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We present a new method for joint cosmological parameter inference and cluster mass calibration from a
combination of weak lensing measurements and the abundance of thermal Sunyaev-Zel’dovich (tSZ)
selected galaxy clusters. We combine cluster counts with the spherical harmonic cosmic shear power
spectrum and the cross-correlation between cluster overdensity and cosmic shear. These correlations
constrain the cluster mass-observable relation. We model the observables using a halo model framework,
including their full non-Gaussian covariance. Forecasting constraints on cosmological and mass calibration
parameters for a combination of LSST cosmic shear and Simons Observatory tSZ cluster counts, we find
competitive constraints for cluster cosmology, with a factor of 2 improvement in the dark energy figure of
merit compared to LSST cosmic shear alone. We find most of the mass calibration information will be in
the large and intermediate scales of the cross-correlation between cluster overdensity and cosmic shear.
Finally, we find broadly comparable constraints to traditional analyses based on calibrating masses using
stacked cluster lensing measurements, with the benefit of consistently accounting for the correlations with
cosmic shear.
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I. INTRODUCTION

After the immense progress achieved in the past three
decades, observational cosmology is about to undergo
transformational changes once again. A number of high-
precision, wide-field experiments across the electromagnetic
spectrum will soon start operations. Examples include the
Rubin Observatory Legacy Survey of Space and Time
(LSST),1 Euclid,2 and the Roman Telescope3 in the optical,
as well as the Simons Observatory4 (SO) and CMB Stage 4
(S4) in the microwave, which will deliver galaxy samples of

unprecedented size as well as high-precision measurements
of cosmic microwave background (CMB) anisotropies,
respectively. As the data volume of cosmological surveys
increases, these experiments will become increasingly domi-
nated by systematic rather than statistical uncertainties,
which will require the development of novel analysis
methods.
Galaxy clusters constitute the most massive bound

objects in the Universe, and their abundance as a function
of mass is a powerful probe of cosmology, which has the
potential to tightly constrain the amplitude of matter
fluctuations, σ8, and the fractional matter density today,
Ωm (see, e.g., [1,2]). However, this exciting cosmological
probe has so far received less attention compared to, e.g.,
cosmic shear or galaxy clustering, as it has been limited by
systematic uncertainties related to the determination of
cluster masses (see, e.g., Refs. [1–3] for a discussion).

*anicola@astro.princeton.edu
1https://www.lsst.org/.
2https://www.euclid-ec.org/.
3https://roman.gsfc.nasa.gov/.
4https://simonsobservatory.org/.
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Galaxy clusters can be detected by several different
techniques: (i) in the optical by looking for large over-
densities in the galaxy distribution; (ii) in the microwave,
through their imprint on the observed CMB temperature
anisotropies, the thermal Sunyaev-Zel’dovich (tSZ) effect
[4]; and finally (iii) in the x ray through the emission of the
hot gas trapped inside these clusters. All of these methods
measure an observable that is connected to mass, such as
richness λ, tSZ decrement Y, and gas temperature and
density T, ρ. The uncertainty in the mass-observable
relation is the largest systematic uncertainty in cosmologi-
cal analyses of galaxy clusters and needs to be calibrated
using external data. Weak gravitational lensing is sensitive
to all matter in the Universe, and therefore, the lensing
signal for galaxies located behind a given cluster can be
used to infer cluster halo masses and calibrate the mass-
observable relation (e.g., [2]). Examples of recent cosmo-
logical analyses of galaxy clusters include Refs. [5–8],
which use CMB data from the Atacama Cosmology
Telescope5 (ACT), the South Pole Telescope6 (SPT), and
Planck, respectively, as well as Refs. [9,10], which use
x-ray data from Chandra and optical data from the Dark
Energy Survey7 (DES), respectively.
In addition, several recent works have investigated joint

constraints on cosmology and cluster mass calibration: for
example, Ref. [11] forecasted constraints from a joint
analysis of CMB S4 cluster abundances and LSST weak
lensing, Ref. [12] focused on a combination of cluster weak
lensing with galaxy clustering and the cross-correlation
between cluster and galaxy overdensity, and finally
Ref. [13] took a different approach: focusing only on
power spectra, the authors investigated the potential of
multiwavelength analyses to jointly constrain cosmology
and properties of the intracluster medium.
In this work, we focus on the abundance of galaxy

clusters detected through the tSZ effect in CMB temper-
ature anisotropy maps. Building on previous work [14–16],
we propose a new method for joint cosmological parameter
inference and cluster mass calibration from a combination
of weak lensing measurements and tSZ cluster abundances.
Specifically, we combine cluster number counts with the
spherical harmonic cosmic shear power spectrum and the
cross-correlation between cluster overdensity and cosmic
shear. We use a halo model [17–20] framework for
modeling the observables and their full non-Gaussian
covariance. Using this framework, we forecast constraints
on cosmological and mass calibration parameters for a
combination of LSST and SO and investigate the different
sources of cosmological and astrophysical information.
Finally, we compare our results to those obtained with more
traditional tSZ mass calibration methods, which are based

on stacked measurements of cluster weak lensing (for a
summary of the method, the reader is referred to, e.g.,
Ref. [11]; for examples of stacked weak lensing analyses,
see, e.g., Refs. [21,22]). Although we focus on forecasting
the constraining power of future experiments in this work,
the methods presented here are equally applicable to joint
analyses of current surveys, such as ACT, SPT, and DES.
This paper is organized as follows. In Sec. II, we present

the cosmological observables used in our analysis.
Section III outlines the theoretical modeling of the observ-
ables within the halo model, and in Sec. IV, we derive
expressions for the joint covariance between the probes
considered. Section V describes our fiducial assumptions
for forecasting joint constraints from LSST and SO,
and Sec. VII describes the forecasting methodology. We
present our results in Sec. VIII and conclude in Sec. IX.
Implementation details are deferred to the Appendixes.

II. OBSERVABLES

In this work, we investigate the potential of joint
analyses of tSZ cluster number counts and cosmic shear
to simultaneously calibrate cluster masses and constrain
cosmological parameters. To this end, we focus on com-
bining cluster number countsN cl with cosmic shear power
spectra Cγγ

l and cross-correlations between cluster over-
density δcl and cosmic shear, Cδclγ

l . In the following, we
describe these observables in more detail. Unless stated
otherwise, all theoretical predictions in this work assume a
flat cosmological model, i.e., Ωk ¼ 0.

A. tSZ cluster number counts

1. Cluster detection

The modeling of both the thermal Sunyaev-Zel’dovich
signal and cluster detection in this work closely follows
Ref. [11]. We give a brief summary below but refer the
reader to Ref. [11] for more details.
The thermal Sunyaev-Zel’dovich effect is a secondary

anisotropy of the CMB due to inverse Compton scattering
of CMB photons with energetic, free electrons in galaxy
clusters (for a review of tSZ cosmology, see, e.g., [3]). The
tSZ effect leads to a characteristic spectral distortion of
the CMB blackbody spectrum that is proportional to the
integrated pressure along a given direction θ, given by (see,
e.g., [3,23])

ΔT
TCMB

ðν; θÞ ¼ fðνÞ σT
mec2

Z
dl Peðl; θÞ≡ fðνÞyðθÞ: ð1Þ

In this equation, fðνÞ is defined as fðνÞ ¼ x coth x=2 − 4
with x ¼ hν=kBTCMB, where TCMB denotes the CMB
temperature and h and kB are the Planck and Boltzmann
constants, respectively. Furthermore, me denotes electron
mass, σT is the Thompson cross section, Peðl; θÞ denotes

5https://act.princeton.edu/.
6https://pole.uchicago.edu/.
7https://www.darkenergysurvey.org/.
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the three-dimensional cluster pressure profile, and dl is the
line-of-sight distance in direction θ. Finally, we have
defined the dimensionless Compton-y parameter yðθÞ,
which determines the amplitude of the tSZ signal. We
model Peðl; θÞ following Ref. [11], adopting the analytic
pressure profile from Ref. [24] with the parameter values
given in Ref. [11].
Following Ref. [11], we assume that a matched-filter

applied to a CMB map is used to define a cluster. For each
detected cluster, we define the spherical aperture tSZ flux
as [25]

Y500 ¼
4π

D2
AðzÞ

Z
R500

0

dr r2
σT

mec2
PeðrÞ; ð2Þ

where DAðzÞ denotes the physical angular diameter dis-
tance and R500 is the radius where the density equals 500
times the critical density of the Universe at the cluster
redshift z. The quantity Y500 is not directly observable as it
depends on R500, which is poorly constrained from CMB
data alone. Several different approaches to relating a given
measurement of the integrated Compton-y parameter to
Y500 have been employed in the literature (see, e.g.,
[5,26,27]). In the following, we briefly review the approach
taken by the ACT Collaboration [5,28], referring the reader
to the references for a description of alternative methods. In
this approach, the integrated Compton-y parameter is
obtained from CMB maps filtered on a fixed angular scale.
These measurements can be related to Y500 by assuming a
fiducial cluster pressure profile as well as a cosmological
model. As an alternative to using a fixed filter scale, CMB
surveys can be combined with overlapping optical or x-ray
surveys (e.g., eROSITA8), which provide estimates for
R500. In this work, we do not consider Y500-modeling
uncertainties for simplicity.
For a given multifrequency CMB experiment, the uncer-

tainties in measuring Y500, denoted σNðM; zÞ, are deter-
mined by the noise and resolution of the different frequency
maps. These uncertainties depend on the number of CMB
map pixels covered by a given cluster, which depends on the
angle subtended by R500 and thus the cluster halo mass M.
Therefore, the quantity σNðM; zÞ is mainly determined by
M. In order to compute σNðM; zÞ, we again follow Ref. [11]
and refer the reader to that work for further details.

