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In this paper we study some models where non-Abelian gauge vector fields endowed with a SU(2) group
representation are the unique source of inflation and dark energy. These models were first introduced under
the name of gaugeflation and gaugessence, respectively. Although several realizations of these models have
been discussed, not all available parameters and initial conditions are known. In this work, we use a
dynamical system approach to find the full parameter space of the massive version of each model. In
particular, we found that the inclusion of the mass term increases the length of the inflationary period.
Additionally, the mass term implies new behaviors for the equation of state of dark energy allowing to
distinguish this from other prototypical models of accelerated expansion. We show that an axially
symmetric gauge field can support an anisotropic accelerated expansion within the observational bounds.
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I. INTRODUCTION

Inflation, an early accelerated expansion of the Universe,
is arguably the most compelling theory to overcome the
classical problems of the hot big bang cosmology while
providing the seeds for large scale structure formation [1].
The simplest inflationary models are based in the dynamics
of a scalar field, the inflaton. Although the inflaton is
generally favored by data [2], some particular character-
istics observed in the cosmic microwave background
(CMB), known as CMB anomalies, suggest that modifi-
cations to this paradigm might be needed. For instance,
careful analysis of the CMB indicates an asymmetry in the
dipolar power spectrum on large angular scales [3–5]. This
particular problem, which has the largest statistical signifi-
cance among the different anomalies involving a preferred
direction in the CMB sky1 [8], motivates the study of
alternative models based on other types of fields.
Apart from the early inflationary period, it is an

observational fact that the current Universe is also under-
going an accelerated expansion [9,10]. In this case, the
simplest explanation is provided by the cosmological
constant Λ [11]. However, despite its success, this scenario
has some troubles when it is compared with observations
[12]. One of these difficulties is related to the fundamental
nature of Λ as the vacuum energy density of the Universe.

This identification results in a huge discrepancy between
the value predicted by the theory and the value obtained
from observations. This disagreement (around 120 orders
of magnitude) is usually referred to as the cosmological
constant problem [11,13]. Another issue is the so-calledH0

tension [14,15], which states that the current value of the
Hubble parameter calculated from CMB data does not
agree with the value computed from local measurements.
By introducing a dynamical equation of state for the source
driving the late-time accelerated expansion, this problem
could be addressed [16]. These problems suggest that new
dynamical degrees of freedom must be considered and the
most popular models are the so-called quintessence models,
which are based, again, on scalar fields [17–19].
As mentioned above, the most popular models to

account for the inflationary period and the current accel-
erated expansion of the Universe are based on single scalar
fields. Despite the successes of these theories, other
interesting alternatives, built with different types of fields,
have been also explored. In this direction, models that
include vector fields (see Refs. [20–23] for reviews on the
subject), higher spin fields [24–29], p-forms [30–39],
among others, have called the attention within the past
years because of their richer phenomenology and since
many of their cosmological consequences have not been
fully explored so far. Between these proposals, non-
Abelian gauge fields have recently attracted a lot of
attention since they could link cosmology with the phe-
nomenology of particle physics [21]. The cosmological
dynamics of these fields have been extensively discussed
in the literature [40–63]. For instance, the early and the
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late-time accelerated expansions can be uniquely explained
by non-Abelian gauge vector fields. These models are
known as “gaugeflation” [42,43] and “gaugessence” [56],
respectively. Regarding the early accelerated expansion,
gaugeflation was ruled out as a valid inflationary model,
since the relation between the scalar spectral tilt and the
tensor-to-scalar ratio does not get in the region allowed by
Planck 2013 [64,65]. Nevertheless, the introduction of a
mass term in the theory can alleviate the problem [52,54].
Some of the background inflationary trajectories of this
proposal were studied in Refs. [52,54], where it was
concluded that, in particular, the addition of the mass term
does not affect the existence of an inflationary period but it
does reduce its length. Here, by using a dynamical system
approach, we find the full available parameter space of this
model and show that the inclusion of the mass term actually
increases the length of inflation, instead of reducing it. We
also remark that this particular result could yield to
modifications at the linear perturbation level as worked
out in Ref. [54]. On the other side, in Ref. [56] the
gaugessence model was proposed as a possible explanation
to the late-time accelerated expansion. It was shown that for
several sets of initial conditions and parameters there exists
a period of accelerated expansion. In this work, we
generalize this model by considering the effect of a mass
term for the gauge vector field in the late-time cosmological
evolution. We show in particular that accelerated expansion
is an “effective” attractor. We also study the equation of
state of dark energy, showing different behaviors to those
found in Ref. [56] that allow distinguishing this model from
other dark energy proposals. We also address some
differences between this model and the usual quintessence
models.
Besides the CMB anomalies mentioned before, several

observational indications are suggesting that the present
Universe is undergoing an anisotropic accelerated expan-
sion [66–70]. Since scalar fields cannot pick a preferred
direction in spacetime, it is natural to consider other types
of dynamical fields. Regarding gauge vector fields, in
Ref. [44] it was shown that an axially symmetrical massless
gauge vector field isotropizes during the inflationary
expansion, and thus any initial anisotropy is quickly dilute.
However, this scenario has not been studied in the frame of
the late time accelerated expansion where other conclusions
or interesting features can be reached. Here we consider the
dynamics of an axially symmetrical gauge field in a
homogeneous but anisotropic background and numerically
investigate the possibility to get a non-negligible contri-
bution to the current spatial shear.
The paper is organized as follows. In Sec. II we study the

inflationary dynamics of a particular model for a massive
non-Abelian gauge vector field, and its massless version, at
a background level. We present a dynamical system
analysis which allows us to constrain the full parameter
space of the theory and thus to extend the results in

previous works. In particular, we show that the inclusion
of the mass term increases the length of inflation rather than
reduce it. In Sec. III we study the late-time cosmological
behavior of these gauge fields as dark energy components,
generalizing previous works by including a mass term to
the dynamics. By analyzing the equation of state of dark
energy, we show that new behaviors are found. Next, we
investigate the possibility to get non-negligible contribu-
tions to the spatial shear today by considering anisotropic
solutions in the massless case. Finally, our conclusions are
presented in Sec. IV.

II. INFLATION FROM GAUGE FIELDS

Let us consider the following action for a massive SU(2)
gauge vector field:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
m2

P

2
R −

1

4
Fa

μνFa
μν þ κ

96
ðF̃a

μνFa
μνÞ2

−
1

2
m2

aAa
μAa

μ

�
; ð1Þ

where gμν is the metric of the spacetime, g̃ its determinant,
mP is the reduced Planck mass, R is the Ricci scalar, κ is a
positive-definite constant with dimensions ½m−4

P �, Fa
μν is

the field strength tensor,2

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gεabcAb

μAc
ν; ð2Þ

of a non-Abelian gauge vector field Aa
μ with mass ma, g is

the SU(2) coupling constant and εabc is the Levi-Civita
symbol. The dual of the strength tensor is defined as usual by

F̃a
μν ≡ 1

2
εμνρσFa

ρσ; ð3Þ

with εμνρσ denoting the completely antisymmetric tensor.
This action was first studied in Ref. [52], in the context of
inflation, as a modification of the original model in Ref. [43]
where massless fields were considered.
Observations show that both the early and the late Uni-

verses are highly homogeneous, isotropic and spatially flat
[71]. It allows us to describe it, at the background level, by
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð4Þ

where aðtÞ is the scale factor of the expansion, t the cosmic
time, and xi the Cartesian coordinates. An ansatz for the
massive gauge vector field consistent with the symmetries of
this spacetime is [72]

