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We present a generalized piecewise polytropic parametrization for the neutron-star equation of state
using an ansatz that imposes continuity in not only pressure and energy density, but also in the speed of
sound. The universe of candidate equations of state is shown to admit preferred dividing densities,
determined by minimizing an error norm consisting of integral astrophysical observables. Generalized
piecewise polytropes accurately reproduce astrophysical observables, such as mass, radius, tidal
deformability and mode frequencies, as well as thermodynamic quantities, such as the adiabatic index.
This makes the new equations of state useful for parameter estimation from gravitational waveforms. Since
they are differentiable, generalized piecewise polytropes can improve pointwise convergence in numerical
relativity simulations of neutron stars. Existing implementations of piecewise polytropes can easily
accommodate this generalization with the same number of free parameters. Optionally, generalized
piecewise polytropes can also accommodate adjustable jumps in sound speed, which allows them to
capture phase transitions in neutron star matter.
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I. INTRODUCTION

A long outstanding problem in nuclear physics is deter-
mining the correct thermodynamic equation of state (EOS)
for cold matter above nuclear saturation density [1,2]. The
only locations in theuniversewhere suchmatter is believed to
exist are the cores of neutron stars (NS), remnants of the
gravitational collapse of moderately massive main sequence
stars. A current goal of relativistic astrophysics is to use NS
measurements to constrain the nuclear EOS. Past studies
have relied on electromagnetic techniques, such as Shapiro
time delay mass measurements [3,4] and thermal [5,6] and
x-ray [7,8] radius determinations. In principle, rotation
frequencies can provide additional constraints. However,
all observed NSs are well described by the slowly-rotating
approximation [9], so little information can be gathered.
Now, with the dawn of gravitational wave (GW)

astronomy, it is possible to probe NSs by studying the
waveforms produced by binary inspirals [10–14]. GWs

from such events are strongly influenced by NS masses and
tidal deformabilities [15], a parameter quantifying how the
NS deforms when an external gravitational field is applied
[16–18]. The deformability depends on the matter in the
star, so GW observations provide an additional means to
study the NS EOS [19,20].
Realistic EOSs are constructed from nontrivial mico-

physics, while an observation can reasonably constrain just
a few parameters. Read et al. [21–25] developed a
formalism modeled after one used by Vuille and Ipser
[26] where the high density region is partitioned into three
intervals and a polytropic (power law) form for the pressure
vs mass density curve is applied in each interval. The result
is a four parameter ansatz termed piecewise polytropes
(PPs). This approximation reproduces the EOS it tries to
capture fairly well, and it makes reasonably accurate
predictions of certain integral observables (mass, radius,
and moment of inertia). However, the speed of sound cs in
this approximation is discontinuous. The tidal deformabil-
ity is sensitive to cs [27], and it affects oscillations [28,29]
and hydrodynamics [30,31] in numerical simulation.
Lindblom introduced an alternative to PPs termed a

spectral expansion, where the logarithm of adiabatic index
γ is fitted with polynomials in the logarithm of pressure.
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The advantage of this formalism is its smoothness over the
whole core region [32]. The LSC uses this formalism when
performing parameter estimation on the neutron star EOS
from gravitational wave observations [33]. However, to
recover the primitive variables required for hydrodynamic
simulations (pressure and energy density), one must inte-
grate the expansions of the adiabatic index. Closed-form
expressions do not exist for the relevant integrals, so a
numeric quadrature must be performed every time a
thermodynamic quantity is evaluated.
Foucart et al. have recently performed a full numerical

relativity simulation of a binary neutron star inspiral using
Lindblom’s spectral formalism for the cold EOS. They also
introduced a procedure for matching the parametrized core
to a known crust EOS that ensures both continuity and
differentiability. However, they report that a few-parameter
spectral expansion cannot accurately reproduce the observ-
able curves predicted by the original EOS (e.g. the mass-
radius relation). Instead, they demand that the expansion
accurately reproduce the maximum mass and radius of a
1.35 M⊙ star predicted by the original EOS [34].
This work introduces an extension of the piecewise

polytrope formalism that ensures a continuous sound speed
and accurately reproduces the observables predicted by the
original EOS. The result is an algebraically simple expres-
sion that can be easily implemented in simulations and
avoids the difficulties of a nondifferentiable formalism. It
thus has the simplicity of standard PPs and the desirable
properties of the spectral expansion.
In Sec. II we review the thermodynamics and hydro-

dynamics of barotropic fluids; we make several observa-
tions that will provide the physical motivation of our
formalism. Section III summarizes the piecewise polytrope
formalism and discusses the main difficulties encountered
in its application. We derive an generalization of the
polytropic EOS from thermodynamic considerations in
Sec. IV then show how it can be used to construct a
differentiable piecewise formalism. Section V illustrates the
main advantages of this formalism when it is applied to
cold nuclear EOS candidates, namely accurate observable
reproduction and a smooth, better fitting curve.
Throughout this work, we follow the convention of

absorbing the speed of light c into the definition of pressure
and energy density [21]. As a result, rest-mass density ρ,
energy density ϵ, and pressure p have the same cgs unit
(g=cm3) and specific enthalpy h is dimensionless.

II. BAROTROPIC FLUIDS

A. Thermodynamics

We will assume that neutron-star matter consists of a
perfect fluid. Moreover, we assume that the fluid is simple:
i.e., that all the thermodynamic quantities depend only on
the proper baryon number density n and on the entropy
density s. The relation

ϵ ¼ ϵðn; sÞ: ð2:1Þ

is the fluid’s EOS. The baryon chemical potential μ and the
temperature T are defined by

T ≔
∂ϵ
∂s

����
n

and μ ≔
∂ϵ
∂n

����
s

ð2:2Þ

The first law of thermodynamics can be written as

dϵ ¼ μdnþ Tds: ð2:3Þ

As a consequence, p is a function of ðn; sÞ entirely
determined by (2.1):

p ¼ −ϵþ Tsþ μn: ð2:4Þ

Let us introduce the specific enthalpy,

h ≔
ϵþ p
ρ

¼ μ

m
þ TS; ð2:5Þ

where m is the baryon rest mass, ρ is the rest-mass density

ρ ≔ mn; ð2:6Þ

and S is the specific entropy:

