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The coalescence of compact binary stars is expected to produce a stochastic background of gravitational
waves (GWs) observable with future GW detectors. Such backgrounds are usually characterized by their
power spectrum as a function of the frequency. Here, we present a method to calculate the full one-point
distribution of strain fluctuations. We focus on time series data, but our approach generalizes to the
frequency domain. We illustrate how this probability distribution can be evaluated numerically. In addition,
we derive accurate analytical asymptotic expressions for the large strain tail, which demonstrate that it is
dominated by the nearest source. As an application, we calculate the distribution of strain fluctuations for
the astrophysical GW background produced by binary mergers of compact stars in the Universe, and the
distribution of the observed confusion background obtained upon subtracting bright, resolved sources from
the signal. We quantify the extent to which they deviate from a Gaussian distribution. Our approach could
be useful for the spectral shape reconstruction of stochastic GW backgrounds.
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I. INTRODUCTION

The direct discovery of gravitational waves (GWs) from
binary black-hole mergers in 2015 [1] sparked a new
interest in gravitational waves, which constitute a new
window to the Universe. Because of the relative weakness
of gravity, the amplitudes of gravitational waves are rather
small, and many GW-emitting processes pass under our
noses undetected. Their cumulative effect amounts to a
gravitational-wave background that bathes the detectors
(for a recent review, see [2]) and may, when investigated,
reveal details of its physical origin (see, for instance, [3–13]
for astrophysical backgrounds). This background shares a
lot of properties with other cosmic backgrounds, such as
the cosmic microwave background (e.g., their stochastic
nature), but it is also unique, in ways we will explore here.
That the stochastic gravitation-wave background

(SGWB) from cosmological sources (such the primordial
GWs produced during inflation) is a Gaussian random field
is well known [14]. The situation is less clear for back-
grounds of astrophysical origin, although, prima facie, the
central limit theorem suggests that the distribution of
observed strain should converge toward a Gaussian when
the number of sources N tends to infinity. As opposed to

primordial GWs, which are generated by inherently random
quantum fluctuations during inflation, astrophysical
sources are purely deterministic, insofar as their position,
separation, masses, etc., specify the waveforms fully.
Hence, while in the former case the wave amplitudes
themselves are random, in the latter—which is our main
concern in this paper—the only randomness is in the
spatiotemporal location of the source on the past light
cone of the observer (as well as its position in the relevant
parameter space). Therefore, one expects that a super-
position of signals from such sources need not be a
Gaussian random field, unless N becomes very large.
So far, most of the literature on SGWBs has focused on

the quantity

ΩgwðfÞ ¼
1

ρcrit

dρgw
d ln f

; ð1Þ

where

ρgw ¼ c2

32πG
h _hij _hiji ð2Þ

is the energy density of the observed GW strain h at the
(observer-frame) frequency f. The density parameter Ωgw

integrated over all frequencies is then the mean SGWB
energy density signature. In this paper, we aim to provide a
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tractable approach for determining the full (one-point)
probability distribution function (PDF) of h around this
mean energy. For simplicity, we will focus on strain time
series hðtÞ analogous to those simulated in, e.g., [15–17],
but we emphasize that our approach is capable of resolving
the frequency dependence of the full distribution function
(see Sec. VI for a brief discussion of this point).
In order to carry out this task, we exploit the fact that

GWs propagate over distances much larger than the typical
clustering length rξ of the sources. Therefore, Poisson
clustering should provide a good approximation when the
bulk of the sources lie at distances r ≫ rξ from the detector.
This simplification enables us to calculate the PDF of the
observed strain from the knowledge of the characteristic
functions of individual sources solely. In particular, we
are interested in the asymptotic behavior of the strain
distribution in the large strain limit, the impact of inter-
ferences, and the validity of the Gaussian approximation.
Furthermore, as a demonstration of the applicability of our
methods, we will apply them to the characterization of
the PDF of the SGWB produced by binary mergers of
compact stars.
The paper is organized as follows: We lay down our

assumptions and spell out our approach in Sec. II. We then
move on to exemplify our method with a toy model in
Sec. III, which we subsequently expand in Sec. IV in
order to estimate the probability distribution of the SGWB
produced by binary mergers of compact stars in the
Universe. In Sec. V we consider the removal of bright
sources from the background estimation. We discuss
our results, along with a number of possible extensions,
in Sec. VI before concluding in Sec. VII. Throughout,
we assume that space-time is described by a flat Friedman-
Lemaître-Robertson-Walker (FLRW) metric, with cos-
mological parameters Ωm ¼ 0.32, Ωrad ¼ 9.187 × 10−5,
ΩΛ ¼ 1 − Ωm −Ωrad, h ¼ 0.674 [18].

II. GENERAL CONSIDERATIONS

Suppose that a gravitational-wave detector located at the
origin of the coordinate system receives signals from N
sources distributed uniformly within a sphere of (comov-
ing) radiusR. The sources radiate signals—each of which is
characterized by its own relevant physical processes—
which travel to the detector, where they interfere to produce
a total signal [19]

sðtÞ ¼ hðtÞ þ nðtÞ with hðtÞ≡ X
source i

hiðtÞ: ð3Þ

Here, nðtÞ is the detector noise [which is uncorrelated with
hðtÞ], and hiðtÞ is a linear combination of the two different
polarizations hþ and h× of the waves [20]. Presupposing
that the detector noise can be mitigated (using advanced
interferometers like LISA and/or cross-correlation among
multiple detectors), the strain time series hðtÞ (sampled into

small time intervals)—which contains the largest amount of
information about the GW background (down to the
residual noise level)—could be extracted from the data
(possibly sampled into small time intervals).
Our goal is to find a way to calculate the one-point PDF

PðhÞ, which gives the probability of measuring a strain
½h; hþ dh� at the detector, and to comprehend its basic
properties.
For this purpose, we make the following assumptions:
(1) Space-time is described by a flat FLRW metric in

comoving coordinates ðt; rÞ, with cosmological
parameters as specified in Sec. I. Henceforth, t will
stand for the cosmic time, while η will denote the
conformal time. The sources and the detector are
idealized comoving frames.

(2) The GW sources are independent of each other and
are all instances of the same type of sources (say,
compact binaries), but may have varying physical
parameters (say, chirp masses).

(3) The sources are distributed homogeneously in co-
moving space according to an isotropic Poisson
process. Therefore, the number N of sources within
a sphere of comoving radius R is Poisson distributed
with a mean count λðRÞ: N ∼ PoisðλðRÞÞ.

(4) Each source has a probability density R�ðtÞ of
turning on at a given cosmic time t.

(5) A source which turned on at t ¼ t� at a comoving
distance r ¼ jrj from the detector produces a strain
at r ¼ 0 and time t0 > t�, which is given by a known
function g:

hðtÞ ¼ d
dLðrÞ

e−r=r0g

�Z
η0;ret

0

dηaðηÞ;φ
�
; ð4Þ

η0;ret ¼ η0 − r=c is the retarded conformal time, η0
is the conformal time measured by the detector
(i.e., the conformal age of the Universe today), d is
an arbitrary distance chosen to normalize the strain
(to make g dimensionless), and φ is a random phase
uniformly distributed in the interval ½0; 2π�. We
include an exponential decay with characteristic
length scale r0 for generality. This could represent
a physical damping caused by an anisotropic
dark matter energy-momentum tensor [21,22], for
instance.

(6) The wavelength of the GWs is considerably smaller
than the radius of curvature of the Universe. As a
result, the polarizations decouple and propagate
along null geodesics ([19] Sec. IV.1.4].

Let us comment briefly on some of these assumptions: In
general, the properties of the GW signal g depends on a set
of model parameters (which include, e.g., the chirp mass of
a binary star), ξ ¼ ðξ1; ξ2;…Þ. As mentioned earlier, one
expects that the distant astrophysical sources be clustered
spatially (a phenomenon which also leads to anisotropies

GINAT, DESJACQUES, REISCHKE, and PERETS PHYS. REV. D 102, 083501 (2020)

083501-2



on large angular scales, as recently discussed in the
literature by, e.g., [3,8,10,23–26]). However, since the
GWs propagate over large distances without being attenu-
ated significantly (any viable r0 is much greater than rξ), it
is reasonable to assume that the sources follow Poisson
clustering. When r0 is large but finite, it is convenient to
work with the mean number N0 of sources inside a sphere
of radius r0. As the source counts are also homogeneous
along the radial direction, one has N0 ¼ λðRÞðr0=RÞ3.
In practice, h is a superposition of independent contri-

butions, so it is natural to calculate the Fourier transform of
its PDF PðhÞ, which decomposes into a product of the
characteristic functions of the waves emitted by the
individual sources [27–29]. For a spatial Poisson process,
the probability to find a single source at position r with
parameters ξ and phase φ is

pðr; ξ;φÞ ¼ 4πr2dr
4
3
πR3

· ϕðξÞdξ · dφ
2π

: ð5Þ

Here and henceforth, ϕðξÞ denotes the measure on the
source parameter space [30].
Let ψðqÞ be the corresponding characteristic function—

the PDF’s Fourier transform—

ψðqÞ ¼ 3

4πR3

Z
R

0

dr r2
Z
S2
dΩ

Z
dξ p̃ðq; ξ; rÞ; ð6Þ

where

p̃ðq; ξ; rÞ ¼
Z

2π

0

dφ
2π

exp

�
iqde−

r
r0

dLðrÞ
g

�Z
η0;ret

0

dη aðηÞ;φ
��

ð7Þ

is the phase average of expðiqhðtÞÞ for a single source.
Since the sources are identical, they share the same

characteristic function ψðqÞ, whence the characteristic
function ΞðqÞ for Poisson distributed sources in a sphere
of radius R is the Poisson mixture