2Greek indices run from 0 to 3 and denote space-time
components, and Latin indices run from 1 to 3 and denote SU
(2) gauge components.
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Aa
0 ≡ 0; Aa

i ≡ aðtÞψðtÞδai; ð5Þ

where ψðtÞ is a scalar field. As a shorthand notation, we
define ϕðtÞ≡ aðtÞψðtÞ. Isotropy also requires that the gauge
fields have identical masses, i.e., m1 ¼ m2 ¼ m3 ¼ m.
Varying the action in Eq. (1) with respect to the metric

gμν we obtain the energy tensor

Tμν ¼ Fa
μρFa

νσgσρ þm2Aa
μAa

ν

− gμν

�
1

4
Fa

ρσFa
ρσ þ

κ

96
ðF̃a

ρσFa
ρσÞ2 þ

1

2
m2Aa

λAa
λ

�
:

ð6Þ

Employing the ansatz in Eq. (5), the corresponding energy
density ρ and pressure p can be written in terms of three
contributions: the first one coming from the Yang-Mills
term, the second one arising from the κ-term [i.e., the ðFF̃Þ2
term] and the last one from the mass term

ρ ¼ ρYM þ ρκ þ ρA;

p ¼ 1

3
ρYM − ρκ −

1

3
ρA; ð7Þ

where

ρYM ≡ 3

2

�
_ϕ2

a2
þ g2ϕ4

a4

�
; ρκ ≡ 3

2
κg2

ϕ4 _ϕ2

a6
;

ρA ≡ 3

2

m2ϕ2

a2
: ð8Þ

The Friedmann equations read

3m2
PH

2 ¼ 3

2

�
_ϕ2

a2
þ g2ϕ4

a4
þ κg2

ϕ4 _ϕ2

a6
þm2ϕ2

a2

�
; ð9Þ

2m2
P
_H ¼ −2

�
_ϕ2

a2
þ g2ϕ4

a4
þ 1

2

m2ϕ2

a2

�
; ð10Þ

H ≡ _a=a being the Hubble parameter. Varying the action in
Eq. (1) with respect to Aa

ν we get

0 ¼ ∇μ

�
Fa

μν −
κ

12
ðF̃d

ρσFd
ρσÞF̃a

μν

�
−m2Aa

ν

− gεcabAc
μ

�
Fb

μν −
κ

12
ðF̃d

ρσFd
ρσÞF̃b

μν

�
: ð11Þ

By using Eq. (5), the only nontrivial equation of motion for
the gauge fields is

0 ¼ ϕ̈

a

�
1þ κg2

ϕ4

a4

�
þH _ϕ

a

�
1 − 3κg2

ϕ4

a4

�

þ 2g2ϕ3

a3

�
1þ κ

_ϕ2

a2

�
þm2

ϕ

a
: ð12Þ

Equations (9), (10), and (12) give the dynamics of the
inflationary phase. It is more convenient to recast a set of
nonlinear equations in terms of dimensionless expansion
variables [73]. In our case we choose

x≡ 1ffiffiffi
2

p
mP

_ϕ

aH
; y≡ 1ffiffiffi

2
p

mP

gϕ2

a2H
; ð13Þ

w≡ 1ffiffiffi
2

p
mP

mϕ

aH
; z≡ 1ffiffiffi

2
p

mP

ϕ

a
: ð14Þ

The Friedmann equation in Eq. (9) becomes the constraint

1 ¼ x2 þ y2 þ w2 þ 4αx2z4; ð15Þ

from which we can write the variable y as a function of the
other variables and a dimensionless parameter defined as
α≡m4

Pκg
2. By changing the cosmic time twith the number

of e-folds N defined by dN ≡Hdt, and taking into account
Eqs. (10), (12) and the constraint in Eq. (15), we can write
the evolution equation for each independent variable as
follows:

x0 ¼ xðϵ − 1Þ

− ð1þ 4αz4Þ−1
�
2

z
ð1 − x2Þ þ xð1 − 12αz4Þ − w2

z

�
;

ð16Þ

w0 ¼ w

�
x
z
þ ϵ − 1

�
; ð17Þ

z0 ¼ x − z; ð18Þ

where a prime denotes derivative with respect to N, and

ϵ≡ −
_H
H2

¼ 2 − 8αx2z4 − w2 ð19Þ

is the slow-roll parameter.
It is possible to calculate the expected number of e-folds

of inflation at first order in the slow-roll approximation.
Here we show the result for later use [52]:

N ≈
1þ γi þ ωi=2

2ϵi
ln

�
1þ γi þ ωi=2
γi þ ωi=2

�
; ð20Þ

where
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γ ≡ g2ψ2

H2
¼ y2

z2
; ð21Þ

ω≡ m2

H2
¼ w2

z2
; ð22Þ

and the subindex i indicates some initial time before the end
of inflation.
For completeness, in the following subsection we first

study the case where the gauge fields are massless.

A. Massless case

This model was first introduced in Ref. [43] as gauge-
flation. Although several inflationary trajectories were
analyzed in Ref. [43], an exploration of the full available
parameter space of the theory has not been performed yet
and thus only a few particular valid trajectories are known.
In the following, we find the parameter window where
slow-roll dynamics take place.
The massless case is characterized by m ¼ 0 or equiv-

alently w ¼ 0. Equation (17) is trivially satisfied and the
dynamical system is reduced to Eqs. (16) and (18). The
autonomous set has just one physically acceptable fixed
point given by3

x ¼ z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3

p
f2α −

ffiffiffi
33

p

2fα
ffiffiffiffiffiffiffi
9α23

p
s

; ð23Þ

where

fα ≡
�
9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 3

α

r �1=3

: ð24Þ

This point exists for all positive α.
The slow-roll parameter in the fixed point is given by

ϵ ¼ 2 − 8αz6 ¼ 2 −
ðf2α −

ffiffiffi
33

p
=α3Þ3

9f3α
: ð25Þ

Now, assuming the reasonably upper bound for enough
slow-roll phase [74]

ϵ < 10−2; ð26Þ

we find that

α > 1.99 × 106; ð27Þ

hence, in the massless case, the only relevant parameter of
the system has to be very large in order to inflation has a
correct length.
The linear stability analysis shows that the fixed point is

hyperbolic, i.e., the Jacobian matrix obtained from the
dynamical system does not have any vanishing eigenvalue
upon evaluation in the fixed point. In Fig. 1 we plot the two
eigenvalues as functions of the parameter α in the region
where slow-roll solutions exist. We can see that one
eigenvalue is positive, λ1 > 0, and the other one is negative,
λ2 < 0, therefore the fixed point is a saddle in the space
ðx; zÞ. Moreover, we have corroborated that λ1 → 0 and
λ2 → −3 when α → ∞. This means that gaugeflation
naturally agrees with the fact that inflation is a transient
phase of the Universe. Inflation as a saddle fixed point has
been addressed in other works (e.g., see Refs. [75,76]).
Therefore, the dynamical analysis shows that the only fixed
point of the system corresponds to a slow-roll inflationary
solution for large α.
Now, we will proceed to present a numerical solution to

see the behavior of the system under specific initial
conditions. In Ref. [43], each inflationary trajectory is
specified by a set of four values4 ðψ i; _ψ i; κ; gÞ. However,
our dynamical analysis reveals that there is a particular
point in the physical phase space ðx; zÞ which can be fully
specified only by the parameter α, being very useful for
fixing the initial conditions. As an example of this
particular slow-roll trajectory in the massless case
(ω ¼ 0), we choose

α ¼ 2 × 106; ð28Þ

such that the variables in the fixed point in Eq. (23) are
approximately

FIG. 1. Eigenvalues of the Jacobian matrix. The fixed point is a
saddle since λ1 > 0while λ2 < 0 in the region α > 2 × 106 where
slow-roll solutions exist.

