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We present a mechanism for dark matter (DM) production involving a self-interacting sector that at early
times is ultrarelativistic but far underpopulated relative to thermal equilibrium (such initial conditions often
arise, e.g., from inflaton decay). Although elastic scatterings can establish kinetic equilibrium we show
that for a broad variety of self-interactions full equilibrium is never established despite the DM yield
significantly evolving due to 2 → k (k > 2) processes (the DM carries no conserved quantum number nor
asymmetry). During the active phase of the process, the DM to Standard Model temperature ratio falls
rapidly, with DM kinetic energy being converted to DM mass, the inverse of the recently discussed
“cannibal DM mechanism.” As this evolution is an approach from an out-of-equilibrium to equilibrium
state, entropy is not conserved. Potential observables and applications include self-interacting DM
signatures in galaxies and clusters, dark acoustic oscillations, the alteration of free-streaming constraints,
and possible easing of σ8 and Hubble tensions.
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I. INTRODUCTION

One of the few facts known with certainty about the
nature of dark matter (DM) is that its nongravitational
interactions with the Standard Model (SM) sector are, at
most, tiny. Though not necessitated by present observations
it is entirely possible that there exist nongravitational
DM-sector self-interactions, in the presence of which
new phenomena can occur which may relieve a number
of astrophysical or cosmological tensions [1–8]. Of par-
ticular interest to us is the fact that such self-interactions
inevitably lead to both elastic and inelastic, number-
changing scattering processes. We here study a new DM
relic density generation mechanism involving such inelastic
self-interactions.
Specifically, we show that if the initial state of the DM

sector is ultrarelativistic, hEdmi ≫ m, but far underpopu-
lated relative to full thermal equilibrium, a calculable
nonlinear process that we refer to as reproductive freeze-
in (RFI) [9], can lead to a DM relic density compatible with
current observations, bearing new features of phenomeno-
logical import. During the active phase of the process, the
DM yield significantly evolves due to 2 → k (k > 2)
processes (for DM without conserved quantum numbers
or asymmetry) and the DM sector temperature falls relative

to that of the SM bath as DM kinetic energy is converted to
DM mass. Thus RFI is effectively the inverse of the
recently discussed “cannibal DM mechanism” [10–14].
The evolution of a self-interacting DM sector initially

possessing a nonzero chemical potential has been studied
by a number of groups [15–20] with a focus on first finding
the conditions under which the initially underpopulated
sector fully thermalizes and subsequently how this impacts
the DM abundance as it freezes out. In this work, we
instead focus on the freeze-in case [21–23] where the DM
sector evolution never reaches full equilibrium. We empha-
size the simple but crucial fact that, in contrast with an
assumption made widely in the literature, entropy per
comoving volume is not conserved during the evolution.
This is due to the initial state being a far-from-equilibrium
state, the DM relic density in our case being determined by
a failure to ever achieve equilibrium. To our knowledge,
this point has not been previously appreciated.
Note that the assumed far-underpopulated, ultrarelativ-

istic DM-sector initial conditions often result from dynam-
ics of the extreme early Universe. Examples include
postinflation inflaton decay and reheating [24–26]; the
decay of a population of primordial black holes [27–29]
and the decay of superheavy particles associated with, for
instance, neutrino mass generation or Peccei-Quinn sym-
metry breaking.
As we will discuss, possible signatures of the RFI

mechanism include the effects of the associated elastic
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DM self-interactions in galaxies and galaxy clusters, the
signs of dark acoustic oscillations in structure formation,
and the weakening of free-streaming constraints on models
that produce an initial ultrarelativistic population of DM
particles. Since the RFI mechanism does not require that
the DM possesses any exact continuous or discrete stabi-
lizing symmetry—just that interactions with the SM are
feeble—late-time processes including DM decays occur-
ring in the current Universe are a possibility.

II. RFI SETUP

A starting assumption of RFI is that the dynamics of the
very early Universe—postinflationary reheating, the crea-
tion of the Universe itself, or some other possible scenario
such as the decay of a population of superheavy states—
populates both the SM and DM sectors with initial energy
densities with ratio r≡ ρdm=ρsm.
In the SM sector, for all particles excepting possibly