ΞðqÞ ¼
X∞
k¼0

�
λk

k!
e−λ

�
· ψðqÞk

¼ eλψðqÞ−λ: ð8Þ

(One could start the sum at k ¼ 1 and end up with an
irrelevant additive constant term which can be dropped.)
Consequently, the PDF of the observed strain produced by
Poisson distributed sources is given by the inverse Fourier
transform

P
�X

hk ¼ h
�

¼ 1

2π

Z
∞

−∞
dq e−iqheλψðqÞ−λ: ð9Þ

The main question is how to obtain a meaningful expres-
sion for ψðqÞ. As we will show below, the asymptotic

properties of PðhÞ can be gleaned from Eq. (9) without
explicit knowledge of ψðqÞ, as they rely only on universal
properties of the physical system. For example, provided
that each source has an equal probability of emittingþhk as
−hk, ψðqÞ is an even function of q and, therefore, PðhÞ is
also an even function of h. This implies that P0ðh ¼ 0Þ ¼ 0;
i.e., PðhÞ flattens for small values of jhj.
An analytical derivation of the form of PðhÞ at large h is

somewhat more challenging and is expounded below. The
results are reminiscent of cosmological results obtained
with the theory of large deviations (see [31] for a review)
when applied in the context of the large scale structure (see,
for instance, [32–38]). At this point, it is worthwhile to
draw an analogy between the physical system considered
here and random walks. Since the observed strain is a
superposition of independent but identical waves, its time
evolution is analogous to a random walk in the complex
plane: The position of the walker after n steps is of the formP

n
k¼1 Ak expðiφkÞ, which is precisely a sum of n random

waves, with φk representing the phase of the kth wave as it
reaches the detector (see [39,40]). Here, however, the
amplitudes of the waves have a unique property—they
all obey the law of gravity (they decay as 1=r), but ipso
facto one will be able to deduce general properties of
the PDF.
To exemplify our method and illustrate the key proper-

ties of PðhÞ, it is instructive to consider a simplified
scenario first. This is the focus of Sec. III. A more realistic
calculation will be carried out in Sec. VI.

III. A SIMPLIFIED MODEL

In order to understand the features of PðhÞ, we consider a
simple test case in which the GWs emitted are all described
by a pure sine wave with a constant frequency ω, i.e.,
gðtÞ ¼ A cosðωtþ φÞ. Furthermore, we ignore any cosmo-
logical effects, but assume there is a finite attenuation
length r0. Picking up d≡ r0, the strain produced by a
single source at the detector is

gðt;φÞ ¼ Ar0e−r=r0

r
cosðωtþ φÞ: ð10Þ

The source parameters are ξ ¼ ðA;ωÞ in this case. We leave
the distributions of A and ω, ϕðAÞ and ϕðωÞ, undetermined.
While this simplified model serves its purpose of demon-
strating the salient points of the mathematical technique
used in this paper, it does not, however, constitute a
simplified version of the physical case discussed below
in Sec. IV.

A. The characteristic function

The phase average of expðiqhðtÞÞ needed for the
computation of the single source characteristic function is
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p̃ðq;A;ω; rÞ ¼
Z

2π

0

dφ
2π

exp

�
iq
Ar0e−r=r0

r
cosðωtþ φÞ

�

¼ J0

�
q
Ar0e−r=r0

r

�
; ð11Þ

where J0 is the zeroth (cylindrical) Bessel function.
The characteristic function ψðqÞ is obtained upon a

further average over the volume of a sphere of radius R
(corresponding to the maximum distance at which sources
can form, regardless of the detector sensitivity), the dis-
tribution of the amplitude A, and, in principle, the fre-
quency ω (although the latter is immaterial in the one-point
PDF as p̃ is independent of it). Explicitly,

ψðqÞ ¼
Z

dωϕðωÞ
Z

dAϕðAÞ 3

R3

Z
R

0

dr r2p̃ðq;A;ω; rÞ;

ð12Þ

or, upon substituting the variables τ≡ r=r0, s≡ qhc, and
b≡ A=hc,

ψðsÞ ¼ 3N0

λ

Z
dbϕðbÞ

Z
R=r0

0

dτ τ2J0

�
s
be−τ

τ

�
: ð13Þ

The normalization strain hc is defined through

λh2c ≡ 3N0

Z
dAϕðAÞ

Z
R=r0

0

dτ τ2 ·
1

2

�
Ae−τ

τ

�
2

¼ 3

4
N0hA2ið1 − e−2R=r0Þ

≈
3

4
N0hA2i: ð14Þ

The last approximation is valid only if R ≫ r0. A multi-
plicative factor of λ is taken out of h2c, so that the latter is
defined for a mean count of unity. In fact, λh2c ≡ hh2i is
exactly the variance of strain fluctuations, as is readily
visible from computing the second moment of PðhÞ from
the general relation

hhki ¼ ð−iÞk dk

dqk
½eλψðqÞ−λ�jq¼0: ð15Þ

The transformation q ↦ s implies that h is now measured
in units of hc. All one has to do to obtain a PDF for h itself
is to divide by hc, where needed.
It is evident from Eq. (13) that the quantity we are

interested in, λψðsÞ − λ, depends linearly on N0. Therefore,
it is easier to define N0GðsÞ ¼ λψðsÞ − λ, so that GðsÞ is
independent of N0. Then,

GðsÞ ¼ 3

Z
dbϕðbÞ

Z
R=r0

0

dτ τ2
�
J0

�
s
be−τ

τ

�
− 1

�
: ð16Þ

Note that GðsÞ is nothing but the cumulant generating
function for N0 ¼ 1. It satisfies Gð0Þ ¼ G0ð0Þ ¼ 0, while
G00ð0Þ < 0, it reaches its global maximum at s ¼ 0.

B. The shape of the distribution

The large-h asymptotic behavior of PðhÞ can be obtained
for any N0, vide infra and Appendix A. Suppose first that
N0 is small. Taking h > 0 [without loss of generality since
PðhÞ is even in h], one may expand the characteristic
function eN0GðsÞ ≈ 1þ N0GðsÞ. Ignoring the average over
b for the moment, one obtains

PðhÞ ∼ 1

2π

Z
∞

−∞
ds e−ishð1þ N0GðsÞÞ

¼ 3N0

2π

Z
R=r0

0

dτ τ2
Z

∞

−∞
ds J0

�
bse−τ

τ

�
e−ish: ð17Þ

The Fourier transform may now be performed easily, viz.,

PðhÞ ∼ 3N0

π

Z
R=r0

0

dτ

� τ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e−2τ=τ2−h2

p ; if jhj < be−τ
τ ;

0; otherwise:
ð18Þ

If u ¼ τeτ, then, provided that b=jhj ≤ R=r0eR=r0 (which
ought to be the case for sufficiently large jhj),

PðhÞ ∼ 3N0

π

Z
b=jhj

0

duW3ðuÞ
bð1þWðuÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2u2=b2

p ; ð19Þ

where WðuÞ is Lambert’s W function. If jhj ≫ b, then the
integration domain contains solely small values of u, for
which W3ðuÞ ≈ u3, whence, to leading order,

PðhÞ ∼ 3N0

π

b3

h4

Z
1

0

dx x3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ð20Þ

where x ¼ hu=b. Upon performing the final integral, the
first order asymptotic expansion of PðhÞ turns out to be

PðhÞ ∼ 2N0hb3i
πh4

: ð21Þ

This meshes well with the numerical evaluation of PðhÞ
accurately in the large-h limit, as can be seen from the top
panel of Fig. 1.
We contend that this asymptotic relation still holds

even when N0 is not small. We give a simple argument
for this here and present a full derivation in Appendix A.
Away from the origin, GðsÞ is a smooth (C∞) function, and,
consequently, its Fourier transform decays faster than any
power law. Indeed, if we divide up the real line into three
intervals I0¼ð−δ;δÞ, I−¼ð−∞;−δþεÞ, Iþ¼ðδ−ε;þ∞Þ,
where 0 < ε < δ ≪ 1, and take a partition of unity
fη0; ηþ; η−g subordinate to this division, then we can
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divide PðhÞ accordingly, too. More precisely, let Pi ¼
1
2π

R
R ηie−isheGds, so that P ¼ P

i∈f0;�g Pi. For i ≠ 0, Pi is
the Fourier transform of a smooth function, and therefore
decays exponentially with h. Hence, a power-law decay
must originate from P0, if there is one at all [41]. Thus,
PðhÞ ∼ P0ðhÞ as h → ∞. The advantage of adding η0ðsÞ is
that it vanishes outside I0, and one thus may expand the
exponential as before. After expanding, η0 may be removed
and the integration limits restored to �∞, accruing only
exponentially small errors. This argument is similar to
that presented in [42], in the context of the method of
stationary phase.