3The fixed point is found upon regularization due to possible
singularities in z ¼ 0, and it is physically acceptable because the
variables take real values and the Friedmann constraint (15) is
satisfied.

4Here, the subscript i means that the corresponding quantity is
evaluated some time before the end of inflation.
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xi ¼ zi ≈ 0.0706517: ð29Þ

The function γ in Eq. (21) and the slow-roll parameter in
Eq. (25) take the values

γi ≈ 4.8 × 10−4; ϵi ≈ 9.9 × 10−3; ð30Þ

which in Eq. (20) translates into

N ≈ 383: ð31Þ

As it can be seen in the upper part of Fig. 2, for the
chosen initial conditions, the gauge field is nearly constant
during inflation, then it suddenly falls off around N ¼ 368
and starts to oscillate, showing good matching with the
analytical results. As explained in Ref. [43], these oscil-
lations are presented because ρYM becomes the dominant
term at the end of inflation, and thus the system behaves as
a quartic chaotic-like inflation theory. Support for this
interpretation is given in the lower part of Fig. 2 where we
see that the slow-roll parameter is small during inflation
and it grows around N ¼ 368, oscillating and reaching its

upper limit equal to 2, which represents a “dark radiation”
domination epoch.5 This is due to ϵ and can be written as

ϵ ¼ 2
ρYM

ρYM þ ρκ
: ð32Þ

Since the inflationary solution corresponds to a saddle
fixed point, it is possible to find initial conditions that do
not yield to slow-roll dynamics, i.e., inflation does not last
enough time. For example, we can regard xi ≠ zi, i.e., we
choose a nonzero speed for the field as an initial condition.
As expected, the main effect is a drastic reduction in the
number of e-folds while generating bigger values for γi. For
the same value of α ¼ 2 × 106 and being careful about y2i >
0 [remember the constraint in Eq. (15)], we consider the
following initial values:

xi ¼ 0.070651; zi ¼ 0.0706; ð33Þ

yielding to

γi ¼ 0.58811; ϵi ¼ 0.0158458; ð34Þ

and corresponding to

N ≈ 49; ð35Þ

showing the great impact that a slight change in the speed
of the field ( _ψ i ≈ 7.2 × 10−5Hi) has on the evolution of the
system. This feature is important since, at perturbative
level, there are bounds on the possible values of γ (see
Ref. [43]), and as shown in Ref. [65], the scalar perturba-
tions present a strong tachyonic instability for γ < 2.
Nonetheless, we do not care about these cumbersome
features since we are only interested in the dynamical
behavior of the system at the background level.
From these numerical results, we also can give a rough

estimation of the values of the parameters κ and g noticing
that

H
g
¼

ffiffiffi
2

p
z2

y
mP: ð36Þ

Although the energy scale of inflation is not known yet, the
preferred scale is H ≲ 10−5mP. Then, supposing Hi ¼
3.5 × 10−5mP and using the first set of initial conditions
we get

g ≈ 7.6 × 10−6; κ ≈ 3.4 × 1016m−4
P : ð37Þ

These parameters were estimated in Ref. [43] after a linear
perturbation treatment of the theory in order to agree with

FIG. 2. Evolution of the gauge field (upper) and the slow-roll
parameter (lower). The field ψ ¼ ϕ=a and the slow-roll param-
eter ϵ are nearly constant during inflation. The field suddenly
decays while ϵ reaches its upper bound near to N ¼ 368 around
the value predicted in Eq. (31). The disagreement between these
values is due to numerical approximation.

5By dark radiation we mean the “radiation” associated to the
Yang-Mills term.
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the observational data available at that time [77]. However,
here we have shown that it is possible to estimate the order
of magnitude of them through a classical dynamical system
approach in a much simpler way.

B. Massive case

At the background level, the gaugeflation scenario can
solve the classical cosmological problems by producing an
inflationary phase which lasts enough number of e-folds.
Nonetheless, the main test of any inflationary model relies
in its observational signatures, which are imprinted on the
CMB data. In Ref. [65] it was shown that some difficulties
arise at the linear perturbative level: for γ < 2, the scalar
perturbations show a strong tachyonic instability, and, in
the stable region γ > 2, any set of initial conditions does
not exist that preserves the relation between the tensor-to-
scalar ratio r and the spectral index ns in the confidence
region allowed by the results of Planck 2013 [64]. Then, it
is clear that the theory requires some modifications in order
to not be discarded by observations.
In Ref. [52] was proposed “massive gaugeflation,”where

an explicit gauge-symmetry breaking mass term was
considered. In that work, some of the classical inflationary
trajectories of the model were studied, showing that the
introduction of the mass term does not harm the good
features of the original gaugeflation model while having the
potential to modify the ns vs r relation. The linear
perturbation theory was carried out in Ref. [54], where it
was shown that the dynamics remain unstable for γ < 2,
nonetheless the model can produce observationally viable
spectra in the stable region, according to Planck 2013 [64].
In this case m ≠ 0, implying ω ≠ 0, and so the dynami-

cal system is given by the full set of Eqs. (16)–(18). The
system has again only one physically acceptable point,
where x and z take the same values in Eq. (23) and w ¼ 0.
Since w ¼ 0, this point has the same properties as in the
massless case: it exists for all α, the slow-roll parameter is
the same in Eq. (25), and slow-roll solutions require a large
α. This is not a surprise since the mass term does not
contribute to the existence of an accelerated expansion.
Note that in this case, we cannot fully specify the initial
conditions for inflation only by fixing α since ω is not given
in terms of α.
The linear stability analysis shows that this point is

hyperbolic as well since there are no vanishing eigenvalues.
In Fig. 3 we plot these eigenvalues as functions of the
parameter α in the region where slow-roll solutions exist.
We note that two eigenvalues are positive, λ1 > 0 and
λ2 > 0, while the other one is negative, λ3 < 0, therefore
the fixed point is a saddle in the phase space ðx; w; zÞ, as
expected. We verified that λ1 → 0, λ2 → 0 and λ3 → −3
when α → ∞.
The eigenvalues λ2 and λ3 in Fig. 3 are the same λ1 and λ2

in Fig. 1, respectively. The new eigenvalue is λ1. The
eigenvector associated with λ1 is (0,1,0) in the space

ðx; w; zÞ, meaning that the variable w runs away from 0
to a greater value during inflation. This is expected since at
the end of inflation the κ term decays to zero and the Yang-
Mills term or the mass term becomes dominant.
As mentioned before, the parameter α does not fully

specify the initial conditions (unless m ¼ 0), then we have
to investigate the impact that the mass term, encoded in the
function ω in Eq. (22), has on the inflationary phase.
Using Eq. (22), we can write the constraint in Eq. (15) as

y2 ¼ 1 − x2ð1þ 4αz4Þ − ω2z2: ð38Þ

From the last equation, it is clear that once α, x, and z are
fixed, ω cannot take arbitrary values since it could push the
variable y to complex values, which is physically unac-
ceptable. Now, using the first set of initial conditions of the
massless case,

