᾱ3Þm2

þ 3ð1 − 4ᾱ2 þ 4ᾱ3 þ 8ᾱ4ÞÞ sinðθÞ2 −
4ðs −m2Þ2ðs − 2m2Þðs − 4m2Þð1 − 4ᾱ2 þ 6ᾱ3Þ2

4m2ðs − 3m2Þ þ ðs − 4m2Þ2 sinðθÞ2 sinðθÞ2
�
; ð4:4Þ
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and

Aþþ→−−
GP ðs; θÞ ¼ −

i
4Λ4

2

�
s3

m2
a22 þ 8s2ða2ða1 − a2Þ − b5 − 4b6Þ þ 8m2sð−4b2 þ b4 þ 4b5 þ 16b6 þ 2ða1 − a2Þ2Þ

− 32m4ðb1 − 2b2 þ 2b5 þ 4b6Þ − 4ðs − 4m2Þðb5sþ b4m2Þ sinðθÞ2

−
4ðs −m2Þ2ðs − 2m2Þðs − 4m2Þa22
4m2ðs − 3m2Þ þ ðs − 4m2Þ2 sinðθÞ2 sinðθÞ

2

�
: ð4:5Þ

Remarkably, we see that perturbative unitarity gets broken
when s3 ∼ Λ4

2m
2 ∼ Λ6

3, hence confirming the existence of
nontrivial operators at the scale Λ3. If both theories were
equivalent they would predict the same scattering ampli-
tudes for any incoming and outgoing polarization states.
We will note any amplitude difference for a given set of
polarizations ΔA and ask them to vanish for all ðs; θÞ, in
particular,

ΔAþþ→−−ðs; θÞ
¼ Aþþ→−−

K ðs; θÞ −Aþþ→−−
GP ðs; θÞ

¼
X3
n¼0

Cnsnm4−2n þ ðs − 4m2Þ sinðθÞ2ðC4m2 þ C5sÞ

þ C6

ðs −m2Þ2ðs − 2m2Þðs − 4m2Þ
4m2ðs − 3m2Þ þ ðs − 4m2Þ2 sinðθÞ2 sinðθÞ

2;

ð4:6Þ

where the constants Cn are expressed in terms of the
coupling constants of the GP and Procanuevo only. For the
scatterings (4.4) and (4.5) to be equivalent, one should have
Cn ¼ 0 for all n ¼ 0;…; 6. Imposing these relations in
terms of the coupling constants then sets

8>>>>>>>>>>>><
>>>>>>>>>>>>:

a2 ¼ � 1
4

b1 ¼ 1
8
ð1 − 2a1 þ 8a21 − 12γ̄1 − 288γ̄21 þ 192λ̄0Þ

b2 ¼ 1
4
ð2a21 − 3γ̄1 − 72γ̄21 − 2γ̄2Þ

b4 ¼ 1
8

b5 ¼ − 1
64
ð3 − 4ᾱ2 þ 24ᾱ4Þ

b6 ¼ 1
32
ð2a1 − ᾱ2 þ 6ᾱ4 − 12γ̄1Þ

ᾱ3 ¼ 2
3
ᾱ2:

ð4:7Þ

From these relations, it is clear that the most generic
Procanuevo theory cannot be put in the form of GP since
one already needs to impose ᾱ3 ¼ 2

3
ᾱ2, but looking at other

polarizations makes it clear that even within this choice of
coefficients the theories are never equivalent. Indeed,
turning now to þ− → þ− scatterings then upon imposing
the solution (4.7), we find

ΔAþ−→þ−ðs; θ ¼ 0Þ ¼ i
4Λ4

2

ð4m2 − sÞs; ð4:8Þ

at this stage there are no further couplings one can dial to
ensure the equivalence and so irrespectively of the choice of
coefficients fβ̄i; γ̄i; λ̄i; ai; big the full tree-level 2 → 2 scatter-
ing amplitude of our new Proca interactions never matches
that predicted by GP. This concludes the proof that both
theories are fundamentally different and are not equivalent.