C. The importance of interferences

Equation (21) implies that the probability of observing a
large value of h is dominated by the nearest neighbor.

To see this, assume that the individual strains hiðtÞ are fully
incoherent. As a result, cross terms vanish, and the total
intensity L is the sum of the individual intensities h2i ,

L≡ X
source i

h2i ; ð22Þ

as one would expect for incoherent electromagnetic radi-

ation. Here, h2i is the average of h
2
i ðtÞ over the duration of

the experiment. In analogy with the ionizing background
produced by quasars, we have (e.g., [29])

PðLÞ ∼L→∞L−5=2: ð23Þ

This power-law behavior is known to arise from the nearest
neighbor [43]. Similarly, bearing in mind that Pðh2Þ ¼
PðhÞ=h, the large-h asymptotic scaling (21) implies

Pðh2Þ ¼ PðhÞ=h ∼h→∞ h−5 ∼ ðh2Þ−5=2; ð24Þ

which demonstrates our assertion.
The distribution PðLÞ can be computed using the

technique outlined above (cf. [29]) upon substituting

gðtÞ ¼ A2r20e
−2r=r0

2r2
ð25Þ

in the expression of p̃ðq;A;ω; rÞ. We included a factor of 1
2

so that Eq. (25) is precisely the time average of Eq. (10).
Consequently, the dependence on the random phase φ is
trivial, and one is left with

GðsÞ ¼ 3

Z
dbϕðbÞ

Z
R=r0

0

dτ τ2
�
exp

�
isb

e−2τ

2τ2

�
− 1

�
;

ð26Þ

where s≡ q=Lc and b≡ A2=Lc. We choose the normali-
zation to be Lc ≡ h2c, such that λLc ≡ hLi. The function
GðsÞ gives PðLÞ upon a Fourier transformation.
The bottom panel of Fig. 1 displays PðLÞ along with

Pðh2Þ for the comparison. While the two distributions
exhibit the same power-law behavior at high L, as
explained above, there is a stark difference at low L.
This emphasizes the crucial role that interference, both
constructive and destructive, plays in the determination of
the observed time series. Note that the means of both
distributions are equal, λLc ¼ λh2c, reflecting the fact that
the variance of independent random variables is additive. In
other words, a measurement of hh2i (that is, ρgw for a
realistic GW background) does not provide any informa-
tion about the (in)coherence of the signal. As a rule of
thumb, the distribution is well approximated by a Gaussian
for jhj ≪ ffiffiffi

λ
p

hc (many sources contribute to the observed

10 -5 10 0

10 -10

10 0

10 -2 10 0 10 2

10 -5

10 0

FIG. 1. Top: Numerical evaluation of the Fourier transform of
expðλψ − λÞ (solid) along with the leading, large-h asymptotic
result (21) for the illustrative model considered in Sec. III.
Bottom: Comparison between the probability distribution for
h2 obtained via Eq. (9) and that for L obtained by summing up the
intensities of individual source (see text). N0 is set to 0.1 for the
top panel, and 10 for the bottom panel. This leads to hLi ¼
hh2i ¼ 7.5 in the right panel. A distribution ϕðAÞ peaked sharply
at A ¼ 1 is assumed throughout.
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strain) and by power-law tails for jhj ≫ ffiffiffi
λ

p
hc (a single,

nearby source dominates the signal).

IV. STOCHASTIC BACKGROUND
FROM BINARIES

Having understood the salient features of the PDF of the
observed strain in a simplified case, we now turn our
attention to a more realistic source of the SGWB: binary
mergers of any combination of white dwarfs, neutron stars,
or black holes. All but the final stages of such systems may
be described by a Keplerian orbit perturbed by the
gravitational radiation reaction [19].

A. Basic relations

We approximate the sources as Keplerian throughout,
and consider circular orbits—an assumption justified by the
circularizing effect of gravitational-wave emission. As a
result, the detector measures a certain linear superposition
of the two polarizations h ¼ Fþhþ þ F×h× with wave-
forms given by [19]

FþhþðtÞ ¼ h0ðtÞ
1þ cos2 i

2
cosð2θÞ cosϕðtÞ; ð27Þ

F×h×ðtÞ ¼ h0ðtÞ cos i sinð2θÞ sinϕðtÞ; ð28Þ

where θ, i describe the orientation of the binary relative to
the detector, t ¼ tcoal − t is the time to coalescence as
measured by the observer (or at the source, as it is
comoving), and

ϕðtÞ ¼ −2
�
5Gð1þ zÞMc

c3

�
−5=8

t5=8 þ φ; ð29Þ

h0ðtÞ ¼
4

dLðzÞ
�
Gð1þ zÞMc

c2

�
5=3

�
πfobsgw ðtÞ

c

�
2=3

; ð30Þ

fobsgw ðtÞ ¼
1

π

�
5

256t

�
3=8

�
Gð1þ zÞMc

c3

�
−5=8

: ð31Þ

Here,

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
ð32Þ

is the chirp mass, φ is a (random) phase, and z is the source
redshift. Furthermore, the time to coalescence reads

t ¼ τ0ðMc; TÞ − ðt0;retðrÞ − t�Þ; ð33Þ

where t� is the formation time of the binary,

t0;retðrÞ ¼
Z

η0−r=c

0

aðηÞdη ð34Þ

is the retarded age of the Universe, and τ0ðMc; TÞ is the
lifetime of a binary—the time it would take until both
members collide; assuming gravitational-wave emission
solely, we have τ0ðMc; TÞ ¼ 5c5T8=3ðGMcÞ−5=3 ([19]
p. 171). We set the present-day scale factor to unity.
Since the phase φ is random, the average of expðiqhðtÞÞ

over φ returns a Bessel function for p̃, as before. Including
an exponential decay with attenuation length r0 (to which
d is set), this implies

p̃ðq; ξ; rÞ ¼ J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2þ þ F2
×

q
h0ðt; zðrÞÞqe−r=r0

	
: ð35Þ

The redshift dependence induces a dependence on the
comoving distance r through the Friedmann equations.
Next, p̃ must be further averaged over the sphere S2 as

well as all the model parameters ξ in order to get ψ . But first
of let us stress that the integral over tcoal is equivalent to an
integral over the “starting time” and, as such, it must be
weighted by the density of binary progenitors (which we
take to be proportional to the star formation rate).
Finally, the large-h asymptotics of PðhÞ can be obtained

upon separating the argument of the Bessel function into an
“amplitude” part AðrÞ multiplied by a “propagation” part
expð−r=r0Þ=dL ¼ expð−r=r0ÞaðrÞ=r. Following the pro-
cedure outlined in Sec. III, one obtains the same asymptotic
expansion at large h. Namely (see also Appendix A),

PðhÞ ∼ 2N0hbðτ ¼ 0Þ3i
πh4

; ð36Þ

where bðτ ¼ 0Þ is the normalized amplitude evaluated at
τ ¼ 0. The coefficient b is evaluated at τ ¼ 0, because, in
passing through Eq. (18), b is now a function of τ, which
we Taylor expand about 0. The terms above zeroth order
contribute higher powers of h in the denominator and are
thus neglected.

B. Probability measure for the source
parameter space

Before delving into the calculation of the SGWB char-
acteristic function, let us remark on the probability measure
we adopt for the model parameters ξ ¼ ðt�;Mc; T;MgalÞ.
While we attempt to use physically plausible rates, our
main goal is to illustrate how our formalism can be used to
calculate the PDF of the SGWB produced by binary
mergers. Therefore, even though the rates and parameters
chosen here were picked so as to simplify this task, we
stress that the procedure laid down in this section may be
used for any choice of rate functions, such as more accurate
estimates based on stellar evolution simulations and past
GW merger events [44,45].
To demonstrate our technique, we adopt the so-called

“reference model” of Cusin et al. [46], which we summa-
rize below for the readers’ convenience. Let us approximate
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the probability density that a binary of compact stars forms
at cosmic time t� with semimajor axis a and chirp massMc
as the product distribution

ϕðt�;Mc; T;MgalÞ ¼ R�ðt�ÞϕðMgaljt�ÞϕðMcjt�;MgalÞ

×
ln ðamax=aminÞ

a
: ð37Þ

R�ðt�Þ is a probability distribution which accounts for the
redshift evolution of the star formation rate, which we
model as

R�ðzÞ ¼ ð1þ zÞe−z2=ð2σ2Þ
�
σ2 þ

ffiffiffi
π

2

r
σ

�−1
: ð38Þ

Here, σ ¼ ffiffiffi
6

p
, so that R� peaks at redshift z ¼ 2 [47].