S ≔
s
ρ
: ð2:7Þ

The second equality in (2.5) is an immediate consequence
of (2.4). From Eqs. (2.3)–(2.7), we obtain the thermo-
dynamic relations

dϵ ¼ hdρþ ρTdS ð2:8aÞ

dp ¼ ρðdh − TdSÞ: ð2:8bÞ

Since h is as a function of ðn; sÞ or, equivalently, ðρ;SÞ,
differentiating it yields:

dh ¼ h
ρ
c2sdρþ

∂h
∂S dS ð2:9Þ

where the speed of sound cs is defined by

c2s ¼
∂p
∂ϵ

����
S
¼ ρ

h
∂h
∂ρ

����
S
: ð2:10Þ

If, as assumed in Sec. III onwards, the temperature is
much lower than the Fermi temperature, the neutron-star
matter is fully degenerate and the EOS is barotropic. That
is, the thermodynamic variables p and ϵ are functions of n
only. Then, the thermodynamic relations II A simplify to
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dϵ ¼ hdρ ð2:11aÞ

dp ¼ ρdh ð2:11bÞ

These relations may be used to express ρ, p, and ϵ as
functions of the specific enthalpy h.
A convenient parameter that characterizes an EOS is

the adiabatic index. For a barotropic fluid, we define this
quantity to be

γ ≔
d logp
d log ρ

¼ ρ

p
dp
dρ

ð2:12Þ

B. Hydrodynamics

A perfect fluid is characterized by the energy-momentum
tensor

Tα
β ¼ ðϵþ pÞuαuβ þ pδαβ; ð2:13Þ

where uα is the four-velocity, ϵ is the proper energy density,
and p the fluid pressure. Using Eqs. (2.3)–(2.11), the
conservation law of the fluid energy-momentum tensor
(2.13) can be written as:

∇αTα
β ¼ ρuβuα∇αhþ huβ∇αðρuαÞ

þ ρhuα∇αuβ þ ρ∇βh − ρT∇βS ¼ 0 ð2:14Þ

where ∇α is the covariant derivative compatible with the
spacetime metric gμν. Given the rest-mass conservation law

∇αðρuαÞ ¼ 0; ð2:15Þ

Eq. (2.14) yields the relativistic Euler equation:

uα∇αðhuβÞ þ∇βh ¼ T∇βS: ð2:16Þ

If the fluid is also taken to be barotropic, then the right-hand
side of this equation vanishes:

uα∇αðhuβÞ þ∇βh ¼ 0: ð2:17Þ

Thus, only the specific enthalpy h is needed for the
hydrodynamics sector. In light of this, it is advantageous
to rewrite the energy momentum tensor as

Tα
β ¼ ρðhÞhuαuβ þ pðhÞδαβ: ð2:18Þ

In this form, the gravitational sector only requires thermo-
dynamic functions of h. This is true for simulations, as well
as for the construction of initial data [35–37]. Thus, for
barotropic fluids, the form of the EOS expressing p, ρ and ϵ
as functions of h can be regarded as fundamental.

Although, at first glance, the sound speed cs does not
appear in the hydrodynamic equations, the characteristics
of the system depend explicitly on cs [30]. The dependence
of the hydrodynamic equations on cs can be made explicit
by using Eqs. (2.10) to rewrite the continuity equa-
tion (2.15) as an evolution equation for the specific
enthalpy h (rather than rest-mass density ρ):

aαβ∇αðhuβÞ ¼ 0 ð2:19Þ

where

aαβ ¼ gαβ þ ð1 − c−2s Þuαuβ ð2:20Þ

is the inverse of the acoustic metric aαβ (obtained from
aαβaβγ ¼ δαγ ) [38]. The null cones of the acoustic metric are
the sound cones [30]. Because the evolution of a fluid
depends explicitly on the sound speed, a numerical evo-
lution that uses a parametrized EOSmay differ significantly
from an evolution with the original tabulated EOS if the
sound speed cs is not modeled accurately. In addition,
neutron-star oscillation modes (such as p-modes or radial
modes) and their frequencies are sensitive to the value of
sound speed [28].
In addition, discontinuities in cs, whether introduced

physically (via a phase transition) or artificially (via a
piecewise polytropic EOS approximation), typically cause
artifacts in numerical simulations which limit pointwise
convergence [34]. Moreover, as shown in Refs. [39–41],
when the fluxes of hydrodynamic conservation laws are
nonsmooth, split waves and composite structures may be
present in the solutions. In these cases a numerical solution
may not converge to the physically correct solution.
It is thus desirable to have a parametrized EOS approxi-

mation that faithfully reproduces not only ρ, p and ϵ, but
also cs, as continuous functions of h [42].

III. PIECEWISE POLYTROPES

A. The formalism

We review the piecewise polytrope formalism introduced
by Read et al. in [21]. A polytrope is a power-law EOS of
the form

p ¼ KρΓ ð3:1Þ

where K is the polytropic constant and Γ ¼ 1þ 1=n is the
adiabatic index. Substituting Eq. (3.1) into Eq. (2.11b),
integrating, solving for hðρÞ and inverting yields

ρðhÞ ¼
�

h − 1

Kð1þ nÞ
�
n
: ð3:2Þ

Substituting this equation of state back into Eq. (2.11b) or
Eq. (3.1) yields
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pðhÞ ¼ K

�
h − 1

Kð1þ nÞ
�
1þn

: ð3:3Þ

Equation (2.5) may be used to obtain the energy density:

ϵðhÞ ¼ ρðhÞ
�
1þ nðh − 1Þ

1þ n

�
ð3:4Þ

In a piecewise polytropic approximation, one applies the
above EOS ρðhÞ, shifted by a constant ai along the h axis,
in a set of intervals hi−1 ≤ h ≤ hi:

ρðhÞ ¼
�
h − 1 − ai
Kið1þ niÞ

�
ni
; ð3:5aÞ

pðhÞ ¼ Ki

�
h − 1 − ai
Kið1þ niÞ

�
1þni

; ð3:5bÞ

ϵðhÞ ¼ ρðhÞ
�
1þ niðh − 1Þ þ ai

1þ ni

�
ð3:5cÞ

with the constants Ki and ai determined by continuity of
the above functions at each junction.