V. RECOUPLING TO GRAVITY

The covariantization of Procanuevo is very similar to that
of the Galileon [2]. Originally derived from the DL of the
gravitational Dvali–Gabadadze–Porrati (DGP) model [5,6],
the natural covariantization of the Galileon is hence the DGP
model itself, or generalized massive gravity. Remarkably, it
was indeed shown in Ref. [94] that massive gravity is the
natural way the Galileon symmetry can be gauged.
However, taken as a scalar field in its own right, one may

envisage a covariantization of the Galileon where the fields
transform as a diffeomorphism scalar in the embedding
gravitational theory. Such types of covariantizations lead to
the “Covariant Galileon” [95], proxy theories of massive
gravity [96] or more generically to Horndeski [4] and where
then further extended to Beyond-Horndeski, and more
generic classes of degenerate higher order theories [68–76].
Viewed as effective field theories, the Galileon just like

GP or Procanuevo have a very low cutoff at the scale Λ3 (or
lower [97]), and there can be a continuum of interactions
between the scale Λ3 and the Planck scale so that the
question of what the natural covariantization of these
theories is may not be particularly meaningful. However,
for many of these classes of theories, one may postulate the
existence of a Vainshtein-type of mechanism that may allow
us to push their regime of applicability beyond the scale Λ3.

A. Generalized massive gravity
as the natural covariantization

As introduced in Sec. III, Procanuevo is heavily inspired
by massive gravity. When considering the coupling of
Procanuevo to gravity (or when considering Procanuevo
in curved spacetime), a natural covariantization is, therefore,
simply the theory of massive gravity introduced in [66] (or
rather its generalized form introduced in [84,85]) where the
Lorentz vector Aμ is not promoted to a diffeomorphism
vector (i.e., to a vector under general coordinate trans-
formations) but rather is considered as being part of a
diffeomorphism scalar ϕa as introduced in (3.3).
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In this covariantization of Procanuevo, the quantity fμν
remains identical as that defined in (3.4), still expressed in
terms of the Minkowski metric,

fμν ¼ ∂μϕ
a∂νϕ

bηab ¼ ημν þ 2
∂ðμAνÞ
Λ2
2

þ ∂μAα∂νAβη
αβ

Λ4
2

;

ð5:1Þ
even though the field is living on an arbitrary spacetime
with dynamical metric gμν. The metric gμν enters the
definition of K, which is now defined as [66]

Kμ
ν ¼

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ν

− δμν; ð5:2Þ

leading to the Lagrangian for massive gravity including the
dynamics of the metric,

LCov ¼
M2

Pl

2

ffiffiffiffiffiffi
−g

p
R½g� þ Λ4

2

ffiffiffiffiffiffi
−g

p X4
n¼0

αnðϕÞLn½K�: ð5:3Þ

This generalized theory of massive gravity reduces to
Procanuevo in the limit where gravity is “switched off”
or decoupled, MPl → ∞ so long as α0 includes a quadratic
term in the vector field. The absence of ghost in this
covariantization follows from the absence of ghost in
massive gravity [66,83–85].

B. Alternative covariantization

When coupling to gravity, an alternative approach is to
treat Aμ as a diffeomorphism vector. In doing so, instead of
using the quantity fμν defined in (5.1), the building block
of the covariant theory would then be the diffeomorphism

tensor fðgÞμν defined as

fðgÞμν ¼ gμν þ 2
∇ðμAνÞ
Λ2
2

þ∇μAα∇νAβgαβ

Λ4
2

: ð5:4Þ

In this covariantization, the gravitational-vector theory
would be given by an expression similar to (5.3) but with
K now being a diffeomorphism tensor defined as