2. Mass-observable relation

As the quantity Y500 is obtained by integrating the
Compton-y parameter over the cluster’s extent, it is a
measure for the total thermal energy of the cluster. We thus
expect Y500 to be a measure for the cluster halo mass M.9

The relation between the mean flux Ȳ500 and the underlying
halo mass M is the main systematic uncertainty in tSZ
cluster cosmology. In this work, we follow Refs. [11,25,29]
and model this relation as

Ȳ500ðM500; zÞ ¼ Y�

�
M500

M�

�
αY
eβY log

2ðM500=M�Þð1þ zÞγY

× E2=3ðzÞ
�

DAðzÞ
100h−1 Mpc

�
−2
; ð3Þ

where log denotes natural logarithm and M500 is the mass
enclosed within the radius where the density equals 500
times the critical density of the Universe at the cluster
redshift. The quantities αY and βY account for the first and
second order mass dependence and γY parametrizes a
redshift dependence, additional to that expected from
self-similar evolution. Furthermore, Y� and M� are con-
stants and EðzÞ ¼ HðzÞ=H0. The quantities HðzÞ and H0

denote the Hubble parameter and its present day value,
respectively. The distribution of true tSZ fluxes is usually
assumed to take a log-normal form around their mean Ȳ500,
i.e., (e.g., [25])

pðY true
500jM500; zÞ ¼

1ffiffiffiffiffiffi
2π

p
σlogY500

ðM; zÞ
× e−ðlogY

true
500

−log Ȳ500ðM500;zÞÞ2=2σ2logY500 ðM;zÞ;

ð4Þ

where we have introduced the intrinsic mass- and redshift-
dependent scatter σlogY500

ðM; zÞ, which we model as [11]

σlogY500
ðM; zÞ ¼ σlogY0

�
M500

M�

�
ασ ð1þ zÞγσ : ð5Þ

In the above equation, ασ and γσ parametrize the mass and
redshift dependence of the intrinsic scatter, respectively.

3. Cluster number counts

The probability to observe a galaxy cluster at redshift z
with mass M, true tSZ amplitude Y true

500, and observed tSZ
amplitude Yobs

500 is given by

pðM; z; Y true
500; Y

obs
500Þ ¼ pðYobs

500ÞpðY true
500jYobs

500ÞpðM; zjY true
500Þ:

ð6Þ

Using

pðM; zjY true
500Þ ¼

pðM; zÞ
pðY true

500Þ
pðY true

500jM; zÞ; ð7Þ

we can rewrite Eq. (6) as

8https://www.mpe.mpg.de/eROSITA.
9Here M denotes a generic mass definition and we transform

between definitions as needed. The procedure chosen to trans-
form between mass definitions is outlined in Appendix A.
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pðM; z; Y true
500; Y

obs
500Þ

¼ pðYobs
500Þ

pðY true
500Þ

pðY true
500jYobs

500ÞpðM; zÞpðY true
500jM; zÞ: ð8Þ

Here pðM; zÞ denotes the normalized halo mass function
(as we are computing the probability to observe a cluster),
pðY true

500jM; zÞ is the probability that a cluster of Y true
500 at

redshift z has halo mass M, and finally pðYobs
500jY true

500Þ ¼
pðYobs

500Þ=pðY true
500ÞpðY true

500jYobs
500Þ denotes the survey-specific

cluster selection function. The selection function quantifies
the probability of measuring Yobs

500 for a true tSZ flux Y true
500

and is determined by the experimental uncertainties dis-
cussed in Sec. II A 1.
If we instead set pðM; zÞ to the unnormalized halo

mass function, i.e., pðM; zÞ ¼ dn=dM, then Eq. (8) gives
us the number of detected clusters with M; z; Yobs

500; Y
true
500.

Therefore, the observed number of thermal Sunyaev-
Zel’dovich detected galaxy clusters in redshift bin i with
z ∈ ½zi;min; zi;max� and tSZ signal amplitude bin α with
Yobs
500 ∈ ½Yobs;min

500;α ; Yobs;max
500;α � becomes

N i
cl;α ≔ N clðΔYobs

500;α;ΔziÞ

¼ Ωs

Z
zi;max

zi;min

dz
c

HðzÞ
dV
dχ

Z
dM

dn
dM

Z
dY true

500

×
Z

Yobs;max
500;α

Yobs;min
500;α

dYobs
500pðYobs

500jY true
500ÞpðY true

500jM; zÞ; ð9Þ

where we have integrated over halo mass and Y true
500, which

are not directly observable. Here, dV=dχ¼χ2 denotes the
comoving volume element in comoving distance, and we
have performed the integration over a solid angle, which for
a survey covering a sky fraction fsky yields Ωs¼4πfsky.
Defining the integrated survey selection function for Yobs

500

bin α as

SαðY true;M; zÞ ¼
Z

Yobs;max
500;α

Yobs;min
500;α

dYobs
500pðYobs

500jY true
500Þ; ð10Þ

we finally obtain

N i
cl;α ¼ Ωs

Z
zi;max

zi;min

dz
c

HðzÞ
dV
dχ

Z
dM

dn
dM

×
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ: ð11Þ

Using the results derived in Sec. II A 1, we can obtain an
expression for SαðY true

500;M; zÞ. Let us assume a detection
threshold for clusters given by qσNðM; zÞ, where σNðM; zÞ
denotes the noise in the Y measurement for a cluster of halo
mass M at redshift z and q is the detection level.10 This
leads to [25]

SαðY true
500;M; zÞ ¼

Z
Yobs;max
500;α

maxðqσN;Yobs;min
500;α Þ

dYobs
500pðYobs

500jY true
500Þ: ð12Þ

Assuming a Gaussian distribution for pðYobs
500jY true

500Þ given
by [25]

pðYobs
500jY true

500Þ ¼
1ffiffiffiffiffiffi

2π
p

σNðM; zÞ e
−ðYobs

500
−Y true

500
Þ2=2σ2NðM;zÞ; ð13Þ

we finally arrive at [25]

SαðY true
500;M;zÞ¼ 1

2

�
erf

�
Yobs;max
500;α −Y true

500ffiffiffi
2

p
σNðM;zÞ

�

−erf
�
maxðqσN;Yobs;min

500;α Þ−Y true
500ffiffiffi

2
p

σNðM;zÞ

��
; ð14Þ

where σNðM; zÞ is fully determined by experimental
uncertainties.

B. Power spectra

We combine cluster number counts with two different
power spectra: the cosmic shear power spectrum and the
cross-power spectrum between cluster overdensity and
cosmic shear.
Let us consider two tracers a; b ∈ ½γi; δjcl;α�, where γ

denotes cosmic shear and δcl denotes cluster overdensity.
Furthermore i, j label the respective redshift bins and α the
tSZ amplitude bin. Employing the Limber approximation
[30–32], we can write their spherical harmonic power
spectrum as

Cab
l ¼

Z
dz

c
HðzÞ

WaðχðzÞÞWbðχðzÞÞ
χ2ðzÞ

× Pab

�
k ¼ lþ 1=2

χðzÞ ; z

�
; ð15Þ

where c is the speed of light, χðzÞ is the comoving distance,
and Pabðk; zÞ denotes the three-dimensional power spec-
trum between probes a and b. The quantity WaðχðzÞÞ is a
probe-specific window function, which we discuss next for
cosmic shear and cluster overdensity.

1. Cosmic shear power spectrum

Cosmic shear is sensitive to the integrated matter
distribution between source galaxies and the observer,
and the cosmic shear kernel WγðχðzÞÞ is given by

Wi
γðχðzÞÞ¼

3

2

ΩmH2
0

c2
χðzÞ
a

Z
χh

χðzÞ
dz0niðz0Þχðz

0Þ−χðzÞ
χðz0Þ ; ð16Þ

where niðzÞ denotes the normalized redshift distribution of
source galaxies in redshift bin i, χh is the comoving

10In this work, we set q ¼ 5, which corresponds to a 5σ
detection threshold and is typical for CMB tSZ detections.
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distance to the horizon and a denotes the scale factor. As
cosmic shear is sensitive to all gravitationally interacting
matter in the Universe, we further setPγγðk; zÞ ¼ Pmmðk; zÞ,
where Pmmðk; zÞ denotes the matter power spectrum.
The observed cosmic shear autopower spectrum receives

an additional contribution due to shape noise from intrinsic
galaxy ellipticities. We model the shape noise power
spectrum of redshift bin i as Ni

γγ ¼ σ2ϵ;i=n̄
i
source, where

n̄isource denotes the mean angular galaxy number density
and σϵ;i is the standard deviation of the intrinsic ellipticity
in each component.