B. Difficulties

The PP formalism provides a convenient parametri-
zation for numerical relativity simulations because it only
involves simple algebraic expressions. However, the
overall parametrization does not enforce differentiability
at the dividing densities. This causes reflections in hydro-
dynamic simulations that are not predicted by the origi-
nal EOS.
In addition, Read et al. demonstrated that PPs can yield

low pointwise errors compared to tabulated EOSs when
computing integral observables (i.e. mass, radius, moment
of inertia, and tidal deformability). However, when the
whole range of stellar models predicted by a candidate EOS
is considered, larger errors may result. This is demonstrated
in Fig. 1, where the mass, radius and tidal deformability of
stars with the same central density, computed from both a
tabulated EOS and its PP fit, are compared. Dimensionless
tidal deformability Λ is related to the tidal Love number k2
and compactness C ¼ M=R by Λ ¼ k2=C5 [18]. Because
of this sensitive dependence on C, Λ can vary by many
orders of magnitude, making numerical calculations cum-
bersome. We instead consider errors in Λ1=5, which are of
the same order as errors in mass and radius. A PP

FIG. 1. For each candidate EOS, a sequence of TOV stellar models is generated with the same central densities ρc, plotted on the
horizontal axis. The relative error between observables predicted by each fit and the tabulated EOSs is shown on the vertical axis. GPP
fits significantly improve accuracy in mass and tidal deformability, but not radius. (a) PP mass errors. (b) PP radius errors. (c) PP tidal
deformability errors. (d) GPP mass errors. (e) GPP radius errors. (f) GPP tidal deformability errors.
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parametrization can result in errors as large as 11% in mass
and Λ1=5.
A third problem arises when one tries to recover the

neutron star EOS from a GW measurement. Work by
Fasano et al. [43] and Gamba et al. [44] has recently
demonstrated that recovery of PP parameters by Bayesian
inference leads to very large confidence intervals. The
origin of this difficulty is the piecewise nature of the
parametrization. The confidence intervals on the EOS
parameters are assigned to reproduce the confidence
intervals on the observable quantities obtained from the
waveform. However, it is possible that the central densities
required to produce the likely masses lie below the upper-
most dividing density. In this case, no information about the
last exponent can be gleaned.

IV. GENERALIZED PIECEWISE POLYTROPES
WITH CONTINUOUS SOUND SPEED

A. The formulation

In light of the advantages and disadvantages described
above, it is desirable to seek an improved parametrized
EOS with the following properties: (i) The EOS parameters
can be used to reproduce the integral observables of the
original realistic EOS accurately. (ii) The sound speed must
be continuous across the dividing densities. (iii) The para-
metrized EOS should have a relatively simple analytical
form that can be efficiently evaluated in numerical evolu-
tions. (iv) The advantages of piecewise polytropes should
be retained. In particular, the number of freely specifiable
parameters should be the same as for piecewise polytropes.
For barotropic fluids, these requirements can be met by

considering the fundamental EOS to be the functional ρðhÞ
rather than pðρÞ.1 The pressure and energy density can then
be obtained by integrating Eq. (2.11).2

We begin with the same polytropic ansatz for ρðhÞ
considered by Read et al.:

ρðhÞ ¼
�
h − 1 − a
Kð1þ nÞ

�
n
: ð4:1Þ

We then apply the thermodynamic identity Eq. (2.11b) and
integrate to obtain the pressure,

pðhÞ ¼ K

�
h − 1 − a
Kð1þ nÞ

�
1þn

þ Λ; ð4:2Þ

where Λ is a constant of integration. For a classical
polytrope, a would be set to zero and the boundary
condition p → 0 as h → 1 would require Λ ¼ 0.
However, we intend to use this form to parametrize the
high density region of the EOS away from the star’s
surface, and cold, dense nuclear matter is not a dilute
classical gas. So there is no reason a priori to demand
Λ ¼ 0. In fact, this additional parameter gives us the
freedom to demand continuity in sound speed.
Substituting Eq. (4.2) into (2.5) yields the energy density:

ϵðhÞ ¼ ρðhÞ
�
1þ nðh − 1Þ þ a

1þ n

�
− Λ: ð4:3Þ

We term the set of relations (4.1)–(4.3) a generalized
polytropic EOS. Expressing thermodynamic quantities as
functions of specific enthalpy is needed for constructing
TOV sequences or initial data in simulations. However,
expressing p and ϵ as functions of ρ yields simpler
expressions:

pðρÞ ¼ KρΓ þ Λ ð4:4Þ

ϵðρÞ ¼ K
Γ − 1

ρΓ þ ð1þ aÞρ − Λ ð4:5Þ

We have defined Γ ¼ 1þ 1=n, as in the standard polytrope
formalism. This form also facilitates interpretation of the
parameters. If the form (4.4) is used throughout the interior,
then Λ would be related to the density at the surface of the
star where p ¼ 0. From (4.5), a may be interpreted as a
bulk binding energy. Γ is no longer the adiabatic index,
though: it is merely the exponent of the rest mass density.3

We develop a generalized piecewise polytropic para-
metrization following Read et al. [21]. The range of mass
densities above a point ρ0 is partitioned by N dividing
densities denoted by ρ1;…; ρN. The EOS in each interval
½ρi−1; ρi� is characterized by a set of parameters Ki, Γi, ai,
Λi. We now impose continuity and differentiability at each
dividing density in each of the thermodynamic quantities
and use this to constrain the parameters.
Consider the pressure pðρÞ first. Imposing differenti-

ability at a dividing density ρi leads to the relation

Kiþ1 ¼ Ki
Γi

Γiþ1

ρΓi−Γiþ1

i : ð4:6Þ

(Contrast this with piecewise polytropes, where the con-
stants Ki were used to impose continuity at ρi.) The
additional constant Λ is used to also impose continuity
at this point. With Eq. (4.6), this yields the relation

1For instance, to compute the EOS of an ideal degenerate
Fermi gas, one first integrates the Fermi distribution to obtain the
rest mass density ρ as a function of the dimensionless Fermi
energy which, in the fully degenerate case, coincides with
specific enthalpy h. All other thermodynamic quantities such
as pressure and energy density then follow from the first law of
thermodynamics and the Gibbs-Duhem relation.