right-handed neutrinos, the gauge and other interactions are
not small, and both kinetic and full species (“chemical”)
equilibrium are assumed to be achieved rapidly with a
“reheat” temperature T0. On the other hand, in the DM
sector we assume that the appropriate dimensionless
measures of self-interaction strength [which may be a
gauge coupling, a quartic scalar self-interaction, or a
combination ðE=MÞn involving the typical energy E and
the scale M of a higher-dimensional interaction] are such
that elastic scattering is fast compared to the Hubble time,
1=HðtÞ. These interactions quickly establish kinetic equi-
librium (this simplifying assumption can be relaxed, see
Sec. VI) with an associated kinetic temperature, T̃ðtÞ, but,
in contrast, number-changing 2 → k ðk > 2Þ processes,
which drive the system towards chemical equilibrium, are
parametrically slower. This is easy to achieve. For example,
if the DM sector consists of a single massive Majorana
fermion, Ψ, then the leading interactions are of the
schematic form Ψ4=M2 þΨ6=M5 þ � � �, and the ratio of
cross sections for the 2 → 4 to 2 → 2 processes is
∼ðE=2πMÞ4 × ðlogsÞ ≪ 1 in the energy regime of interest,
m ≪ E ≪ M. Alternatively, if we consider a single-species
scalar model with a perturbative quartic self-coupling
λ≲ 1, then the ratio of the 2 → 4 to 2 → 2 processes
is ∼ðλ2=16π4Þ × ðlogsÞ ≪ 1.
The distribution functions of particles in kinetic but not

chemical equilibrium are given by

fðp; tÞ ¼ ZðtÞ
exp½p=T̃ðtÞ� ∓ ZðtÞ ; ð1Þ

where ZðtÞ≡ e−μ=T̃ with μ the chemical potential
associated with deviation from chemical equilibrium, and
∓ applies to the Bose/Fermi DM cases.
A second fundamental assumption of RFI is that the

DM number density, ndm, is significantly underoccupied

compared to equilibrium during the entire evolution (we
will verify that this assumption is self-consistently correct),
corresponding to Z ≪ 1. If, further, the DM is ultra-
relativistic, the number and energy densities in the DM
sector are well approximated by

ndmðtÞ ¼
g
π2

ZðtÞT̃ðtÞ3; ð2Þ

ρdmðtÞ ¼
3g
π2

ZðtÞT̃ðtÞ4: ð3Þ

We will show that although the DM number density can
significantly evolve, in an expanding universe full equi-
librium may never be reached and a nontrivial DM yield
can result.
Although self-interactions within each sector are vital,

the RFI mechanism does not utilize SM-to-DM-sector
interactions in any essential way, so we assume for
pedagogical simplicity that any such interactions are
strictly absent. The SM and DM sectors are then secluded
from each other and have separate dynamics apart from
their gravitational effects upon each other. (For previous
work on this see, e.g., [30].) Thus during a period where
both sectors remain relativistic the energy density ratio, r,
remains constant up to changes in the number of SM
relativistic degrees of freedom, g�, upon going through a
mass threshold for a SM state which we neglect here. In
Sec. VI we will comment on these approximations.
In the DM sector the number-changing processes act to

drive ZðtÞ towards unity, that is, towards chemical equi-
librium. Concurrently T̃ will be falling faster than dictated
by Hubble expansion as kinetic energy is converted into
mass energy. Whether the system reaches chemical equi-
librium or not depends on the rate of the 2 → k process and
how they depend on temperature. We define the ratio of
DM to SM-sector temperatures:

ΘðtÞ≡ T̃ðtÞ
TðtÞ ; ð4Þ

which is restricted to lie in the range Θ0 ≥ Θ ≥ Θeq, where
Θ0 is the initial ratio and Θeq is the ratio when the DM
sector reaches chemical equilibrium. As the change in Θ
occurs via processes that are increasing the number of DM
states with mass, m, as soon as the DM becomes non-
relativistic, with T̃ ≃m the development of ΘðtÞ ceases for
kinetic reasons apart from trivial evolution due to possible
changes in g�. Here we take the DM sector to be comprised
of a single type of particle with mass m. The generalization
to more complicated DM sectors is straightforward. As we
discuss in the following, we are here for simplicity also
assuming that the cannibal mechanism [10–14] is frozen
out for T̃ < m, so the DM density is determined by RFI.
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It is again straightforward to relax this assumption.
Constancy of r in the relativistic regime implies

ZðtÞΘðtÞ4
g�ðtÞ

¼ π4

90g
r: ð5Þ

The ratio of DM-sector to SM-sector entropy densities is
not constant during the evolution, as the DM sector starts in
a far-from-equilibrium state, and the production of DM
particles by the inelastic 2 → k processes increases the DM
entropy, with the result that sdm=ssm ∝ 1=ΘðtÞ. Instead, it is
the ratio of energy densities r that is approximately constant
(up to g� thresholds as mentioned previously).
The equilibrium value of Θ is

Θeq ≃
�
π4r
90

g�
g

�
1=4

ð6Þ

≃ 0.3

�
r

10−4

�
1=4

�
g�=g
102

�
1=4

; ð7Þ

though, in all cases of interest to us, evolution of ΘðtÞ will
stop well before this value is reached. It is also instructive to
estimate the maximum possible size of Θ0 in order to
understand the conceivable range over which Θ can vary.
As the initial average energy per particle in the DM sector is
hEi ¼ ρ0dm=n