2. Cross-correlation between cluster overdensity
and cosmic shear

Galaxy clusters are a biased tracer of the matter dis-
tribution, and their clustering properties can therefore be
analyzed analogously to galaxy clustering. In this work, we
focus on the angular power spectrum between cluster
overdensity and cosmic shear, which can be computed
by cross-correlating maps of cluster overdensity and galaxy
ellipticity. The redshift distribution of galaxy clusters with
tSZ amplitudes in ΔYobs

500;α, detectable by a given survey, is
determined by their number density as a function of redshift
(see, e.g., [33]). From Eq. (11) we thus obtain

N cl;αðzÞ ≔ N clðz;ΔYobs
500;αÞ

¼ Ωs
c

HðzÞ
dV
dχ

Z
dM

dn
dM

×
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ: ð17Þ

Finally, normalizing Eq. (17) to unity by dividing by
the total number of observable clusters in tSZ bin
αN cl;α ¼

R
dzN cl;αðzÞ, we obtain the redshift distribution

of galaxy clusters as

ncl;αðzÞ ¼
N cl;αðzÞ
N cl;α

: ð18Þ

In addition to considering bins in tSZ amplitude, we can
subdivide the galaxy cluster distribution into redshift bins.
We denote the resulting distributions by nicl;αðzÞ, and the
window function Wi

δcl;α
ð χðzÞÞ thus becomes

Wi
δcl;α

ð χðzÞÞ ¼ HðzÞ
c

nicl;αðzÞ: ð19Þ

While the cross-correlation between cosmic shear and
cluster overdensity Cγδcl

l is free from observational noise,
the autocorrelation of the cluster overdensity Cδclδcl

l is
subject to Poisson noise. In this analysis, we model this
noise power spectrum as Ni

δcl;αδcl;α
¼ 1=n̄icl;α, where n̄icl;α

denotes the mean angular density of galaxy clusters in tSZ
amplitude bin α and redshift bin i.

3. Systematics modeling

We account for potential systematic uncertainties in the
cosmic shear measurement by including simple models for
these systematics in our theoretical predictions.11 The most
important observational systematics for cosmic shear are
photometric redshift uncertainties and multiplicative biases
in measured galaxy shapes, while effects of baryons on the
matter power spectrum (see, e.g., Refs. [35,36]) constitute
the largest theoretical systematic uncertainty. In this work,
we account for photometric redshift uncertainties and
multiplicative shear bias as described below, but we leave
a treatment of baryonic effects to a future application of this
methodology to data. We note, however, that baryonic
effects severely limit the range of scales used in current
cosmic shear analyses and thus their statistical precision. In
the case that no mitigation techniques become available in
the near future, these uncertainties will also significantly
impact future weak lensing surveys such as LSST, and thus
the constraints derived in this work.
Photometric redshift uncertainties. For each tomographic

redshift bin i, we parametrize the impact of photo-z
uncertainties as

niðzÞ ∝ n̂iðzþ ΔziÞ; ð20Þ

where ni denotes the true, underlying redshift distribution,
while n̂i is estimated from the galaxy photo-zs. The
parameter Δzi allows us to marginalize over potential
biases in the mean of the redshift distributions.
Multiplicative shear bias. The estimated weak lensing

shear γ̂ is prone to multiplicative calibration uncertainties,
which we model as (e.g., [37])

γ̂ ¼ ð1þmiÞγ: ð21Þ

In the above equation, γ is the true galaxy shear and mi
denotes the multiplicative bias parameter for tomographic
redshift bin i.

III. THEORETICAL MODELING

To model all angular cosmic shear power spectra Cγγ
l , we

compute nonlinear matter power spectra Pmmðk; zÞ using
the Halofit fitting function [38] with the revisions by
Ref. [39].12 We compute theoretical predictions for all
other observables and their covariances using the halo

11The main systematic uncertainty for tSZ cluster number
counts is the Y −M relation, which we discuss in Sec. II A 2. We
note that we do not account for possible halo assembly bias when
modeling the cluster overdensity, as the magnitude and signifi-
cance of the effect are currently a matter of investigation (see,
e.g., Ref. [34]).

12This choice is motivated by the fact that the halo model
described below is not able to accurately model power spectra in
the transition regime between the 1- and the 2-halo terms [40].
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model [17–20]. In this model, the three-dimensional power
spectrum Pabðk; zÞ is split into two distinct terms, the
1-halo and the 2-halo terms. The 1-halo term quantifies
clustering within a single halo, while the 2-halo term
accounts for the contributions to Pabðk; zÞ coming from
the relative clustering of tracers in different halos. These
two quantities can be written as

P1h
abðk; zÞ ¼ I0abðk; k; zÞ;

P2h
abðk; zÞ ¼ I1aðk; zÞI1bðk; zÞPlinðk; zÞ; ð22Þ

and the total power spectrum then becomes

Pabðk; zÞ ¼ P1h
abðk; zÞ þ P2h

abðk; zÞ: ð23Þ
In Eqs. (22) and (23) we have used the general notation
(see, e.g., [16,41])

Ina1���amðk1;…;kmÞ¼
Z

dM
dn
dM

bh;nðMÞ
�Ym

i¼1

½ũaiðki;MÞ�
�
;

ð24Þ
where bh;nðMÞ is the nth order halo bias and we define
bh;1ðMÞ≡ bhðMÞ, bh;0 ≡ 1. The quantity ũaiðki;MÞ is the
Fourier transform of the normalized profile of the distri-
bution of a given tracer within a halo of mass M and h� � �i
denotes an ensemble average.
In order to model Pabðk; zÞ, we additionally need

expressions for the normalized density profiles for all
probes considered, which we will discuss next.

A. Cosmic shear

Cosmic shear is sensitive to all matter in the Universe, and
we can therefore employ the halo model quantities for the
matter distribution when predicting the statistical properties
of cosmic shear.13 We define ũmðk;MÞ≡M=ρ̄mumðk;MÞ,
where ρ̄m denotes the comoving matter density, and set
ũγðk;MÞ ¼ ũmðk;MÞ. We further assume a Navarro-Frenk-
White profile [42] for the Fourier transform of the matter
distribution inside a halo of mass M, i.e., [42]

umðk;MÞ ¼
�
lnð1þ cÞ − c

1þ c

�
−1

×

	
sin x½Siðð1þ cÞxÞ − SiðxÞ�

þ cos x½Ciðð1þ cÞxÞ − CiðxÞ� − sinðcxÞ
ð1þ cÞx



;

ð25Þ

where x ¼ kRΔ=c, RΔ denotes the halo radius, c ¼ cðMÞ is
the concentration parameter, and Si=Ci denote the sine and
cosine integral functions.

B. Galaxy cluster overdensity

We follow Refs. [16,43] and assume that each halo of
mass M contains at most one galaxy cluster, which is
located at its center. In order to derive the Fourier transform
of the normalized cluster density profile, we first consider
the number density of galaxy clusters in redshift bin i and
tSZ amplitude bin α as a function of position r. This can be
written as

nicl;αðrÞ ¼
X
z∈Δzi;

j

Z
dY true

500pðY true
500jM; zÞ

× SαðY true
500;M; zÞδDðrjÞ; ð26Þ

where δDðrÞ denotes the Dirac delta function. Switching
from discrete to continuous variables, we obtain the mean
cluster density in the tSZ and redshift bin as

n̄icl;α ¼
Z

dM
dn
dM

Z
dY true

500pðY true
500jM; zÞSαðY true

500;M; zÞ:

ð27Þ

Finally, using the fact that the Fourier transform of the
Dirac delta function equals unity, we obtain

ũiδcl;αðk;MÞ ¼
R
dY true

500pðY true
500jM; zÞSαðY true

500;M; zÞ
n̄icl;α

: ð28Þ

C. Halo model implementation

We compute the halo mass function dn=dM and the halo
bias bhðMÞ using the fitting functions derived in Ref. [44].
We further assume the concentration-mass relation of halos
cðMÞ to follow the fitting function derived in Ref. [45].
Unless noted otherwise (e.g., M500), halo masses are
defined with respect to the mean matter density ρ̄m and
we assume a virial collapse density contrast as given by
Ref. [46].14

We further note that the 2-halo term for matter converges
to Plinðk; zÞ as k → 0. This imposes a nontrivial constraint
on I1mðk; zÞ as

Z
dM

dn
dM

bhðMÞ M
ρ̄m

¼ 1: ð29Þ

We enforce this constraint by adding a constant to all halo
model integrals for the matter density when computing
cosmic shear cross-correlations and covariances [47], thus13As outlined at the beginning of this section, we employ the

halo model to compute cosmic shear cross-correlations and
covariances, while we use Halofit to compute cosmic shear
power spectra.