R�ðzÞ can be converted into R�ðt�Þ using the redshift-
to-cosmic-time relation. The conditional probabilities
ϕðMgaljt�Þ and ϕðMcjt�;MgalÞ will be discussed shortly.
Finally, the 1=a probability density for the initial orbital
period is derived from Öpik’s law [48], which is a
reasonable approximation to the observed Galactic period
distribution over a fairly large range of periods [49]. We
choose the bounds amin ¼ 0.014 AU and amax ¼ 4000 AU
as in [46]. They translate into limits on the initial period T

(by Kepler’s third law) using the masses of the binary
components.
The knowledge of T allows us to compute the

binary lifetime τ0. Then, GðsÞ is obtained from an inte-
gration over t�, Mc, T, Mgal. The nontrivial integra-
tion limits are as follows: T lies between Tmax and
maxfTmin; τ−10 ðt0;ret − t�Þg, while t� runs from 0 to
t0;retðrÞ. The reason for this choice of integration limits
is twofold: Binaries which merge such that the signal from
the merger event reaches the detector (origin) before t0 do
not contribute to the gravitational-wave signal at t0 and
neither do binaries which form at ðt�; rÞ such that the signal
sent at their birth does not reach the detector in time.
To model the chirp-mass distribution ϕðMcjt�;MgalÞ,

suppose that the initial massesm1 and m2 of the two binary
members have both broken power-law densities, ϕðmÞ ¼
Cm−α with α dependent on m. We choose a Kroupa mass
function [50,51] (in the mass range we consider α ¼ 2.7)
rather than a Salpeter mass function as in [46]. This is the
only difference with their model.
The SGWB is mainly produced by remnants of stellar

evolution, whose final mass is related to m1, m2 by the
so-called “initial-to-final-mass function” μðm;ZÞ, which
depends on the metalicity Z. Following [46], we adopt the
functional form of the delayed model presented in Fryer
et al. [52] (here, all masses are in solar mass units):

μðm;ZÞ ¼
8<
:

1.3; if m ≤ 11;

1.1þ 0.2eðm−11Þ=4 − ð2þ ZÞe2ðm−26Þ=5; if 11 < m ≤ 30;

minf33.35þ ð4.75þ 1.25ZÞðm − 34Þ; m −
ffiffiffiffi
Z

p ð1.3m − 18.35Þg; otherwise:

ð39Þ

The metalicity depends on the cosmic time at which the
system formed, a dependence which we model (following
again [46]) using the fit of Ma et al. [53] for the gas density
(from which the stars formed):

log10

�
Zðz;MgalÞ

Z⊙

�
¼ 0.35

�
log10

�
Mgal

M⊙

�
− 10

�

þ 0.93e−0.43z − 1.05: ð40Þ
The redshift is z then, again, converted to cosmic time t�
using the cosmic-time-to-redshift relation.
All this leads to a chirp-mass distribution

ϕðMcjt�;MgalÞ≡ ϕðMcjZðt�;MgalÞ ð41Þ
given by

ϕðMcjZÞ¼
ZZ

dm1dm2ϕðm1Þϕðm2Þ

×δD

�
Mc−

ðμðm1;ZÞμðm2;ZÞÞ3=5
ðμðm1;ZÞþμðm2;ZÞÞ1=5

�
; ð42Þ

where δDðxÞ is the Dirac delta function.

The last ingredient is ϕðMgaljt�Þ, which we model using
the halo mass function of Tinker et al. [54] and under the
assumption that the total stellar mass in a galaxy is
proportional to its halo mass.
The knowledge of the functions R�ðt�Þ, ϕðMgal; t�Þ,

ϕðMcjt�;MgalÞ, and ϕðaÞ ∝ 1=a fully specifies the PDF
of ϕðξÞ, up to an overall rate encapsulated in the value of
N0 which we are free to specify.

C. Determination of N0

N0 is the average number of overlapping sources in the
time-domain data, whose frequencies are in the detector’s
observing band. While N0 could be as large as, say,
106–109 if we were observing the stochastic background
across all frequencies, it is of order Oð10Þ only if
frequencies are restricted to fobsgw ≳ 1 Hz [17]. Here and
henceforth, we will match our predictions to the LIGO’s
frequency band. This restricts the source parameters via
Eq. (31) given by fmin ≤ fobsgw ≤ fmax, where fmin ¼ 5 Hz
and fmax ¼ 5000 Hz. Imposing such a constraint on fobsgw
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through an additional Heaviside function in the definition
of GðsÞ (see below) affects the determination of N0.
To determine N0 [and, thereby, the absolute normaliza-

tion of the star formation rate R�ðzÞ in our model], we use
the approximate relation

N0 ∼ Rmerger · V · htðfminÞi; ð43Þ

where V is the comoving volume of the observable
Universe (because we assume the detector to be noiseless
in the observing frequency band), Rmerger is the present-day
merger rate (inferred from the data), and htðfminÞi is the
average amount of time spent by a binary in the detector’s
observing band (which, in addition to fmin and fmax,
sensitively depends on the physics of GWs).
For Rmerger ∼ 2000 Gpc−3 yr−1, V ∼ 10 Gpc3, and

htðfminÞi ∼ 200 s, we obtain N0 ∼ 10, in agreement with
the value of N0 ¼ 15 calculated by Ref. [17] in the LIGO
frequency band [55]. We shall adopt N0 ¼ 15 as our
fiducial value.

D. Distribution of observed strain fluctuations

All that remains is to evaluate GðsÞ, i.e., to compute

GðsÞ ¼ 3

Z
R=r0

rmin=r0

dτ τ2
Z
S2

dΩ
Z

dMc

Z
dT

Z
dt�

×
Z

dMgalφðt�;Mc; T;MgalÞðp̃ðs; ξ; τ; θ;ϕÞ − 1Þ

× Θ½ðfobsgw − fminÞðfmax − fobsgw Þ�; ð44Þ

where Θ is Heaviside’s function. We perform this integral
numerically assuming R ¼ 14 Gpc and r0 ¼ 10 Gpc (see
Appendix B for details). For our fiducial cosmology, 10 and
14 Gpc correspond to the comoving radial distance to
redshift z ≃ 12 and to the last scattering surface, respec-
tively. The result is plotted in Fig. 2.
The distribution PðhÞ computed from an inverse

Fourier transform of expðN0GÞ is shown in Fig. 3
assuming N0 ¼ 15. We find a strain normalization of
hc ¼ 2.06 × 10−25. Here again, there is an excellent agree-
ment between the exact numerical result (solid curve) and
the asymptotic expression (dashed line) in the large-h limit.
We have also overlaid a Gaussian distribution (dotted-
dashed curve) with variance hh2i equal to that of the full
distribution. This emphasizes that a Gaussian is a bad
approximation over the range of strain values considered
here owing to the low number of sources. As N0 increases,
the transition to the h−4 power-law tail moves to larger
values of h, so that the Gaussian approximation improves
(at fixed value of h). In Fig. 4, we show the effect of varying
N0 on the probability PðhÞ of measuring a squared strain h.
To conclude this section, recall that the variance of

observed strain fluctuations is related to the density
parameter ΩgwðfÞ through

hh2ðtÞi ¼ 8G
πc2

ρcrit

Z
∞

0

d ln ff−2ΩgwðfÞ: ð45Þ

The unequal time correlator hhðtÞhðt0Þi encodes additional
information on, e.g., whether the SGWB produced by
binary mergers of compact stars falls in the “continuous,”
“shot noise,” or “popcorn” regime [16]. This depends on
the ratio between the duration of events and time interval
between successive events. At the distribution level, quan-
tifying the correlation structure of time series data would
amount to calculating the two-point PDF PðhðtÞ; hðt0ÞÞ
(and higher order statistics). This ought to be relatively
straightforward, albeit beyond the scope of this paper.

10-10 10-5 100 105 1010
-105

-100

-10-5

-10-10

-10-15

-10-20

-10-25

FIG. 2. The value of GðsÞ [Eqs. (35) and (44)] for the
parameters specified in Table I.

FIG. 3. The probability density function of the cumulative
SGWB strain from binaries for a mean number of sources N0 ¼
15 (solid blue) within one attenuation volume (see text for
details). There is excellent agreement with the large-h asymptotic
prediction in Eq. (36) (red dashed). The Gaussian approximation
of the probability density function given by the second order
expansion of GðsÞ is also shown for comparison (blue dotted
dashed).
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V. THE CONFUSION BACKGROUND

So far, we have computed the distribution PðhÞ of time-
domain strain fluctuations measured in the frequency
domain fmin ≤ fobsgw ≤ fmax by an idealized, noiseless
detector without any signal postprocessing (i.e., source
identification, etc). In this section, we will model the
outcome of a realistic analysis in which bright sources
significantly above the detector sensitivity are subtracted
from the time-domain series. The resulting distribution,
which we denote PrðhÞ, will characterize the so-called
“confusion background” of unresolved sources [57,58].