α ¼ 2 × 106; xi ¼ zi ¼ 0.0706517; ð39Þ

we get

ωi < 0.00047539; ð40Þ

for y2i > 0. Since yi depends on the choice of ωi, we note
that γi will depend on this function through Eq. (21).
Therefore the number of e-folds can be given only in terms
of ωi. As it can be seen in Fig. 4, the case ωi ¼ 0
corresponds to N ≈ 382 agreeing perfectly with the result
given in Eq. (31). From this figure, it is clear the effect that
the mass term has on the model: it increases the length of
the inflationary phase. Furthermore, by using Eq. (22),
Eq. (36) and the Friedmann constraint in Eq. (38) we can
write N in terms of the mass m which yields to the same
conclusion (see Appendix A for a detailed derivation). It is
worth mentioning here the results given in Ref. [52]. In that
work, the authors claim that the mass “reduces” the length

FIG. 3. Eigenvalues of the Jacobian matrix. Since λ1 > 0; λ2 >
0 and λ3 < 0 in the region where ϵi < 10−2, corresponding to
inflationary solutions.
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of inflation, which they show in their Fig. 3. However, this
opposite conclusion to ours is because the authors of
Ref. [52] plot the number of e-folds as a function offfiffiffiffiffi
ωi

p
(fixing Hi) ignoring the relation between this function

and γi through Friedmann equations, i.e., γi cannot be fixed
if ωi is varying.
As a complement to our qualitative and analytical results,

we numerically integrate the full dynamical system in
Eqs. (16)–(18). Choosing

ωi ¼ 3 × 10−4; ð41Þ

we get

γi ≈ 1.8 × 10−4; ϵi ¼ 9.9 × 10−3; ð42Þ

and the expected number of e-folds

N ≈ 402: ð43Þ

As can be seen in the upper part of Fig. 5, for the chosen
initial conditions, the gauge field is nearly constant during
inflation, then it suddenly falls off around N ¼ 403 and
starts to oscillate, showing perfect matching with the
analytical results. In the lower part of Fig. 5, the slow-
roll parameter grows from a nearly zero value until ϵ ¼ 1
around N ¼ 402 where slow-roll inflation ends. At this
stage, the Universe is dominated by the mass term but soon
the Yang-Mills term becomes dominant and the slow-roll
parameter oscillates below its upper bound ϵ ¼ 2.
It is also possible to consider greater values for ωi, by

regarding xi ≠ zi. As in the massless gaugeflation model,
this implies a nonzero speed for the field and it has the same
effect here: it reduces the length of inflation. However, this
does not cancel the effect of the mass term increasing this
length as shown in the following. Taking the second set of
initial conditions used in the massless case,

α ¼ 2 × 106; xi ¼ 0.070651; zi ¼ 0.0706; ð44Þ

we get

ωi < 0.584146; ð45Þ

for y2i > 0 from Eq. (38). So, choosing ωi ¼ 0.5 we get
N ≈ 69 as the expected length of inflation although
ϵi ≈ 1.3 × 10−2. Remember that with these initial condi-
tions, the massless model predicts N ≈ 49 ruling it out as a
viable inflationary solution.
From this analysis we can also estimate the values of the

parameters κ and g, through Eq. (36). Using the energy
scaleHi ¼ 3.5 × 10−5mP and using the second set of initial
conditions we get

g ≈ 10−4; κ ≈ 1.9 × 1014m−4
P ; ð46Þ

which are roughly of the order to the values estimated in
Eq. (37) for the massless model.

1. Possible consequences at the perturbative level

From the analysis above we learn that once the constant
α, the magnitude of the field ψ , and its speed ψ 0 ¼ _ψ=H are

FIG. 4. Number of e-folds in the function of ωi. The mass term
increases the length of the inflationary phase.

FIG. 5. Evolution of the gauge field (upper) and the slow-roll
parameter (lower). The field ψ ¼ ϕ=a and the slow-roll param-
eter ϵ are nearly constant during inflation. The field suddenly
decays while ϵ reaches its upper bound around N ¼ 403 as stated
in Eq. (43). The parameter ϵ presents another peak around 1 due
to the presence of the mass term.
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fixed, the parameters γ and ω are related by the Friedmann
constraint in Eq. (15), in such a way that one cannot fix one
of them while varying the other one. To elucidate the
possible impact of the relation between γ and ω, we take a
minimal example coming from the results obtained in
Ref. [54] where the linear perturbation of the massive
gaugeflation model was worked out. Assuming α ¼ 109,
x ¼ 0.02509638, z ¼ 0.02508 and taking into account that
y has to be real and γ > 2 in order to avoid tachyonic
instabilities, we get the bound

ω < 2.14366: ð47Þ

The late time decay rate of the scalar power spectrum is
given by [see Eq. (3.58) of Ref. [54] ]

nscal ¼ ϵ

�
1þ M2 − 6

2γ þM2 þ 2

�
: ð48Þ

In Fig. 6 we plot nscal normalized to ϵ with respect to the
mass parameter. The upper part of Fig. 6 is the plot shown
in Ref. [54], where γ is fixed and M ¼ m=H varies. The
lower part of Fig. 6 shows the result obtained when taking
into account the relation between γ and ω, which of course
corresponds to only one curve. We also found some
differences between the plots of the chirality parameter
[Eq. (3.114) of Ref. [54] ] and those made by us, consid-
ering the relation between γ and ω. We want to stress that
the perturbative analysis of the model is out of the scope of
this work, and although the dependence between the
parameters γ and ω has the potential to modify the scalar
spectral index or the tensor-to-scalar ratio (as we see from
the expression for nscal), a full treatment of perturbations for
the massive case is needed. We leave this complete
examination for a future work, where we also plan to
compare with the results given in Ref. [54], and also to see
if the massive gaugeflation proposal can be (or not be) in
agreement with the observational bounds.

III. DARK ENERGY FROM GAUGE FIELDS

In Ref. [56] the massless case of the action in Eq. (1) was
studied in the context of dark energy. There it was shown
that, for several sets of initial conditions and parameters, the
dynamics of the non-Abelian gauge field can account for
the late-time accelerated expansion of the Universe. Here
we extend the model by considering the effect of the mass
term in the cosmological evolution and use a dynamical
system approach to fully describe the late-time behavior of
the expansion. In particular, we explicitly show that dark
energy domination is indeed an attractor and give the full
parameter space of the theory, complementing the results
given in Ref. [56].
In order to reproduce the known expansion history of

the Universe, let us modify the density and pressure in
Eq. (7) as

ρ ¼ ρDE þ ρm þ ρr; ð49Þ

p ¼ pDE þ
1

3
ρr; ð50Þ

where ρm is the density of dust (pm ¼ 0), ρr is the density
of radiation (pr ¼ ρr=3), and ρDE and pDE are given by
Eq. (7). The Friedmann equations in Eqs. (9) and (10)
become

3m2
PH

2 ¼ 3

2

�
_ϕ2

a2
þ g2ϕ4

a4
þ κg2

ϕ4 _ϕ2

a6
þm2ϕ2

a2

�
þ ρm þ ρr;

ð51Þ

FIG. 6. Plot of the late-time decay of the scalar power spectrum
nscal=ϵ as a function of the mass parameters given by Eq. (3.58) of
[54]. Upper: result obtained when γ is fixed whileM ¼ m=H can
vary (see Fig. 5 of Ref. [54]). Lower: result obtained when the
relation between γ and ω ¼ M2 is considered.
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2m2
P
_H ¼ −2

�
_ϕ2

a2
þ g2ϕ4

a4
þ 1

2

m2ϕ2

a2
þ 1

2
ρm þ 2

3
ρr

�
: ð52Þ

Since the barotropic fluids do not introduce new terms to
the gauge field equation of motion, it is given again by
Eq. (12). These equations are complemented by the usual
continuity equations for the barotropic fluids,