14We note that we transform Δc as given in Ref. [46] to be
relative to the matter density instead of the critical density.
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correcting for the finite minimal mass cutoff. This correc-
tion is not necessary for other tracers considered in this
work, as these have a physical mass cutoff in all halo model
integrals.
In this work, we compute theoretical predictions for

cosmological observables using the LSST Dark Energy
Science Collaboration (DESC) Core Cosmology Library
(CCL15) [48].

IV. COVARIANCE MATRIX

We compute the joint covariance matrix of cosmic shear,
tSZ cluster number counts, and the cross-correlation
between cosmic shear and cluster overdensity analytically
using the halo model. The resulting expressions for all
possible combinations between these probes are discussed
below. With the exception of the Gaussian covariance of
angular power spectra, which does not include mode-
coupling effects due to observing only a fraction of the
sky (see, e.g., Ref. [49]), these expressions will be useful
for both forecasts as well as analyses using real data.

A. Cluster number counts

The autocovariance of cluster number counts in redshift
bins i, j and tSZ Y bins α, β can be subdivided into a
Poissonian and a halo sample variance (HSV) part, i.e.,

CovðN i
cl;α;N

j
cl;βÞ ¼ CovPðN i

cl;α;N
j
cl;βÞ

þ CovHSVðN i
cl;α;N

j
cl;βÞ: ð30Þ

The Poissonian part of the total covariance accounts for the
fact that clusters are discrete tracers. The HSV, on the other
hand, quantifies correlations between cluster number counts
in different Y bins caused by estimating these quantities
from a finite survey volume (see, e.g., Refs. [50,51]).
Recently, Ref. [52] found that halo exclusion effects provide
an additional contribution to the covariance of cluster
number counts as well as the cross-covariance between
cluster number counts and angular power spectra. In this
work, we do not include these effects but leave modeling
thereof to future work.
In this work, we follow Refs. [16,53] and estimate the

Poissonian contribution to the total covariance as

CovPðN i
cl;α;N

j
cl;βÞ ¼ δDαβδ

D
ijN

i
cl;α; ð31Þ

wherewe assume nonoverlapping cluster number count bins
in tSZ amplitude and redshift and set cross-correlations
between cluster number counts at different redshifts to zero.

The halo sample variance can be estimated as [16,53,54]

CovHSVðN i
cl;α;N

j
cl;βÞ

¼ δijΩ2
s

Z
zi;max

zi;min

dz
c

HðzÞ
�
dV
dχ

�
2
�Z

dM
dn
dM

bhðMÞ

×
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ

�

×

�Z
dM0 dn

dM0 bhðM0Þ
Z

dY 0;true
500 pðY 0;true

500 jM0; zÞ

× SβðY 0;true
500 ;M0; zÞ

�
σ2bðzÞ: ð32Þ

The quantity σ2bðzÞ is the variance of the long wavelength
background mode δLS over the survey footprint, given by

σ2bðzÞ ¼
Z

dk2⊥
ð2πÞ2 Plinðk⊥; zÞjW̃ðk⊥; zÞj2: ð33Þ

In the above equation, W̃ðk⊥; zÞ denotes the Fourier
transform of the survey footprint, which we approximate
as a compact circle with an area matched to our dataset:

W̃ðk⊥;zÞ¼
2J1ðk⊥χðzÞθsÞ

k⊥χðzÞθs
; θs¼arccosð1−2fskyÞ; ð34Þ

where J1ðxÞ is the cylindrical Bessel function of order 1.

B. Angular power spectra

The covariance of two angular power spectra Cab
l and

Ccd
l0 can be written as the sum of a Gaussian, non-Gaussian,

and supersample covariance (SSC) part, i.e.,

CovðCab
l ; Ccd

l0 Þ ¼ CovGðCab
l ; Ccd

l0 Þ þ CovNGðCab
l ; Ccd

l0 Þ
þ CovSSCðCab

l ; Ccd
l0 Þ: ð35Þ

The non-Gaussian covariance accounts for mode coupling
due to the non-Gaussianity of the fields being cross-
correlated. Finally, the SSC quantifies the coupling of
small-scale modes due to the presence of long, supersurvey
modes (see, e.g., Refs. [55,56]).
The Gaussian covariance matrix is given by (see, e.g.,

[16,57])

CovGðCab
l ; Ccd

l0 Þ ¼
δll0

ð2lþ 1ÞΔlfsky
ð36Þ

× ½ðCac
l þδDacNacÞðCbd

l þδDbdN
bdÞ ð37Þ

þðCad
l þδDadN

adÞðCbc
l þδDbcN

bcÞ�; ð38Þ

where Δl accounts for possible binning of the angular
power spectra Cab

l into band powers. The quantities Nab15https://github.com/LSSTDESC/CCL.
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denote the noise power spectra, which are nonzero only for
autocorrelations. The expressions for these noise power
spectra for the probes considered in our analysis are given
in Sec. II B.
The non-Gaussian covariance is given by the

angular projection of the three-dimensional trispectrum16

Tabcdðk1; k2; k3; k4Þ as (see, e.g., [16])

CovNGðCab
l ;Ccd

l0 Þ ¼ 1

Ωs

Z
jlj∈l1

Z
jl0j∈l2

Z
d2l
Aðl1Þ

d2l0

Aðl2Þ

×dχ
WaðχÞWbðχÞWcðχÞWdðχÞ

χ6

×Tabcdðl=χ;−l=χ;l0=χ;−l0=χÞ: ð39Þ

The quantity AðliÞ denotes the area of an annulus of width
Δli around li, i.e., AðliÞ≡ R

jlj∈li d
2l, which is approx-

imately given by AðliÞ ≈ 2πΔlili for li ≫ Δli.
Using the halo model, the trispectrum Tabcd can be

written as (e.g., [56])

Tabcd ¼ Tabcd;1h þ ðTabcd;2h
22 þ Tabcd;2h

13 Þ
þ Tabcd;3h þ Tabcd;4h; ð40Þ

where

Tabcd;1hðka;kb;kc;kdÞ ¼ I0abcdðka; kb; kc; kdÞ;
Tabcd;2h
22 ðka;kb;kc;kdÞ ¼ PlinðkabÞI1abðka; kbÞI1cdðkc; kdÞ

þ 2 perm:;

Tabcd;2h
13 ðka;kb;kc;kdÞ ¼ PlinðkaÞI1aðkaÞI1bcdðkb; kb; kcÞ

þ 3 perm:;

Tabcd;3hðka;kb;kc;kdÞ ¼ BPTðka;kb;kcdÞI1aðkaÞI1bðkbÞ
× I1cdðkc; kdÞ þ 5 perm:;

Tabcd;4hðka;kb;kc;kdÞ ¼ TPTðka;kb;kc;kdÞI1aðkaÞ
× I1bðkbÞI1cðkcÞI1dðkdÞ: ð41Þ

Here, kab ≡ ka þ kb, and the quantities BPT and TPT

denote the matter bi- and trispectrum, respectively, as
estimated using tree-level perturbation theory. The full
expressions for these terms can be found in Ref. [56].
For simplicity, we follow [16] and approximate the 2- to
4-halo trispectrum as the linearly biased matter trispectrum
and only include a probe-specific 1-halo trispectrum con-
tribution. Specifically, we set

Tabcd ¼ Tabcd;1h þ babbbcbdTm;2hþ3hþ4h; ð42Þ

where Tabcd;1h and Tm;2hþ3hþ4h are computed following
Eqs. (41). For Tabcd;1h, we evaluate Eq. (24) for probes a, b,
d, c, while for Tm;2hþ3hþ4h, we use the corresponding
expressions for the matter distribution. Finally, ba denotes
the linear bias of tracer a predicted using the halo
model, i.e.,

ba ¼
Z

dM
dn
dM

bhðMÞũað0;MÞ; ð43Þ

and we set bγðMÞ ¼ 1. From Eq. (24), we see that the
1-halo trispectrum is given by

Tabcd;1hðka;kb;kc;kdÞ

¼
Z

dM
dn
dM

hũaðka;MÞũbðkb;MÞũcðkc;MÞũdðkd;MÞi:

ð44Þ

A special case arises when Tabcd;1hðka;kb;kc;kdÞ con-
tains two cluster number count tracers δicl;α; δ

j
cl;β (set to

tracers c, dwithout loss of generality), as a halo can at most
contain a single cluster. Accounting for this fact, we then
obtain