0
dm, one finds Θ0 ≲ hEi=3T0 where T0 is the

initial temperature of the fully thermalized SM sector. Then
the most extreme case with hEi ∼Mpl and T0 ∼ 3 MeV
would have Θmax

0 ∼ 1021.
Assuming the DM sector never reaches full chemical

equilibrium, and utilizing the leading expression for the
number density, ndm, Eq. (2), as well as Eq. (5) and the
value of the SM entropy density, ssm ¼ 2π2g�T3=45, we
find the DM yield Y ≡ ndm=ssm is related to Θ by

Y ¼ r
4Θ

: ð8Þ

Then, if Θf is the value of Θ at which the number-changing
processes terminate, the correct DM relic abundance,
Ωdmh2 ≃ 0.119, implies mYf ≃ 0.434 eV and thus

Θf ≃ 57

�
r

10−4

��
m

MeV

�
: ð9Þ

Using T ¼ T̃=Θ and Eq. (8), one finds that for the correct
DM density, the SM temperature at the end of DM particle
production must satisfy

Tf ≥
4mYf

r
≃
1.74
r

eV; ð10Þ

with the inequality being saturated if the yield changes fast
compared toHðTÞwhen T̃ ∼m. We can immediately find a

simple upper limit on r by calculating the contribution
of the DM sector to Neff at the time of big bang
nucleosynthesis:

ΔNeff ¼
4

7
g�r; ð11Þ

if we require that this not exceed the conservative limit of
0.3 [31] the bound on r is

r < 0.05; ð12Þ

translating into a lower limit Tf ≳ 35 eV. Typically, how-
ever, there are other, stronger constraints on r. For example,
since there exist strong constraints on either the DM free-
streaming scale (if the DM is collisionless) or the DM
sound horizon (if the DM is elastically scattering and
behaving as an adiabatically expanding gas) arising from
structure formation, the physics of an initially ultrarelativ-
istic DM sector is constrained. We address this constraint
on r, and thus Tf, in Sec. V.
However this analysis hides the fact that Eq. (10) is only

true if a suitable Yf giving the observed DM density is
achieved at the conclusion of the mechanism. This requires
an analysis of the Boltzmann equation determining the
evolution of Y [and Θ via Eq. (8)].

III. THE RFI YIELD EQUATIONS

We are interested in the increase in the DM number
density in the presence of number-changing interactions.
We focus on the single species case for pedagogical
simplicity (the more general case of multiple DM particle
species of different masses interacting in number-changing
ways is a direct, if messy, generalization). Then, the
evolution of the single relevant phase space distribution
function, fðE; tÞ, is governed by the Boltzmann equation,
which, once integrated, gives the time derivative of the
particle number density [32]:

_nðtÞ þ 3Hn ¼ g
ð2πÞ3

Z
C½f� d

3p
E

≡ cn: ð13Þ

The so-called collision term on the right-hand side sums over
all number-changing 2 → k and k → 2 interactions involv-
ing the particle in question. Since by assumption the elastic
interactions are “fast” and maintain kinetic equilibrium, we
do not need to explicitly include the effect of 2 → 2
processes once the semithermal form of the distribution
functions, Eq. (1) is used. Thus each of the terms is an
integral, over external momenta, of the number-changing
matrix element and a combination of the phase space
distributions of the external particles. In the ultrarelativistic
regime T̃ ≫ m of interest, the dependence of the collision
term on the DM sector temperature, T̃, and the energy-
independent underoccupancy factor, Z, can be written as
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cn ¼ gT̃4
X
k>2

ðk − 2ÞZ2ð1 − Zðk−2ÞÞIkðT̃=MÞ; ð14Þ

where the sum on k runs over all number-changing channels,
and the functions IkðT̃=MÞ represent the strength and
nontrivial temperature dependence of the 2 → k interaction.
Here M is a possible energy scale, such as that defining an
interaction strength in the effective theory, and the presence
of the Zðk−2Þ term follows from considerations of detailed
balance.
The first simplification of Eq. (14) results from the fact

that over the whole range of nontrivial evolution of nðtÞ the
DM state is far underoccupied, with Z ≪ 1 so we may drop
the inverse k → 2 process term Zðk−2Þ. Similarly, irrel-
evantly small j ↔ k terms with both j; k > 2 were already
neglected in Eq. (14). Second, we assume that T̃=M ≪ 1

for all T̃ of interest so that we may expand the function
IkðT̃=MÞ and keep only the leading term. This is sufficient
when the only state with mass below the cutoff of our
effective theory is the essentially massless (m ≪ T̃) DM
particle state itself. Thus we may write