A. Bright-source subtraction

When a binary system has a large apparent brightness—
as is the case of nearby sources—its signal can rise well
above the residual noise rms variance

ffiffiffiffiffiffiffiffiffi
hn2i

p
. As a result, it

can be resolved as an individual event and subtracted from
the SGWB time series if it does not significantly interfere
with other signals. In this case, it ceases to contribute to the
SGWB as defined above. In practice, the identification,
modeling, and subsequent removal of bright sources are
quite complicated. Therefore, we shall consider here the
following simplified implementation.
A black-hole binary produces waves with frequency

rising in time, until its components coalesce. The detector
observes the merging, while the frequency fobsgw of the
gravitational waves lies between fmin and fmax. The signal-
to-noise ratio of the detector is [19]

�
S
N

�
2

¼ 4

Z
fmax

fmin

df
jh̃ðfÞj2
SnðfÞ

¼ 1

3π4=3
c2

dLðzÞ2
�
GMcð1þ zÞ

c3

�
5=3

×
Z

minf2fISCO;fmaxg

fmin

df
f−1=3

f2SnðfÞ
; ð46Þ

where fISCO ¼ 2200 Hz × M⊙
m1þm2

, and SnðfÞ is the detec-
tor’s noise spectral density [59]. For convenience, let us
introduce

I ¼
Z

440 Hz

fmin

df
f−1=3

f2SnðfÞ
: ð47Þ

Because of the f−7=3 power in the integrand, changing the
upper limit of I from the maximum possible value of 2fISCO
in the model used here, ∼440 Hz, to its minimum, has a
small effect on its value. Thus, requiring the source SNR to
be more than a certain value nσ amounts to requiring that

ðMcðzþ 1ÞÞ5=3
d2L

≥
3π4=3c3k2

G5=3I
≈ 3.3n2 × 10−7 M5=3

⊙ Mpc−2:

ð48Þ

If this inequality is satisfied, the source is deemed bright,
and its signal is removed from the data provided that its
time to coalescence t is smaller than 5 y (so that it merges
during a 5 y observational run). In practice, the bound on
the SNR may be formally expressed as a bound on a
function of the source parameters. The latter is then inserted
as a Heaviside function into the integrand of Eq. (44),
thereby ensuring that the condition (48) is not satisfied by
the sources making up the confusion background.

B. Distribution

The condition Eq. (48) introduces another strain scale
hcutoff in addition to hc. Above this scale, typically much
larger than hc, one expects an exponential falloff of
PrðhÞ (cf. Appendix C). For an experiment with LIGO
characteristics, we obtain indeed hcutoff ∼ 104hc ≫ hc. In
this case, we expect three different regimes as shown
in Fig. 5: h ≪ N0hc, where PrðhÞ is roughly constant,
hcutoff ≫ h ≫ N0hc, where PrðhÞ behaves like a power
law, and h > hcutoff , above which PrðhÞ decreases expo-
nentially. This emphasizes that the distribution PrðhÞ of the
confusion background PðhÞ is very close to PðhÞ when
hcutoff ≫ hc. Overall, any cutoff hcutoff will regularize the
moments of PðhÞ (which are all infinite starting from the
third), and give rise to an exponential decline. The variance
hh2i remains weakly sensitive to the value of hcutoff (i.e., it
varies at most by ∼10%) so long as hcutoff ≫ hc.
To illustrate the impact of bright-source subtraction

when hcutoff is comparable to hc, we consider a hypothetical
detector with sensitivity comparable to hc (and, thus, much
better than LIGO). Upon removing sources which are k
times brighter than hc, i.e., SNR > khc, with k ¼ 1 or 10,
we obtain the distribution PrðhÞ of the confusion back-
ground displayed in Fig. 6 (the evaluation of the Fourier

FIG. 4. The probability density function PðhÞ of the strain h for
different values of N0 The black line corresponds to our fiducial
choice of N0 ¼ 15, while red and blue are N0 ¼ 1.5 and
N0 ¼ 42, respectively. Note that N0 always refers to the attenu-
ation volume, which we give in Appendix B.
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transform becomes computationally challenging for large
values of x). One can spot a cutoff around x ∼ k at which
the slope of the distribution changes. This is particularly
clear for the case k ¼ 10 because the intermediate h−4

power-law regime is still visible. For the case k ¼ 1, this
intermediate regime is not apparent because PrðhÞ quickly
transitions to the steeper falloff, rendering the full shape of
PrðhÞ Gaussian-like. This agrees with the numerical find-
ings of [57], who found that PrðhÞ becomes closer to a
Gaussianwhenbright sourcesare removed.Clearlyhowever,
PrðhÞ depends on the details of the source subtraction
procedure. Note also that, by definition, a given detector
will be sensitive to values of h not significantly below the
cutoff hcutoff . However, hypothetically speaking, one could
decide todeemasourceasbrightonly if it isdetectedat5σ,but
settle for finding the SGWB at 3σ, in which case one could
still measure the flat and/or power-law behavior of PrðhÞ.
To conclude this discussion, we emphasize that cross-

correlations between different detectors can help reduce the
experimental noise [19]. In this case, however, it is the
probability density Prðh2Þ which is the quantity being
measured [60]. This can help probe the distribution PrðhÞ
of the confusion background for values of h much smaller
than the sensitivity of a single detector.

VI. DISCUSSION AND GENERAL PROPERTIES

The salient features of PðhÞ that we outlined in this
paper remain valid in a more general setting—when
g ¼ AðtÞ exp½iðωðtÞtþ φÞ�—provided that A and ω are
slowly varying functions of t. As in Secs. III and IV,
averaging over the phase φ gives a Bessel function:

p̃ ¼ J0

�
qA

de−r=r0

dLðrÞ
�
: ð49Þ

For hcutoff ¼ ∞, the dominant contribution arises again
from the jsj3 term in GðsÞ and generates an h−4 power law.

The−4 exponent actually reflects the specific r dependence
of the GW luminosity distance in general relativity (GR).
Obviously, this exponent may change if the flux does not
satisfy the familiar 1=r2 law (as is the case in some
extensions of GR [63,64]). For hcutoff < ∞, the methods
of Sec. V and Appendix C apply, mutatis mutandis.

A. Isotropy

One critical assumption made throughout this paper is
that of the isotropy of the source spatial distribution (the
mean number density is allowed to vary along the radial
direction), so that our hh2i actually corresponds to the
shot noise term discussed in [25], rather than the angular
power spectra Cl’s calculated in [8,10] (see also [65–67]
for similar calculations in the context of cosmological
backgrounds).
While isotropy is a reasonable assumption for the main

extra-Galactic background sources of LIGO and Virgo
[25], there is a significant contribution from Galactic white-
dwarf binaries to the background that should be observed
by LISA [19]. The formalism considered here can be
extended to include generic clustering (along the lines of,
e.g., [43]) and projection effects induced by inhomogene-
ities (peculiar velocities, gravitational redshift, etc.) into the
calculation of GðsÞ (see, for instance, [26]).
In the specific case of contributions from our Galaxy,

Eq. (5) will have to be amended to include a number
density which depends on the sky direction in accordance
with the Galactic density profile (approximately a disk;
see [13]). The SGWB will then be the superposition of
an extra-Galactic part hext (studied in this paper) and a
Galactic part hGal. Since both are independent, the char-
acteristic function of h ¼ hextra þ hGal is the product of
their characteristic functions. One can still denote the
characteristic function of hGal by expðNGalGGalðsÞÞ, with
NGal measuring the mean number of Galactic sources
across the sky (even if this distribution is neither isotropic
nor Poissonian). Therefore, the function GðsÞ should
also separate into two parts: NtotGðsÞ ¼ N0GextðsÞ þ
NGalGGalðsÞ. If NGal ≫ 1, Laplace’s method (this time
treating NGal as the big parameter, not h) ensures that,
for all values of h but the very largest, where the
approximations of Appendix C apply, the dominant con-
tribution to GGal is its Oðs2Þ term in its Maclaurin series.
Thus, one expects that for large NGal, h is well approxi-
mated by a sum of hext, whose distribution we have
described here, and a Gaussian random variable, provided
that h is not too large.