Tabcd;1hðka;kb;kc;kdÞ

¼δijδαβ

Z
dM

dn
dM

ũaðka;MÞũbðkb;MÞ
ũiδcl;αðkc;MÞ
ðn̄icl;αÞ2

: ð45Þ

Finally, we compute the supersample covariance con-
tribution following the treatment of [16], i.e.:

CovSSCðCab
l ; Ccd

l0 Þ

¼
Z

dχ
WaðχÞWbðχÞWcðχÞWdðχÞ

χ4
∂Pabðl=χ; zðχÞÞ

∂δLS
×
∂Pcdðl0=χ; zðχÞÞ

∂δLS σ2bðzðχÞÞ: ð46Þ

The quantity ∂Pabðk; zÞ=∂δLS denotes the response of the
power spectrum Pab to a large-scale density fluctuation,
which we estimate using the halo model and results from
perturbation theory as (e.g., [16])

∂Pabðk;zÞ
∂δLS ¼

�
68

21
−
1

3

dlogk3Plinðk;zÞ
dlogk

�
I1aðkÞI1bðkÞPlinðk;zÞ

þ I1abðk;kÞ− ðba;a≠γþbb;b≠γÞPabðk;zÞ: ð47Þ

The last term in Eq. (47) accounts for the fact that observed
overdensity fields are computed using the mean density
estimated inside the survey volume.
For consistency with our implementation of the trispec-

trum, we compute the response function ∂Pabðk; zÞ=∂δLS
16The trispectrum is the connected part of the four-point

function.
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for a given probe as the linearly biased response of
the matter field.17

C. Cross-correlations between cluster number counts
and angular power spectra

Finally, the cross-covariance between cluster number
counts and angular power spectra vanishes for purely

Gaussian fields, but it receives both non-Gaussian and
SSC contributions, i.e.,

CovðN α
cl;i; C

ab
l Þ ¼ CovNGðN α

cl;i; C
ab
l Þ

þ CovSSCðN α
cl;i; C

ab
l Þ: ð48Þ

Following Refs. [51,53], we can write the non-Gaussian
part of this cross-covariance as

CovNGðN α
cl;i; C

ab
l Þ ¼ Ωs

Z
zi;max

zi;min

dz
c

HðzÞ
WaðχðzÞÞWbðχðzÞÞ

χ4ðzÞ
dV
dχ

×

	Z
dM

dn
dM

ũaðk;MÞũbðk;MÞ
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ

þ
��Z

dM
dn
dM

bhðMÞũaðk;MÞ
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ

��Z
dM

dn
dM

bhðMÞũbðk;MÞ
�

þ
�Z

dM
dn
dM

bhðMÞũbðk;MÞ
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ

�

×

�Z
dM

dn
dM

bhðMÞũaðk;MÞ
��

Plinðk; zÞ


: ð49Þ

Furthermore, the SSC covariance is given by (see, e.g., [16,53])

CovSSCðN α
cl;i; C

ab
l Þ ¼ Ωs

Z
zi;max

zi;min

dχ
WaðχÞWbðχÞ

χ2
dV
dχ

�Z
dM

dn
dM

bhðMÞ
Z

dY true
500pðY true

500jM; zÞSαðY true
500;M; zÞ

�

×
∂Pabðl=χ; zðχÞÞ

∂δLS σ2bðzðχÞÞ: ð50Þ

V. COMBINATION OF LSST AND SO

We assess the potential of a joint analysis of tSZ number
counts, cosmic shear, and the cross-correlation between
cluster overdensity and cosmic shear to simultaneously
infer cosmology and mass calibration by performing a
Fisher matrix forecast for a combination of LSSTand SO.18

The survey specifications assumed for each survey and
probe are detailed below.

A. LSST specifications

We follow Ref. [11] and model an LSST-like survey
assuming a sky coverage of 18,000 square degrees (cor-
responding to fsky ¼ 0.4), an angular galaxy number

density for the weak lensing sample of n̄source ¼
20 arcmin−2 and standard deviation of the intrinsic ellip-
ticity in each component of σϵ ¼ 0.3. We further assume
the redshift distribution of these galaxies to follow the
functional form given in Ref. [58]:

nðzÞ ∝ z2e−
z
z0 ; ð51Þ

where we set z0 ¼ 0.3. The assumed redshift distribution
roughly matches the one outlined in the LSST DESC
Science Requirements Document [59], while both the
intrinsic ellipticity and angular galaxy number density
are more conservative and are derived by extrapolating
results from the Hyper-Suprime Cam (HSC) survey [60].
We subdivide the galaxies into four tomographic redshift
bins of approximately equal galaxy numbers between
redshift zmin ¼ 0 and zmax ¼ 3

19 and estimate the true
redshift distribution in each photometric redshift bin
i using (e.g., [61])

17In order to test the robustness of our results to this
approximation, we also compute the SSC contribution to the
covariance using the probe-specific halo model quantities in
Eq. (47). We find our forecasted constraints to be unaffected by
this change and therefore resort to the approach described above
for consistency.

18We note that a similar analysis could be performed for
current surveys, such as ACT, SPT, and DES.

19This leads to the following redshift bin edges zmin;i; zmax;i ¼½0.; 0.57�; ½0.57; 0.89�; ½0.89; 1.41�; ½1.41; 3.� for i ¼ 0;…; 3.
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niðztÞ ¼
Z

zmax;i

zmin;i

dzppðzpjztÞnðztÞ; ð52Þ

where zp denotes photometric and zt true redshift, respec-
tively. Finally, we model pðzpjztÞ assuming zp to be
Gaussian distributed around zt with σp ¼ 0.05 [62].
We compute spherical harmonic power spectra for

all auto- and cross-correlations between those redshift bins
in 13 angular multipole bins between lmin ¼ 100 and
lmax ¼ 4600.20

B. SO specifications

We model the expected survey specifications for SO
following Ref. [63], focusing only on the Large Aperture
Telescope (LAT). We assume observations in six frequency
bandpasses with beam full-width half-maxima (FWHM)
and white noise levels for a sky coverage of fsky ¼ 0.4 as
given in Table I (cf. Table 1 in Ref. [63]). We additionally
model the atmospheric noise contribution following
Ref. [63] and refer the reader to their Sec. II.2 for more
details.

1. Cluster number counts

We subdivide the cluster number counts into five bins in
redshift between zmin ¼ 0 and zmax ¼ 1.5. The maximal
cluster redshift is chosen in order to ensure a large
enough source sample for mass calibration. Furthermore,
photometric redshift uncertainties for LSST are expected
to increase significantly at high redshift, which will
further limit the usage of high redshift galaxies for mass
calibration. We subdivide each of these redshift bins
into roughly 15 tSZ amplitude bins between Yobs

500;min ¼
4 × 10−13 and Yobs

500;max ¼ 3 × 10−8. The exact bin edges
and bin numbers considered depend on the cluster redshift
bin, as we follow observational analyses (see, e.g., [64])
and ensure that each bin contains at least a single galaxy

cluster.21 The exact bin configurations are given in
Appendix B 1.

2. Cluster lensing

In order to measure the cluster lensing cross-correlation
Cγδcl
l , we subdivide the cluster overdensity field into four

redshift bins between zmin ¼ 0 and zmax ¼ 1.41 and four
tSZ amplitude bins between Yobs

500;min ¼ 4 × 10−13 and
Yobs
500;max ¼ 1.4 × 10−9. We remove five bins from this

subdivision, as they contain less than one cluster, which
leaves us with 11 cluster overdensity bins.22 Furthermore,
we only include cross-correlations between galaxy cluster
overdensity and cosmic shear for bin combinations for
which the lenses are located behind the clusters. These

specifications leave us with 20 cross-power spectra C
γiδjcl;α
l ,

which we compute for 16 angular multipole bins between
lmin ¼ 100 and lmax ¼ 9400.23

Finally, when combining LSST and SO, we assume full
overlap between the two surveys over a fraction of the sky
fsky ¼ 0.4. Figure 1 shows an example for each of the three
observables considered in our analysis, computed accord-
ing to the survey and binning specifications given above.

VI. METHODOLOGY FOR JOINT COSMOLOGY
AND MASS CALIBRATION

We forecast constraints on cosmological and mass
calibration parameters from a joint analysis of cluster
number counts, cosmic shear, and cluster lensing power
spectra, assuming a Gaussian likelihood given by

LðDobsjθÞ ¼ 1

½ð2πÞd detC�1=2
× e−

1
2
ðDobs−DtheorÞTC−1ðDobs−DtheorÞ; ð53Þ

where C denotes the non-Gaussian covariance matrix,
computed as outlined in Sec. IV.24 Furthermore, Dobs is
the observed data vector, given by

TABLE I. Summary of assumed survey specifications for SO
LAT (see also Table 1 in Ref. [63]).