2Recall also that h is the fundamental thermodynamic quantity
that appears in the barotropic Euler equations, as detailed in
Sec. II B, and that solving for neutron star structure only requires
ρðhÞ [35–37]. Pressure and energy density appear in the source of
the Einstein equations. 3We use the lowercase γ to denote adiabatic index in this work.
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Λiþ1 ¼ Λi þ
�
1 −

Γi

Γiþ1

�
Kiρ

Γi
i ð4:7Þ

The pressure pðρÞ is now continuous and differentiable at
the dividing densities.
We now turn to the energy density ϵðρÞ. We demand

differentiability at the dividing density ρi which, with
Eq. (4.6), leads to the relation

aiþ1 ¼ ai þ Γi
Γiþ1 − Γi

ðΓiþ1 − 1ÞðΓi − 1ÞKiρ
Γi−1
i : ð4:8Þ

It can be shown that Eqs. (4.6), (4.7) and (4.8) imply
continuity of ϵðρÞ as well. Since pðρÞ and ϵðρÞ are both
differentiable, the sound speed cs is continuous by virtue
of Eq. (2.10).
We have shown how to enforce continuity and differ-

entiability across dividing densities. The only remaining
question is how to match the parametrized core to a known
crust EOS. To ensure differentiability, we take the deriva-
tive of Eq. (4.4) in the first segment and demand continuity
with dp=dρ in the crust. Like Ref. [21], we treat K1

4 and Γi
as free parameters that shift the logarithmic dp=dρ curve up
and down or change its slope.5 We then look for a density
where the two curves intersect and designate it as ρ0. We
now use Λ1 to ensure continuity. This ensures that pðρÞ is
continuous and differentiable at ρ0. That is to say, if we let
pcðρÞ denote the crust EOS, we solve for a ρ0 such that

dpc

dρ
ðρ0Þ ¼ K1Γ1ρ

Γ1−1
0 ; ð4:9Þ

then we compute

Λ1 ¼ pcðρ0Þ − K1ρ
Γ1

0 : ð4:10Þ

A similar procedure is followed to determine a1 by
demanding continuity in ϵðρÞ:

a1 ¼
ϵcðρ0Þ
ρ0

−
K1

Γ1 − 1
ρΓ1−1
0 þ Λ1

ρ0
− 1 ð4:11Þ

By taking K1 and Γ1 as free parameters, we have seen
that Λ1 and a1 are fixed by demanding continuity and
differentiability with the crust EOS. Ostensibly, the divid-
ing densities are also free parameters, but we will show

below that there is a single set of astrophysically motivated
dividing densities for all candidate EOSs. Thus, the
constraint relations (4.6)–(4.8) are all that is needed to
compute the parameters K, Λ, and a in the remaining
segments. There is no requirement on the remaining Γi,
which may be used as fit parameters. Thus, as with PPs, we
use three segments so the only parameters to be fitted are
K1, and fΓig. All other parameters are determined by
continuity and differentiability.
The meaning of the parameters is simplest to discern

when the thermodynamic quantities are given as functions
of rest-mass density. In addition, many EOS tables contain
p and ϵ as functions of n or ρ. But, for completeness, we
provide the quantities as functions of specific enthalpy:

ρðhÞ ¼
�
h − 1 − ai
Kið1þ niÞ

�
ni
; ð4:12aÞ

pðhÞ ¼ Ki

�
h − 1 − ai
Kið1þ niÞ

�
1þni þ Λi; ð4:12bÞ

ϵðhÞ ¼ ρðhÞ
�
1þ niðh − 1Þ þ ai

1þ ni

�
− Λi ð4:12cÞ

Note that these relations only differ from the polytropic
forms by the constant offset Λ. So, modifying existing PP
codes to accommodate this formalism is trivial. However, it
should also be noted that the constraint equations (4.6) and
(4.8) differ from their PP counterparts.
For the reasons given in [21], it is most convenient to

have four total free parameters in an EOS parametrization.
So, we divide the core region into three sections with two
dividing densities, making N ¼ 3. The free parameters are
K1 and the exponents fΓ1;Γ2;Γ3g.

B. Fitting candidate EOSs

As with piecewise polytropes, our parametrization is
fitted to a candidate equation of state using the method of
least squares: the parameters K1 and Γi were chosen to
minimize the error function

EðK1; fΓigÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ρu − ρl

XN
i¼1

X
ρ∈½ρl;ρu�

ðptrueðρÞ − Kiρ
Γi − ΛiÞ2Δρ

vuut :

ð4:13Þ

The constants Ki and Λi are not independent of the other
segments, so this is a constrained minimization problem. To
create fits that accurately reproduced the integral observ-
ables of an EOS, it was decided to sum only over the central
densities of stellar models predicted by the original EOS
with astrophysically plausible masses.

4The pressure p1 at the first dividing density ρ1 has astro-
physical significance, so it is used as the first parameter for
piecewise polytropes [21]. Varying p1 is equivalent to varying
K1, and we use the later as first parameter here, as this simplifies
the fitting procedure for generalized piecewise polytropes.