IkðT̃=MÞ ¼ Ak

�
T̃
M

�
α

ð1þ � � �Þ; ð15Þ

where for each process α is an approximately constant
exponent and Ak a dimensionless prefactor with an exact
value determined by the model-dependent structure of the
matrix element. [As discussed in the conclusions the more
complicated situation where IkðT̃=MÞ is not determined by
a single power law over the relevant range of T̃ has a richer
range of behaviors, as does the related case where the DM
sector has massive states that can go on mass shell at
energies T̃0 > E ≫ m. These interesting elaborations go
beyond the scope of this work.] For perturbative DM
sectors α is close to an even integer.
As the SM temperature satisfies _T ¼ −HT, Eqs. (13)–(15)

imply that the DM yield evolves according to

dY
dT

≃ −
45gðk − 2ÞAk

2π2g�
Z2

�
ΘT
M

�
αΘ4

H

≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256π9g�
45g2

s
Akðk − 2ÞMpl

r2T2

�
rT
4M

�
α

Y4−α: ð16Þ

Although Eq. (16) is of the form of a conventional yield
evolution equation, it is less immediately useful than usually
the case as the boundary conditions on the process are most
naturally expressed in terms of the initial and finalDM sector
temperature, which in our case evolves very differently to the
SM temperature. In particular, for purely kinematic reasons,
the number-changing 2 → k processes certainly cease when
T̃ ≃m [the number-changing mechanism can become

ineffective before this temperature if the interaction rate
satisfies Γ2→k < HðTÞ].
Thus it is better to track the evolution of Y with respect to

the DM temperature T̃. We find the rate of change of the
yield to be given by

dY

dT̃
≃ −

Y3

T̃

�
Y2 þ T̃

βkMpl

�
M

T̃

�
α
�−1

; ð17Þ

with βk ≡
ffiffiffiffiffiffiffiffiffiffi
80π9

p
Akðk − 2Þg1=2�

15grð1þ rÞ1=2 : ð18Þ

This equation is correct in the limit where Z ≪ 1 during the
entire evolution—in particular, the k → 2 inverse reactions
encoded by the Zðk−2Þ factor inside the brackets in the
expression Eq. (14) for the Boltzmann collision term are
unimportant. We must self-consistently check that this
assumption holds using Eq. (27) in Sec. IV, as we do
for the phenomenological example in Sec. V.
Inspecting this equation clearly shows that the evolution

of Y falls into two distinct regimes. For Y sufficiently small,
the yield as a function of T̃ evolves as

dY

dT̃
≃ −βk

Mpl

T̃2

�
T̃
M

�α

Y3; ð19Þ

while for larger Y we switch over to

dY

dT̃
≃ −

Y

T̃
: ð20Þ

These two limiting forms of the yield equations enable a
useful approximate analytic understanding of the evolution
of the DM density, as we explain in the next section, while
Eq. (17) can be solved numerically to give an accurate
value of the DM yield.
The physical interpretation of the two regimes is as

follows: the “small-Y” limit given by Eq. (19) corresponds
to the case when Y develops slowly compared to the Hubble
rate, namely Γ2→k ≪ H, while the “large-Y” scenario given
by Eq. (20) corresponds to fast evolution, Γ2→k ≫ H. In
accord with this, the solution of the fast regime evolution
Eq. (20) is simply

Yf

Yi
¼ T̃i

T̃f
; ð21Þ

reflecting the fact that in the fast regime the redshifting of
the DM energy density via Hubble expansion is unim-
portant; all the available kinetic energy in the sector is
efficiently processed into the mass-energy density of the
DM particles, independent of the details of the interaction,
finally ceasing when one exits the fast regime (often this is
when T̃ ≃m is reached). On the other hand, in the slow
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regime, Hubble expansion plays the dominant role with
both SM and DM temperatures evolving almost perfectly in
step, with the DM yield staying essentially constant as the
rhs of the relevant evolution equation, Eq. (19), is para-
metrically small. Thus, as we will see in detail, and check
via a numerical solution of Eq. (17), the nontrivial
evolution of the yield is essentially determined by the
switchover between the fast and slow regimes.

IV. ESSENTIAL BEHAVIORS

The boundary between the two regimes occurs at the
T̃-dependent yield given by

Y� ¼ β−1=2k

�
T̃
Mpl

�
1=2� T̃

M

�−α=2
: ð22Þ

For a given value of all the underlying interaction param-
eters, Ak, α etc., this relation defines a curve in the T̃ − Y
plane with parametric behavior determined by the exponent
α. The physics of RFI depends upon whether the point in
the plane at which particle production ceases, defined by
ðT̃; YÞ ¼ ðm; YdmÞ where Ydm ¼ 0.434 eV=m is the yield
giving the correct DM density, is in the fast or slow regime.
From Eq. (22) we see that for α < 1 the boundary curve

