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We investigate gravitational microlensing signals produced by a spatially extended object transiting in
front of a finite-sized source star. The most interesting features arise for lens and source sizes comparable to
the Einstein radius of the setup. Using this information, we obtain constraints from the Subaru-HSC survey
of M31 on the dark matter populations of NFW subhalos and boson stars of asteroid to Earth masses. These
lens profiles capture the qualitative behavior of a wide range of dark matter substructures. We find that dark
matter fractions down to 5 × 10−3 may be probed, and that deviations from constraints on pointlike lenses
(e.g., primordial black holes and MACHOs) become visible for lenses of radius 0.1 R⊙ and larger, with the
upper bound on lens masses weakening with increasing lens size.

DOI: 10.1103/PhysRevD.102.083021

I. INTRODUCTION

Gravitational microlensing—the transient, achromatic
magnification of a star due to a transiting object—has
offered much promise in discovering dark matter lurking
in macroscopic structures weighing between asteroid and
solar masses. The populations of effectively pointlike lenses,
e.g., primordial black holes and MACHOs, have been con-
strained across a wide range of dark matter masses by
surveys such as EROS/MACHO [1], OGLE [2], and Subaru-HSC
[3]. The microlensing signal is appreciable when the lens
comes within the Einstein radius along the line of sight
between observer and source star. Lenses with spatial extent
comparable to this critical distance lead to qualitatively
different microlensing signals; structures with nontrivial
spatial extent that have been studied include hydrogen gas
clouds [4] and axion miniclusters [5,6], a program recently
extended by some of us to primordial subhalos and boson
stars [7], and by other authors to dark MACHOs [8].
A further complication arises when the angular extent

of source stars corresponds to a distance at the lens larger
than the Einstein radius. This suppresses the magnification
relative to pointlike sources, as studied in detail in the case
of pointlike lenses [9]. The effect is applicable in particular
to the Subaru-HSC survey of M31 because of its sensitivity
to small transit times and hence small Einstein radii. It was
accounted for by the collaboration by assuming that all

stars in M31 have a radius of 1 R⊙. This assumption was
first questioned in Ref. [10], and later, by use of a realistic
M31 stellar size distribution, shown to overestimate con-
straints on pointlike lens populations in Ref. [11].
In this paper we consider microlensing constraints on

extended dark matter structures using the Subaru-HSC
survey. In Fig. 1 we show, in the space of lens size and
mass, the approximate sensitivity of the survey to generic
dark matter structures. The dashed lines depict the sensi-
tivity that might have been achieved without the effects of
the sources’ finite size and, in the case of pointlike lenses,
without the effects of wave optics. The lowest and highest
masses probed are determined respectively by the smallest
and largest transit time scales to which the survey is
sensitive. For lenses much larger than the maximum
Einstein radius of the setup, the lens becomes too diffuse
to magnify source stars appreciably. Moreover, lens sizes of
a given mass are bounded from below by the Schwarzschild
radius corresponding to that mass.
To determine the constraints on dark matter structures by

the Subaru-HSC experiment, we consider the microlensing
signals from extended sources by extended lenses. This
requires obtaining the magnification of images produced by
such a setup, for which we outline a procedure below. We
demonstrate our procedure by studying two examples of
finite-sized lens profiles that are qualitatively different, as
found in our previous study: NFW subhalos and boson stars.
We expect that the constraints on a wide range of realistic
dark matter structures interpolate between the constraints
found in these two cases.
This paper is organized as follows. In Sec. II, we describe

the geometry of our setup and outline our numerical
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procedure for obtaining the magnification. We also
derive the threshold impact parameter for lenses and source
stars of various sizes, which determines the “detector
geometry” of microlensing. In Sec. III, we count signal
events and set constraints on the populations of our lens
species from Subaru-HSC observations. Section IV con-
tains our conclusions.

II. SIGNALS

The geometry along the line of sight of our setup can be
found in Ref. [7]. We denote the lens mass by M, and the
observer-lens, observer-source, and lens-source distances
by DL, DS, and DLS ¼ DS −DL, respectively. In terms of
these quantities the Einstein radius of a pointlike lens is
given by

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4GM
c2

DLDLS

DS

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4GMDS

c2
xð1 − xÞ

r

; ð1Þ

with x≡DL=DS. RE is the closest approach to the lens of
light rays from the source to the observer when the lens lies
along the line of sight. It is also a useful distance scale with
respect to which we normalize other distances that we
introduce in the following.
The relevant distance scales along the line of sight