5The choice of fit parameters is nonunique. As discussed
above, it is possible to substitute p1 for K1. In addition, users of
PPs in the context of parameter estimation often use the pressures
at each dividing density logpi instead of the Γi [45–49]. We use
K1 and the Γi primarily for mathematical convenience.
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It is well known that the NS maximum mass is a
consequence of relativistic gravity and that different
EOSs make different predictions for its value.
Consistency of a candidate’s prediction with the observed
value is an important criterion for assessing the candidate’s
feasibility [6,33]. We denote the central density that yields
the maximum mass in the above expression by ρu. In
contrast, the NS minimum mass is sensitive to the details of
the formation channel which is still not fully understood
[50–52]. For the purpose at hand, it is important to note that
the central density of low mass stars may be less than ρ0.
So, the lowest central density ρl was selected to give a
1.25 M⊙ star, ensuring the above summation was only over
densities covered by the parametrization.
Λi ¼ 0 in the PP formalism, so the EOS could be made

linear by considering logpðlog ρÞ instead of pðρÞ. This
made the least squares problem linear and enabled a direct
calculation of the parameters. The Λ parameter in our
formalism does not allow this, so the problem is fully
nonlinear. The widely differing magnitudes of the Ki, Γi,
and Λi combined with the nontrivial constraint equa-
tions (4.6) and (4.8) made the problem too difficult for
software optimization routines.
We found that a standard gradient descent algorithm to

minimize E was the most effective.6 Let the vector
x ¼ ðK1;Γ1;…;ΓNÞ. From an initial guess x0, the mini-
mum is obtained by iterating

xkþ1 ¼ xk − η∇EðxkÞ ð4:14Þ

until a tolerance is reached [54]. A single value of the
parameter ηwas found to be effective for fitting all candidate
EOSs. The necessary first derivatives were approximated
with second order finite difference expressions. This algo-
rithm was implemented using the Wolfram Language [55].

C. Determination of the dividing densities

As mentioned above, the dividing densities ρi could also
be taken as free parameters, since there are no obvious
constraints. Moreover, the microphysics of cold nuclear
matter is still uncertain, so there is no clear physical
motivation for these quantities. However, as with piecewise
polytropes, there fortuitously exist choices of matching
densities that minimize the average error across all candi-
date equations of state. This allows us to fix the two
dividing densities at their preferred values, reducing the
number of free parameters from six to four.

The two dividing densities were chosen such that an
average error across all EOS fits is minimized. Instead of
using a standard L2 error function, though, we chose an
error function to address the difficulties described with PPs
in Sec. III B. A parametrized EOS is a meaningful sub-
stitute to the original EOS only if it makes the same
predictions about stellar structure.
To ensure the fits would accurately reproduce observ-

ables, we used an L2 error norm in observable quantities:

Eðρ1;ρ2;K1;fΓjgÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ρi

��
ΔMi

Mi

�
2

þ
�
ΔRi

Ri

�
2

þ
�
ΔΛ1=5

i

Λ1=5
i

�
2
�vuut : ð4:15Þ

The above sum was performed over ten central densities in
the range of stellar models for each EOS. Each Δ denotes
the difference between the quantities predicted by the fit
and the original tabulated EOS, and they are each norma-
lized by the quantity predicted by the original EOS. We
chose to fit mass, radius, and tidal deformabilty with
application to GW astrophysics in mind. The masses of
the two objects have the highest order effect on the
gravitational waveform of a binary inspiral. Terms involv-
ing the tidal deformability are the leading order deviation
from point mass (black hole) waveforms [15] and combine
with the mass to provide information about the objects’
EOSs [19]. The choice of observables and their relative
weighting in the error norm (4.15) is somewhat subjective.
To check the sensitivity of our results to the choice of norm,
we used both L4 and L6 norms (as a proxies to a supremum

FIG. 2. The observable error function defined in Eq. (4.15)
averaged over all candidate EOSs as the dividing densities are
varied. Note that clear minima emerge, indicating preferred
dividing densities.

6We experimented with other algorithms, like Nesterov’s
accelerated descent method [53] and a pseudo-Newton method
outlined in [54]. However, the differentiability requirement
restricted the variability of the fit parameters. So, these sophis-
ticated methods caused larger parameter variations than could be
accommodated. A standard gradient descent allowed the step size
to be tuned so differentiability could be maintained throughout
the procedure.
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norm) and did not observe noticeable change in the optimal
dividing densities. Additional astrophysical observables,
such as quadrupole moment Q or moment of inertia I
would also be straightforward to include in the error norm.
Because of I-Love-Q relations between these observables
and tidal deformability [17], we do not expect the error
minimization procedure to be affected significantly by such
a choice, but we leave this for investigation in future work.
To select dividing densities which minimize the observ-

able error in (4.15) across all candidate EOSs considered,
we used the following algorithm:
(1) Hold one density fixed.
(2) Vary the second density. Perform last square fits to

each candidate EOS such that the error function (4.13)
is minimized at each value of the varied density.

(3) Compute the observable error function (4.15) for the
fits obtained in the previous step, and compute its
average across all EOSs at each dividing density.

(4) Select the density which achieves minimum global
error.

(5) Hold this density fixed and revise the first density by
following Steps (2) through (4).

(6) Repeat until desired tolerance is met.
As illustrated in Fig. 2, the preferred dividing densities

which emerge are 1014.87 g=cm3 and 1014.99 g=cm3. We
expect these dividing densities to be sensitive to the choice
of the observable error function used in the minimization
procedure. As stated above, the form of Eq. (4.15) was
selected so the resulting fits make accurate predictions that
are relevant to GW applications, which we demonstrate in
the next section. Changing the form of the error function
would likely change the resulting fits. Exploring different
error functions, which could be obtained by weighting the
observables differently, introducing other observables, or
using error norms besides L2, and their impact of the

FIG. 3. Thermodynamic quantities predicted by PP (a,b) and GPP (c,d) fits compared to the original EOS for SLy(4). The red curve is
the GPP predicted relation and the black curve is the relation predicted from the SLy(4) table. The red vertical lines represent the
dividing densities.
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quality of the resulting fits would make an interesting
future study.

V. RESULTS

We applied this procedure to the cold nuclear matter
EOS candidates listed in Table A1 of Ref. [12]. The tables
for SLy(4) and QHC19 were obtained from CompOSE
[56], while the remaining EOS tables were obtained from
the Feryal Özel catalog [57]. The obtained parameters are
listed in Appendix A. While the low density EOS is
generally agreed upon [2], there are small deviations
between candidates. So, to avoid uncertainties associated
with imposing one crust EOS on all candidates, we chose to
quantify error by matching the piecewise core to the low
density region provided with each EOS table.
To use these parameters in a simulation, one needs only

to match them to an arbitrary crust. Most numerical
relativity simulations cannot resolve the low density

regions of the stars, so a popular choice is a single
polytropic piece with Γ ¼ 1.35692 [22,34,58–60].
However, if detailed knowledge of the low density EOS
is required (e.g. for studying ejecta or neutrino emission in
accretion disks surrounding a postmerger remnant
[61–63]), we provide a set of parameters that fit the low
density part of the SLy(4) EOS in Appendix B. Instructions
for fitting the provided parameters to a desired crust are
provided in Appendix A. The effect of the crust on the EOS
inference from gravitational wave observations has been
studied by Gamba et al. [64].