Y�ðT̃Þ falls as T̃ itself decreases through either Hubble
expansion or conversion of kinetic to mass energy. This
case corresponds to the rate of the 2 → k process increasing
relative to the Hubble rate as T̃ drops. In Fig. 1 we illustrate
the behavior of the yield as a function of x≡Mpl=T̃ for
the case α ¼ 0 as the initial value, Y0, is varied while
keeping the interaction strength fixed. In Fig. 2 we show the
evolution of the yield for fixed Y0 ¼ 10−14 in the case
α ¼ 0 as the interaction strength is increased. In both
figures the evolution should be understood to terminate
when T̃ ≃m, i.e., at xf ≃Mpl=m.
From these figures one sees that in the case α < 1, and for

sufficiently small DM mass, one always enters the fast
regime where the DM yield is determined by the number-
changing processes. It is also clear that, while several curves
meet the observed DM density curve (red line) in the slow
region, due to the parallelism of this line to the yield flows in
the fast region, only a single yield flow terminating in the
fast region will produce the correct DM density. Having
selected this curve, one may choose to terminate at any point
after it has joined the red line, and still be confident of
producing the correct relic abundance. Put another way,
once m < m� where m� is the value of the mass where the
Y� and mY ¼ 0.434 eV curves cross, DM of any lower
mass automatically gives the observed DM density if the
interaction strength is correctly chosen depending on r
and Y0. This is the region of most interest to us.
For α ¼ 0 and in the regime m < m� an approximate

analytical expression relating the final yield to the under-
lying parameters is simply

Yf ≃ βk
Y3
0Mpl

m
: ð23Þ

This shows the automatic m independence of the final DM
densityΩh2 ¼ 0.119ðmYf=0.434 eVÞ, but also the fact that
the DM density resulting from RFI is sensitive to the initial
condition, Y0. This is not such a disadvantage as it may at
first seem, either because one has a predictive theory of the
initial condition (as, e.g., essentially arises in primordial
black hole decay [27–29]), or because the idealized

FIG. 1. Illustration of the DM yield evolution (blue curves) as a
function of x ¼ Mpl=T̃ from numerical solution to Eq. (17), for
the case α ¼ 0 and fixed interaction strength, starting with
varying initial yields at T̃0 ¼ 10−8Mpl. Y� (dashed line) delin-
eates the switchover from slow (below) to fast (above) evolution.
The red line corresponds to the observed DM density. Yield
evolution terminates when T̃ ≃m (thus x ≃Mpl=m). Once
evolution passes into the fast regime the yield curves are iso-
DM-density lines, so on the correct yield curve every value of the
DM mass gives the observed DM density (if assumptions
underlying fast evolution hold). The self-consistency and obser-
vational constraints discussed in the text have not yet been
imposed.

FIG. 2. Evolution of the DM yield starting with fixed initial
value Y ¼ 10−14 for varying interaction strengths in the case
α ¼ 0. Conventions are as in Fig. 1.
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situation we have so far described, where the DM and SM
sectors are completely decoupled from each other, is
violated by a feeble coupling which is possibly measurable
(e.g., via late-time decays). Moreover, the self-interaction
that is key to the DM production is the same interaction that
may in favorable cases lead to potentially observable
effects in structure formation via elastic scattering.
Returning to the general behavior of the yield evolution

as a function of α, for values of α > 3 the Y� curve
increases with x faster than linearly, so one finds that even if
Y0 is large enough so that the initial evolution is in the fast
regime where 2 → k processes are efficient, the evolution
inevitably exits into the slow regime unless the DM mass is
such that m > m�. This behavior is illustrated in the case
α ¼ 4 in Fig. 3.
On the other hand, in the case α ¼ 2 the yield evolution

is contained fully in either the slow or fast regime (apart
from a set of initial conditions of measure zero) depending
upon the initial condition for the yield, Y0 and the strength
of the interaction as measured by βk. This behavior is
illustrated in Fig. 4.
Finally, we must check that the neglect of the inverse

k → 2 processes is correct. First this requires that the
underoccupation factor Z ≪ 1. Since in this limit Eqs. (5)
and (8) imply the relation

Zf ¼
128π4g�Y4

f

45gr3
; ð24Þ

we must have the final yield value, Yf, at which evolution
terminates satisfy

Yf ≪ 1 × 10−4
�

r
10−4

�
3=4

�
10

g�=g

�
1=4

; ð25Þ

implying that the DM mass is bounded below by

m ≫ 3 keV

�
r

10−4

�
−3=4

�
10

g�=g

�
−1=4

: ð26Þ

This is a sufficient condition in all cases where the yield
evolution terminates in the slow regime.
However this is not the most stringent constraint: In the

cases where the evolution of the DM yield terminates
(nominally, T̃ ≃m) in the regime in which the evolution is
fast, then we must require that at T̃ ≃m not only is the rate
for k → 2 processes much slower than the rate for 2 → k
processes, but that it is much slower than the Hubble rate at
this time. If this is not the case then as the DM sector
temperature drops well below ∼m the exothermic k → 2
processes will still be active and fast relative to the Hubble
rate, unlike the endothermic 2 → k interactions which
quickly become exponentially suppressed by the tiny
Boltzmann factors, and so an epoch of cannibalism of
the DM number density will occur, see e.g., [10–14]. (This
is, of course, not a problem for the physics—such evolution
is perfectly consistent and will occur in a portion of
parameter space—rather, the DM density is now set by
the freeze-out of the cannibal mechanism, with the RFI
mechanism just setting the initial conditions for the later
evolution of the DM yield.) The situation where this more
stringent condition can be relevant is when the exponent
α < 3, and is most simply expressed as