B. Frequency domain

All of the above is true for the entire gravitational-wave
amplitude integrated, so to speak, over all frequencies.
However, we can resolve the probability distribution for
each frequency. A signal processing in the frequency

FIG. 5. Full shape of PrðxÞ with realistic hcutoff : power law and
exponential for xðhÞ → ∞. Details of the computation can be
found in Appendix C.
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domain is also desirable [especially when hn2i is of order
λh2c or larger] because the detector noise usually has a very
specific frequency dependence.
Let h̃ðfÞ ¼ R

dt e2πitfhðtÞ be the Fourier amplitudes. For
N sources, we have

h̃ðfÞ ¼
XN
k¼1

h̃kðfÞ: ð50Þ

The individual Fourier modes [68] h̃kðfÞ also are inde-
pendent by the assumptions stated in Sec. II, with the caveat
that they are complex random variables. Treating h̃ðfÞ as a
complex variable, the single source characteristic function
ψðqÞ should be defined as

ψðqÞ ¼ hexp½iℜðqg̃ðfÞÞ�i; ð51Þ

where q is now complex, g̃ðfÞ denotes the Fourier trans-
form of gðtÞ, and ℜðzÞ is the real part. Alternatively, since
h̃ðfÞ must satisfy the reality condition [because hðtÞ is
real], we can restrict ourselves to the statistics of the real
part ℜðh̃ðfÞÞ of the Fourier amplitudes without losing any
information. In this case, the methods of Sec. II apply
exactly provided that gðtÞ is replaced by

g̃ðfÞ ¼ 1

T

Z
T

0

dt cosð2πftÞgðtÞ: ð52Þ

(T expresses the finite duration T of the experiment;
frequencies f < 1=T are poorly sampled by the data.)
As an illustration, consider the simplified model of

Sec. III. For a general T < ∞, the Fourier transform g
yields

g̃ðfÞ ¼ A
2T

r0e−r=r0

r

��
cosωþ
ωþ

þ cosω−

ω−

�
sinφ

þ
�
sinωþ
ωþ

þ sinω−

ω−

�
cosφ

�
; ð53Þ

where ω� ¼ ω� 2πf. Integrating over the random phase
φ, p̃ðq; f; ξ; rÞ becomes, after some manipulations,

p̃ðq; f; ξ; rÞ ¼ J0

�
q
Ar0e−r=r0

r
αðω; f; TÞ

�
; ð54Þ

provided that αðω; f; TÞ is defined as

αðω; f; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 4π2f2 þ ðω2 − 4π2f2Þ cosð4πfTÞ

p
ffiffiffi
2

p jω2 − 4π2f2jT :

ð55Þ

Equation (54) is identical to Eq. (11) except for a
frequency-dependent factor of αðω; f; TÞ. Our previous

arguments remain valid, so the PDF Pðℜðh̃ðfÞÞ ¼ hÞ will
be dominated by the nearest neighbor at large h. Its
asymptotic form thus exhibits the power-law behavior
∼h−4, although its overall amplitude is now modulated
in accordance with αðω; f; TÞ.

C. Central limit theorem

The reader might wonder whether central limit theorems
(CLTs) hold here, especially the classical CLT that guar-
antees the pointwise convergence of a sum of identically
distributed variables with finite variance. In our case,
however, the variance of a single source is infinite.
To see this, consider the simplified model of Sec. III,

where the emitted amplitude b is constant, and let us
evaluate Ehh2i (Eh ¼ 0), where h·i is a phase average. The
tail formula for the expectation gives

Ehh2i ¼
Z

∞

0

dt Pðhh2i > tÞ ¼
Z

∞

0

dt P

�
d2b2

2r2
> t

�

¼
Z

∞

0

dt P

�
r <

dbffiffiffiffi
2t

p
�

¼
Z

∞

0

dt
Z dbffiffi

2t
p

0

dr
3r2

R3

¼
Z

∞

0

dt
d3b3

R3ð2tÞ3=2 : ð56Þ

This diverges, of course, at t ¼ 0. Therefore, the SGWB
does not satisfy the classical CLT. However, we argue that
PðhÞ still converges (nonuniformly) toward a Gaussian,
despite the infinite variance of the single source distribu-
tion, in agreement with the existence of CLTs for random
variables with infinite variance (e.g., [69–71]).
To demonstrate this point, let us scrutinize Eq. (A7).

If the series in the argument of the exponential would
involve equal powers of N0, hb2i and s, i.e., −N0hb2is2 þ
ðN0hb2iÞ3=2jsj3 þ… [we omit Oð1Þ series coefficients for
clarity], then any change in the value of N0 or hb2i could be
absorbed into a redefinition of s. Therefore, the shape of
PðhÞ for large N0 ≫ 1would be approximately the same as
that for N0 ∼ 1, that is, highly non-Gaussian. The linearity
of the series expansion in N0 implies that PðhÞ eventually
converges to a Gaussian in the limitN0 → ∞. However, the
rate of convergence strongly depends on the value of h and
the statistical properties of the source distribution. In the
random walk analogy, the slow convergence manifests
itself as anomalous diffusion on a longer timescale than
expected from the classical CLT.
Comparing the s2 and jsj3 terms in Eq. (A7) shows that

the closer PðhÞ is to a Gaussian, the smaller is the ratio

hb3iffiffiffiffiffiffi
N0

p hb2i3=2 ≡
s3ðbÞffiffiffiffiffiffi
N0

p ; ð57Þ

where s3ðbÞ is the skewness of the b distribution only if
hbi ¼ 0. In other words, source distributions with a large s3
lead to a slower convergence rate, in agreement with the

PROBABILITY DISTRIBUTION OF ASTROPHYSICAL … PHYS. REV. D 102, 083501 (2020)

083501-11



Berry-Esseen theorem [69,70]. For illustration, let us evalu-
ate s3 for the initial, power-law mass distribution ϕðmÞ.
Assuming mmin < m < mmax and 2 < α < 3, we find

s3ðmÞ ≈mðα−1Þ=2
max for mmax ≫ mmin; ð58Þ

i.e., s3ðmÞ grows nearly linearly withmmax for α ¼ 2.7. As a
result, taking a value ofmmax 10 times larger implies thatN0

should be 100 times bigger to achieve a similar level of
convergence.
Overall, the nonuniformity of the convergence rate is

reflected by Eq. (36), which we have shown to be valid for
any value of N0. Indeed, we find that for h≲ N0hc, the
Gaussian approximation holds, while for larger values of h,
the power-law asymptotic is recovered. When there is not
bright-source removal, for any finite N0, PðhÞ therefore
assumes the shape of a power law at sufficiently large
values of h. As N0 increases, the power-law regime is
pushed further and further to higher values of h.

VII. CONCLUSION

In this paper, we exemplified a formalism to calculate the
PDF of a stochastic gravitational-wave background pro-
duced by Poisson-clustered compact binaries. A similar
approach was considered in the context of the high-redshift
ionizing UV background but, to the extent of our knowl-
edge, it is the first time that it is applied to stochastic GW
backgrounds, where interference is taken into account in a
consistent manner.
In contrast with earlier works on the topic, we provided

expressions for the full distribution function PðhÞ, not only
its variance (or power spectrum). We also demonstrated
how our approach can be extended to calculate the
distribution PrðhÞ of the confusion background obtained
after the subtraction of bright sources. Our formalism thus
has the advantage of being able to model large deviations,
as well as typical fluctuations. We evaluated the PDF of the
stochastic gravitational strain numerically and derived
accurate asymptotic expressions for the large strain tail.
The latter turns out to be dominated by the nearest active
source. The resulting h−4 scaling is, in fact, a universal
phenomenon, insofar as it is independent of the particular
properties and characteristics of the sources—so long as
they are deterministic, point sources—and arises solely
from the nature of gravity, the four-dimensional nature of
space-time, and the inverse-square law decay of the wave
amplitude. Furthermore, we demonstrated that both PðhÞ
and PrðhÞ are generically non-Gaussian as they depend on
the moments (rather than the cumulants) of the source
parameter distribution owing to the projection along the
line of sight to the observer. As a corollary, one must be
careful with the application of central limit theorems
because the source variance is infinite. We expect these
conclusions to hold also for the distributions of Fourier
amplitudes.