A. Fidelity of integral observables

A significant motivation for pursuing this work was to
obtain a formalism that accurately reproduces the integral
observables predicted by the original EOS. The dividing
density procedure outlined in Sec. IV C was followed to
enforce this condition. The effectiveness of this procedure

FIG. 4. Thermodynamic quantities predicted by PP (a,b) and GPP (c,d) fits compared to the original EOS for QHC19. The red curve is
the GPP predicted relation and the black curve is the relation predicted from the QHC19 table. The red vertical lines represent the
dividing densities.
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is illustrated in Fig. 1, where the relative errors in mass,
radius, and rescaled tidal deformability are plotted for each
EOS as a function of the stellar models’ central densities.We
compare our GPP formalism to standard PPs with the
dividing densities reported in [21]. GPPs are able to capture
the mass and rescaled tidal deformability with great accu-
racy: most fits have errors bounded at 2%. However, the
errors in radius were comparable for both GPPs and PPs.
An accurate empirical relationship has been found

between radius and tidal deformability [65], so the different
functional forms of their error curves in Fig. 1 seems
puzzling. The reason is that the relationship was calculated
for stars of the same mass, while we consider mass, radius,
and deformability as functions of the central density. This
means that the deformability error reflects the errors in both
mass and radius, since it is a derived quantity. Moreover,
since the mass error is larger in magnitude than the radius

error, we expect it to dominate the deformability error, as
reflected in the similar magnitudes of their error curves
in Fig. 1.

B. Thermodynamic quantities

The other major motivation of this work was to obtain a
parametrized formalism that was smooth. We enforced
constraints that imposed a continuous sound speed, and
simultaneously enforced a smooth adiabatic index. We
illustrate this property by plotting the pressure and adia-
batic index for SLy(4) [66–68] in Fig. 3, QHC19 [2,69,70]
in Fig. 4, and MS1b [71] in Fig. 5. It should be noted that
the “exact” adiabatic index γ was computed by numerically
differentiating EOS tables. We see that the adiabatic indices
predicted by the GPP formalism improve upon the constant
adiabatic indices predicted by PPs and behave qualitatively
very similar to the numerically computed adiabatic index γ.

FIG. 5. Thermodynamic quantities predicted by PP (a,b) and GPP (c,d) fits compared to the original EOS for MS1b. The red curve is
the GPP predicted relation and the black curve is the relation predicted from the QHC19 table. The red vertical lines represent the
dividing densities.
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This qualitative agreement is striking, given the fact that
GPPs still use four independent constant parametersK1, Γ1,
Γ2, Γ3.
Aswe show in Fig. 6, PPs can have higher pointwise errors

compared to the original EOS. the errors of GPPs are
generally lower and more evenly spread out. We anticipate
that this improvement will help with the issues outlined in
[34,43], making GPPs more useful for parameter estimation
using this formalism.

C. Quasinormal modes

Radial mode frequencies directly depend on the sound
speed. We thus investigated whether a parametrization with
continuous sound speed with GPPs might reproduce radial

modes more faithfully. We followed the formalism of [72]
and numerically calculated the fundamental radial F-mode
frequencies and eigenfunctions for a number of represen-
tative cases.
Figure 7(a) shows the F-mode frequency as a function of

mass along the sequence of equilibrium models for EOS
SLY(4), calculated with the tabulated version (black line),
the PP version (red line) and the new GPP version (blue
line). For this EOS, the F-mode frequencies calculated with
the GPP version are much closer to the frequencies
calculated with the tabulated version than are the frequen-
cies calculated with the PP version of the EOS.
The comparison of the corresponding eigenfunctions of

the relative Lagrangian displacementΔr=r for a model with

FIG. 6. The fractional error in pressure as a function of density. The errors in PP fits (red) is larger near the dividing densities. The error
of GPPs (blue) is evenly spread out and lower overall. (a) SLy(4), (b) QHC19, and (c) MS1b.
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ρc ¼ 1.1 × 1015 g=cm3 is shown in Fig. 7(d). It is evident
that the GPP eigenfunction agrees well with the tabulated
eigenfunction, whereas the PP eigenfunction shows larger
differences and has a discontinuous first derivative at the
locations where the speed of sound is discontinuous in the
PP formalism.
For some EOS, such as QHC19 [Fig. 7(b)] or the stiffest

candidate EOS MS1b [Fig. 7(c)], we find that GPPs and
PPs can have a comparable level of agreement with the
tabulated version in terms of the eigenfrequency of the
F-mode. However, the corresponding eigenfunctions cal-
culated with the PP version still suffer from noticable kinks
at the location where the speed of sound is discontinuous.

VI. CONCLUSION

We have presented a new parametrized EOS for cold,
nuclear matter. This formulation was derived by reconsid-
ering the piecewise polytrope formalism in the context of
barotropic thermodynamics. The result was a generaliza-
tion of classical polytropes that includes an additional

integration constant, akin to a cosmological constant.
Including this constant allows us to impose differentiability
between segments in a piecewise formalism. The result,
that we term a generalized piecewise polytrope or GPP,
retained the simplicity of standard PPs and had the addi-
tional advantage of smooth behavior.
We demonstrated the effectiveness of our formalism by

using it to fit microphysically motivated candidate EOSs
then comparing the predictions of the formalism to pre-
dictions of the original EOS. We found that, overall, it
creates an accurate fit to the original EOS and that it tracks
the adiabatic index reasonably well. By carefully selecting
the dividing densities used in the piecewise formalism, we
were able to create fits that accurately reproduced the
integral observables predicted by candidate EOSs.
This new formalism has several potential applications.