Zðk−2Þ
f

�
T̃�
m

�ð3−αÞ
≪ 1; ð27Þ

where Zf is given in Eq. (24) and T̃� is the value of T̃ where
the yield evolution curves cross the Y� line demarking the
transition from slow to fast evolution. If Eq. (27) is satisfied
then the DM density is set by RFI and not cannibalism.

FIG. 3. Illustration of the evolution of the DM yield for the case
α ¼ 4. Conventions are as in Fig. 1. The self-consistency and
observational constraints discussed in the text have not yet been
imposed.

FIG. 4. Illustration of the yield evolution for the case α ¼ 2. In
this case the resulting yield curves diverge away from the Y� line
marking the boundary between the fast and slow evolution
regimes. The self-consistency and observational constraints
discussed in the text have not yet been imposed.
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V. PHENOMENOLOGY

We now present a brief discussion of phenomenological
aspects of RFI. For the sake of being definite, we focus
on a simple DM sector λϕ4=4! model with corresponding
exponent α ¼ 0 at leading order. As discussed in Sec. III,
with α < 1, the number-changing 2 → k processes become
increasingly efficient as the Universe expands, terminating
in the fast region when the temperature of the DM sector
passes through the DM mass threshold and particle
production is kinematically forbidden. The leading-order
number-changing process is 2 → 4, for which we estimate
A4 ∼ 10−11λ4.
As indicated in Sec. IV, we are most interested in the case

where the secluded sector evolution enters the fast regime
with the DM abundance set by Eq. (23). Combining this
with the requirement that the final relic abundance satisfies
Yfm ¼ 0.434 eV, we find the useful relation

r ¼ 1.8 × 10−8
�

λ

0.1

�
4
�

Y0

10−8

�
3

: ð28Þ

Insisting that the sector moves into the fast regime means
that there is some evolution from the initial yield Y0, that is
Yf > Y0. Using this condition we find an upper limit on the
DM mass given by

m
GeV

≲ 0.0434
�
10−8

Y0

�
: ð29Þ

Beyond the requirement that the system enters the fast
regime, we also insist that the DM states do not reach full
chemical equilibrium, that is Θf > Θeq. Combining this
restriction with Eq. (23) we find a lower limit on the mass

m
GeV

≳ 2.0 × 10−3
�
0.1
λ

�
3
�
10−8

Y0

�
9=4

; ð30Þ

where we have set g� ¼ 10 for simplicity.
The behavior of this lower limit may initially seem

unintuitive; that decreasing λ increases the probability that
equilibrium will be reached. This behavior is, at root, due to
the fact that we have imposed the requirement that the
system eventually reaches the correct relic abundance:
Yfm ¼ rm=4Θf ¼ 0.434 eV. This means that Θf ∼ r,
while Θeq ∼ r1=4. When we increase λ, because of the
relationship in Eq. (23), this corresponds to an increase in r,
which moves Θf and Θeq further apart.
Recall that we must check Eq. (27) holds in order to

ensure negligible rates of 4 → 2 reactions. This is not a
constraint as such—viable models outside this region are
certainly possible—but it will change the prediction for the
relic abundance compared with our canonical scenario due
to late-time cannibalistic reactions. To avoid this we require

m
GeV

≫ 3 × 10−3
�
0.1
λ

�
24=11

�
10−8

Y0

�
21=11

: ð31Þ

We are able to constrain the parameter space further by
considering implications for structure formation, in par-
ticular by calculating the overall damping scale, ltot, up to
which the matter power spectrum will be suppressed. As
there are elastic scattering processes coming from the
quartic interaction, there will in principle be two uncorre-
lated contributions to the total damping scale, one con-
tribution from collisional damping (via diffusion) and the
other from free streaming. Specifically, from the time at
which the DM is first produced, t0, until the 2 → 2
processes are overtaken by Hubble expansion, the DM
will diffuse through self-interaction collisions. After the
collisions cease to be efficient, the particles stream freely
until matter-radiation equality. Both of these processes lead
to a smearing out of structure perturbations on scales lc and
lFS respectively.
The diffusion damping scale (squared) may be calculated

using the formula in [33]

l2c ¼
Z

tdec

t0

hvi2
a2ndmhσvi

dt; ð32Þ

where a is the scale factor, v is the DM velocity, σ is the
DM self-interaction elastic scattering cross section and the
angular brackets indicate thermal averaging. The free-
streaming scale is [32]