Frequency
[GHz]

FWHM
[arcmin]

Noise (goal)
[μK arcmin]

27 7.4 52
39 5.1 27
93 2.2 5.8
145 1.4 6.3
225 1.0 15
280 0.9 37

20The maximal angular multipole is chosen in accordance with
previous LSST forecasts; see, e.g., Refs. [16,62]. Furthermore,
we choose the bin centers as lmean ¼ f100; 200; 300; 400; 600;
800; 1000; 1400; 1800; 2200; 3000; 3800; 4600g.

21We note that not applying this cut results in significantly
tighter constraints on mass-calibration parameters. However, we
choose to not include low cluster number count bins for two
reasons: (i) these bins mainly correspond to the high mass end of
the mass function, where the approximations made for computing
the covariance matrix in this work might break down, and
(ii) including bins with very few objects can cause numerical
instabilities in Fisher matrix computations.

22The exact bin configurations are given in Appendix B 2.
23This choice of maximal angular multipole ensures that we

include a significant amount of information coming from the
1-halo term and is similar to earlier analyses, e.g., [16].
Furthermore, the bin centers are chosen as lmean¼f100;
200;300;400;600;800;1000;1400;1800;2200;3000;3800;4600;
6200;7800;9400g.

24We note that when computing the inverse covariance matrix,
we first invert the correlation matrix and then transform back to
the inverse covariance matrix. This avoids numerical instabilities
due to the large dynamic range in the covariance matrix elements.
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Dobs ¼ ðCγi1γj1
l ;…; C

γinγjn
l ; C

γi1δ
k1
cl;α1

l ;…; C
γimδ

km
cl;αm

l ;

N l1
cl;β1;…;N lo

cl;βoÞobs; ð54Þ

and Dtheor denotes the corresponding theoretical prediction.
The correlation matrix obtained in our analysis for the
experimental specifications given in Sec. V is shown in
Fig. 2.25 The full matrix has dimensions ðn; nÞ ¼
ð519; 519Þ and consists of 130 Cγγ

l measurements, 320
Cγδcl
l measurements, and 69 N cl measurements. As can be

seen, the different probes are significantly correlated
and the importance of non-Gaussian contributions to the

covariance, which give rise to the off-diagonal elements,
increases with angular multipole l and tSZ amplitude Yobs

500.
Traditionally, tSZ cluster mass calibration has been

performed in a two step process: in a first step, cosmic
shear, CMB lensing, or x-ray measurements are used to
derive prior constraints on cluster masses or mass calibra-
tion. In a second step, these prior constraints are folded into
the cluster number counts likelihood to derive constraints on
cosmological and mass calibration parameters. A number
of different approaches exist in the literature (see, e.g.,
[25,64–67]), which vary in the data used to derive priors on
mass calibration and their derivation. In order to further
validate the mass calibration method proposed in this work,
we compare its forecasted constraints to those obtained in
such a stacking analysis. For the stacked cluster number
counts likelihood, we closely follow the approach outlined
in Ref. [11]: we compute uncertainties on inferred weak
lensing masses assuming measurements of the real-space
cluster lensing signal for all clusters in the sample. These
constraints are used to derive cluster number counts binned
in redshift z, tSZ signal-to-noise q, and weak lensing mass
MWL. The measurements are finally used to compute
constraints on cosmological and mass calibration para-
meters assuming Poisson noise (i.e., neglecting the non-
Gaussian covariance discussed above26).

VII. FORECASTING METHODS

We use a Fisher matrix formalism to forecast constraints
on cosmological and mass calibration parameters for both
methods outlined above. The Fisher matrix allows for
propagation of experimental uncertainties to uncertainties
on model parameters. Under the assumption that the
dependence of the data covariance matrix on the parameters
of interest θα can be neglected, the Fisher matrix for a given
experiment, measuring a data vector D, is given by (see,
e.g., [68–70])

FIG. 1. Examples of the observables considered in this analysis. The leftmost panel shows the cosmic shear autopower spectrum for
redshift bin i ¼ 1 (zmin ¼ 0.57, zmax ¼ 0.89), the middle panel shows the cross-correlation between cosmic shear bin i ¼ 3

(zmin ¼ 1.41, zmax ¼ 3.) and cluster overdensity bin i ¼ 1, α ¼ 1 (zmin ¼ 0.35, zmax ¼ 0.7, Ymin ¼ 3.08 × 10−12,
Ymax ¼ 2.4 × 10−11), and finally the last panel shows the cluster number counts for redshift bin i ¼ 2 (zmin ¼ 0.5, zmax ¼ 0.75).
We have subdivided the cluster lensing power spectrum into its 1-halo and 2-halo contributions. In all panels, the shaded regions show
the 1σ uncertainties.

FIG. 2. Joint correlation matrix of tSZ cluster number counts,
cosmic shear, and the cross-correlation between cluster over-
density and cosmic shear obtained in this analysis.

25The correlation matrix Corr is obtained from the covariance
matrix C as Corrij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
.

26We have made this choice in order to maintain consistency
with the original analysis in Ref. [11].
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Fαβ ¼
∂D
∂θα C

−1 ∂D
∂θβ : ð55Þ

The Cramér-Rao bound states that the uncertainty on θα,
marginalized over all other θβ satisfies

Δθα ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
: ð56Þ

Computing the Fisher matrix requires the assumption of
a fiducial model. In this work, we choose cosmological
parameter values close to those derived by the Planck
Collaboration in their 2015 data release using only temper-
ature data [71] (cf. the first column of Table 4 in Ref. [71]).
The fiducial values assumed for all parameters are sum-
marized in Table II.
We assess the potential of a combination of LSSTand SO

to simultaneously constrain cosmology and mass calibra-
tion by mainly investigating its constraining power on the
time evolution of the dark energy equation of state
parameter wðaÞ, parametrized as wðaÞ ¼ w0 þ ð1 − aÞwa
[72,73].27 We therefore focus on w0waCDM and forecast
constraints on the set of cosmological and systematics
parameters given by θ ¼ fH0;Ωbh2;Ωch2; As; ns; w0; wa;
Y�; σlogY0

; ασ; γσ; αY; βY; γY;Δzi; mig, i ∈ ½0;…; 3�, where
H0 is the Hubble parameter, Ωbh2 is the physical baryon
density today, Ωch2 is the physical cold dark matter density

today, ns denotes the scalar spectral index, As is the
primordial power spectrum amplitude at pivot wave vector
k0 ¼ 0.05 Mpc−1,28 and w0 and wa parametrize the equa-
tion of state of dark energy. We compute derivatives of the
observables with respect to these parameters numerically
using a five-point stencil with step ϵ ¼ 0.01θ, where θ
denotes any parameter considered in our analysis.29 We test
the stability of our results by varying the parameter ϵ and
find our results to be largely insensitive to this choice.
Unless stated otherwise, we combine our constraints

with prior information from the Planck power spectrum
following Ref. [11]. Specifically, we include Planck tem-
perature information from angular scales 2 < l < 30 from
the full Planck angular sky coverage (fsky ¼ 0.6), temper-
ature and polarization information from 30 < l < 100
from the part of sky in which Planck and SO overlap
(fsky ¼ 0.4), and finally temperature and polarization
information from 30 < l < 2500 from the part of sky
covered by Planck but not by SO (fsky ¼ 0.2). Including
the full Planck angular range and sky coverage, or the
forecasted SO primary CMB information was found to not
significantly impact forecasted constraints on w0 and wa
[63], which are the primary focus of this work. We further
follow Ref. [16] and assume Gaussian priors on Δzi
and mi with standard deviations σðΔziÞ ¼ 0.002 and

TABLE II. Summary of assumed fiducial model and parameters considered in the Fisher analysis.

Parameter Fiducial value Prior Description

H0 69.0 Plancka cosmology
Ωbh2 0.02222 Planck cosmology
Ωch2 0.1197 Planck cosmology
As 2.1955 × 10−9 Planck cosmology
ns 0.9655 Planck cosmology
w0 −1.0 Planck cosmology
wa 0.0 Planck cosmology
Y� 2.42 × 10−10 � � � mean of Y −M relationb

αY 1.79 � � � mean of Y −M relation
βY 0.0 � � � mean of Y −M relation
γY 0.0 � � � mean of Y −M relation
σlogY0

0.127 � � � scatter of Y −M relationc

ασ 0.0 � � � scatter of Y −M relation
γσ 0.0 � � � scatter of Y −M relation
Δzi 0.0 N ðμ ¼ 0; σ ¼ 0.002Þd photo-z uncertainties
mi 0.0 N ðμ ¼ 0; σ ¼ 0.004Þ multiplicative shear bias

aSee description in Sec. VII.
bSee Eq. (3).
cSee Eq. (5).
dHere, N denotes a one-dimensional Gaussian distribution.

27We note, however, that we expect the methods presented
here to be useful for constraining any cosmological parameter
affecting late-time structure growth, such as the sum of neutrino
masses,

P
i mν;i.

28We note that for consistency with Ref. [11] we choose to
parametrize the power spectrum amplitude in terms of As instead
of σ8, which denotes the rms of linear matter fluctuations in
spheres of comoving radius 8 h−1 Mpc.