Section IV described a calculation of the stochastic
background produced by binary mergers of compact stars,
assuming Newtonian orbits throughout the binary’s evo-
lution in conjunction with other simplifying assumptions
on the rates, mass functions, and spatial clustering of
the sources. These, however, do not reflect a limitation
of the formalism, but rather the authors’ wish to simplify
the numerics. In fact, GðsÞ may be calculated much more
precisely in an analogous way, using rates and mass
function derived from simulations directly and taking into
account inhomogeneities in the spatial distribution of the
sources. Finally, our results can be extended in the Fourier
domain and, therefore, could be useful for the frequency
reconstruction of stochastic GW backgrounds (see, e.g.,
[72]). We defer a thorough study of all these issues to
future work.
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APPENDIX A: ASYMPTOTIC EXPANSION
FOR ANY N0

We demonstrate that the power-law asymptotic behavior
in Eq. (21) is true even when N0 is not small. As we are

FIG. 6. The distribution of the confusion background PrðhÞ for
two different cutoff SNRs > khc, with k ¼ 1 and 10, for the
bright-source subtraction.
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interested in the large-jhj limit, the dominant contribution
comes from small values of s in GðsÞ, so it is important to
expand Eq. (16) around s ¼ 0. We do this using a Mellin
transform method (see Appendix A.2 of [39]): let

ḠðμÞ ¼
Z

∞

0

dsGðsÞsμ−1 ðA1Þ

be the Mellin transform of G. The integral converges for
0 > ℜðμÞ > −2, and may be performed analytically [73]
to give

ḠðμÞ ¼ 3

Z
dbϕðbÞ

Z
R=r0

0

dττ2
�
be−τ

τ

�
−μ cosecðμπ

2
Þ

21−μΓ2ð1 − μ
2
Þ :

ðA2Þ

Integrating further over τ, we arrive at

ḠðμÞ ¼ 3

Z
dbϕðbÞb−μð−μÞ−ð3þμÞ cosecðμπ2 ÞΓð3þ μÞ

21−μΓ2ð1 − μ
2
Þ :

ðA3Þ

This formula can be analytically continued to any complex
μ, except for μ ¼ 0;�2;�4;�6;… (the cosecant’s poles)
and μ ¼ −3;−4;−5;… (the numerator gamma function’s
poles). The Mellin transform inversion theorem implies
that, for c ¼ ℜðμÞ between 0 and −2, we can write

GðsÞ ¼ 1

2πi

Z
cþi∞

c−i∞
dμs−μḠðμÞ: ðA4Þ

Now, using the analytical continuation of Eq. (A3) to shift
the integration contour all the way to the left, all the
negative integer poles of Eq. (A3), starting at −2, contribute
to the small-s expansion ofGðsÞ. The first three terms come
from μ ¼ −2;−3;−4, viz.,

GðsÞ ∼ −
3hb2i
8π

s2 þ hb3i
3π

s3 þ 24γE − 27þ 12 ln 2
64π

hb4is4

þ…; ðA5Þ

where γE is Euler’s constant.
The Mellin transform is only affected by positive values

of s, so the above equation is correct only for small, positive
s. For negative values, recall that GðsÞ is an even function
of s, and extend Eq. (A5) to negative values evenly by
adding an absolute value to all odd powers of s:

GðsÞ ∼ −
3hb2i
8π

s2 þ hb3i
3π

jsj3 þ 24γE − 27þ 12 ln 2
64π

hb4is4

þ…: ðA6Þ

This shows that the cumulants of PðhÞ beyond the variance
do not vanish (they depend on the moments of the source
parameter distribution), and, consequently, PðhÞ does not
uniformly converge to a Gaussian (an h−4 tail is always
present for any finite N0 ≫ 1).
We evaluate the asymptotic expansion for PðhÞ at large

(positive) h using a Mellin transform argument, again.
Equation (A6) implies [bear in mind that GðsÞ is even] that

PðhÞ ∼QðhÞ≡ 1

π

Z
∞

0

ds cosðhsÞ exp
�
−
3N0hb2i

8π
s2 þ N0hb3i

3π
s3 þ 24γE − 27þ 12 ln 2

64π
N0hb4is4

�
: ðA7Þ

Taking the Mellin transform of this equation gives

Q̄ðμÞ ¼
Z

∞

0

dh
Z

∞

0

ds hμ−1 cosðhsÞ exp
�
−
3N0hb2i

8π
s2 þ N0hb3i

3π
s3 þ 24γE − 27þ 12 ln 2

64π
N0hb4is4

�
: ðA8Þ

The h integral is just

Z
∞

0

dh hμ−1 cosðhsÞ ¼ s−μΓðμÞ cos
�
πμ

2

�
ðA9Þ

when 0 < ℜμ < 1. The s integral may be written as
Z

∞

0

ds s−μ exp

�
−
3N0hb2i

8π
s2
�X∞

n¼0

1

n!

�
N0hb3i
3π

s3
�

n X∞
k¼0

1

k!

�
24γE − 27þ 12 ln 2

64π
N0hb4is4

�
k
: ðA10Þ

Each integral is of the form

Z
∞

0

ds s−ν exp

�
−
3N0hb2i

8π
s2
�

¼ 1

2

�
3N0hb2i

8π

�ðν−1Þ=2
Γ
�
1

2
−
ν

2

�
; ðA11Þ
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where ν ¼ μ − 3n − 4k. The Mellin transform inversion
theorem implies (again) that for 0 < c ¼ ℜðμÞ < 1,

QðhÞ ¼ 1

2πi

Z
cþi∞

c−i∞
dμ h−μQ̄ðμÞ: ðA12Þ

The expression for Q̄ has poles at μ ¼ 0;−2;−4;… due to
ΓðμÞ cosðμπ=2Þ, as well as poles at ν ¼ 1; 3; 5;…. The
former set of poles does not affect the large-h expansion, as
one needs to consider poles with ℜðμÞ ≥ 1. The cosine
cancels any ν pole unless μ is even; whence n has to be odd
for there to be a nonzero residue. As μ increases with n, the
low values of n contribute lower powers of 1=h to the
expansion ofQ at h ≫ 1. The lowest such μ for which there
is a nonzero residue therefore dominates. It comes from
n ¼ 1, k ¼ 0, and is given by μ ¼ 4 (the residues from
μ ¼ 1, 2, and 3 are zero), which corresponds to ν ¼ 1. This
yields

QðhÞ ¼ −
�
−
12

2

�
N0hb3i
3π

h−4 ðA13Þ

on using

Res

�
cos

�
πz
2

�
ΓðzÞΓ

�
1

2
−
1

2
ð−4k − 3nþ zÞ

�
; fz ¼ 4g

�

¼ −12: ðA14Þ

An additional minus sign comes from the fact that, when
the line integral in the Mellin transform inversion formula
[Eq. (A12)] is shifted all the way to the right, it translates
into clockwise contour integrals around the poles. Together
with Eq. (A7) this yields

PðhÞ ∼ 2N0hbðτ ¼ 0Þ3i
πh4

; ðA15Þ

which is precisely Eq. (36) (the τ ¼ 0 dependence is added
as in Sec. IV).
It is clear that powers of s higher than s3 do not affect

this scaling as they contribute only larger values of μ and,
therefore, are subdominant.

APPENDIX B: NUMERICAL INTEGRATION
AND PARAMETERS

As explained in Sec. IV, we evaluate the eight-dimen-
sional integral Eq. (44), as well as the various normalization
constants numerically, before performing the inverse
Fourier transform to obtain PðhÞ. For the integration, we
use Monte Carlo integration. In particular, we employ
importance sampling, i.e., the VEGAS algorithm. Since the
integrand is well behaved, convergence can be reached very
quickly, outperforming nested integration in this particular
case. The integration in the T variable is carried out
logarithmically. For the final plots we used 108 function

evaluations to sample the integral. As a sanity check, we
compared it to nested integration and obtained excellent
agreement. We tabulate the values for GðsÞ and interpolate
logarithmically to perform the final, one-dimensional
inverse Fourier transformation. At high values of h, the
inverse Fourier transform can pick up modes from the
numerical noise of the Monte Carlo integration, but by
increasing the number of function evaluations the value of h
where this starts to happen can be pushed to ever higher
values. For all integrations, we used the routines provided
by the GSL [74].
All the parameters entering in the evaluation of the

integral in Eq. (44) are summarized in Table I. A short
distance cutoff rmin ¼ 0.01 Mpc was introduced only to
avoid possible numerical issues. It does not affect our
conclusions in any way.

APPENDIX C: SHAPE OF EXPONENTIAL
DECLINE IN SEC. V

By introducing an effective cutoff in GðsÞ due to bright
sources, as described in Sec. V, GðsÞ is made into an
analytic function, and the jsj3 irregular term is regularized.
This implies that, by the Paley-Wiener theorem, its Fourier
transform PrðhÞ must decline faster than any power law at
large values of h; i.e., the power-law approximation ceases
to hold for sufficiently large h. The purpose of this
appendix is to find the asymptotic limit of PrðhÞ in the
case where GðsÞ is analytic.
The integral we need to approximate is given by Eq. (9),

where ψðzÞ is an even function of z, a task we perform
using the steepest descents method [75]. This method relies
on finding the saddle points of the exponent, and then
deforming the integration contour in the complex plane so
that it coincides with the steepest descents contour (on
which the imaginary part of the exponent is constant) that
passes through the relevant saddle points. The remaining
parts of the integral would give exponentially small errors.
In our case, the exponent is ζðzÞ ¼ −ihzþGðzÞ, whence
the saddle points are those where G0ðzÞ ¼ ih. The relevant

TABLE I. Summary of the integration boundaries, the corre-
sponding units, and additional parameters appearing in the
numerically evaluated integral, Eq. (44).