Kμ
ν ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g−1fðgÞ

q �
μ

ν

− δμν: ð5:5Þ

The absence of ghost in this covariantization is nontrivial
and indeed nonminimal couplings to gravity, for instance,
of the form GμνAμAν may in principle need to be included
to ensure the absence of Ostrogradski ghost. Proving the
existence of such a class of covariantization, which is
entirely free of the Ostrogradski ghost, is beyond the scope
of this work, however, it can easily be done in two
dimensions.
For concreteness, consider the covariant version of the

two-dimensional Lagrangian Lð2dÞ introduced in (3.24),

Lð2dÞ
cov ¼ ffiffiffiffiffiffi

−g
p �

−2½K� − 1

2
m2AμAνgμν

�
; ð5:6Þ

with K now as defined in (5.5). This theory includes five
variables that may be split into the lapse N, shift n1 and
one-dimensional spatial metric γ11 ¼ γ, and the two com-
ponents of the vector field A0 and A1. For the theory to
avoid any type of Ostrogradski ghost, out of these five
variables, only one of them ought to be dynamical (in
practice the helicity-0 mode of the massive vector). To
check that the theory (5.6) does indeed satisfy this property,
we may compute the five-dimensional field space Hessian
given by

HAB ¼ ∂2Lð2dÞ
cov

∂ _ΨA _ΨB ; ð5:7Þ

with ΨA ¼ fN; n1; γ; A0; A1g and check that it is of rank-1.
Upon defining the following two quantities,

B ¼ A0 − A1n1 ð5:8Þ
C¼ 4N3γ2 þ 4A0

0n1Nγ2 þ 2A0
1NγðN2 − n21γÞ

þ 2n01Nγ2ðA0 − 2A1n1Þ þ ð2N0γ −Nγ0ÞðA1ðN2 þ n21γÞ
−A0n1γÞ− 2 _A0Nγ2 þ 2A1 _n1Nγ2

þ ðA0 −A1n1Þð2 _Nγ −N _γÞγ; ð5:9Þ
one can check explicitly that the Hessian defined in (5.7)
can actually be written in the form

Hab ¼ −
1

2γ5N8
PaPb; ð5:10Þ

with the field space vector P defined as

Pa ¼ ð−2Bγ2F01;−2Nγ2A1F01; NγBF01; C; 2Nγ2F01Þ:
ð5:11Þ

This directly implies that the Hessian is of rank-1, and
hence the theory (5.6) only propagates one degree of
freedom in two dimensions. This shows that the direct
covariantization of the quantity fμν as in (5.4) is a
“consistent choice” in two dimensions in the sense that
it maintains all the constraints required both for gravity and
for the Proca field. Extending the covariantization more
generically to four dimensions is beyond the scope of this
work as the argument provided was merely to illustrate the
presence of different types of alternative covariantizations
as illustrated in Fig. 1.

VI. OUTLOOK

In this paper, we proposed a new interactive theory for a
single massive vector field with derivative self-interactions
and free of Ostrogradski ghost instability. The Procanuevo
Lagrangian is heavily inspired by massive gravity and is
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genuinely different from the GP classes of interactions. We
started by proving that Procanuevo exhibits a constraint in
two dimensions before providing the exact nonperturbative
form of the null eigenvector of the Hessian matrix in any
dimensions. Procanuevo provides an insightful example of
an Ostrogradski ghost-free theory with a nontrivial null
eigenvector. Indeed, whereas GP imposes A0 to be non-
dynamical, Procanuevo’s constraint arises as a combination
of A0 and the spatial field components. This is already a
strong hint indicating that both theories are fundamentally
different. To complete the proof more rigorously, we com-
puted the 2 → 2 scattering amplitudes in GP and Procanuevo
theories and showed that they could never be matched
irrespectively of the choice of coefficients. This proves that
their respective S-matrices are different and thus Procanuevo
cannot be related to GP by any local field redefinition.
Throughout this work, we have focused our analysis on

the existence of a constraint and on the counting of the
number of propagating degrees of freedom. In itself this
question is distinct from whether or not the theory provided
here can ever enjoy a standard analytic, unitary, local,
Lorentz invariant and causal high energy completion5

although some connections were previously established
for massive spin-2 interactions [63] using the so-called
beyond-forward positivity bounds [100]. Applying the
forward bounds to a specific class of spin-1 effective field
theory was considered in [101] and implications to GP and
other types of massive spin-1 effective field theories in and
beyond the forward limit was considered in [63].
Interestingly, the positivity bounds on GP requires the
introduction of very specific operators, and it would be
interesting to understand whether the same type of argu-
ments applies to the theory at hand.

