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Many modern simulations of accretion disks use moment-based methods for radiation transport to
determine the thermal evolution of the disk and the properties of the ejected matter. The popular M1 scheme
that evolves the rank-0 and rank-1 moments requires an analytic approximation for the rank-2 and higher
tensors. We present the open-source Monte Carlo steady-state general-relativistic neutrino transport code
SedonuGR, which we use to assess fundamental analytic closure assumptions, quantify proposed closure
errors, and test an extension of the maximum entropy Fermi-Dirac (MEFD) closure to the rank-3 moment.
We demonstrate that the fundamental assumptions employed in all analytic closures are strongly violated.
This violation is most evident at the interface between the equatorial disk and the evacuated polar regions.
Finally, we calculate the neutrino momentum and energy deposition rate from neutrino pair annihilation,
and demonstrate that a moment-based annihilation power calculation is accurate to at most ∼20% if the
rank-2 and higher moments are neglected. Out of a selection of eight closures in the literature, we
demonstrate that different closures reproduce different aspects of the radiation field (pressure tensor, rank-3
tensor, pair annihilation rate), though the MEFD, Levermore, and Janka 2 closures are all reasonable. The
extra information from the neutrino degeneracy used in the MEFD closure is unable to account for the
diversity in the rank-2 and rank-3 moments.
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I. INTRODUCTION

The landmark 2017 multimessenger detection of a binary
neutron star merger [1] confirmed an evolutionary channel
of compact objects that had been theoretically speculated
for decades [2–4]. In addition, a handful of other events
with less significance but consistent with binary neutron
star mergers have been observed without gravitational
waves [5,6], without an electromagnetic counterpart [7],
or as a possible neutron star–black hole merger [8]. The
promise of future multimessenger detections [9] provides
the possibility of constraining the nuclear equation of state
[10], confirming the origin of heavy elements in the
Universe [11], and understanding the nature of the engine
that drives gamma-ray bursts [12].
Following years of purely theoretical work and a flurry

of papers following GW170817, a standard model of the
merger dynamics has emerged (see Refs. [13–15] for recent
reviews), though this model is incomplete, and numerical
simulations still exhibit a good deal of uncertainty [16–19].
During the inspiral and merger of a pair of neutron stars, a
tidal ejecta is launched in the equatorial regions with a very
low electron fraction that leads to a red transient due to
efficient production of heavy elements via the rapid neutron
capture process. There remains a central compact object
that can be a stable neutron star, a temporarily stable
hypermassive neutron star, or a black hole, depending on
the details of the merging system and currently uncertain
details about the nuclear equation of state (e.g., Ref. [20]).

Around the central object is a hot and dense accretion disk,
the mass of which depends on all of the same factors as well
[18]. Emission of neutrinos allows the disk to cool and raise
the electron fraction toward 0.5. The accretion disk itself
also launches a significant amount of matter due to a
combination of viscous or MHD stresses and neutrino
heating [21,22], and may launch a polar jet via MHD
stresses [23,24] or neutrino pair annihilation [25–28]. In
any case, neutrinos play a significant role in transporting
energy and lepton number, which can determine the
amount and composition of the ejecta, which then deter-
mines the electromagnetic observables like the brightness,
color, and duration of a kilonova [18,29].
The ejected matter enshrouds the inner mass ejection

engine, obscuring our view of the details of the accretion
disk dynamics. Because of this, we resort to theoretical and
numerical models to interpret and predict observables, but
the combination of turbulent hydrodynamics, strong space-
time curvature, an uncertain nuclear equation of state, and
strong asymmetries make understanding the dynamics of
the radiation a challenging problem. The general-relativ-
istic quantum kinetic equations must be solved to fully
understand the neutrino dynamics [30–32]. Though efforts
are being made to understand the role of neutrino flavor
changes in neutron star mergers (e.g., Ref. [33]), state-of-
the-art dynamical models generally ignore this wrinkle and
solve or approximate the Boltzmann equation. The most
exact methods currently employed are Monte Carlo
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methods (e.g., Ref. [21]). Such accurate methods are
currently prohibitively expensive in extremely dense
regions like the interior of a hypermassive neutron star
and for carrying out simulations beyond a couple hundred
milliseconds. Other exact neutrino transport methods have
been used in the context of multidimensional core-collapse
supernova simulations, but have not yet been tested in such
a relativistic environment as neutron star mergers (e.g.,
Refs. [34–36]).
The most efficient approximate treatments of neutrinos

in merger disks employ the leakage scheme [22,29,37], the
advanced spectral leakage scheme [38], or a combination of
leakage and moment treatments [28,39,40]. Two-moment
methods [41–43] are a more sophisticated and very popular
approximation to the Boltzmann equations in all types of
astrophysical accretion disks, including protoplanetary
disks [44], active galactic nuclei [45–50], and compact
object merger remnants [17,51]. However, these methods
still require some scheme for estimating higher-rank
moments in order to complete the system of equations.
While methods exist to evaluate these higher moments
using the method of short characteristics (e.g., Refs. [52–
54]) or potentially Monte Carlo transport [55], it is much
more efficient to use an analytic closure method to
determine the higher moments as a function only of local
quantities [41–43]. The analytic closure is implemented by
expressing the pressure tensor as a function of the energy
density and flux, most often according to the Levermore
closure [56].
One of the exciting features of moment-based methods is

that if the closure is exact, the evolution equations for the
evolved moments are exact. There has been a great deal of
effort to find a closure relation that approaches this ideal,
though it has been largely restricted to one dimension (see
Refs. [57,58] for summaries). Foucart et al. [17] analyze the
difference between radiation fields evolved using a dynami-
cal gray moment method and a Monte Carlo method
evolved in parallel but without feedback to the fluid.
They show that moment methods fail to accurately repro-
duce neutrino average energies in the equatorial region,
neutrino densities in the polar region, and neutrino pair
annihilation rates, likely affecting mass outflow from the
disk. The question naturally remains, however, of whether
it is possible to invent a local closure that is adequately
realistic. Iwakami et al. [59] demonstrate that in multidi-
mensional core-collapse supernova simulations, the pres-
sure tensor can be significantly misaligned with the flux
vector, violating a fundamental assumption that goes into
the closure approximation. In addition, although the closure
for the rank-2 moment (pressure tensor) is often discussed,
there has yet been no analysis of the quality of the rank-3
moment closure needed for spectral moment schemes. In
this paper, we extend the maximum entropy Fermi-Dirac
(MEFD) closure to include the rank-3 moments, investigate
how a realistic radiation field breaks the fundamental

assumptions used by any local analytic closure, compare
several closures suggested in the literature, and identify
where the choice of closure has the largest impact.
The paper is organized as follows: In Sec. II, we introduce

our upgraded general-relativistic Monte Carlo radiation
transport code. We discuss the analytic closure approxima-
tion in Sec. III and proceed to derive the maximum-entropy
Fermi-Dirac closure for the rank-3 moment tensor. We
calculate a steady-state neutrino radiation field on a single
snapshot of a neutron star merger simulation in Sec. IV,
carefully inspect the validity of the assumptions that go into
the analytic closures, quantify errors from several closures in
the literature, and assess the impact that the closure choice has
on the neutrino pair annihilation rate. Finally, we conclude in
Sec. V with a discussion of the possibility of improving the
closure in a general way. We focus our attention on the
neutron star merger environment, but many of the conclu-
sions in this paper are relevant to any system where moment-
based radiation transport algorithms are used.