29For parameters with fiducial values of zero, we set ϵ ¼ 0.01.
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σðmiÞ ¼ 0.004, respectively. However, we do not assume
any priors on the mass calibration parameters.

VIII. RESULTS

Figure 3 shows our fiducial forecasted constraints on a
subset of cosmological parameters30 for a combination of
LSST and SO, denoted ggþ gdcþ nc31 in the figure.
These constraints are obtained from a joint analysis of SO
tSZ cluster number counts, LSST cosmic shear, and the
cross-correlation between cosmic shear and cluster over-
density, combined with prior information from Planck as
described in Sec. VII. The corresponding constraints on
mass calibration parameters are shown in Fig. 4. As can be
seen, the combination of SO clusters with LSST cosmic

shear has the potential to provide rather tight constraints on
both cosmological and mass calibration parameters. As an
example, the dark energy equation of state parameters w0

and wa are constrained to a level of ∼8% and σðwaÞ ∼ 0.3,
respectively. These constraints can be recast into uncer-
tainties on wp, which denotes the value of the dark energy
equation of state at a pivot redshift zp where the uncertainty
on wp ≔ wðzpÞ is minimized (see, e.g., [74,75]). For our
fiducial constraints we obtain σðwpÞ ∼ 0.017 at a pivot
redshift of zp ¼ 0.36. These results constitute an improve-
ment in the Dark Energy Task Force (DETF) Figure of
Merit [74] with respect to LSST cosmic shear alone of
approximately a factor of 2. In addition, we find tight
constraints on H0 and As, improving the uncertainties on
the primordial power spectrum amplitude by a factor
of 2, again compared to LSST cosmic shear. This also
implies tighter constraints on σ8, which is directly con-
strained by low-redshift large-scale structure observables.
Comparing our fiducial constraints to those obtained from a

FIG. 3. Forecasted constraints on a subset of cosmological parameters obtained in a joint analysis of LSST and SO for three different
data splits, where gg denotes cosmic shear, gdc denotes the cross-correlation between cluster overdensity and cosmic shear, and nc
denotes cluster number counts. The constraints are marginalized over mass calibration and cosmic shear systematics parameters. The
inner (outer) contour shows the 68% confidence limit (C.L.) (95% C.L.).

30The full panel is shown in Fig. 7 in Appendix.
31Here, gg denotes cosmic shear, gdc denotes the cross-

correlation between cluster overdensity and cosmic shear, and
finally nc denotes cluster number counts.
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combination of current Planck CMB and BAO data32 [76],
we find significant improvements in the constraints on H0,
w0, and wa, with the dark energy figure of merit increasing
by a factor of approximately 9. Furthermore, our fiducial
constraints on wp are comparable to those forecasted from a
combination of Planck CMB with data from the Dark

Energy Spectroscopic Instrument (DESI33) [77]. Looking
at the mass calibration parameters, we find a ∼3% con-
straint on the amplitude of the Y −M relation, Y�.
Comparing this constraint to existing measurements is
complicated by the fact that the respective analyses
significantly differ in both methodology and constrained

FIG. 4. Forecasted constraints on mass calibration parameters obtained in a joint analysis of LSST and SO for three different data
splits. The constraints are marginalized over cosmological and cosmic shear systematics parameters. The inner (outer) contour shows the
68% C.L. (95% C.L.).

32See https://wiki.cosmos.esa.int/planck-legacy-archive/images/
4/43/Baseline_params_table_2018_68pc_v2.pdf. 33https://www.desi.lbl.gov/.
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parameter set. We note, however, that this constraint con-
stitutes a significant improvement compared to current con-
straints, which are at the level of 17% (see, e.g., Ref. [6]).
These results are especially remarkable, as the cosmological
constraints are fully and self-consistently marginalized over
uncertainties in the tSZ Y −M-relation and cosmic shear
measurement systematics and are derived accounting
for the full non-Gaussian covariance between cluster number
counts and the various cosmic shear observables. Similarly,
the constraints on mass calibration shown in Fig. 4 illustrate
the constraining power of LSST and SO when self-
consistently marginalizing over cosmic shear systematics.
In order to disentangle the contribution of separate

probes to these constraints, we compute forecasted con-
straints for two subsets of our full data vector: in the first
case, we combine only cosmic shear and cluster number
counts (denoted ggþ nc), and in the second case we

combine cluster number counts and the cluster lensing
power spectrum (denoted gdcþ nc). The obtained con-
straints are shown in Figs. 3 and 4 alongside our fiducial
ones. From these figures we see that the combination
ggþ nc yields cosmological parameter constraints com-
parable to those obtained from our fiducial case, while
leading to significantly weaker constraints on mass cali-
bration. The combination gdcþ nc, on the other hand,
shows the opposite behavior; i.e., the cosmological con-
straints are weaker while the constraints on mass calibration
are comparable to the fiducial case. These results suggest
that adding cosmic shear to cluster number counts mainly
affects the cosmological constraining power. Combining
cluster lensing and number counts, on the other hand,
allows for precise mass calibration and breaks some of the
degeneracies between cosmology and the Y −M relation,
inherent to cluster counts alone.

FIG. 5. Comparison of the forecasted constraints on a subset of cosmological parameters obtained using the two methods outlined in
Sec. VI. The constraints are marginalized over mass calibration and cosmic shear systematics parameters. The inner (outer) contour
shows the 68% C.L. (95% C.L.).
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It is interesting to ask which angular scales in
Cγδcl
l contribute most to the constraints on the Y −M

relation. To this end, we forecast constraints for gdcþ
nc restricting the angular multipole range for the
cluster lensing cross-correlation to l ≤ 3000 as
compared to our fiducial case with l ≤ 9400. Somewhat
surprisingly, we find almost identical constraints on both
cosmological and mass calibration parameters in both

cases.34 This suggests that the constraints on mass cali-
bration are driven by the large and intermediate angular
scales rather than the smallest scales considered in our

FIG. 6. Comparison of the forecasted constraints on mass calibration parameters obtained using the two methods outlined in Sec. VI.
The constraints are marginalized over cosmological and cosmic shear systematics parameters. The inner (outer) contour shows the
68% C.L. (95% C.L.).

34As the constraints are almost indistinguishable, we do not
show them in any of the figures. In addition, further reducing the
multipole range to l ≤ 1000 only leads to modest increases in
parameter uncertainties.
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analysis. As can be seen from Fig. 1, these scales receive
contributions from both the 1- and the 2-halo terms of the
power spectrum. For the intermediate redshift bin shown in
Fig. 1, the 2- to 1-halo transition occurs at l ∼ 300, while
for the highest redshift bin, they are pushed to l ∼ 600. Our
results thus suggest that the amplitude of Cγδcl

l on relatively
large angular scales contains some information on mass
calibration, as also seen in Ref. [78]. The large-scale
amplitude of the cluster lensing signal is predominantly
determined by the cluster bias, which depends on mass, and
is therefore sensitive to mass calibration parameters, thus
allowing for constraining the mass-observable relation.
This is different from traditional mass calibration methods,
which solely focus on the 1-halo term and thus use
information from smaller scales to constrain the Y −M
relation.35 This complementarity therefore suggests an
interesting way to test for systematics in mass calibration
by comparing the results obtained with both methods.
We further test the methodology presented in this

analysis by comparing the obtained forecasted constraints
to those obtained performing a traditional stacking analysis,
as described in Sec. VI. As the stacking analysis does not
contain cosmic shear information, we only perform this
comparison for the gdcþ nc data split. We constrain the
same parameter set and apply identical priors to both
methods, except that for consistency with existing analyses
we do not account for cosmic shear systematics when
forecasting constraints from the stacking method. The
resulting constraints are shown in Figs. 536 and 6. As
opposed to the constraints obtained from the stacking
method, the constraints from the cross-correlation method
are fully marginalized over cosmic shear systematic uncer-
tainties and are derived taking into account the full non-
Gaussian covariance between cluster counts and cosmic
shear. From Figs. 5 and 6 we see that the cross-correlation
method nevertheless yields significantly tighter constraints
on cosmological parameters, especially H0 and As, where
we find a reduction in the 1σ uncertainties of approximately
30% and 40%, respectively. For the mass calibration, we
find the cross-correlation method to yield comparable or
tighter constraints on the parameters entering the mean of
the Y −M relation [see Eq. (3)], e.g., βY . In contrast,
however, the obtained constraints on the scatter in the
Y −M relation [see Eq. (5)] are weaker. From Fig. 6 we see
that the larger uncertainties on these parameters are mainly
driven by increased parameter degeneracies obtained for

the cross-correlation method. This suggests that these
differences are not due to the mass calibration method
itself but rather due to the different treatment of cluster
number counts in both analyses: while the stacking method
allows for binning the cluster number counts in both MWL

and Yobs
500, the number counts in the cross-correlation

method are only binned in Yobs
500. This lack of explicit mass

information in the cluster number counts can lead to larger
degeneracies and thus enhanced correlations between the
different mass calibration parameters. Further confirmation
comes from the fact that we find the derivatives of
the stacked cluster number counts with respect to the
parameters of σlogY500

ðM; zÞ marginalized over Yobs
500 to be

significantly larger than the derivatives obtained when
marginalizing the cluster number counts over MWL.
Another way of seeing this is that we find a loss of most
of the constraining power on the scatter of theY −M relation
when using the stacked cluster number counts marginalized
over MWL. As discussed above, an additional reason for
these differences might be the fact that the constraints
derived using the cross-correlation method are fully mar-
ginalized over systematics in the cosmic shear and take into
account the cross-correlation between cluster number counts
and cosmic shear, in contrast to the stacking method.
Despite the somewhat weaker constraints on the scatter

in the Y −M relation, these results show that the cluster
lensing power spectrum provides a promising alternative to
traditional tSZ mass calibration methods, as it allows for
both precise mass calibration and additionally provides
cosmological information complementary to cluster num-
ber counts (as can be seen from the fact that the cosmo-
logical constraints from gdcþ nc are tighter than those
obtained with the stacking method).