The first is in numerical relativity simulations. A smooth
but algebraically simple representation of a candidate EOS
would facilitate calculations that are fast and accurately
capture the behavior of the underlying EOS, avoiding
artificial reflections and improving convergence near the

FIG. 7. Radial F-mode frequency as a function of stellar mass for EOS SLY4, QHC19 and MS1b (a–c) and F-mode eigenfunction
profile for a particular model of EOS SLY4 with central density ρc ¼ 1.1 × 1015 g=cm3 (d).
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dividing densities. Second, the kinks of PPs near dividing
densities and the reduced accuracy for low mass stars
sometimes introduce bias in Bayesian parameter estimation
from GW observations [43]. Spectral expansions are
preferred in parameter estimation for this reason. It would
be interesting to compare the performance of our differ-
entiable formalism to a smooth spectral expansion.
In this work, when selecting the dividing densities, we

have focused on optimizing the error in faithfully recov-
ering observables from EOS parameters. The astrophysical
goal is to faithfully recover EOS parameters from
observables. It may thus be more natural to optimize the
error in the direction “observables → EOS” instead of
“EOS → observables”. It is worth exploring whether an
“observables → EOS” minimization gives a significant
decrease in the error with which the EOS is recovered
from observation. However, as argued in [73,74], this is not
an exact 1-1 function inversion problem, but a problem
statistical in nature, best treated via Bayesian methods.
Finally, we mention, although we do not consider the

possibility here, that a piecewise formalism more naturally
accommodates first order phase transitions than a spectral
expansion. Indeed, our formalism could be modified to
include such processes by relaxing or modifying the
constraint relations (4.6)–(4.8). This may be useful in
the future if GW measurements become precise enough
to explore the possibility of a hadron-quark phase transition
in neutron stars [75–80].
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APPENDIX A: PARAMETERS
FOR SPECIFIC EOSS

To demonstrate that GPPs can accurately reproduce the
core region of an EOS, we follow the procedure outlined in
Sec. IV to obtain a set of parameters fK1;Γ1;Γ2;Γ3g for
each EOS in the LIGO Lab. We take the low density region
EOS of each EOS provided with each table as the crust
EOS used in Eqs. (4.9)–(4.11). The results are presented in
Table I.
The matching density ρ0 is more difficult to determine in

the GPP formalism than it is in the PP formalism, since it
requires numerically computing a thermodynamic deriva-
tive [cf. Eq. (4.9)]. We provide this value in the first column
for this reason. Combined with K1 and Γ1, this allows Λ1

and a1 to be computed from (4.10) and (4.11), respectively.
The remaining Ki, Λi, and ai follow from the continuity
conditions (4.6)–(4.8).
We provide both the residual of the fit in the core region

defined by Eq. (4.13) and the observable error defined by
(4.15). We also provided the relative error of three
astrophysical quantities predicted by the fit compared to
the original EOS: the maximum mass, the radius of a

TABLE I. Fit parameters for a GPP core matched to a tabulated crust. To remove a source of error we use the low density region
provided by each EOS table. The residuals defined by Eqs. (4.13) and (4.15) provided as well as percent errors for observable quantities
of interest.

EOS ρ0ð×1014 g=cm3Þ logK1 Γ1 Γ2 Γ3 EOS Res. Obs. Res. Mmax % R1.4 % Λ1=5
1.4

%

APR 2.676 −34.917 3.282 3.595 3.305 3.420 × 10−7 4.078 × 10−4 2.057 0.01 11.345 0.58 3.029 0.66
BHF 1.912 −33.541 3.185 2.838 2.753 9.442 × 10−5 5.054 × 10−3 1.921 0.11 11.173 2.14 2.946 2.52
FPS 2.491 −28.901 2.873 2.580 2.534 3.040 × 10−6 2.768 × 10−5 1.802 0.09 10.854 0.15 2.838 0.03
H4 3.547 −21.110 2.369 1.535 1.5362 6.652 × 10−4 6.473 × 10−3 2.035 0.06 13.691 0.60 3.911 1.06
KDE0V 2.730 −30.351 2.974 2.788 2.808 6.820 × 10−8 3.089 × 10−5 1.961 0.01 11.431 0.18 3.020 0.22
KDE0V1 2.709 −29.531 2.920 2.786 2.758 3.606 × 10−7 2.637 × 10−5 1.970 0.00 11.639 0.16 3.077 0.20
MPA1 1.781 −40.301 3.661 3.044 2.580 2.731 × 10−6 3.080 × 10−5 2.465 0.03 12.467 0.20 3.469 0.15
MS1 2.748 −35.667 3.369 1.112 1.911 5.329 × 10−4 2.387 × 10−3 2.771 0.26 14.898 0.22 4.268 0.35
MS1b 2.390 −34.955 3.321 1.047 1.934 5.049 × 10−4 2.227 × 10−3 2.766 0.22 14.501 0.29 4.163 0.43
QHC19 1.313 −36.879 3.420 2.597 1.769 2.608 × 10−4 2.341 × 10−3 2.069 0.01 11.595 0.80 3.169 0.96
RS 1.771 −25.150 2.636 2.749 2.638 2.592 × 10−6 8.330 × 10−5 2.117 0.00 12.945 0.17 3.604 0.27

(Table continued)
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1.4 M⊙ model, and the tidal deformability of a 1.4 M⊙
model. With two exceptions, the predictions of GPPs
deviate by less than 1% from the predictions of the original
candidate.