_ρm þ 3Hρm ¼ 0; _ρr þ 4Hρr ¼ 0: ð53Þ

Proceeding as in the inflationary case, from the
Friedmann equation in Eq. (51) we define the dimension-
less variables defined in Eq. (14) and the density param-
eters for radiation and matter as

Ωr ≡ ρr
3m2

PH
2
; Ωm ≡ ρm

3m2
PH

2
: ð54Þ

Hence Eq. (51) becomes a constraint from which we can
write Ωm in terms of the other variables as

Ωm ¼ 1 − x2ð1þ 4αz4Þ − y2 − w2 −Ωr: ð55Þ

Using the equation of motion in Eq. (12), the continuity
equation in Eq. (53) for radiation fluid, and the constraint in
Eq. (55), the autonomous set of equations reads

x0 ¼ xq − ð1þ 4αz4Þ−1
�
2
y2

z
þ 8αx2z3

þ xð1 − 12αz4Þ þ w2

z

�
; ð56Þ

y0 ¼ y

�
2
x
z
þ q − 1

�
; ð57Þ

w0 ¼ w

�
x
z
þ q

�
; ð58Þ

z0 ¼ x − z; ð59Þ

Ω0
r ¼ 2Ωrðq − 1Þ; ð60Þ

where the deceleration parameter q≡ −1 − _H=H2 is
obtained from Eq. (52) as

q ¼ 1

2
½1þ x2ð1 − 12αz4Þ þ y2 − w2 þ Ωr�: ð61Þ

From this deceleration parameter, we can define the
effective equation of state weff ≡ 2q−1

3
which in terms of

the dimensionless variables reads

weff ¼
1

3
½x2ð1 − 12αz4Þ þ y2 − w2 þΩr�; ð62Þ

which completely characterizes the evolution of the average
scale factor aðtÞ. The dark sector is characterized by the
density parameter ΩDE ≡ ρDE=ð3m2

PH
2Þ and the equation

of state wDE ≡ pDE=ρDE:

ΩDE ¼ x2ð1þ 4αz4Þ þ y2 þ w2; ð63Þ

wDE ¼ 1

3

x2ð1 − 12αz4Þ þ y2 − w2

x2ð1þ 4αz4Þ þ y2 þ w2
: ð64Þ

A. Fixed points

In what follows, we study the fixed points relevant for
the cosmological evolution, namely, the radiation era
(Ωr ≃ 1; weff ≃ 1=3), the matter era (Ωm ≃ 1; weff ≃ 0),
and the dark energy era (ΩDE ≃ 1; weff < −1=3).

(i) (R) Radiation dominance

x¼0; y¼0; w¼0; z¼0; Ωm¼0; ð65Þ

with ΩDE ¼ 0, wDE undetermined and Ωr ¼ 1.
(ii) (M) Matter dominance

x¼ 0; y¼ 0; w¼ 0; z¼ 0; Ωr¼ 0; ð66Þ
with ΩDE ¼ 0, wDE undetermined and Ωm ¼ 1.

(iii) (S) Scaling matter-dark energy

x ¼ z ¼ 1ffiffiffi
2

p ffiffiffiffiffiffi
3α4

p ; y ¼ 0; w ¼ 0; Ωr ¼ 0;

ð67Þ
with ΩDE ¼ 2=ð3 ffiffiffiffiffiffi

3α
p Þ, wDE ¼ 0 and Ωm ¼

1 −ΩDE.
In order to have Ωm > 0 we need to consider

α > 0.148148. This point corresponds to an effective
matter epoch since weff ≃ 0. From the CMB constraint
given by Planck [78], the density parameter of dark energy
is constrained to be ΩDE < 0.02 around the redshift
zr ¼ 50,6 which implies α > 370.37. For a proper matter
epoch, Ωm has to be the dominant component in the energy
budget. For instance, requiring 0.999 < Ω ≤ 1, we find
α > 1.48148 × 105. Aside of the exact value of α, we can
conclude that α has to be large.

(i) (DE) Dark energy dominance

x ¼ z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3

p
f2α −

ffiffiffi
33

p

2fα
ffiffiffiffiffiffiffi
9α23

p
s

; y ¼ 0;

w ¼ 0; Ωr ¼ 0; ð68Þ

6We will denote the redshift by zr to avoid confusion with the
variable z in the dynamical systems.
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with ΩDE ¼ 1, Ωm ¼ 0 and

wDE ¼ −1þ 2fα
9

� ffiffiffi
3

α
3

r
þ

ffiffiffi
α

3

3

r
fαð18 − f3αÞ

�
: ð69Þ

This point corresponds to an accelerated expansion solution
if wDE < −1=3, which implies that α > 1. Since observa-
tions favor wDE ≈ −1 [71], from Eq. (69), for example,
−1 ≤ wDE < −0.99 implies α > 5.88148 × 105. We con-
clude that the dark energy component can behave in
agreement with the observational bounds for large α.

B. Stability analysis

In the present case, the fixed points (R) and (M) require
z ¼ 0, thence the eigenvalues evaluated in these points
could yield to singularities. However, only the sign of the
real part of the eigenvalues carries the information about the
stability of the point. Therefore, we consider the eigenval-
ues �∞ as a positive or negative eigenvalue. Now, we
proceed to discuss the stability of each fixed point by
analyzing the sign of the eigenvalues λ1;2;3;4;5.

(i) (R) Radiation dominance

2; 1; −∞; þ∞; þ∞: ð70Þ
This point is a saddle since four eigenvalues are
positive and one is negative. The eigenvector asso-
ciated with λ2 ¼ 1 is (0,0,0,0,1) in the space
ðx; y; w; z;ΩrÞ. Therefore, the point is unstable in
the Ωr direction, meaning that the variable Ωr runs
away from its value in the fixed point.

(ii) (M) Matter dominance

3

2
; −1; −∞; þ∞; þ∞: ð71Þ

This point is a saddle since three eigenvalues are
positive and two are negative. The eigenvector
associated with λ2 ¼ −1 is (0,0,0,0,1), meaning that
the radiation contribution is decreasing sinceΩr ¼ 0
is an attractor in the Ωr direction.

(iii) (S) Scaling matter-dark energy

−
3

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33

16
−

1ffiffiffiffiffiffi
3α

p
s

; −
1

2
;

3

2
;

3

2
: ð72Þ

This point is a saddle independently of the value of
α. The eigenvectors associated with λ4;5 ¼ 3=2 are
(0,0,1,0,0) and (0,0,0,1,0), respectively. This means
that the point is a repeller in the y and w directions.
The numerical solution given below shows that this
point is indeed irrelevant in the cosmological dy-
namics since wDE never spends time around
this point.

(iv) (DE) Dark energy dominance
In this case, the eigenvalues are very long quantities,

therefore, we investigate the stability of the point by

plotting them as functions of α for large values of this
parameter. In Fig. 7, we can see that λ1;2 > 0 while the
other eigenvalues are negative such that this point corre-
sponds to a saddle in the phase space ðx; y; w; z;ΩrÞ. We
verified that λ1 → 0, λ2 → 0, λ3 → −4, λ4 → −3 and λ5 →
−3 when α → ∞. Although in general this point is not an
attractor, as usual in dark energy models, this is not a
problem for the theory. Moreover, we argue that (DE) is
indeed an attractor in the relevant physical space. The
eigenvector associated with λ1 is (0,1,0,0,0) while the
eigenvector of λ2 is (0,0,1,0,0), such that this point is a
repeller in the y and w directions, i.e., the variables y and w
run away from zero. In this point we have x ¼ z, which
implies y ∝ ψ2=H ∝ 1=H, given that _ψ ¼ 0 and
ψ ¼ const. Now, since H decreases with the expansion,
the variable y increases in the same proportion. Therefore,
we realize that λ1 > 0 is needed for the theory to be
consistent. The same argument follows for λ2 > 0 since
w ∝ ψ=H. Therefore, we conclude that this point is a
physical attractor but a saddle in the state space spanned by
the chosen variables. This is not surprising since the phase
space ðx; y; w; z;ΩrÞ is not compact, hence there will not be
necessarily a source point and an attractor point in the phase
space [79]. These arguments are further supported by
numerical results in the next subsection.