It is beyond the scope of this paper to apply this theory to
cosmology but based on the impact that the scalar mode of
GP has already had on cosmology and astrophysics, we
hypothesize that the helicity-0 mode of Procanuevo could
play a similar type of role while providing different classes
of signatures. It could be interesting to see if the cosmo-
logical predictions of Procanuevo differ significantly from
thewell-studied one from GP. Another obvious follow up to
this paper would be the study of the general covariantiza-
tion of Procanuevo in four (or arbitrary) dimensions and
generalize the prescription to multiple interacting fields.6

Lastly, this paper provides a new theory exhibiting a
constraint nonperturbatively and could motivate a more
generic study of the way constraints are satisfied in various
field theories. A natural question is whether GP and
Procanuevo are the only two types of interactions for a
massive spin-1 that exhibit a constraint or whether other
families of interactions exist [106].
Finally, we note that in proving the existence of a

constraint for Procanuevo, we have generalized the proof
for the absence of ghost in massive gravity in the Stückelberg
language beyond what had previously been proposed in the
literature. Remarkably, we now have the full nonlinear
expression for the null eigenvector of the Hessian. With
this knowledge at hand, one should now be able to determine
the full nonlinear expressions for the Stückelberg fields in
terms of which massive gravity can be express in a
manifestly first-order form. This is left for further studies.
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APPENDIX A: NULL EIGENVECTOR FOR
GENERIC PROCANUEVO THEORIES

In Sec. III D 2 we proved explicitly that the vector Va

defined in (3.35) as Va ¼ Z0μ∂μϕa with Z−1 ¼ ηX and

FIG. 1. Any theory proposed in flat space can admit various
potential classes on different covariantization. Generalized mas-
sive gravity is a natural one to consider for Procanuevo since this
is where it was originally inspired from, but other nonequivalent
covariantizations can be considered. See Ref. [98] for related
arguments.

5We emphasis that the absence of such high energy completion
does not necessarily rule out the existence of other consistent
completions, see Refs. [97,99] for relevant discussions.

6We point, however, that including various species of inter-
acting fields typically reduces the possibility for the effective field
theory to enjoy a standard high energy completion [102,103].
However, it would be interesting to diagnose whether the same
type of ghost as that diagnosed in [91,104,105] reappears.
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X ¼
ffiffiffiffiffiffiffiffiffiffi
η−1f

p
is a null eigenvector of the Hessian associated

with the Lagrangian L1½X �. We now proceed to prove this
result for every other Ln½X �.
We will not go through the derivation of this result for

each order in X or K, but we provide here intermediate
results, i.e., the momenta and Hessian matrices.
At any order in the Lagrangian expansion (3.7), we

define

pðnÞ
a ¼ ∂ðΛ4

2Ln½X �Þ
∂ _Aa and HðnÞ

ab ¼ ∂2ðΛ4
2Ln½X �Þ

∂ _Aa∂ _Ab ¼ ∂pðnÞ
a

∂ _Ab :

Since the Lagrangians Ln½X � and Ln½K� are related by
linear relations,

Ln½K� ¼
X
k

cn;kLk½X � ⇒ H½K�ðnÞab ¼
X
k

cn;kH½X �ðkÞab :

For the Lagrangian L2½X �, we have an associated contri-
bution to the conjugate momentum given by