II. DISCRETE GENERAL-RELATIVISTIC
MONTE CARLO TRANSPORT

SedonuGR is a time-independent general-relativistic
(GR) neutrino radiation transport code that operates in
zero- (spatially homogeneous) to three-dimensional sys-
tems. This is a heavily modified and upgraded version of
the special-relativistic Sedonu neutrino transport code
[60,61] and is publicly available [62,63]. In this section, we
will describe the code in detail, and several code tests are
presented in the Appendix.
The general-relativistic Boltzmann equation describes

the evolution of the neutrino distribution fϵ as [41]

dxα

dτ
∂fϵ
∂xα þ

dki

dτ
∂fϵ
∂ki ¼ −kαuαS; ð1Þ

where dτ is an interval of time in the rest frame of the
background fluid, xα is the neutrino position, kα is the
neutrino four-momentum (in units of energy), uα is the four-
velocity, and S is a source term that accounts for collisions.
The current goal of SedonuGR is to solve the time-
independent version of this equation, namely under the
assumption that ∂tfϵ ¼ 0. We solve this equation via
Monte Carlo transport [64] by discretizing the distribution
function into a finite number of neutrino packets, each of
which undergoes random emission, propagation, and scat-
tering just as real individual neutrinos would. This section is
an exposition of the details of the method, and the reader
interested in the results of the calculations can jump
to Sec. IV.

A. Coordinates

The Monte Carlo neutrino packets use the standard 3þ 1
Cartesian metric with the (−þþþ) sign convention
describing coordinates in the lab frame:
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gαβ ¼
�−α2 þ βαβ

α βi

βj γij

�
;

gαβ ¼
�
−α−2 α−2βi

α−2βj γij − α−2βiβj

�
; ð2Þ

where α is the lapse, βα is the shift vector, and γij is the
three-metric. A location is specified with a four-coordinate
xμ, and a neutrino momentum is specified with a wave
vector kα. All particle motion is done in the lab frame in 3D
Cartesian coordinates. The shift vector can be chosen freely
[65], affecting how the spacetime is evolved. Since we are
not allowing the spacetime to evolve, we must choose the
shift vector in a way that is consistent with the volume of a
spatial cell not changing in time. That is, we must choose βi

such that the extrinsic curvature vanishes, which is most
simply done by choosing βi ¼ 0.
With the metric quantities and the three-velocity in these

coordinates given by a simulation snapshot, we reconstruct
the dimensionless four-velocity as

ut ¼ W
α
;

ui ¼ W

�
vi

c
−
βi

α

�
; ð3Þ

where W ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γijvivj

q
.

In addition to the lab frame, we also require the ability to
define a local comoving orthonormal tetrad defined by
orthonormal basis vectors eαðμÞ. This frame is used when
performing neutrino-fluid interactions or aggregating the
radiation field. When constructing a tetrad at a particular
location, the timelike basis vector is the fluid four-velocity
at that location (eαðtÞ ¼ uα), yielding a comoving coordinate

system. Following Ref. [66], we provide a trial vector,
subtract off components not normal to each of the pre-
viously determined basis vectors, and renormalize the
vector to make it have a magnitude of unity. To make a
trial vector eαðtrialÞ orthogonal to another vector lα, we

set eαtrial ← eαtrial − eαtriallα=l
αlα. To normalize, we set

eαtrial ← eαtrial=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eαtriale

trial
α

q
. Once the basis vectors are estab-

lished, we can transform a four-vector into the comoving
tetrad basis and back out via

kαtet ¼ kμeνðαÞgμν;

kα ¼ kμtete
α
ðμÞ: ð4Þ

All Monte Carlo packets use these coordinates indepen-
dent of the structure of the underlying data. The back-
ground fluid and metric data are stored in a grid unused by
the neutrino packets themselves, and a grid class specific to
each type of geometry (homogeneous, 1D spherical, 2D
spherical, 3D Cartesian) knows how to interpolate all

quantities and derivatives (Sec. II B) to the MC particle
position xα and momentum kα in these Cartesian coordi-
nates. Below, we describe how the neutrino packets inter-
face with background data stored in three-dimensional
Cartesian and one-dimensional spherical-polar grids.
In addition to the spatial grid, we also use a discrete

energy grid with NG bins, centered at energy ωi and with
grid boundaries at ωi−1=2 and ωiþ1=2, where i ranges from 1
to NG. The neutrino energies are defined as ω ¼ −kαuα, or
simply the energy in the comoving frame.

1. 1D spherical-polar background

We use the 1D spherical geometry in the code tests in the
Appendix. In spherical symmetry, the metric in general is
ds2 ¼ −α2dt2 þ X2dr2 þ r2dΩ2, where the spherical coor-
dinates canbe expressed in termsof theCartesian coordinates
as r ¼

ffiffiffiffiffiffiffiffi
xixi

p
, θ ¼ cos−1ðxz=rÞ, and ϕ ¼ tan−1ðxy=xxÞ.

We store and interpolate α, X, and vr to a given neutrino
position in the spherical grid. We can then reconstruct the
three-dimensional three-velocity components and metric as

vi ¼ vr
xi

r
;

γij ¼
xixj

r2
ðX2 − 1Þ þ δij: ð5Þ

Given the radial derivatives of α and X, we can also
reconstruct the Christoffel symbols as

Γt
μμ ¼ Γt

ij ¼ 0;

Γt
ti ¼

xi

r
∂rα

α
;

Γa
tt ¼

xa

r
α∂rα

X2
;

Γa
ij ¼

xa

ðXrÞ2
�
xixj

r2
ð1 − X2 þ rX∂rXÞ − δijð1 − X2Þ

�
: ð6Þ

In the above, radial derivatives are computed via finite
differencing between the nearest neighbors, and time
derivatives are assumed to be zero.
When constructing a comoving orthonormal tetrad,

our trial vectors are fxz;yz;−r̃2;0g, f−y;x;0;0g, and
fx; y; z; 0g, where r̃2 ¼ x2 þ y2. These correspond to the
θ, ϕ, and r directions, respectively.