C. Numerical analysis

We proceed to solve the autonomous set of equations (56)
to (60) through a numerical integration. Based in the
dynamical system analysis, the initial conditions are chosen
in the deep radiation era. Explicitly we choose7

FIG. 7. The five eigenvalues of the Jacobian matrix. The fixed
point is a saddle λ1;2 > 0 and λ3;4;5 < 0. However, this point is an
attractor in the relevant physical space. The scale for α is the same
for all the plots.

7Here, the subscript i means that the corresponding quantity is
evaluated some time in the deep radiation epoch.
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α ¼ 109; xi ¼ 3 × 10−30; zi ¼ 1.1 × 105;

yi ¼ 0.001; Ωri ¼ 0.99998: ð73Þ

The value of ωi is constrained by Eq. (55). For Ωmi
> 0 we

have ωi ≡m2=H2
i < 1.57025 × 10−15, so we choose

ωi ¼ 5 × 10−29; ð74Þ

corresponding to Ωmi
¼ 1.9 × 10−5 at the red-

shift8 zr ¼ 2.18 × 108.
Using these initial conditions, in Fig. 8 we plot the

density parameters and the effective equation of state as
functions of redshift zr. We can see that at early times
(zr > 104), the dominant cosmic fluid corresponds to
radiation (red dotted line), with weff ¼ 1=3 (blue dot-
dashed line). Then, around zr ¼ 3200, we have radia-
tion-matter equality, i.e., Ωr ≃Ωm. The matter epoch (light
brown dashed line) runs from this point to zr ≈ 0.3, where
weff ¼ 0. At this point the dark energy component (black
solid line) represents the half of the energy budget in the
Universe. After this time, the dark energy era begins

together with the accelerated expansion characterized
by weff ≈ −1.
Let us analyze in more detail each of the relevant periods

discussed above.

1. Radiation dominated period

This period runs from zr ≃ 4000 and on to the past. In
Fig. 9 we can see that at early times, the gauge field decays
from a large value in a decelerated way (in magnitude). The
contribution of early dark energy to this period is ΩDE ≈
4 × 10−7 well below the big-bang nucleosynthesis (BBN)
constraint ΩDE < 0.045 at zr ¼ 3200 [80]. During this
period, the main contribution to the dark sector comes from
the Yang-Mills term. We plot from zr ≈ 7 × 1010 to
zr ¼ 3000, such that the total length of the radiation
dominated period from the end of inflation to the time
of radiation-matter equality is consistent with the constraint
given in Ref. [57].

2. Matter dominated period

This period runs from zr ≃ 4000 to zr ≃ 0.3. In Fig. 10,
we can see that during this epoch the gauge field is still
decaying in a decelerated way (in magnitude). The con-
tribution of dark energy around zr ¼ 50 is ΩDE ≈ 2 × 10−5,
well below the CMB constraint ΩDE < 0.02 [78]. During

FIG. 9. Evolution of the gauge field (upper), and its speed
(lower), during the radiation dominated period. The gauge field
decays from a large value in a decelerated way (in magnitude).

FIG. 8. Evolution of the density parameters and the effective
equation of state during the whole expansion history. The initial
conditions were chosen in the deep radiation era at the redshift
zr ¼ 2.18 × 108. The Universe passes through radiation domi-
nance at early times (red dotted line), followed by a matter
dominance (light brown dashed line), and ends in the dark energy
dominance (black solid line) characterized by weff ≈ −1 (blue
dot-dashed line).

8The relation between the number of e-folds and the redshift is
given by N ¼ − lnð1þ zrÞ.
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this period, the main contribution to the dark sector comes
from the Yang-Mills term, however, it is possible to find
initial conditions where the mass term is the main dark
component.

3. Dark energy dominated period

This period runs from zr ≈ 0.3 on into the future. During
this epoch (Fig. 11), the gauge field decays until it reaches a
minimum and after that a constant value, when its speed
goes to zero, as expected since x ¼ z in the point (DE)
(dark energy dominance). The asymptotic value of the
gauge field is ψ ≈ 0.0354378mP, in agreement with

ffiffiffi
2

p
z ¼

0.0354917 which is the value in the attractor point (DE).
We also can perform a rough estimation of the param-

eters κ and g. Replacing y0 and z0 in Eq. (36) we get9

H0

g
¼

ffiffiffi
2

p
z20

y0
mP ≈ 0.042mP; ð75Þ

and using the observational value H0 ≈ 10−61mP [71] we
find

g ≈ 2.38 × 10−60; κ ≈ 1.76 × 10130m−4
P : ð76Þ

This calculation shows that the gauge coupling g is
extremely small (the order of 10−60), while the parameter κ
is extremely large (the order of 10130m−4

P ).

D. Dark energy equation of state

From the above numerical solution we can say that, at
late times, the dark sector behaves very similar to a
cosmological constant once the κ term is dominating the
energy budget. However, in order to thoroughly character-
ize the behavior of this sector, it is necessary to study the
evolution of its equation of state.
Because of the Friedmann constraint in Eq. (55), the

values of the variables wi and yi are determined by ωi [see
Eq. (74)]. In Fig. 12 we plot wDE for several values of ωi.
For zr > 104 we see that wDE ≈ 1=3, meaning that the dark
sector behaves as a radiation fluid at early times. This is
expected since the Yang-Mills term is dominating over the
dark components during this period, so this term can
contribute to the early relativistic degrees of freedom as
claimed in Ref. [56]. We also see that for ωi ≠ 0 it is
possible that the mass term dominates the dark sector

FIG. 10. Evolution of the gauge field (upper), and its speed
(lower), during the matter dominated period. The gauge field is
still decaying in a decelerated way (in magnitude).

FIG. 11. Evolution of the gauge field (upper), and its speed
(lower), during the dark energy dominated period. The gauge
field ψ reaches a constant value at late times, where _ψ ¼ 0, and it
becomes an effectively cosmological constant.