Λ−2
2 pð2Þ

a ¼ 4ð½X �Va þ _ϕaÞ; ðA1Þ

resulting in a contribution to the Hessian given by

Hð2Þ
ab ¼ 4

�
Λ2
2½X � ∂Va

∂ _Ab þ VbVa þ ηab

�
: ðA2Þ

Given the Hessian (A2), it is straightforward to see that Va

is indeed a null eigenvector, meaning that Hð2Þ
ab V

a ¼ 0

Hð2Þ
ab V

a ¼ 4

�
Λ2
2½X � 1

2

∂VaVa

∂ _Ab þ VbðVaVaÞ þ Vb

�
¼ 0:

ðA3Þ
For the Lagrangian L3½X �, we have an associated contri-
bution to the conjugate momentum given by

Λ−2
2 pð3Þ

a ¼ 3ð½X �2 − ½X2�ÞVa þ 6½X � _ϕa þ 6X0μ∂μϕa;

ðA4Þ

leading to a Hessian

Hð3Þ
ab ¼ 6ð½X �ðVaVb þ ηabÞ þ Va

_ϕb þ Vb
_ϕa þ X00ηabÞ

þ 3Λ2
2ð½X �2 − ½X2�Þ ∂Va

∂ _Ab þ 6Λ2
2

∂X0μ

∂ _Ab ∂μϕa ðA5Þ

for which we can again explicitly check that Va is a
null vector,

Hð3Þ
ab V

a ¼ 6ð½X �ð−Vb þ VbÞ − _ϕb þ Vb
_ϕaVa þ X00VbÞ

þ 3

2
Λ2
2ð½X �2 − ½X2�Þ ∂ð−1Þ∂ _Ab þ 6Λ2

2

∂X0μ

∂ _Ab X0
μ

¼ 6ðX00 þ _ϕaVaÞVb þ 3

�
Λ2
2

∂f00
∂ _Ab − 2 _ϕb

�
¼ 0: ðA6Þ

Finally, for the Lagrangian L4½X �, the associated conjugate
momentum is given by

Λ−2
2 pð4Þ

a ¼ 4ð½X �3 − 3½X �½X2� þ 2½X3�ÞVa

þ 12ð½X �2 − ½X2�Þ _ϕa þ 24ð½X �X0μ − f0μÞ∂μϕa;

ðA7Þ
leading to the Hessian

Hð4Þ
ab ¼ 12ð½X �2 − ½X 2�ÞðVbVa þ ηabÞ

þ 24ð½X � _ϕb þX0μ∂μϕbÞVa

þ 4Λ2
2ð½X �3 − 3½X �½X2� þ 2½X3�Þ∂Va

∂ _Ab

þ 24ð½X �Vb þ _ϕbÞ _ϕa

þ 24

�
X0μVb þ ½X �Λ2

2

∂X0μ

∂ _Ab þ ∂μϕb þ η0μ _ϕb

�
∂μϕa

þ 24ð½X �X00 − f00Þηab ðA8Þ
for which Va is yet again a null eigenvector,

Hð4Þ
ab V

a ¼ 12ð½X �2 − ½X2�Þð−Vb þ VbÞ − 24ð½X � _ϕb þ X 0μ∂μϕbÞ þ 2Λ2
2ð½X �3 − 3½X �½X2� þ 2½X3�Þ ∂ð−1Þ∂ _Ab

þ 24ð½X �Vb þ _ϕbÞX 0
0 þ 24

�
X0μVb þ ½X �Λ2

2

∂X0μ

∂ _Ab þ ∂μϕb þ η0μ _ϕb

�
X 0

μ þ 24ð½X �X00 − f00ÞVb

¼ 24fðX0
0 þ X00Þð½X �Vb þ _ϕbÞ þ ðX 0μX0

μ − f00ÞVb þ
�
Λ2
2

∂X0μ

∂ _Ab − _ϕb

�
½X �g ¼ 0: ðA9Þ

We can therefore conclude that for any linear combination of the Procanuevo vector Lagrangians,