2. 3D Cartesian background

The 3D Cartesian grid class directly stores and inter-
polates α, βi, vi, the six independent components of γij, and
the 40 independent components of the connection coef-
ficients Γα

μν in the same Cartesian coordinates described
above. The connection coefficients are computed using
Γα
μν ¼ 1

2
gαηðgμη;ν þ gην;μ − gμν;ηÞ, where spatial derivatives

are computed via finite differencing with nearest neighbors
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in each direction and interpolated, and time derivatives are
assumed to be zero. When constructing a comoving
orthonormal tetrad, the three spacelike trial vectors are
chosen to be eαðz;trialÞ ¼ f0; 0; 0; 1g,eαðy;trialÞ ¼ f0; 0; 1; 0g,
and eαðx;trialÞ ¼ f0; 1; 0; 0g.

B. Interpolation

We perform multidimensional interpolation for the
values and derivatives of metric quantities and neutrino-
fluid interaction rates at a neutrino’s position xμ and
momentum kμ. For a position in a general n-dimensional
grid, there are 2n grid points that define the hypercube
enclosing the position. We denote the left and right
coordinates of those points along each coordinate direction
k by xk0 and xk1, respectively. We denote the value of the
function at the corners as fi1i2…in , where each ik can be
either 0 (left) or 1 (right). The value of the function at x
linearly interpolated in each dimension is then a sum over
the values of the function values at the corners multiplied
by appropriate weights:

fðxÞ ¼
X1
i1¼0

X1
i2¼0

� � �
X1
in¼0

Wi1i2…infi1i2…in ; ð7Þ

where the weights are

Wi1i2…in ¼
1

V

Y
k

δxkðikÞ;

δxkðikÞ ¼
�
xk1 − xk ik ¼ 0

xk − xk0 ik ¼ 1
;

V ¼
Y
k

ðxk1 − xk0Þ: ð8Þ

Similarly, the derivative of the function along direction d is

∂dfðxÞ ¼
X1
i1¼0

X1
i2¼0

� � �
X1
in¼0

ðSdÞi1i2…infi1i2…in ; ð9Þ

where the weights are

ðSdÞi1i2…in ¼
2id − 1

V

Y
k≠d

δxkðikÞ: ð10Þ

The weights can be computed once for each position and
used to interpolate all quantities.
As a side note, we also explored discrete discontinuous

linear interpolation of variables. In this method, the values
and derivatives in each direction at the cell center are stored.
This has the advantage that interpolation is much faster, but
also requires more storage. Interpolating in n dimensions is
simply fðxÞ ¼ fðx0Þ þ

P
iðxi − xi0Þ∂ifðx0Þ, where x0 is

the position of the grid point nearest to x, and fðx0Þ and

∂ifðx0Þ are stored. However, we found that the disconti-
nuities in metric quantities across cell boundaries were
problematic for the integration of the neutrino momenta.
In general, once the neutrino moves across a cell boundary,
the jump in the metric causes the stored neutrino four-
momentum to no longer be null. We tried several methods of
null-normalizing the momenta of neutrinos that cross the
boundaries and special integration steps for neutrinos that
cross cell boundaries, but the induced errors always led to
unrealistic neutrino momenta in neutrino packets that cross
many boundaries like in scattering-dominated regions.

C. Emission

A specified number of neutrino packets nemit;ig is emitted
from each grid cell labeled by index i, in each energy bin
labeled by index g, and for each species. Each of these
packets is given uniform random coordinates within the
grid zone (uniform values of r2, cos θ, and ϕ for 1D
spherical coordinates) and a random comoving-frame
frequency uniform in ν3 within the energy bin g. The
metric and fluid quantities are interpolated to the packet’s
position and momentum, the local orthonormal tetrad is
constructed, and an isotropic random direction is given to
the packet in the tetrad frame. The packet weight is then
set to

N0 ¼
1

nemit;ig
c2Bsκabs;s4πΔ

�
ν3

3

�
g
Vi; ð11Þ

where s is the species index and i is the spatial grid cell index.
The effective zone four-volume (i.e., that using interpolated
metric quantities) isVi ¼ Vcoord;i

ffiffiffiffiffiffiffiffiffiffiffiffi
detðγÞp ð−nαuαÞΔt, where

Vcoord;i is the coordinate volume of the grid cell i andnα is the
unit vector normal to the time slice (equivalently, the four-
velocity of an Eulerian observer). We multiply this by the
square root of the determinant of the three-metric γ, the
Lorentz factor −nαuα, and an arbitrary coordinate time
interval Δt ¼ 1 s to get the comoving four-volume of the
grid cell. TheΔt is arbitrary because all quantities are divided
byΔt to yield rates, so it always cancels out. κabs;sðν;xÞ is the
absorption opacity of species s. In order to maintain con-
sistency, instead of interpolating the emissivity, we inter-
polate the fluid temperature T and electron neutrino
equilibrium chemical potential μνe ¼ μe þ μp − μn given
by the equation of state. We then compute the emissivity
as the product of the absorption opacity with the blackbody
function

Bsðν; T; μsÞ ¼
1

1þ exp½ðhν − μsÞ=kBT�
: ð12Þ

The chemical potentials of the different species are deter-
mined by μν̄e ¼ −μνe and μνx ¼ 0.
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We record the contribution to the volume-specific four-
force exerted by the neutrino radiation on the fluid via
emission F α

emit;i and the rate of change of lepton number
Lemit;i in spatial grid zone i in the comoving tetrad frame as

δF α
emit;i ¼ −

1

Vi
N0kαtet;q;

δLemit;i ¼ −
1

Vi
N0ls; ð13Þ

where ls is the lepton number of species s (1 for νe, −1 for
ν̄e, and 0 for νx).