9The subscript 0 means that the corresponding quantity is
evaluated today.
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implying wDE ≈ −1=3. This is a new behavior with respect
to the results given in Ref. [56]. As a comment, a fluid with
equation of state equal to −1=3 cannot drive accelerated
expansion. However, there is no transition period from
decelerated expansion to accelerated expansion in our
model, because dust is the dominant fluid when wDE ≈
−1=3 and thus weff ≈ 0. Note that in all of the cases, the
final stage of the Universe is dark energy domination,
which is reached at different cosmological epochs, depend-
ing on the value of ωi. This behavior takes place due to
modifications in the Hubble parameter since a change in ω
implies a change in H=g by the relation in Eq. (36), once
the other variables are fixed.
In Fig. 12 we realized that the point (S), i.e., the matter-

dark energy scaling solution, is irrelevant to the cosmo-
logical dynamics. This can be noticed since in this point
wDE ¼ 0 but the equation of state of dark energy never
spends much time in this stage, so (S) is not a metastable
point as (R) and (M) are. In this plot, we also see that wDE
has some peaks around zr ¼ 10. This is because, around
this time, the gauge field reaches its minimum magnitude,
as can be seen in Fig. 11. We want to stress that this
particular behavior of wDE is a distinctive property found in
this model that was not reported in Ref. [56].
As expected −1 < wDE < 1=3, contrasting with the

equation of state of any quintessence model where
−1 < wDE < 1. The main difference is in the so-called
“kination” period, which corresponds to the epoch when
the kinetic term of the quintessence field dominates over its
potential. This period must be prior to the radiation

dominance epoch since the energy density of the quintes-
sence field decays as a−6 [11]. As a comment, some authors
claim that this kination period could be very useful in the
study of the reheating process (see e.g., Refs. [81–86]).

E. Anisotropic massless case

So far, we have discussed systems embedded in an
FLRW metric. It was shown that any early background
spatial shear is extremely damped within a few e-folds
during the inflationary phase [44]. In contrast, the vector
gauge field acquires a constant magnitude in the late-time
cosmological expansion. This suggests that the gauge field
could support an anisotropic expansion. In the following,
we investigate this possibility where, by simplicity, we only
consider massless gauge fields.
We assume a homogeneous but anisotropic spacetime

described by the axially symmetric Bianchi-I metric,

ds2 ¼ −dt2 þ e2α½e−4σdx2 þ e2σðdy2 þ dz2Þ�; ð77Þ

where eαðtÞ ¼ aðtÞ is the average scale factor and σðtÞ is
the shear.
An appropriate axially symmetric ansatz for the gauge

field is

Aa
0ðtÞ ¼ 0; Aa

iðtÞ ¼ eaiðtÞψ iðtÞ; ð78Þ

where

e11ðtÞ ¼ eαðtÞ−2σðtÞ; e22ðtÞ ¼ e33ðtÞ ¼ eαðtÞþσðtÞ; ð79Þ

ψ1ðtÞ ¼
ψðtÞ
λ2ðtÞ ; ψ2ðtÞ ¼ ψ3ðtÞ ¼ λðtÞψðtÞ; ð80Þ

with λðtÞ a function parametrizing the deviation from the
isotropic configuration of the gauge field. This kind of
ansatz has been used in other works where the dynamics of
gauge fields in anisotropic backgrounds is studied (see
Refs. [44,45,49]).
Employing the axial ansatz in the energy tensor in

Eq. (6), and assuming massless gauge vector fields, i.e.,
ma ¼ 0, the density and pressure coming from the Yang-
Mills term are

ρYM ¼ 1

2λ4

�
_ϕ

a
− 2

ϕ

a

�
_σ þ

_λ

λ

��2
þ λ2

�
_ϕ

a
þ ϕ

a

�
_σ þ

_λ

λ

��2

þ g2ϕ4

2a4
2þ λ6

λ2
; ð81Þ

and pYM ¼ ρYM=3. For the κ term, we have pκ ¼ −ρκ with
ρκ given by Eq. (8) meaning that this term does not
introduce anisotropies in the energy tensor.

FIG. 12. Evolution of wDE for different ω. Arbitrary values of ω
are not viable since they do not yield to a correct expansion
history of the Universe. The initial state corresponds to dark
radiation, and the final stage to dark energy. The values of α, x, z,
y and Ωr are the same used in the numerical analysis section.
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The corresponding Friedmann equations are

3m2
PðH2 − _σ2Þ ¼ ρYM þ ρκ þ ρr þ ρm; ð82Þ

m2
Pð _H þ 3_σ2Þ ¼ −

�
2

3
ρYM þ 2

3
ρr þ

1

2
ρm

�
; ð83Þ

m2
Pðσ̈ þ 3H _σÞ ¼ 1

3λ4

�
_ϕ

a
− 2

ϕ

a

�
_σ þ

_λ

λ

��2

−
g2ϕ4

3a4
1 − λ6

λ2
−
λ2

3

�
_ϕ

a
þ ϕ

a

�
_σ þ

_λ

λ

��2
:

ð84Þ

The axial ansatz in the equations of motion for the gauge
field components yields to two related equations given by

0 ¼ ϕ̈

a

�
1þ 1

3
κg2

ϕ4

a4
2þ λ6

λ2

�
þH

_ϕ

a

�
1 − κg2

ϕ4

a4
2þ λ6

λ2

�

− 2
ϕ

a

�
_σ2 −

_λ2

λ2

�
þ 2

3

g2ϕ3

a3
1þ 2λ6

λ4

þ 2

3
κg2

ϕ3 _ϕ2

a5
2þ λ6

λ2
; ð85Þ

and

0 ¼
̈λ
λ
þ 2

_ϕ

ϕ

_λ

λ
þ σ̈ − _σ2 þH

�
_σ þ

_λ

λ

�
þ g2ϕ2

a2
1þ λ6

λ4

þ ϕ̈

ϕ

�
1þ κg2

ϕ4

λ2a4

�
þH _ϕ

ϕ

�
1 − 3κg2

ϕ4

λ2a4

�
: ð86Þ

The value of the present shear is constrained to be jΣ0j ≤
Oð0.001Þ [66,70]. More restricted bounds are expected
from future observational missions like Euclid [87]. Since
observations rule out high anisotropies, we are interested
in anisotropic solutions near to the isotropic solutions
obtained in the last section. Therefore, we rewrite the
system using the same expansion variables defined in
Eqs. (14) and (54). The dynamical degrees of freedom
involving the anisotropy in the gauge field and the back-
ground are encoded in the variables

l≡ λ2; s≡ _λ

λH
; Σ≡ _σ

H
; ð87Þ

such that the isotropic limit corresponds to l ¼ 1, s ¼ 0 and
Σ ¼ 0. In this case, the dynamical systems technique
provides an autonomous set very hard to deal with. We
present the full system in Appendix B. Instead of looking
for the fixed points of the whole system, we numerically
integrate the system around the isotropic solutions found in
the last section. Explicitly, we use the same initial con-
ditions of the isotropic case, with ωi ¼ 0, and assume that

li ¼ 1 − 10−20; si ¼ 10−20; ð88Þ
at zr ¼ 2.18 × 108, while Σi varies 2 orders of magnitude
from a very small value. As seen in Fig. 13, even a small
deviation from the initial conditions used in the isotropic
model yields a non-negligible amount of anisotropy in the
present Universe. The values obtained are within the
observational bounds, explicitly we found jΣ0j < 5 × 10−4.

FIG. 13. Evolution at late times of the anisotropic degrees of
freedom. The initial conditions were chosen in the deep radiation
epoch, corresponding to the same ones used in the isotropic
model with l ¼ 1–10−20 and s ¼ 10−20, while Σ varies. Even a
small deviation from the isotropic initial conditions yields to a
non-negligible anisotropic contribution to the present Universe
density budget.
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The equation of state of dark energy is also modified by
the anisotropy in the following way:

wDE ¼ pDE

ρDE
¼ 1

3

ΩYM − 3Ωκ þ 3Σ2

ΩYM þΩκ þ Σ2
; ð89Þ

where ΩYM ≡ ρYM=3m2
PH

2 and Ωκ ≡ ρκ=3m2
PH

2 are the
density parameters for the Yang-Mills and κ terms, respec-
tively. However, since Σ2 ≪ Ωκ;ΩYM during the whole
expansion history, the contribution of the shear is always
negligible in comparison to the other dark components and
thus the changes are not noticeable. We want to stress that,
although the asymptotic behavior of the model remains
unknown, this model could support a late-time anisotropic
expansion observable nowadays. It is possible that the
Universe lose its anisotropic hair in the future, as it is the
case presented e.g., in Ref. [61]. We left a better exploration
of the cosmological consequences of this model for a
future work.