LK½A� ¼ Λ4
2

X4
n¼0

αnðA2ÞLn½K½A�� ¼ Λ4
2

X4
n¼0

βnðA2ÞLn½X ½A��; ðA10Þ

where the relation between the coefficients αn and βn is given in [81], the resulting Hessian is of the form
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Hab ¼
X4
n¼0

βnH
ðnÞ
ab : ðA11Þ

Since all the individual Hessians HðnÞ
ab have the same null

direction, with null eigenvector Va, it automatically follows
that Va is also a null eigenvector of the full HessianHab and
the full Procanuevo theory carries a constraint. Remarkably,
it is clear from this construction that Procanuevo theories lie
on a different branch of theories as compared to GP theories
in terms of how the constraint comes to be implemented.
Even though both GP and Procanuevo are ghost-free theories
that carry a constraint, linear combinations of both theories
typically break the constraint.
In two dimensions, we can check that the null eigen-

vector reproduces the exact analytic result (3.24). Recalling
that

ϕa ¼ xa þ 1

Λ2
2

Aa; ðA12Þ

which then gives

Va ¼ Z0μ∂μϕ
a ¼

0
B@ Z00

�
1− 1

Λ2
2

_A0

�
− 1

Λ2
2

Z01A0
0

1
Λ2
2

Z00 _A1 þZ01
�
1þ 1

Λ2
2

A0
1

�
1
CA: ðA13Þ

Rearranging these terms gives the exact nonperturbative
prediction for the two-dimensional eigenvector va

introduced in (3.29) (up to an irrelevant normalization
factor),

Va ¼
1

½X �

0
B@ 2 þ A0

1
− _A0

Λ2
2

−
_A1−A0

0

Λ2
2

1
CA

¼ 2

½X �
�
1 þ x=2

− y=2

�
¼ 2

½X � va: ðA14Þ

APPENDIX B: KINEMATICS

To perform the scattering amplitudes computations
for a given set of polarizations, we need a basis for the
polarization vectors ϵλμðkiÞ. The polarizations are labelled
by λ ¼ −1; 0;þ1.
First of all, we consider the center of mass frame where

k1 and k2 are traveling in the ẑ direction and k3 forms an
angle θ with the ẑ-axis. We denote the energy by ω and the
norm of the 3-momentum by k

kμ1 ¼ ðω; 0; 0; kÞ ðB1Þ
kμ2 ¼ ðω; 0; 0;−kÞ ðB2Þ

kμ3 ¼ ðω; k sinðθÞ; 0; k cosðθÞÞ ðB3Þ

kμ4 ¼ ðω;−k sinðθÞ; 0;−k cosðθÞÞ: ðB4Þ

In this setup the polarization vectors basis can be chosen
to be

ϵþμ ðk1Þ ¼

0
BBB@

0

1

0

0

1
CCCA ϵ−μ ðk1Þ ¼

0
BBB@

0

0

1

0

1
CCCA ϵ0μðk1Þ ¼

0
BBB@

− k
m

0

0
ω
m

1
CCCA

ϵþμ ðk2Þ ¼

0
BBB@

0

−1
0

0

1
CCCA ϵ−μ ðk2Þ ¼

0
BBB@

0

0

1

0

1
CCCA ϵ0μðk2Þ ¼

0
BBB@

− k
m

0

0

− ω
m

1
CCCA

ϵþμ ðk3Þ ¼

0
BBB@

0

cosðθÞ
0

− sinðθÞ

1
CCCA ϵ−μ ðk3Þ ¼

0
BBB@

0

0

1

0

1
CCCA ϵ0μðk3Þ ¼

0
BBB@

− k
m

ω
m sinðθÞ

0

ω
m cosðθÞ

1
CCCA

ϵþμ ðk4Þ ¼

0
BBB@

0

− cosðθÞ
0

sinðθÞ

1
CCCA ϵ−μ ðk4Þ ¼

0
BBB@

0

0

1

0

1
CCCA ϵ0μðk4Þ ¼

0
BBB@

− k
m

− ω
m sinðθÞ
0

− ω
m cosðθÞ

1
CCCA
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One can verify that this basis satisfies the polarization
vector properties for a givenvector ki (i.e., i ¼ 1;…; 4 fixed)