(DS, DL) are typically much larger than those in the
transverse direction (e.g., RE) in the microlensing surveys
we consider. This means that we can treat the lensing as
occurring entirely in the transverse plane containing the
lens—for this reason it is useful to view the lensing setup
projected on to this plane with all distances expressed in

units of RE. We have done so in Fig. 2, displaying both the
finite lens and the finite source star. In units of RE, the
source radius in the lens plane is rS ≡ xR⋆=RE, the distance
from the lens center to the source center is u, and to an
arbitrary point on the edge of the source is

ūðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ r2S þ 2urS cosφ
q

: ð2Þ

One can then write down the lensing equation, describ-
ing the trajectory of light rays after passing the lens plane,
for every infinitesimal point on the edge of the source,

ūðφÞ ¼ tðφÞ −mðtðφÞÞ
tðφÞ : ð3Þ

Solving this yields the positions of (infinitesimal) images at
tiðūðφÞÞ with i labeling the, in general, multiple solutions.
As described in Ref. [7], mðtÞ is the mass profile, i.e., the
distribution of the lens mass projected on to the lens plane.
We refer the reader to Ref. [7] for derivations of the mass
profiles of NFW subhalos, boson stars, and other lens
species. In the case of an infinitesimal lens, mðtÞ ¼ 1,
and the lensing equation can be solved analytically to find
jt�j ¼ jūj=2 × j1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4=ū2
p

j (note the minor typo in
this solution in Ref. [10]).
Modeling the source star as having a uniform intensity in

the lens plane, i.e., neglecting limb darkening, the magni-
fication produced by an image i is given by [9,10]

μi ¼ η
1

πr2S

Z

2π

0

dφ
1

2
t2i ðφÞ; ð4Þ

where η ¼ signðdt2i =dū2jφ¼πÞ is the “parity” of the image.
For the convenience of the reader, we note that the
alternative formulation presented in Ref. [9] should like-
wise contain a parity factor. The total magnification μtot is
the sum of the individual μi.

1

FIG. 2. Geometry of our setup projected on the lens plane. See
Sec. II for further details.

FIG. 1. Heuristic estimate, with constant efficiencies and zero
backgrounds, of the masses and sizes of dark matter structures
to which the Subaru-HSC survey is sensitive. Below masses of
∼3 × 10−12 M⊙ the effects of the finiteness of the source size
suppresses the microlensing magnification. For pointlike lenses,
this is also where geometric optics breaks down and the effects of
wave optics suppress the magnification [12], seen to occur for a
lens mass corresponding to a Schwarzschild radius that is about
an order of magnitude smaller than the wavelength of visible
light. See text for further details.

1Note that our treatment ignores the effects of wave optics [12]
(see also, e.g., [13]) which can reduce the magnification for lens
size scales (about an order of magnitude) smaller than the
wavelength of light used in the survey. For our purposes, the
magnification in this region of parameter space is greatly sup-
pressed by the finite source effects that we study, and so we are
justified in ignoring the wave optics corrections.
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The characteristic signature of microlensing is the
apparent brightening and subsequent dimming of a source
star as a lens passes along the line of sight. We consider
such a transit to be an event if the magnification of the
source rises above threshold which, following convention,
we take to be μtot ¼ 1.34, the magnification of a pointlike
source by a pointlike lens when u ¼ 1. The time that the
magnification spends above threshold is the event time, tE.
It is therefore convenient to define the “threshold impact
parameter” (in units of RE) u1.34 as

μtotðu ≤ u1.34Þ ≥ 1.34; ð5Þ

such that the magnification is above 1.34 for all smaller
impact parameters.
In this paper we consider two species of lenses: Navarro-

Frenk-White (NFW) subhalos that are products of hierar-
chical clustering, and boson stars, structures rendered
gravitationally stable by degeneracy or kinetic pressures
generated by constituent scalar states. We take these struc-
tures to be examples of the two distinct types of finite-sized
lenses studied in [7]: NFW subhalos have a steep, peaked
mass function, whereas boson stars typically follow a more
uniformly distributed profile. As a result, boson stars may
give rise to caustic crossings—lens-source configurations
where the number of images changes, implying that the
magnification formally diverges—whereas NFW subhalos
do not [7].
We calculate mðtÞ for each profile as outlined in the