D. Standard transport

Here we describe the standard method, used where the
transport is not scattering dominated, but will describe the
scattering-dominated method in Sec. II E.
Each neutrino packet will take a series of small steps of a

length determined by the neutrino-fluid interaction rates
and the distance from fluid grid cell boundaries. We express
the path length of the neutrino packet in terms of a distance
in the comoving tetrad dsmove, which is a proxy for the
interval in the affine parameter along the trajectory
dλ ¼ dsmove=kttet. Each time the particle moves, the dis-
tance it moves is the smaller of the grid distance and an
interaction distance. That is,

dsmove ¼ minðdsgrid; dsinteractÞ: ð14Þ

The tetrad-frame distance to the next scattering event is
randomly sampled as

dsinteract ¼ −ðlnUÞ=κscat; ð15Þ

where U is a uniform random number between 0 and 1.
In order to limit the sizes of the step to not be too large

(to appropriately sample each grid cell) and not too small
(to prevent spending computer time on particles close to the
boundary), we set the grid distance to

dsgrid ¼ minðmaxðdsboundary; dsminÞ; dsmaxÞ: ð16Þ

We estimate for the comoving tetrad-frame distance to the
next grid cell boundary dsboundary as

dsboundary ≈ kttetmin
i
½ðxi − xi�Þ=ðgμνeμðiÞkνÞ�; ð17Þ

where i ranges from 1 to the number of dimensions in the
background fluid profile. xi� is the grid cell boundary
coordinate to the right/left of xi if gμνe

μ
ðiÞk

ν is larger/smaller

than 0, respectively. In spherical symmetry, for example,
this becomes dsboundary ¼ kttetðr − r�Þ=ðgμνeμðrÞkνÞ. We use

dsmin ¼ 0.05dszone and dsmax ¼ 0.5dszone, where

dszone ¼ kttetmin
i
½ðxiþ − xi−Þ=ðgμνeμðiÞkνÞ�: ð18Þ

We integrate the particle position and momentum using a
kick-drift-kick method. That is, to find the particle position
and momentum at step qþ 1 based on the position and
momentum at step q, we use

kαqþ1=2 ¼ kαq −
dλ
2
Γα
μνðxqÞkμqkνq;

xαqþ1 ¼ xαq þ kαqþ1=2;

kαqþ1 ¼ kαqþ1=2 −
dλ
2
Γα
μνðxqþ1Þkμqþ1=2k

ν
qþ1=2: ð19Þ

We then renormalize kα by scaling each spatial component
of kα by the same factor to ensure that kαkα ¼ 0. In
principle, not all four components of the four-momentum
are independent, constrained by the requirement that the
vector remain null. One could, for example, just integrate
the spatial components and set the time component to
ensure the vector is null. However, this can cause the
truncation error to preferentially go to the time component.
We scale the spatial components, since we find that the
errors introduced by scaling the time component can lead
some neutrino packets to have unrealistically large
momenta. In addition, for a static spacetime, one can in
principle leverage the fact that kt must remain constant,
resulting in only two independent quantities. However, as
Dolence et al. [66] discuss, straightforward geodesic
integration tends to be simpler to implement and modify
and also faster.
In the 3D Cartesian calculations in Sec. IV, there is a

reflection symmetry boundary on the z ¼ 0 plane. The
other boundaries are outflow boundaries. If the packet
passes through the reflection boundary, the z components
of kα and xα are negated. The neutrino packet is immedi-
ately destroyed if gttðxnewÞ ≥ 0 (i.e., the packet passed a
coordinate singularity). Finally, the packet is destroyed
when it passes through an outflow boundary.

1. Absorption

Following propagation, the packet weight is then
reduced to Nqþ1 ¼ Nqe−η to account for absorption. We
calculate the absorption optical depth as η ¼ κabs;qdsmove.
We record the contribution to the volume-specific four-
force exerted by the neutrino radiation on the fluid via
absorption F α

abs;i and the rate of change of lepton number
Labs;i in spatial grid zone i in the comoving tetrad frame as

δF α
abs;i ¼

1

Vi
ðNq − Nqþ1Þkαtet;q;

δLabs;i ¼
1

Vi
ðNq − Nqþ1Þls; ð20Þ
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where ls is the lepton number of species s (1 for νe, −1 for
ν̄e, and 0 for νx).
Since absorption continuously decreases the packet

weight, we roulette the packet if its weight becomes too
low. That is, if a packet’s weight decreases below 10−3N0, a
uniform random number U between 0 and 1 is sampled. If
U < 0.5, the packet is destroyed, and ifU > 0.5, the packet
weight doubles. This preserves all statistical averages and
prevents unimportant packets from using computer time.

2. Neutrino radiation field

As the packet moves, it contributes to the local radiation
field. We account for this in the comoving tetrad frame
where the neutrino distribution is binned into the same
comoving-frame frequency bins used to discretize and store
the interaction rates. The angular structure of the distribu-
tion function fϵ, where ϵ ¼ −kαuα is the neutrino comov-
ing-frame energy, is decomposed into comoving tetrad-
frame moments as

E ¼ 1

ðhcÞ3
Z

dϵ3

3
ϵ

Z
dΩfϵ;

Fa ¼ 1

ðhcÞ3
Z

dϵ3

3
ϵ

Z
dΩfϵla;

Pab ¼ 1

ðhcÞ3
Z

dϵ3

3
ϵ

Z
dΩfϵlalb;

Labc ¼ 1

ðhcÞ3
Z

dϵ3

3
ϵ

Z
dΩfϵlalblc;

� � � ð21Þ
where li are the spatial basis vectors in the tetrad coor-
dinates, and the differential dϵ3=3 is equivalent to ϵ2dϵ,
used to integrate spherical volumes. Of course, by con-
struction, the basis vectors in these coordinates are simply
f1; 0; 0g, f0; 1; 0g, and f0; 0; 1g. During a propagation step
q, the contribution to the radiation field moments in the
currently occupied spatial grid zone i is then given by

hNi ¼ N0

Z
η

0

e−η
0
dη0

≈
� ðNqþ1 þ NqÞ=2 η ≪ 1

ðNqþ1 − NqÞ=η; otherwise

δEi;q ≈
hNikttet;qdsmove

cVi
;

δFa
i;q ¼ δEi;q

katet;q
kttet;q

;

δPab
i;q ¼ δEi;q

katet;q
kttet;q

kbtet;q
kttet;q

;

δLabc
i;q ¼ δEi;q

katet;q
kttet;q

kbtet;q
kttet;q

kctet;q
kttet;q

: ð22Þ

The neutrino momentum is evaluated at the beginning of
the step rather than the end because in the event of near
complete absorption immediately following emission, all of
the energy is emitted and deposited at the same location,
helping avoid some noise from stiff source terms.