APPENDIX B: GPP FIT TO THE SLY(4) CRUST

As described in the main text, some applications may
require an accurate representation of the low-density region
of the cold, degenerate EOS. This region has been well-
studied both theoretically and experimentally [2,69], so
accurate models are available. However, the version of
SLy(4) in CompOSE only describes densities down to
∼108 g=cm3. So, for the purpose of creating a low-density
crust, we used the low density region of QHC19 from
105 g=cm3 to 108 g=cm3 then the SLY table from the LIGO
lab below 105 g=cm3.
When the adiabatic index was computed from the

resulting table, we found that it contained significant jumps
near the densities where the original EOSs were joined.
These jumps are a numerical artifact that can significantly
impact the physics predicted by the EOS. We removed
these jumps by deleting points from the joined table until a
smooth trend in the adiabatic index was achieved. We

worked with this modified table to obtain the GPP fit
reported in Table II. The dividing densities were selected to
create a smooth fit to p vs. ρ and γ vs. ρ.
It is important to note that GPP parameters are sensitive

to the choice of crust. So, the fit parameters obtained by

TABLE I. (Continued)

EOS ρ0ð×1014 g=cm3Þ logK1 Γ1 Γ2 Γ3 EOS Res. Obs. Res. Mmax % R1.4 % Λ1=5
1.4

%

SK255 2.817 −26.896 2.754 2.739 2.684 7.601 × 10−8 1.851 × 10−6 2.145 0.00 13.162 0.03 3.599 0.05
SK272 1.903 −27.597 2.804 2.867 2.718 4.749 × 10−6 2.385 × 10−4 2.233 0.02 13.330 0.39 3.664 0.50
SKI2 1.826 −24.202 2.575 2.688 2.636 1.401 × 10−6 6.876 × 10−6 2.164 0.00 13.500 0.02 3.798 0.00
SKI3 1.865 −26.457 2.729 2.552 2.757 1.486 × 10−5 2.492 × 10−4 2.241 0.02 13.571 0.25 3.813 0.37
SKI4 1.939 −31.008 3.029 2.564 2.725 1.916 × 10−5 6.021 × 10−4 2.170 0.02 12.387 0.52 3.446 0.69
SKI5 1.761 −23.109 2.505 2.843 2.782 5.797 × 10−5 3.522 × 10−4 2.241 0.05 14.010 0.08 4.010 0.19
SKI6 1.943 −31.089 3.036 2.556 2.736 2.368 × 10−5 6.122 × 10−4 2.191 0.02 12.503 0.49 3.474 0.66
SKMP 1.739 −27.116 2.766 2.757 2.705 8.062 × 10−8 9.109 × 10−6 2.108 0.01 12.511 0.08 3.455 0.11
SKOP 1.379 −26.089 2.693 2.684 2.603 2.534 × 10−7 1.230 × 10−5 1.974 0.01 12.141 0.12 3.269 0.14
SLY2 1.987 −31.070 3.026 2.835 2.786 1.924 × 10−6 9.112 × 10−5 2.055 0.00 11.796 0.24 3.175 0.33
SLY230A 1.739 −33.385 3.184 2.807 2.678 9.863 × 10−6 4.067 × 10−4 2.100 0.02 11.845 0.53 3.214 0.63
SLY4 1.975 −31.254 3.038 2.854 2.809 2.079 × 10−6 9.809 × 10−5 2.053 0.07 11.693 0.23 3.151 0.36
SLY9 1.080 −30.657 3.005 2.675 2.720 8.760 × 10−6 2.305 × 10−4 2.157 0.00 12.482 0.30 3.413 0.42
WFF1 2.817 −38.158 3.489 3.850 4.073 8.157 × 10−5 1.361 × 10−3 1.926 0.43 10.419 0.82 2.748 0.74

TABLE II. A GPP fit to the SLy(4) Crust found in [81]. This fit
was designed to accurately reproduce adiabatic index as well as
pressure at low densities.

ρi ðg=cm3Þ Ki (cgs) Γi Λi ðg=cm3Þ ai

0 5.214×10−9 1.611 0 0
6.285×105 5.726×10−8 1.440 −1.354 −1.861×10−5
1.826 × 108 1.662×10−6 1.269 −6.025×103 −5.278×10−4
3.350×1011 −7.957 × 1029 −1.841 1.193×109 1.035×10−2
5.317×1011 1.746×10−8 1.382 7.077×108 8.208×10−3

TABLE III. Fit parameters for the core region of each EOS
matched to the SLy(4) crust in Table II. These values should
provide a self-consistent EOS for use in simulations where
accurate crust resolution is desirable.

EOS log ρ0 ðg=cm3Þ logK1 Γ1 Γ2 Γ3

APR 14.040 −33.210 3.169 3.452 3.310
BHF 14.130 −35.016 3.284 2.774 2.618
FPS 14.087 −32.985 3.147 2.652 2.199
H4 13.499 −23.310 2.514 2.333 1.562
KDE0V 13.978 −30.250 2.967 2.835 2.803
KDE0V1 13.929 −29.232 2.900 2.809 2.747
MPA1 14.088 −40.301 3.662 3.057 2.298
MS1 13.657 −30.170 2.998 2.123 1.955
MS1b 13.795 −33.774 3.241 2.136 1.963
QHC19 14.102 −36.879 3.419 2.760 2.017
RS 13.641 −25.150 2.636 2.677 2.647
SK255 13.679 −25.990 2.693 2.729 2.667
SK272 13.732 −27.597 2.804 2.793 2.733
SKI2 13.552 −24.202 2.575 2.639 2.656
SKI3 13.660 −26.457 2.729 2.680 2.708
SKI4 13.907 −31.008 3.029 2.759 2.651
SKI5 13.438 −23.109 2.505 2.708 2.727
SKI6 13.902 −31.089 3.035 2.762 2.653
SKMP 13.763 −27.116 2.766 2.741 2.698
SKOP 13.761 −26.089 2.693 2.660 2.579
SLY2 13.967 −31.070 3.026 2.871 2.760
SLY230A 14.021 −33.385 3.184 2.895 2.588
SLY4 13.980 −31.350 3.045 2.884 2.773
SLY9 13.899 −30.657 3.005 2.796 2.652
WFF1 14.133 −34.394 3.240 3.484 3.695
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matching to the tabulated crust reported in Table I are not
valid for our low-density GPP. So, we computed a new set
of fit parameters to be used with this crust and report them
in Table III. For convenience, we provide the matching
density to be used with each set of parameters. If greater
precision is required, the matching densities may be
recalculated by

ρ0 ¼
�

K1Γ1

KcrustΓcrust

�
1=ðΓcrust−Γ1Þ ðB1Þ

where the subscript “crust” denotes the last parameter listed
in Table II. The remaining core parameters follow from
(4.6)–(4.8) as before.
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