Parameter Value Units Description

R 14 Gpc Comoving size of the Universe
rmin 0.01 Mpc UV cutoff on comoving distance

from detector
mmax 45 M⊙ Maximum mass of binary member
mmin 8 M⊙ Minimum mass of binary member
amax 4000 AU Maximum initial semimajor axis

of binary
amin 0.014 AU Minimum initial semimajor axis

of binary
r0 10 Gpc Attenuation length
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steepest descents contour coincides with the imaginary
axis, for G is even. Therefore, we set z ¼ −iy so that
ζ ¼ −hyþGð−iyÞ. Moreover, since Gð0Þ ¼ 0 and G is an
entire function, then z has to be large forG0 to be as large as
ih. This justifies the replacement of Gð−iyÞ by its asymp-
totic expansion as jyj → ∞. In the particular case at hand, it
is of the form

−hyþ c expðayÞy−b; ðC1Þ

where a; b; c > 0 are independent of y.
The reason for Eq. (C1) is as follows: p̃, as given by

Eq. (35), is J0ðconst × sÞ (where the constant is not a
function of s), so GðiyÞ is the expectation value of
J0ðconst × iyÞ ¼ I0ðconst × yÞ. When y is large (as is
necessary for a saddle point), I0ðAyÞ ∼ expðAyÞð2πAyÞ−1=2
[73]. One needs to calculate the expectation value over A,
which, in the case of Sec. IV, is a multidimensional integral.
As y is large, this integral is well approximated by
Laplace’s method: One may change variables so that A
is one of the integration variables; the value of A is
maximized at the boundary, so Laplace’s method implies
that this integration contributes one negative power of y to
the result. Therefore, b ¼ 3

2
. Furthermore, a is the value of

A at the maximum. c is the value of the expected value
evaluated at a and integrated over all other parameters.
The critical points of ζðyÞ ¼ −hyþ ceay=y3=2 are the

solutions of

h ∼
aceay

y1.5
; ðC2Þ

bearing in mind that y is large and retaining only the
dominant terms. This equation is solved by the Lambert
W function, which is approximated by ay ∼ ln h [73].
Applying Laplace’s method yet another time to the y
integration, the steepest descents method yields

PrðhÞ ∼
1ffiffiffiffiffiffiffiffiffiffi
2πch

p ðln hÞ3=4
a7=4

exp

�
−
h ln h
a

þ a3=2ch

ðln hÞ3=2
�
: ðC3Þ

In Fig. 5 we show the three regimes of PrðxÞ (x ¼ h=hc),
that is, the exact calculation, the intermediate power-law
regime, and the exponential cutoff at very large x. The latter
is described by Eq. (C3). The exponential curve and the
power law x−4 are connected smoothly at some reference
value x0 upon adjusting the free constants a and c
in Eq. (C3).
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Labbé, P. A. Oesch, and P. G. van Dokkum, Astrophys. J.
756, 14 (2012).

[48] E. Öpik, Publ. Tartu Astrofizica Obs. 25, 1 (1924).
[49] G. Duchêne and A. Kraus, Annu. Rev. Astron. Astrophys.

51, 269 (2013).
[50] P. Kroupa, Science 295, 82 (2002).
[51] J. Binney and S. Tremaine, Galactic Dynamics, 2nd ed.,

edited by J. Binney and S. Tremaine (Princeton University
Press, Princeton, NJ, 2008).

[52] C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V.
Kalogera, and D. E. Holz, Astrophys. J. 749, 91 (2012).

[53] X. Ma, P. F. Hopkins, C.-A. Faucher-Giguère, N. Zolman,
A. L. Muratov, D. Kereś, and E. Quataert, Mon. Not. R.
Astron. Soc. 456, 2140 (2016).

[54] J. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M.
Warren, G. Yepes, S. Gottlöber, and D. E. Holz, Astrophys.
J. 688, 709 (2008).

[55] The rates in Ref. [17] are slightly lower than those in the
more recent Refs. [45,56], but consistent with them, and the
value of N0 changes only by an order-unity constant, which
does not alter any of our conclusions.

[56] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F.
Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt et al. (LIGO Scientific and Virgo Collab-
orations), Phys. Rev. X 9, 031040 (2019).

[57] S. E. Timpano, L. J. Rubbo, and N. J. Cornish, Phys. Rev. D
73, 122001 (2006).

[58] T. Regimbau and S. A. Hughes, Phys. Rev. D 79, 062002
(2009).

[59] L. Barsotti, P. Fritschel, M. Evans, and S. Gras, LIGO
Report No. LIGO-T1800044-v5, 2018 [https://dcc.ligo.org/
LIGO-T1800044/public].

[60] The overlap reduction function is used to take into account
the fact that the detectors are not spatially coincident
[61,62]. However, the interpretation of the cross-correlation
signal may be less straightforward. We thank the anony-
mous referee and Amos Ori for pointing this out to us.

[61] E. E. Flanagan, Phys. Rev. D 48, 2389 (1993).
[62] B. Allen and J. D. Romano, Phys. Rev. D 59, 102001

(1999).
[63] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
[64] M. Ishak, Living Rev. Relativity 22, 1 (2019).
[65] M. Geller, A. Hook, R. Sundrum, and Y. Tsai, Phys. Rev.

Lett. 121, 201303 (2018).
[66] N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A.

Ricciardone, A. Riotto, and G. Tasinato, Phys. Rev. D
100, 121501 (2019).

[67] N. Bartolo, D. Bertacca, V. De Luca, G. Franciolini, S.
Matarrese, M. Peloso, A. Ricciardone, A. Riotto, and G.
Tasinato, J. Cosmol. Astropart. Phys. 02 (2020) 028.

[68] One could also consider a wavelet decomposition.
[69] A. C. Berry, Trans. Am. Math. Soc. 49, 122 (1941).
[70] C.-G. Esseen, Ark. Mat. Astron. Fys. 28, 1 (1942).
[71] C. Börgers and C. Greengard, C. R. Math. 356, 679

(2018).
[72] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini, M.

Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato,
J. Cosmol. Astropart. Phys. 11 (2019) 017.

[73] NIST Digital Library of Mathematical Functions, Release
1.0.23 of June 15, 2019, edited by f. W. J. Olver, A. B. Olde
Daalhuis, D.W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, and B. V. Saunders, http://dlmf
.nist.gov/.

[74] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P.
Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientific
Library Release 2.6, 2019.

[75] F. W. J. Olver, Asymptotics and Special Functions, Com-
puter Science and Applied Mathematics (Academic Press,
New York, 1974).

GINAT, DESJACQUES, REISCHKE, and PERETS PHYS. REV. D 102, 083501 (2020)

083501-16

https://doi.org/10.1103/PhysRevD.101.103513
https://doi.org/10.1093/mnras/258.1.36
https://doi.org/10.1086/173183
https://doi.org/10.1046/j.1365-8711.2003.06624.x
https://doi.org/10.1046/j.1365-8711.2003.06624.x
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1051/0004-6361:20011673
https://doi.org/10.1111/j.1365-2966.2004.08325.x
https://doi.org/10.1111/j.1365-2966.2004.08325.x
https://doi.org/10.1103/PhysRevD.90.103519
https://doi.org/10.1103/PhysRevD.90.103519
https://doi.org/10.1093/mnras/stx969
https://doi.org/10.1093/mnras/staa053
https://doi.org/10.1103/PhysRevD.87.084009
https://doi.org/10.1103/PhysRevD.87.084009
https://doi.org/10.1093/imamat/2.2.197
https://doi.org/10.1093/mnras/stu1647
https://doi.org/10.1093/mnras/stu1647
https://doi.org/10.3847/1538-4357/ab328e
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.1103/PhysRevD.100.063004
https://doi.org/10.1103/PhysRevD.100.063004
https://doi.org/10.1088/0004-637X/756/1/14
https://doi.org/10.1088/0004-637X/756/1/14
https://doi.org/10.1146/annurev-astro-081710-102602
https://doi.org/10.1146/annurev-astro-081710-102602
https://doi.org/10.1126/science.1067524
https://doi.org/10.1088/0004-637X/749/1/91
https://doi.org/10.1093/mnras/stv2659
https://doi.org/10.1093/mnras/stv2659
https://doi.org/10.1086/591439
https://doi.org/10.1086/591439
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.73.122001
https://doi.org/10.1103/PhysRevD.73.122001
https://doi.org/10.1103/PhysRevD.79.062002
https://doi.org/10.1103/PhysRevD.79.062002
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
https://doi.org/10.1103/PhysRevD.48.2389
https://doi.org/10.1103/PhysRevD.59.102001
https://doi.org/10.1103/PhysRevD.59.102001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1007/s41114-018-0017-4
https://doi.org/10.1103/PhysRevLett.121.201303
https://doi.org/10.1103/PhysRevLett.121.201303
https://doi.org/10.1103/PhysRevD.100.121501
https://doi.org/10.1103/PhysRevD.100.121501
https://doi.org/10.1088/1475-7516/2020/02/028
https://doi.org/10.1090/S0002-9947-1941-0003498-3
https://doi.org/10.1016/j.crma.2018.04.013
https://doi.org/10.1016/j.crma.2018.04.013
https://doi.org/10.1088/1475-7516/2019/11/017
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/