IX. SUMMARY AND CONCLUSIONS

In this work we present a novel method for joint
cosmological parameter inference and cluster mass cali-
bration from a combination of weak lensing measurements
and thermal Sunyaev-Zel’dovich cluster abundances. We
focus on a combination of cluster number counts, angular
cosmic shear power spectra, and the angular cross-
correlation between cluster overdensity and cosmic shear,
which acts as the main cluster mass calibrator in our
analysis. Using a halo model approach, we derive and
compute theoretical estimates for all observables as well as
their full non-Gaussian covariance. We then forecast
constraints for a joint analysis of LSST and SO on both
cosmological and mass calibration parameters in a Fisher
analysis, fully marginalizing over systematic uncertainties
in cosmic shear measurements. Our results show that the
method presented here yields competitive constraints on
both cosmological and mass calibration parameters.
Furthermore, we find most of the mass calibration infor-
mation to be contained in the large and intermediate

35A potential concern about using information from the large-
scale amplitude of the cluster lensing signal for mass calibration
is the uncertainty on cluster bias models. In order to test the
robustness of our results to these uncertainties, we forecast
constraints from gdcþ nc accounting for a 10% uncertainty
in the amplitude of the cluster lensing power spectrum, finding
only modest increases in parameter constraints.

36The full panel for the cosmological parameter constraints is
shown in Fig. 8 in the Appendix.
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angular scales of the cross-correlation between cosmic
shear and cluster overdensity.
We then compare our constraints to those obtained in a

more traditional stacked cluster weak lensing analysis.
Generally, we find the method presented here to yield
tighter constraints on cosmological parameters and com-
parable or tighter constraints on the mean of the mass-
observable relation. However, we find the scatter in the
mass-observable relation to be more strongly constrained
with the traditional method. We attribute this not to the
mass calibration method itself but rather to different treat-
ments of cluster number counts in both methods: the
traditional methods allow for binning the cluster number
counts in mass MWL and tSZ amplitude Yobs

500 while the
cluster counts in the method presented here are solely
binned in Yobs

500. The additional mass binning in traditional
methods allows one to break degeneracies between the
parameters of the mass-observable relation and therefore
leads to tighter constraints on its scatter.
Therefore, our analysis shows that the cross-correlation

between cluster overdensity and cosmic shear provides a
promising alternative to traditional mass calibration meth-
ods, offering several advantages compared to traditional
approaches. First of all, the constraints derived using the
method presented here are fully and consistently margin-
alized over cosmic shear measurement systematics and are
derived taking into account the full non-Gaussian covari-
ance between cluster counts and cosmic shear. Second,
computing the cross-correlation between cosmic shear and
cluster overdensity amounts to performing a statistical mass
calibration. In contrast, traditional mass calibration meth-
ods require measuring the cluster lensing signal for each
cluster in the sample, which might become prohibitively
expensive for future surveys. Finally, the joint cluster count
and cosmic shear likelihood derived in this work can
readily be combined with other probes of the large-scale
structure, such as galaxy clustering.
We envisage several possible extensions of the present

work. On the one hand, it will be interesting to test the
method presented here by applying it to combinations of
current CMB and large-scale structure surveys, such as
ACT, SPT, or DES. Because of the lower signal to noise in
these data, as compared to LSST and SO, we, however,
expect to constrain only a subset of the parameters
considered in this work, especially those entering the mass
calibration. Furthermore, applying this method to data will
necessitate the inclusion of additional systematics, such as
baryon feedback effects on the matter power spectrum (see,
e.g., Refs. [35,36]). On the theoretical side, we aim to
investigate the potential of the cross-correlation method to
constrain nonparametric mass-observable relations, which
would remove the need of assuming uncertain functional
forms for both the mean and scatter of the Y −M relation.
The analysis presented in this work shows that the cross-

correlation method provides a promising and self-consistent

way for jointly analyzing thermal Sunyaev-Zel’dovich
cluster counts and cosmic shear. This bodes well for paving
the way for multiprobe analyses including tSZ cluster
number counts and harnessing the full potential of galaxy
clusters as a precision cosmological probe.
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APPENDIX A: TRANSFORMING BETWEEN
MASS DEFINITIONS

Throughout this work, we need to transform between
different mass definitions. The total halo mass enclosed
within a radius R for an Navarro-Frenk-White density
profile is given by

Mð<RÞ ¼ 4π

Z
R

0

drr2ρNFWðrÞ

¼ 4πρ0r3s

�
log

�
1þ R

rs

�
−

R=rs
1þ R=rs

�
; ðA1Þ

where rs denotes the scale radius and ρ0 the characteristic
density of a given halo. In the case in which R ¼ RΔ, we
obtain using cΔ ¼ RΔ=rs

Mð<RΔÞ ¼ 4πρ0r3s

�
log ð1þ cΔÞ −

cΔ
1þ cΔ

�
: ðA2Þ

37https://github.com/nbatta/szar.
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Therefore we obtain a relation between halo masses defined
using different overdensity criteria Δ as

Mð<RΔÞ
Mð<RΔ0 Þ ¼

log ð1þ cΔÞ − cΔ
1þcΔ

log ð1þ cΔ0 Þ − cΔ0
1þcΔ0

: ðA3Þ

The above equation is an implicit function of MΔ0 ≡
Mð<RΔ0 Þ. In this work, we convert between M and
M500 by iteratively solving Eq. (A3).

APPENDIX B: IMPLEMENTATION DETAILS

1. Cluster counts binning scheme

We first divide the distribution of galaxy clusters into
five redshift bins with bin edges zi ∈ ½0.; 0.25; 0.5; 0.75;
1.; 1.5�. As discussed in Sec. V, we employ different tSZ
amplitude bins for each redshift bin, in order to ensure at
least one cluster per bin in all cases. For the first redshift
bin, we consider 15 logarithmically spaced bins between

FIG. 7. Forecasted constraints on cosmological parameters obtained in a joint analysis of LSST and SO for three different data splits.
The constraints are marginalized over mass calibration and cosmic shear systematics parameters. The inner (outer) contour shows the
68% C.L. (95% C.L.).
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Yobs
500;min ¼ 8.6 × 10−12 and Yobs

500;max ¼ 3.9 × 10−9. For the
second redshift bin, we consider 14 logarithmically
spaced bins between Yobs

500;min¼4.3×10−12 and Yobs
500;max ¼

5.1 × 10−10. For the third redshift bin, we consider 15
logarithmically spaced bins between Yobs

500;min¼3.1×10−12

and Yobs
500;max ¼ 1.8 × 10−10. For the fourth redshift bin,

we consider 13 logarithmically spaced bins between
Yobs
500;min¼3.1×10−12 and Yobs

500;max¼1.1×10−10. And finally

for the fifth redshift bin, we consider 12 logarithmically
spaced bins between Yobs

500;min ¼ 2.5 × 10−12 and Yobs
500;max ¼

6.6 × 10−11.

2. Cluster lensing power spectrum
binning scheme

We compute the cross-correlation between cosmic shear
and cluster overdensity in four redshift bins with bin edges

FIG. 8. Comparison of the forecasted constraints on cosmological parameters obtained using the two methods outlined in Sec. VI. The
constraints are marginalized over mass calibration and cosmic shear systematics parameters. The inner (outer) contour shows the
68% C.L. (95% C.L.).
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zi ∈ ½0.; 0.35; 0.7; 1.05; 1.41�. We further subdivide these
redshift bins into four logarithmically spaced tSZ amplitude
bins between Yobs

500;min¼4×10−13 and Yobs
500;max¼1.4×10−9.

Requiring that each bin contain at least a single cluster
removes five of these bins, which leaves us with 11 out of
our original 16 tSZ amplitude and redshift bins.
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