3. Scattering

If the shorter of the distances in Eq. (14) is the interaction
distance, the particle will undergo an elastic scattering
event. The particle is given an isotropic random direction in
the comoving tetrad frame, keeping the same energy in that
frame, and the new lab-frame momentum is determined by
Lorentz-transforming to the lab frame [Eq. (4)]. The
resulting four-force on the fluid due to scattering is then
accumulated as

δF α
abs;i ¼

1

Vi
ðNqþ1kαtet;qþ1 − N0

qþ1k
0α
tet;qþ1Þ; ð23Þ

where the primed and unprimed variables refer to the states
before and after the scattering event, respectively.
As a side note, we have also experimented with biasing

procedures to change the probability of scattering (e.g., to
help escape scattering-dominated regions), but this inevi-
tably caused the weights of some particles to randomly
undergo scattering events several times in such a way that
their weights increased to excessively large values, increas-
ing overall variance in the solution.

E. Random walk Monte Carlo

It is immensely computationally inefficient to simulate a
particle directly if it is in a location with a large scattering
opacity, since the distance moved between scatters is
extremely small. Following Refs. [55,61,67], we approxi-
mate a large number of scatters with a single large step in a
random direction and an appropriate random sampling of
the time it took to get there. Although the salient features of
this method were already outlined in Refs. [55,61], there
are some subtle differences, and so for completeness we
will describe the full method.
It was shown in Ref. [61] that if we define a sphere of

radius R centered around a particle’s position in a homo-
geneous isotropic medium, the probability of escaping the
sphere before time τ is

PescapeðR; τÞ ¼ 1 − 2
X∞
n¼1

ð−1Þn−1

× exp ½−ðnπÞ2ζ�: ð24Þ

Here, ζ ¼ Dτ=R2, and D ¼ c=3κscat is the diffusion con-
stant. We tabulate this function using 100 evenly spaced
points in ζ up to ζmax ¼ 2. To sample the time required to
escape τesc;tet, the sphere in the comoving tetrad frame, we
sample a uniform random number between 0 and 1 to
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substitute in for Pescape and invert the function numerically
via linear interpolation.
Following Ref. [55], we assume that the particle spends a

period of time τtrap ¼ τesc − R=c trapped at the center of the
sphere and spends the remaining time τfree ¼ R=c free-
streaming to the edge of the sphere. This is not formally
correct and will not account for adiabatic losses or other
effects that depend on derivatives of the fluid quantities, but
relativistic effects (e.g., redshift) will be approximately
correct.
We must first select an appropriate random-walk sphere

size R before actually performing the random walk. We do
this by ensuring that the coordinate-frame displacement is
at most approximately the distance to the cell boundaries in
each of several directions. The coordinate displacement
from the random walk can be estimated as

Δxα ≈
dxα

dτ

����
free

�
R
c

�
þ dxα

dτ

����
trap

�
τesc −

R
c

�
; ð25Þ

where dxα=dτjfree ¼ kαða;�Þ=k
t
ða;�Þ;tet and dxi=dτjtrap ¼ ui.

In order to make a general algorithm that accounts for
multiple possible displacement directions and the possibil-
ity of large ζ, we solve Eq. (25) for R with
τesc ¼ R2ζmax=D, a test kαða;�Þ in each coordinate direction

a, and Δxa ¼ xa� − xa, where xa� is the coordinate of the
right (þ) or left (−) cell boundary. That is, we select
the spatial components of each trial kαða;�Þ to be �1 in the

direction of increasing (þ) or decreasing (−) coordinate a,
choosing a time component to make the test momentum a
null vector. For a 3D Cartesian grid, kiðx;þÞ ¼ f1; 0; 0g,
kiðx;−Þ ¼ f−1; 0; 0g, etc. For a 1D spherical grid, kiðr;þÞ ¼
fx; y; zg and kiðr;−Þ ¼ f−x;−y;−zg. We then select R to be

the smallest of all of these trials and propagate the packet in
a direction uniformly randomly selected in the tetrad frame
for comoving-frame distance cdτfree (Sec. II D). Here we
denote the four-momentum following the free-streaming
step kα0free.
We then interpolate all fluid and metric quantities at the

new position and assign a new random direction at the end
of the step kαqþ1, facing outward from the surface of the
sphere to cause the surface of the sphere to be isotropically
bright. In order to do this, we first transform k0free to the
tetrad frame. We then uniformly sample a new ktet;qþ1 and
calculate the angle between the wave vectors cosΘ ¼
kαtet;qþ1k

0
str;tetα=ðkttet;qþ1k

0
str;tet;tÞ (the denominator is valid

because the calculation is done in the tetrad frame). If
cosΘ < U for a uniform random number U between 0 and
1, we reject the new wave vector and sample again until we
get a wave vector that is not rejected, thereby making the
surface intensity of the random-walk sphere proportional
to cosΘ.

We must properly account for the particle contribution to
the radiation field and the four-force on the fluid. We will
do this separately for the two stages (trapped and free-
streaming). In the trapped stage, we assume that the
neutrino contributes to the radiation field isotropically in
the tetrad frame. The total energy density contributed
during the trapped phase is

δEi;q;trap ¼
cτesc − R

cVi
hNikttet;q;

δFa
i;q;trap ¼ 0;

δPaa
i;q;trap ¼

δEq;i;trap

3
δab;

δLabc
i;q;trap ¼ 0; ð26Þ

where hNi is computed the sameway as in Eq. (20) over the
trapped part of the random-walk step. The energy density
contribution from the free-streaming step is accounted for
in the same way as in Sec. II D over the free-streaming part
of the random-walk step. Each time the packet changes
direction (between the trapped and free-streaming steps,
and following the free-streaming step), the force exerted on
the fluid is accounted for in the same way as in Sec. II D 3.

F. Neutrino pair annihilation

The simplest reconstruction of the comoving tetrad-
frame distribution function from its moments [Eq. (21)] is

fϵðθ;ϕÞ ¼ f0 þ 3fi1l
i þ 5

2
ð3fij2 lilj − f0Þ

þ 7

2
ð5fijk3 liljlk − 3fi1l

iÞ þ � � � ; ð27Þ

where f0 ¼
R
dΩfϵ=4π, fi1 ¼

R
dΩfϵli=4π, etc. Here li

are again the values of the components of the tetrad basis
vectors in the tetrad coordinates. This is effectively a
multidimensional extension to an expansion in Legendre
polynomials, and was derived by requiring that each term
be orthogonal to each other term and that each moment be
recoverable by the appropriate angular integral [the angular
part of Eq. (21)]. This expansion does not enforce that the
distribution must remain between 0 and 1, so many terms
are required to realistically represent sharply peaked dis-
tributions. However, we use this representation simply as a
tool to be able to carry out angular integrals in what
follows, so the particular angular representation is not
important, and the ability to recover moments from angular
integrals is the key property.
The four-force on the fluid due to the neutrino pair

annihilation rate is an integral over both neutrino and
antineutrino distribution functions [68]:
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F μ
ðsÞ ¼