ϵλμðkiÞkμi ¼ 0 ðB5Þ

ϵλμðkiÞϵμ;λ0 ðkiÞ ¼ δλλ
0 ðB6Þ

X1
λ¼−1

ϵλμðkiÞϵλνðkiÞ ¼ ημν þ
kiμkiν
m2

: ðB7Þ

We also have the following kinematical constraints:

ω ¼
ffiffiffi
s

p
2

ðB8Þ

k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
ðB9Þ

t ¼ −
1

2
ðs − 4m2Þð1 − cosðθÞÞ ðB10Þ

u ¼ −ðsþ tÞ þ 4m2; ðB11Þ

which enable us to fully specify the kinematics with the two
parameters ðs; θÞ.

APPENDIX C: RESUMMATION OF THE
COMPLETE DL OF MASSIVE GRAVITY

In this Appendix we provide an explicit formula resum-
ming the DL of massive gravity to all orders in
Φμν ¼ ∂μ∂νϕ. For convenience, we work here in the
formulation of the theory in terms of the tensor X as in
(A10), and we only need to focus on the contribution of the
βn, which is independent of A, so in what follows we may
consider the βn’s to be constant. As derived by Ondo and
Tolley in [82], the scalar-vector sector of this DL is

LDL ¼
	
−
β1
4

�
1

2
Fa
μω

b
νδ

c
ρδ

d
σ þ ðδþΦÞaμδbν

�
ωc

ρω
d
σ þ

1

2
δcρω

d
αω

α
σ

��

−
β2
8
ð2Fa

μω
b
νðδþΦÞcρδdσ þ ðδþΦÞaμðδþΦÞbν ½ωc

ρω
d
σ þ δcρω

d
αω

α
σ�Þ

−
β3
24

ð3Fa
μω

b
νðδþΦÞcρðδþΦÞdσ þ ðδþΦÞaμðδþΦÞbνðδþΦÞcρωd

αω
α
σÞ


ϵμνρσϵabcd; ðC1Þ

where ω is a composite field defined by

ω ¼
X
n;m

ðnþmÞ!
21þnþmn!m!

ð−1ÞnþmΦnFΦm: ðC2Þ

The expression (C1) has the advantage to be compact and complete but it is useful to rewrite it only in terms of F andΦ, the
actual field content of the theory. It can be proven by basic binomial manipulations that the complete DL of massive gravity
can be resummed to all orders in the following way:

LDL ¼ −
β1 þ 2β2 þ β3

8
FμνFμν þ

β1 þ 4β2 þ 3β3
8Λ3

3

FμαFν
αΦμν −

β2 þ β3
8Λ3

3

FμνFμν½Φ�

þ
X∞
p¼2

Xp
k¼0

1

Λ3p
3

	
β1 þ 4β2

8
−
β3
8

�
8p − 23 − 4

kðp − kÞð4p − 9Þ
pðp − 1Þ

�
 ð−1Þp
2p

�
p
k

�
½FΦkFΦp−k�

þ
X∞
p¼2

Xp−1
k¼0

1

Λ3p
3

	
−
β2
4
þ β3

4

�
2p − 9þ 2

ðp − k − 1Þ2 þ k2

p − 1

�
 ð−1Þp
2p

�
p − 1

k

�
½FΦkFΦp−k−1�S1ðΦÞ

þ
X∞
p¼2

Xp−2
k¼0

1

Λ3p
3

	
−
β3
4
ð2p − 5Þ


 ð−1Þp
2p

�
p − 2

k

�
½FΦkFΦp−k−2�S2ðΦÞ

þ
X∞
p¼3

Xp−3
k¼0

1

Λ3p
3

	
β3
6
ðp − 2Þ


 ð−1Þp
2p

�
p − 3

k

�
½FΦkFΦp−k−3�S3ðΦÞ; ðC3Þ

where the SnðΦÞ are a short-hand notation for

CLAUDIA DE RHAM and VICTOR POZSGAY PHYS. REV. D 102, 083508 (2020)