Appendix of Ref. [7]. In the case of NFW subhalos we
take the lens mass profile to follow the distribution ρðRÞ ∝
R−1ð1þ R=RscÞ−2 with R the distance from the center of
the lens and Rsc its scale factor. We cut off the distribution

at 100Rsc and use the radius enclosing 90% of the total
mass, R90 ¼ 69Rsc ≡ r90RE, to characterize the spatial
extent of the lens.2 For the boson star, we solve the
Schrödinger-Poisson equations numerically before projec-
ting the resultant enclosed mass profile on to the plane
perpendicular to the line of sight. Again we define R90 as
the radius which encloses 90% of the total mass, and r90 as
the same quantity normalized to the pointlike Einstein
radius. For both mass profiles, once we specify the lens and
source sizes, we find the threshold impact parameter u1.34
by solving the lensing equation Eq. (3) iteratively to find
the impact parameter satisfying Eq. (5).
In Fig. 3 we show contours of u1.34 in the plane of rS vs

r90. We see that in the rS → 0 limit the contours follow the
results we displayed in Fig. 3 of Ref. [7], whereas in the
r90 → 0 limit the contour agrees with Refs. [9–11].

III. CONSTRAINTS

Assuming that lenses have a single mass M, follow
Maxwell-Boltzmann velocity distributions, and that their
line-of-sight density is ρlensðxÞ ¼ fDMρDMðxÞ, where fDM
is the mass fraction of lenses making up the dark matter
density ρDM, the rate per source star is given by [14]

FIG. 3. Contours of the threshold impact parameter u1.34 in the rS–r90 (i.e., the xR⋆=RE–R90=RE) plane for NFW subhalos (left) and
boson stars (right). These provide information on the volume of space across which lens transits are counted as events. Further details in
Secs. II and III.

2Due to the sharp dependence of the profile on radius for
R > Rsc, our results do not depend strongly on precisely where we
cut the distribution off; we see this weak dependence in the mass
enclosed by a radius Rcut, which is ∝ logðκþ1Þ−ðκ=ðκþ1ÞÞ,
where κ ¼ Rcut=Rsc. Thus other cutoff choices, unless close to Rsc,
would lead to very similar results when expressed in terms of the
characteristic physical mass and size of the lens.
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d2Γ
dxdtE

¼ εðtE; R⋆Þ
2DS

v20M
ρlensðxÞv4EðxÞe−v

2
EðxÞ=v20 ; ð6Þ

where vEðxÞ≡ 2u1.34ðxÞREðxÞ=tE, REðxÞ is given in Eq. (1)
and u1.34ðxÞ is plotted in Fig. 3 as a function of r90 and rS.
The circular speeds v0 are taken from Refs. [15,16] and are
approximately 220 km=s for the Milky Way and 250 km=s
for M31. This treatment, accounting for both the baryonic
and dark matter components of the galaxies, is different
from that of Ref. [3] in which the circular velocity profile is
computed from the enclosed mass of the dark matter halo
alone, an approximation that is accurate at large distances
from the Galactic centers. Our treatment relatively miti-
gates the exponential suppression of the rate in Eq. (6),
resulting in slightly stronger bounds for large M, i.e., the
larger circular velocity allows for lenses to transit larger
Einstein radii over a shorter tE. As in Ref. [3], we adopt an
NFW profile for dark matter halo densities,

ρDMðrÞ ¼
ρs

ðr=rsÞð1þ r=rsÞ2
;

rMWðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
Sol − 2xRSolDS cosl cos bþ x2D2

S

q

;

rM31ðxÞ≡DSð1 − xÞ; ð7Þ

using parameters from Ref. [17]: ρs ¼ 0.184 GeV=cm3

(0.19 GeV=cm3) for MW (M31), scale radius rs ¼
21.5 kpc (25 kpc) for MW (M31), RSol ¼ 8.5 kpc is the
distance of the Sun from the center of MW, DS ¼ 770 kpc
is the distance to M31, and ðl; bÞ ¼ ð121.20;−21.60Þ are
the galactic coordinates of M31.
The total number of events expected is

Nevents ¼ N⋆Tobs

Z

dtE

Z

dR⋆
Z

1

0

dx
d2Γ
dxdtE

dn
dR⋆

; ð8Þ

where N⋆ ¼ 8.7 × 107 is the number of stars used in the
Subaru-HSC survey, Tobs ¼ 7 hr is the net observation
time, and dn=dR⋆ is the (normalized) stellar radius
distribution of the source stars in M31. We adopt the
distribution derived in Ref. [11] using the Panchromatic
Hubble Andromeda Treasury star catalogue [18,19] and
the MESA Isochrones and Stellar Tracks stellar evolution
package [20,21].
The efficiency εðtE; R⋆Þ is shown in Fig. 19 of Ref. [3]