Z fdpZ fdp̄Z
dΩ

Z
dΩ̄pμ

× ðfϵf̄ϵΦðaÞðcos θÞ − ð1 − fϵÞð1 − f̄ϵÞΦðpÞðcos θÞÞ;
ð28Þ

where fdp ¼ dðϵ3=3Þ=ðhcÞ3. This is most easily evaluated
in the local comoving tetrad. The annihilation kernel can be
decomposed into Legendre polynomials:

ΦðμÞ ¼ 1

2
Φ0 þ

3

2
Φ1μþ

5

2
Φ2

1

2
ð3μ2 − 1Þ þ � � � ð29Þ

(units of cm3=s). If we integrate the annihilation four-force
using Eq. (27) over the directions of both the neutrino and
antineutrino distribution functions up to second order, after
a great expansion and contraction of terms we get

F t
ðsÞ ¼ ð4πÞ2

Z fdpZ fdp̄ϵ × �
1

2
ðΦðaÞ

0 −ΦðpÞ
0 Þf0f̄0

−
1

2
ΦðpÞ

0 ð1 − ðf0 þ f̄0ÞÞ þ
3

2
ðΦðaÞ

1 −ΦðpÞ
1 Þfb1f̄b1

þ 5

4
ðΦðaÞ

2 −ΦðpÞ
2 Þð3fbc2 f̄bc2 − f0f̄0Þ

�
ð30Þ

and

F a
ðsÞ ¼ ð4πÞ2

Z fdp Z fdp̄ϵ
×

�
1

2
ðΦðaÞ

0 −ΦðpÞ
0 Þfa1f̄0 þ

1

2
ΦðpÞ

0 fa1

þ 3

2
ðΦðaÞ

1 −ΦðpÞ
1 Þfai2 f̄i1 þ

3

2
ΦðpÞ

1

1

3
f̄a1

þ 5

4
ðΦðaÞ

2 −ΦðpÞ
2 Þð3faij3 f̄ij2 − fa1f̄0Þ

�
: ð31Þ

Integrating over energy, these become

F t
ðsÞ ≈

X
ij

1

ϵ̄j

�
1

2
ðΦðaÞ

0 −ΦðpÞ
0 ÞEiĒj

−
1

2
ΦðpÞ

0 ðEiĒj − EiĒj − EiĒjÞ

þ 3

2
ðΦðaÞ

1 −ΦðpÞ
1 ÞFb

i F̄
b
j

þ 5

4
ðΦðaÞ

2 −ΦðpÞ
2 Þð3Pbc

i P̄bc
j − EiĒjÞ

�
ð32Þ

and

F a
ðsÞ ≈

X
ij

1

ϵ̄j

�
1

2
ðΦðaÞ

0 −ΦðpÞ
0 ÞFa

i Ēj þ
1

2
ΦðpÞ

0 Fa
i Ēj

þ 3

2
ðΦðaÞ

1 −ΦðpÞ
1 ÞPab

i F̄b
j þ

3

2
ΦðpÞ

1

1

3
EiF̄a

j

þ 5

4
ðΦðaÞ

2 −ΦðpÞ
2 Þð3Labc

i P̄bc
j − Fa

i ĒjÞ
�
; ð33Þ

where Ei ¼
R fdpϵ R dΩ1 ¼ πðϵ4iþ1=2 − ϵ4i−1=2Þ=ðhcÞ3 is the

maximum possible neutrino energy density contribution
from energy bin i.
We use NuLib [69] to generate neutrino pair annihilation

kernels Φ, but only the first two moments of the kernel are
given. We can guess a second moment by requiring that the
annihilation rate for comoving neutrinos be zero. That is,
requiring that

Φðμ ¼ 1Þ ¼ 1

2
Φ0 þ

3

2
Φ1 þ

5

2
Φ2 ¼ 0; ð34Þ

and that moments of the annihilation kernel higher than the
second are zero, implies that

Φ2 ¼ −
1

5
ðΦ0 þ 3Φ1Þ: ð35Þ

The angular dependence of the annihilation rate in vacuum
is proportional to ð1 − cosΘÞ2, where Θ is the angle
between the directions of the annihilating neutrinos, so
in vacuum this approximation becomes exact.

III. ANALYTIC MOMENT CLOSURES

The general-relativistic transport equations for angular
moments of the radiation field moments M̃ are described in
detail in Refs. [42,43]. Ignoring details and suppressing
indices, the structure of these equations follows

∂tð ffiffiffi
γ

p
M̃ð1ÞÞ þ ∂jAðg; M̃ð2ÞÞ þ ∂ϵBðg; M̃ð3Þ;∇uÞ

¼ Sðg;∇g; M̃ð2ÞÞ: ð36Þ

The subscript in parentheses indicates the rank of the
moment. That is, M̃0 is the energy density; M̃ð1Þ contains
the energy density and flux vector; M̃ð2Þ contains the energy
density, flux vector, and pressure tensor, etc. These will be
defined more carefully in the comoving orthonormal tetrad
below. A, B, and S are functions whose details are not
important for our purposes, except for the dependencies
indicated in the function arguments. Most importantly, the
evolution equation for the rank-1 tensor depends on the
rank-2 and rank-3 tensors, which are not independently
evolved and must be estimated by some other means.
The lab-frame moment tensors M̃ can be constructed

from the moments in the comoving orthonormal tetrad

defined in Eq. (21) using tetrad basis vectors eðαÞμ :
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M̃αβγ
ð3Þ ¼ MμνηeðαÞμ eðβÞν eðγÞη ;

M̃αβ
ð2Þ ¼ MμνeðαÞμ eðβÞν ;

M̃α
ð1Þ ¼ MμeðαÞμ ; ð37Þ

where eðαÞ are the set of four tetrad basis vectors. The
moments in the comoving orthonormal tetrad take the
form of

Mijk ¼ Lijk;

Mtij ¼ Mij ¼ Pij;

Mtti ¼ Mti ¼ Mi ¼ Fi;

Mttt ¼ Mtt ¼ Mt ¼ E: ð38Þ

Note that Mαβ
β ¼ 0. The closure to Eq. (36) (i.e., deter-

mining the rank-2 and rank-3 tensors) is usually imple-
mented in the comoving orthonormal tetrad, so to have a
well-defined set of evolution equations we need a pre-
scription for the unknown comoving tetrad moments Pij

and Lijk in terms of known quantities.
All of the closures used in the literature rely on a few

basic assumptions, which we will assess in Sec. IV. The
pressure tensor at each neutrino energy ϵ is assumed to take
the form