lFS ¼
Z

tEQ

tdec

v
a
dt: ð33Þ

In order to calculate the relevant integrands, we use the
expressions previously derived for the fast regime, in the
case that α ¼ 0. For thermally averaged quantities, we
follow the procedure as set out in [34]. We find that, for our
regions of interest, the collisional damping scale is domi-
nated by diffusion that takes place while the population is
nonrelativistic.
If the DM self-interaction decoupling takes place before

the time of matter-radiation equality at TSM ¼ TEQ, we
have the following expression for lc:

lc ≃ 1.0 × 10−3 kpc

�
λ

0.1

�
4
�

Y0

10−8

�
3

; ð34Þ

and the free-streaming scale is calculated to be

lFS ≃ 4.4 × 10−4 kpc

�
λ

0.1

�
4
�

Y0

10−8

�
3

×

�
28þ log

��
m

GeV

�
3
�
0.1
λ

�
6
�
10−8

Y0

�
3
��

: ð35Þ
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The scales are uncorrelated and therefore are to be
combined in quadrature [35] and the total required to be
less than∼100 kpc in comoving units to compare favorably
with numerical structure formation simulations [36,37] i.e.:

ltot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c þ l2FS

q
≲ 100 kpc: ð36Þ

If elastic scattering decouples after matter-radiation
equality, collisional damping runs down to TEQ and free
streaming never contributes, giving the total damping
length as

ltot ≃ 2 × 10−3 kpc

�
m

GeV

�
3=2

�
Y0

10−8

�
3=2

�
λ

0.1

�
: ð37Þ

It is worthy of note that we find it is only for a subset of
Y0 values that the total length scale can ever exceed
100 kpc. That is to say, outside of this range, there is no
choice of m and λ consistent with the other constraints
which gives an ltot > 100 kpc. We thus need only concern
ourselves with the damping scales for Y0 ∈ ð∼7 × 10−10;
∼10−7Þ. This will be evident from the plots we discuss
below.
We point out that we may also expect oscillatory

signatures in the matter power spectrum [38], although
such an analysis is beyond the scope of this work.
Finally, a constraint may be derived from the bound on

DM self-interactions from cluster collisions, e.g., the bullet
cluster and other collisions, and the observed properties of
the DM halos of galaxies, see e.g., [2,8,39,40]. The bullet
cluster itself imposes a limit of σelas=m≲ 1.25 cm2=g,
while mildly stronger constraints σelas=m≲ 0.5 cm2=g
arise from the other observations, including halo ellipticity,
although there is in principle a considerable uncertainty
in these limits [3–6,40], with some claims that there
exists positive evidence for DM self-interactions. To be
conservative we impose the stronger bound which trans-
lates into the constraint

m
GeV

≳ 1.0 × 10−2λ2=3: ð38Þ

It is worth noting that this constraint is independent of Y0

and, given Eq. (29), as Y0 is decreased the impact of the
self-interaction limit on the allowed parameter space will
become increasingly marginal as the upper limit on the DM
mass increases.
In Figs. 5–7 we summarize the constraints on the λ −m

plane for this particular model of RFI with α ¼ 0 for
different choices of the initial value of the yield,
Y0 ¼ 10−8; 10−7; 10−12 respectively.
In Fig. 5, with Y0 ¼ 10−8 the λ-independent upper bound

on the mass (red region) coming from the requirement that
some evolution in the fast region occurs is given by Eq. (29)
to bem < 43.4 MeV. The exclusion regions corresponding

to the self-interaction “Halo Limit” (blue area) and restric-
tions on the damping scales (orange area) rule out the large
λ values apart from a wedge around m ∼ 20 MeV. The
requirement that the number-changing 4 → 2 interactions
do not become important (green area) rules out a slice at
small λ.
The sharp corner to the damping-excluded orange-

colored region indicates the crossover at which the elas-
tic-scattering decoupling temperature falls below TEQ,
which to a first approximation switches the damping off
at a relatively earlier scale. Also indicated in Fig. 5 is a
dashed vertical line. This line shows where the damping
scale limit would fall, everything to the right being ruled
out, if there were no self-interactions, that is, if the DM was
able to free stream from early times.
Although in the plot we show the λ −m plane we can

convert easily to limits on r for a given Y0 by using Eq. (23).
For example, from Fig. 5 we can deduce that the maximum
value of r permitted for Y0¼10−8 is r∼2×10−2.
In Fig. 6, the λ −m parameter space for Y0 ¼ 10−7 is

displayed. As discussed above, the limits from structure
formation no longer impinge on the parameter space. This
is due to the factor of 10 reduction in the upper limit on the
DM mass now appearing at m ¼ 4.3 MeV and the limits
from the halo limit in this mass range being much stronger
than those coming from the damping scale. The maximum
value for r for Y0 ¼ 10−7 is r ∼ 10−3.