for several values of stellar luminosity (which correlates
with size). To set our constraints, we approximate the
efficiency as a flat 50% for 2 min ≤ tE ≤ 7 hr. We then
locate ðfDM;MÞ pairs for which Nevents ¼ 4.74, corre-
sponding to the 95% C.L. Poissonian upper limit for the
one event observed at HSC.
Our results are shown in Fig. 4. For completeness, we

also show constraints from the EROS-2 and OGLE-IV surveys,
derived with the methods outlined in Ref. [7]. We have
made the conservative assumption that the constraints

cannot be combined and provide the strongest constraint
for each mass as solid curves. The Subaru constraints
appear on the left-hand side of the plots and are indicated
with a dashed dividing line.
For boson stars, the bottom panel in Fig. 4, we note

that the features first mentioned in Ref. [7] in the EROS-2

and OGLE-IV constraints—which arise due to caustic
crossings—are largely smoothed out by the finite source
effect. As a result, the primary effect of the extended lens is
a loss in sensitivity to large lenses at small mass. Boson
stars larger than ∼30 R⊙ are not constrained by the Subaru-
HSC survey at any mass.
Comparing the two panels of Fig. 4, we note that peaked

mass profiles such as NFW subhalos lead to stronger
constraints than flatter profiles such as boson stars, as
expected. In particular, NFW subhalos with R90 up to
∼Oð100Þ R⊙ have been probed by the Subaru-HSC survey.

IV. DISCUSSION

In this work we have considered microlensing of light
from the finite-sized source stars in M31 by finite dark
matter structures in the M31 and Milky Way halos. The
effects of these finite spatial sizes can be captured in one
parameter: the threshold impact parameter u1.34 that
depends on the size of the source star as well as the spatial
morphology of the dark matter structure. In Fig. 3 we show
this parameter as a function of the source size rS and
characteristic lens radius r90 (both normalized to the
pointlike Einstein radius) for two qualitatively different
lens mass profiles: NFW subhalos and boson stars. These
two mass profiles interpolate between those that are sharply
peaked and those that are relatively uniform, capturing the
qualitative differences in the microlensing constraints for a
wide range of well-motivated dark matter substructures.
Thus, our results encompass large classes of reasonable
mass profiles that could be expected. Moreover, as men-
tioned above, because of how peaked our NFW profile is, the
details of our treatment of it, such as where we cut off
the mass profile, do not strongly affect our constraints when
expressed in terms of the physical lens mass and its
characteristic size. We see in Fig. 4 that nontrivial micro-
lensing constraints exist for structures as large as ∼103 R⊙,
even in the case of less peaked mass functions such as
obtained in boson stars. We also note that structures larger
than ∼10−1 R⊙ lead to modifications of the microlensing
constraints compared to those of pointlike lenses (as can
also be observed in Fig. 1).
The spatial extent of dark matter subhalos is often

characterized by a concentration parameter c≡ Rvir=Rsc
[22], where the average density within Rvir is 200 times the
critical density. We note that microlensing surveys are
typically sensitive to relatively large concentrations; in the
case of NFW subhalos the results in Fig. 4 imply c≳ 106.
Such high concentrations appear in structures such as axion
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miniclusters [5,23], ultracompact minihalos [24,25], and
boson stars [26].
We have derived conservative microlensing constraints

by simply classifying a transit as an event if the total
magnification rises above a threshold of μtot ¼ 1.34 over
an appropriate time scale. In the event of the detection of
a positive signal, one could use the microlensing light-
curves of finite lenses to derive further information about
the properties of the lenses themselves as well as to better
suppress backgrounds. For instance, particularly in the
case of fairly uniform mass functions such as boson stars,
the number of lensed images can change discontinuously
as the lens passes along the line of sight, leading
to large changes in the magnification of a source star.

The interplay of this effect with the finite size of the
source star could also be interesting, potentially telling us
where along the line of sight the lens passed. The tools
developed in this paper would allow for further study
along these lines.
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FIG. 4. 95% C.L. constraints from the Subaru-HSC survey of M31 on the fraction of lens species making up dark matter fDM as a
function of the lens mass M for NFW subhalo (top) and boson star (bottom) lenses. These limits take into account the effect of the finite
size of source stars on the microlensing signal, as characterized by the threshold impact parameter derived in Fig. 3, and the stellar size
distribution of the M31 sample used in the survey. Also shown are constraints from the EROS-2 and OGLE-IV surveys as derived in
Ref. [7]. As expected, larger lenses of a given mass result in weaker limits due to smaller magnifications. Interestingly, the pronounced
wiggles in boson star limits arising from caustic crossings seen in EROS-2 and OGLE-IV limits are absent in Subaru-HSC limits due to the
smoothing of such features by the finite source effect.
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