083508-14



S1ðΦÞ ¼ ½Φ� ðC4Þ

S2ðΦÞ ¼ ½Φ�2 − ½Φ2� ðC5Þ

S3ðΦÞ ¼ ½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�: ðC6Þ

Here we use brackets as a notation for the trace. Some terms of the expansion (C3) might include contributions of the form
½F2�, which really stands for the trace of the square of the field-strength tensor Fμν. In this case, the convention is opposite to
the one introduced in (3.18). Indeed,

½F2� ¼ FμνFνμ ¼ −FμνFμν: ðC7Þ

Note that the coefficients βn are not linearly independent, indeed they satisfy

β1 þ 2β2 þ β3 ¼ 2: ðC8Þ

Expanding (C3) up to quartic order and using (C8) to eliminate β3 gives

Lð2Þ
MGDL ¼ −

1

4
FμνFμν ðC9Þ

Lð3Þ
MGDL ¼ −

2 − β1 − β2
8

FμνFμν□ϕþ 3 − β1 − β2
4

FμαFν
α∂μ∂νϕ ðC10Þ

Lð4Þ
MGDL ¼ −

2 − β1 − 2β2
16

F2
μνðð□ϕÞ2 − ð∂α∂βϕÞ2Þ −

7 − 3β1 − 5β2
8

FμαFν
α∂μ∂βϕ∂ν∂βϕ

þ 6 − 3β1 − 5β2
8

FμαFν
α∂μ∂νϕ□ϕ −

5 − 2β1 − 3β2
8

FμνFαβ∂μ∂αϕ∂ν∂βϕ: ðC11Þ

Comparing (3.21)–(3.23) to (C9)–(C11) and using the relation between the coefficients αn and βn as provided in [81], one
can see that the vector-scalar sector of our new Proca interactions in the DL exactly coincides with this sector in the DL of
massive gravity.
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[60] J. B. Jiménez, C. de Rham, and L. Heisenberg, Generalized
Proca and its constraint algebra, Phys. Lett. B 802, 135244
(2020).

[61] C. De Rham, K. Hinterbichler, and L. A. Johnson, On the
(A)dS decoupling limits of massive gravity, J. High Energy
Phys. 09 (2018) 154.

[62] A. Amado, Z. Haghani, A. Mohammadi, and S. Shahidi,
Quantum corrections to the generalized Proca theory via a
matter field, Phys. Lett. B 772, 141 (2017).

[63] C. de Rham, S. Melville, A. J. Tolley, and S.-Y. Zhou,
Positivity bounds for massive Spin-1 and Spin-2 fields,
J. High Energy Phys. 03 (2019) 182.

[64] M. S. Ruf and C. F. Steinwachs, Renormalization of
generalized vector field models in curved spacetime, Phys.
Rev. D 98, 025009 (2018).

[65] Y. Rodriguez and A. A. Navarro, Scalar and vector
Galileons, J. Phys. Conf. Ser. 831, 012004 (2017).

[66] C. de Rham, G. Gabadadze, and A. J. Tolley, Resumma-
tion of Massive Gravity, Phys. Rev. Lett. 106, 231101
(2011).

[67] C. de Rham, G. Gabadadze, and A. J. Tolley, Ghost free
massive gravity in the Stückelberg language, Phys. Lett. B
711, 190 (2012).

[68] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Healthy
Theories beyond Horndeski, Phys. Rev. Lett. 114, 211101
(2015).
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