Pij ¼ 3χp − 1

2
Pij
free þ

3ð1 − χpÞ
2

Pij
diff ;

Lijk ¼ 3χl − 1

2
Lijk
free þ

3ð1 − χlÞ
2

Lijk
diff ; ð39Þ

where, under the regular assumptions that the radiation
field is symmetric about the flux direction,

Pij
free ¼ Eϵ

Fi
ϵF

j
ϵ

Fϵ · Fϵ
;

Pij
diff ¼

Eϵ

3
Iij;

Liii;diff ¼
3Fi

5
;

Lijj;diff ¼
Fi

5
;

Lijk;diff ¼ 0;

Lijk;free ¼
FiFjFkffiffiffiffiffiffiffiffiffiffi

FiFi
p : ð40Þ

Different analytical closures differ in how they interpolate
between the diffusive and free-streaming limits based on
the flux factor ξϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fϵ · Fϵ=E2

ϵ

p
. With these quantities

defined in an orthonormal tetrad moving with the fluid,
they can be transformed out using the tetrad basis vectors.

A. Extending the MEFD closure

It is often assumed that the interpolating function
between the diffusive and free-streaming limits for the
third moment is the same as for the second moment.
Banach and Larecki [70] also used the maximum entropy
condition to generate a closure for the third moment.
However, the closure was expressed as a power series,
so it is only accurate near the diffusion limit. In addition,
Banach and Larecki [71] write limiting cases of the closure,
but do not write it down in generality. In both cases, the
closures for the third moment are designed for so-called
nine-moment systems, in which the energy density, three
fluxes, and five independent components of the pressure
tensor are evolved variables (they would call our case a
four-moment system, since we try to evolve the energy
density and three fluxes). As such, the closure is derived
using a functional for the distribution function that has
more free variables, resulting in a closure that depends on
all three of the energy density, flux, and pressure. However,
we wish to use a closure for a two-moment system that has
only two independent variables.
To do this, we follow Cernohorsky and Bludman [57]

and derive an approximation to a maximum-entropy
closure for the third moment based on only the energy
density and flux. The MEFD closure maximizes the
entropy for an angular distribution with the functional form

fϵðμÞ ¼
N

eη−aμ þ k
; ð41Þ

where η and a are parameters that determine the angular
distribution, and k ¼ −1 is used for Bose-Einstein statis-
tics, and k ¼ 1 is used for Fermi-Dirac statistics. The
angular moment integrals are then

f ¼ 1

e
1

4π

Z
2π

0

dϕ
Z

1

−1
dμμfðμÞ;

p ¼ 1

e
1

4π

Z
2π

0

dϕ
Z

1

−1
dμμ2fðμÞ;

l ¼ 1

e
1

4π

Z
2π

0

dϕ
Z

1

−1
dμμ3fðμÞ; ð42Þ

where we are using for shorthand e ¼ E=Emax (the occupa-
tionprobability),f ¼ jFj=E (the flux factor, distinct from the
distribution function fϵ), p ¼ Pff=E, and l ¼ Lfff=E. N is
a normalization factor that cancels out everywhere in this
analysis. Finding a closure amounts to solving for ηðe; fÞ and
aðe; fÞ. In the classical limit (e → 0 ork ¼ 0), these integrals
are analytic, yielding f ¼ cothðaÞ − 1=a, p ¼ 1–2f=a, and
l ¼ ½ð6þ aÞ2f − 2�=a2. However, for the general Fermi-
Dirac radiation case we must first look at limiting cases.
We can then evaluate the integrals under the assumption

of maximum packing—that is, assuming the distribution is
f ¼ 1 between μ ¼ 1 and μ ¼ μ0 and 0 outside of that
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range. Under these assumptions, the same moments
become

fmaxðeÞ ¼ 1 − e;

pmaxðeÞ ¼
2ð1 − eÞð1 − 2eÞ

3
þ 1

3
;

lmaxðeÞ ¼ ð1 − eÞð1 − 2eþ 2e2Þ: ð43Þ

For a functional form of the distribution function in
Eq. (41), we can in general express the pressure and third
moment in terms of the flux saturation x ¼ f=fmax as

pðe; xÞ ¼ ½pmaxðeÞ − pdiffðe; 1Þ�ζpðe; xÞ þ pdiffðe; xÞ;
lðe; xÞ ¼ ½lmaxðeÞ − ldiffðe; 1Þ�ζlðe; xÞ þ ldiffðe; xÞ; ð44Þ

where the diffusive solution is pdiffðe; xÞ ¼ 1=3 and
ldiffðe; xÞ ¼ 3xfmaxðeÞ=5. The functions ζpðe; xÞ and
ζlðe; xÞ are not representable analytically, requiring
numerical root finding to get aðe; fÞ. However, we can
analytically express both in the isotropic (x → 0) and high-
packing (x → 1) limits.
Following Ref. [57], we can approximate fðμ; η; aÞ

using the first two terms of a Sommerfeld expansion to
get the high-packing limit. We arrive at

xx→1 ≈ 1 −
A
a2

;

ζp;x→1 ≈ 1 −
3A
a2

;

ζl;x→1 ≈ 1 −
3Að1 − 2eÞ2 þ 3a2x=5
lmaxðeÞ=fmaxðeÞ − 3=5

; ð45Þ

where AðeÞ ¼ π2=½12eð1 − eÞ�. After eliminating a, this
becomes

ζp;x→1 ≈ 3x − 2;

ζl;x→1 ≈ 6x − 5: ð46Þ

Again following Ref. [57], in the isotropic limit a ≪ 1,
and fðμ; η; aÞ can be Taylor-expanded around a ¼ 0,
keeping only the first two terms. Including three terms
gives the same result, and four or more yields intractable
expressions. This leads to

xx→0 ≈
a
3
;

ζp;x→0 ≈
a2

15
;

ζl;x→0 ≈
a=5 − 3x=5

lmaxðeÞ=fmaxðeÞ − 3=5
: ð47Þ

Again eliminating a, this becomes

ζp;x→0 ≈
3x2

5
;

ζl;x→0 ≈ 0: ð48Þ

Both ζp and ζl must be invariant under e ↔ ð1 − eÞ. We
see from Eqs. (48) and (46) that in the isotropic and high-
packing limits, both are in fact independent of e, and
Ref. [57] shows that ζpðe; xÞ ¼ ζpðxÞ is actually com-
pletely independent of e. The solid curves in Fig. 1 show
the variation in the ζlðe; xÞ over different values in e.
ζlðe; xÞ can be approximated using the lowest-order

polynomial that satisfies the values and derivatives of
the functions in the high-packing and isotropic limits,
along with the requirement that 0 ≤ ζðe; xÞ ≤ 1 (based
on observation of the numerical solution):