IV. CONCLUSIONS

In this paper, we studied non-Abelian gauge vector fields
endowed with SU(2) group representation as the unique
source of inflation and dark energy. In the inflationary
scenario, it was shown that this primordial accelerated
expansion can be driven solely by this kind of fields [43].
Since this model, known as gaugeflation, was ruled out
by observations [65], several modifications to the original
model have been proposed. In particular, the introduction
of a mass term could ameliorate the tension [52,54].
However, in these previous works, only some particular
inflationary trajectories were analyzed. Here, by using
a dynamical system approach, we have extended their
results, finding the full available parameter space yielding
to slow-roll inflationary solutions. We realized that slow-
roll inflation is a saddle point in the phase space and thus
this model provides a natural mechanism to end the
inflationary period. We also found that the inclusion of
the mass term increases the length of the slow-roll phase,
instead of reducing it as claimed in Ref. [52]. This
reduction is because the authors of Ref. [52] ignored the
relation between the parameters γi and ωi given by the
Friedmann constraint, once the other initial conditions have
been set. Hence an increase in ωi implied an increase in the
speed of the gauge field _ψ i yielding to a drastic reduction in
the number of e-folds. Thereafter, we remark that our
conclusion could modify the results obtained in Ref. [54]
where the linear treatment of the model was worked out.
For example, the relation between γi and ωi changes the
results of nscal=ϵ (see Fig. 6). To respond to this query, we
plan to make a full treatment of perturbations for the
massive case in a future work.
Regarding the late-time accelerated expansion, we were

able to show that the dark energy domination period is the
only physical attractor of the theory, and thus confirming

the results in Ref. [56] where only some particular sets of
initial conditions and parameters were studied. We also
generalized the model of Ref. [56] by introducing a mass
term to the dynamics. We found that this term yields to new
behaviors in the equation of state of dark energy wDE. For
instance, some peculiar peaks around the redshift zr ¼ 10
were observed (see Fig. 12). By noting that the gauge field
acquires a constant magnitude in the attractor point, we
studied the same action but in a homogeneous and
anisotropic axially symmetrical Bianchi-I background.
The dynamical system of the model is very cumbersome
(see Appendix B) hence we opted for numerical integration
of the autonomous set. Since observations rule out high
anisotropies [66,70] we set the initial conditions near to the
isotropic solutions. We found that, starting from a high
isotropic universe, the gauge field can support a late-time
anisotropic expansion, given that the spatial shear evaluated
today is within the observational bounds. A more rigorous
treatment on anisotropic models of dark energy driven for
non-Abelian gauge fields is left for future works.
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APPENDIX A: EFFECT OF THE MASS TERM ON
THE LENGTH OF INFLATION

In Sec. II B, we studied the effect that the mass term has
on the length of the inflationary period, showing that an
increase in the mass implies an increase in the expected
number of e-folds. We reached that conclusion after
analyzing the behavior of N with respect to the mass
parameter ω (see Fig. 4). Here, we write N explicitly in
terms of m.
By fixing the parameters (g and κ) and the initial values

for the field (ψ i and _ψ i), the Friedmann equation (9)
becomes a quadratic equation for the Hubble parameter,Hi,
in terms of m:

3m2
PH

2
i ¼

3

2
½ðψ iHi þ _ψ iÞ2 þ g2ψ4

i

þ κg2ψ4
i ðψ iHi þ _ψ iÞ2 þm2ψ2

i �: ðA1Þ

Having Hi in terms of m, i.e., Hi ¼ HiðmÞ, we can write
the parameters of the model in terms solely ofm. The slow-
roll parameter in Eq. (19) is

ϵiðmÞ ¼
�
ψ i þ

_ψ i

HiðmÞ
�

2

þ g2ψ4
i

H2
i ðmÞ þ

m2ψ2
i

2H2
i ðmÞ ; ðA2Þ
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while the parameters γi and ωi in Eqs. (21) and (22) are

γiðmÞ ¼ g2ψ2
i

H2
i ðmÞ ; ωiðmÞ ¼ m2

H2
i ðmÞ : ðA3Þ

Therefore, the approximated number of e-folds,

NðmÞ ≈ 1þ γi þ ωi=2
2ϵi

ln

�
1þ γi þ ωi=2
γi þ ωi=2

�
; ðA4Þ

can be expressed as a function of the mass, and thus the
effect of m on the length of inflation can be isolated.
As an example, let us assume that

g ¼ 2.5 × 10−3; κ ¼ 1.733 × 1014;

ψ i ¼ 0.035; _ψ i ¼ 0: ðA5Þ
For this particular set of parameters and initial conditions,
the solution of the quadratic equation (A1) gives

Hi ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.2 × 10−9m2

P þ 0.16m2

q
; ðA6Þ

Supposing that the energy scale of inflation is
Hi < 5 × 10−5mP, the mass is bounded to be

0 ≤ m≲ 9 × 10−5mP: ðA7Þ

In Fig. 14, we plot the expected number of e-folds in terms
of the mass of the field. From this figure, it is clear the effect
that the mass term has on the model: it increases the length
of the inflationary phase.

APPENDIX B: ANISOTROPIC DARK ENERGY:
AUTONOMOUS SYSTEM

We present the full autonomous system obtained from
the expansion variables x, y, z, Ωr, Σ, l and s.

x0 ¼ xqþ p; ðB1Þ

y0 ¼ y

�
2
x
z
þ q − 1

�
; ðB2Þ

z0 ¼ x − z; ðB3Þ

Ω0
r ¼ 2Ωrðq − 1Þ; ðB4Þ

Σ0 ¼ Σðqþ 1Þ þ u; ðB5Þ

l0 ¼ 2ls; ðB6Þ

s0 ¼ sðqþ 1Þ − s2 þ v; ðB7Þ

where the deceleration parameter has the form

q ¼ 1

2

�
1þ 1

3l2
½x − 2zðΣþ sÞ�2 þ y2

2þ l3

3l
þ 3Σ2

þ 2

3
l½xþ zðΣþ sÞ�2 − 12αx2z4 þΩr

�
ðB8Þ

and the functions

p≡ 1ffiffiffi
2

p
Mpl

ϕ̈

aH2
; u≡ σ̈

H2
; v≡ ̈λ

λH2
ðB9Þ

obey the equations

0 ¼ p

�
1þ 4

3
αz4

2þ l3

l

�
þ x

�
1 − 4αz4

2þ l3

l

�

þ 8

3
αx2z3

2þ l3

l
þ 2

3

y2

z
1þ 2l3

l2
− 2zðΣ2 − s2Þ; ðB10Þ

u ¼ 2

3l2
½x − 2zðΣþ sÞ�2 − 2

3
l½xþ zðΣþ sÞ�2

−
2

3
y2

1 − l3

l
− 3Σ; ðB11Þ

and

0 ¼ vþ 2
x
z
sþ u − Σ2 þ Σþ sþ p

z

�
1þ 4α

z4

l

�

þ x
z

�
1 − 12α

z4

l

�
þ y2

z2
1þ l3

l2
þ 8α

x2z3

l
: ðB12Þ

FIG. 14. Number of e-folds in function of m. The mass term
increases the length of the inflationary phase.
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