FIG. 5. The λ −m parameter space for Y0 ¼ 10−8. The red
region eliminates those points for which Y0 ¼ Yf , the blue those
which violate the bound in Eq. (38), the orange those for which
ltot > 100 kpc, the dark green those for which cannibalistic
processes may occur. The region to the right of the light vertical
dotted line would be excluded in the case of no self-interactions;
see the text for details.
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In Fig. 7 we show the λ −m parameter space for
Y0 ¼ 10−10. With Y0 being small the upper limit on the
DM mass increases to m ¼ 4.3 GeV. The constraints from
structure formation are not relevant in this case due to the
small Y0 and the halo limit is only relevant for a very tiny
slice at low masses not visible in the plot. There are two
limits on the maximum value of λ, one coming from big
bang nucleosynthesis [combining Eqs. (12) and (28)] and

the second from the perturbativity of λ. The perturbativity
limit (not displayed in Fig. 7) is the strongest of these
two with the maximum value for r in this case
being r ∼ 5 × 10−6.

VI. CONCLUSIONS AND REMARKS

In this work we have presented the RFI mechanism for
DM production. DM resides in an initially ultrarelativistic,
far underpopulated secluded sector and undergoes a period
of rapid number density increase via 2 → k processes. This
converts the initially large DM kinetic energy to mass, in
the form of additional DM states. The relic abundance is set
by the point at which the DM temperature drops below its
mass at which stage the 2 → k (k > 2) processes become
inefficient.
We have made some simplifying assumptions that have

allowed us to present a straightforward analytic under-
standing of the mechanism. Most fundamentally, we have
so far assumed that kinetic equilibrium is quickly estab-
lished in the secluded sector by elastic interactions, so that
the distribution functions are determined solely by an
evolving temperature and chemical potential. This enabled
us to write down a simple evolution equation for the DM
yield, Eq. (17). However, the RFI mechanism does not
require that full kinetic equilibrium is established. The
distribution functions could have significant nonthermal
“tails” or other features which change the resulting DM
yield, or alter the astrophysical and cosmological signatures
in interesting ways (for instance there could remain a small
ultrarelativistic subcomponent of the DM until late times),
though such an investigation goes beyond the scope of this
work. Even if our simplifying assumption of kinetic
equilibrium is a good approximation, there are a number
of issues that deserve investigation. Important aspects to
follow up on include the thermal corrections to the DM
masses and couplings. Although these considerations will
not modify the general picture of the mechanism, they may
change some of the detailed behavior, in particular where
the evolution tracks the ultrarelativistic secluded sector.
Late-time exothermic “cannibal” interactions are also a
natural possibility in this class of models. In this treatment
we have assumed that g� and thus r are constant all the way
down to TEQ. The formalism of RFI freely admits a more
detailed approach in which g� and thus r vary over time.
Again for simplicity we have assumed that there is one

dominant number-changing interaction, with one fixed
temperature dependence, that is, one particular value of α.
Often this will not be the case. For example, if the secluded
sector consists of multiple particles the temperature depend-
ence of the collision term, Eq. (15), may change dramatically
as the DM temperature drops belowmass thresholds of states
involved in the number-changing interactions driving RFI.
Resonance effects may also play a material role.
Since this work was concerned with exploring the

general features of the RFI mechanism, we have not

FIG. 6. The λ −m parameter space for Y0 ¼ 10−7. Conventions
are as described in Fig. 5.

FIG. 7. The λ −m parameter space for Y0 ¼ 10−10. Conven-
tions are as described in Fig. 5.
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studied specific implementations beyond the λϕ4 model
examined in Sec. V. However we emphasize that many
models previously considered in the context of self-
interacting or cannibal DM, such as hidden-sector “pion”
DM [41–43] and possibly glueball DM [43–47], also have a
regime of parameter space where the RFI mechanism
determines the DM density. The confinement transition,
though, must be carefully examined in the nonequilibrium
case of a far-underpopulated, high-temperature sector, a
topic which we hope to return to in a later work.
The DM self-interactions studied in this paper could also

play a role in alleviating the present σ8 and Hubble tensions
[48–50], due to such effects as a DM viscosity [51], or due
to the collisional-damping/free-streaming studied in Sec. V,
and/or a possible subcomponent of the DM (which could
either be the nonthermalized tail mentioned above, or a new
light state mediating the elastic and inelastic interactions)
acting as dark radiation (see e.g., [52]).
Finally we note that in this paper we have strictly

forbidden any SM-DM interactions. As we discussed,
the mechanism is still testable by virtue of the fact that

the same self-interaction is responsible for the DM number-
changing interactions that determine the relic abundance
and the elastic scattering processes that may be potentially
observable in, or at least constrained by, structure forma-
tion. If, however, we relax this restriction on SM-DM
interaction it may be possible for this mechanism to admit
decaying DM signals [53] (note the DM can be superheavy
m ≫ TeV as long as it was also initially ultrarelativistic), or
other interesting effects.
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