ζpðe; xÞ ≈ x2ð3 − xþ 3x2Þ=5;
ζlðe; xÞ ≈ x6: ð49Þ

Cernohorsky and Bludman [57] showed that the approxi-
mation for ζpðxÞ is accurate everywhere within 2%. The
dashed curve in Fig. 1 shows this approximation for
ζlðe; xÞ. While the error appears to be quite large near
e ¼ 0.3, the prefactor in Eq. (44) is quite small. Figure 2
shows the closure curves of lðe; fÞ (solid curves) for several
values of e and the corresponding approximate curve
(dashed curves). The approximation produces values of l

FIG. 1. MEFD rank-3 radiation saturation curve ζl as a function
of the flux saturation x ¼ fðx; eÞ=fmaxðeÞ [implicitly defined in
Eq. (44)]. Different colors correspond to different energy satu-
ration e ¼ E=Emax (effectively the direction-averaged occupation
number). All of the curves have the same value and derivative in
the limits of x → 0 and x → 1. The dashed white curve shows the
approximant in Eq. (49). The lower dotted curve shows an
approximation for ζl as derived for the Minerbo closure (equiv-
alent to the classical limit of the MEFD closure) by Ref. [72]
using a different approximation for the Langevin function. The
middle dotted curve shows the corresponding curve for the M1
closure as derived by Ref. [73]. The upper dotted curve shows a
suggestion for the rank-3 Kershaw closure from taking χl ¼ χp.
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that are accurate to within 3.5% for any value of f and e,
and errors are largest at the x ¼ 0, 1 and e ¼ 0.5 limits.
One can relate ζ back to χ based on Eq. (39) via

χpðe; xÞ ¼
2

3

pmaxðeÞ − pdiffðe; 1Þ
pfreeðe; xÞ − pdiffðe; xÞ

ζp þ
1

3
; ð50Þ

and similarly for χl, where pfreeðe; xÞ ¼ 1 and lfreeðe; xÞ ¼
xfmaxðeÞ. The classical limit of the MEFD closure is
obtained by taking e → 0 so that fmax ¼ pmax ¼
lmax ¼ 1, leading to

χp;classical ≈
2

15
f2ð3 − f þ 3f2Þ þ 1

3
;

χl;classical ≈
2

3
f5 þ 1

3
: ð51Þ

The maximum packing limit is obtained by taking e →
1 − f so that x ¼ ζ ¼ 1. In this limit,

χp;maxpack ≈
1

3
ð1 − 2f þ 4f2Þ;

χl;maxpack ≈
1

3
ð3 − 10f þ 10f2Þ: ð52Þ

Note that Eq. (39) disagrees with the choice of Ref. [42].
Our choice is made in order to always preserve the identity
that Lj

ij ¼ Fi, though an appropriate modification to the
closure can ensure this indirectly. If one chooses the free-
streaming limit of the third moment to be

Lijk;free ¼
JFiFjFk

ðFiFiÞ3=2 ; ð53Þ

then Eq. (50) must be applied with lfreeðe; xÞ ¼ 1, since the
interpolation is between the diffusive solution and one
where all energy (rather than flux) is moving in one
direction. This leads to

χl;classical ≈
2

3

2f6

5 − 3f
þ 1

3
;

χl;maxpack ≈
2

3
f

�
2 − 10f þ 10f2

5 − 3f

�
þ 1

3
; ð54Þ

and it results in the curves in Fig. 2 remaining unchanged.
We will demonstrate how the choice of free-streaming limit
impacts other closures in Sec. IVA 4.
We also show ζl from the Minerbo closure as derived by

Just et al. [72] [converting to ζl from their Eqs. (32) and
(33)] as the lower black dotted line in Fig. 2. Their result
differs considerably, although the Minerbo closure is
identical to the classical limit of the MEFD closure.
Although the limiting values of ζl at x ¼ f0; 1g are correct,
the limiting behavior differs from that derived in Eqs. (46)
and (48) due to a choice in how they approximate the
inversion. Cernohorsky and Bludman [57] choose a simple
polynomial to approximate the Langevin function such that
the limiting behaviors of ζp are correct. Just et al. [72] use
this same function to approximate the Langevin function to
determine ζl. By contrast, we follow the same process used
in Ref. [57] to choose a different approximation that causes
the limiting behaviors of ζl to be correct. Both versions are
valid as closures, but our classical limit exhibits smaller
errors from the exact classical solution under the MEFD
assumptions. For reference, we also show the equivalent
curve from the M1 rank-3 closure as derived by Vaytet et al.
[73] as the upper black dotted curve in Fig. 2, converted
from their Eqs. (12)–(14). There is no reason this curve
should match any of the others, as it was derived under
different assumptions and is just shown for comparison. We
only plot values for x > 0.15, because below this value the
results of evaluating the expressions are dominated by
round-off errors. Finally, the Kershaw closure [74] can in
principle be extended to the third moment in a way that
obeys realizability constraints (e.g., Ref. [75]). If one

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f

l

FIG. 2. MEFD closure for the rank-3 radiation field tensor. l ¼
Lfff=E is the amount of energy in the component of the tensor
aligned with the flux as a function of the flux factor f. Each solid
line shows the results from solving for a and integrating Eq. (42)
for a chosen value of the energy saturation e. e ranges from 0.1
(curve ending at f ¼ 0.1) to 1.0 (curve ending at f ¼ 1.0) in
increments of 0.1. The dashed lines show the results from using
Eq. (44) with Eq. (49). The dotted curve is the maximum packing
curve [Eq. (43)] that traces the end points of each of the curves.
Note that the seemingly large deviations of the approximant in
Eq. (49) do not cause the solid and dashed lines to be far
separated.
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assumes that χl ¼ χp, the result fits nicely into the
realizable moment space, and this can be considered the
three-moment extension of the Kershaw closure. This is
plotted as the upper dotted curve in Fig. 2 for comparison,
and also has no reason to follow any of the other curves.
As an appetizer, we present the performance of the

MEFD and other popular closures (described in more detail
in Sec. IV B) in a simple test problem. As in Ref. [76], we
create a homogeneous sphere with radius R ¼ 1 cm, a
constant absorption opacity of κabs ¼ 4 cm−1, and no
scattering opacity. There is an analytic solution to the
radiation field (also outlined in, e.g., Ref. [76]), which we
plot in Fig. 3 as a black dashed curve. The thick blue curve
immediately under the dashed curve is the result from

Sedonu directly and shows excellent agreement. Outside
of the sphere, where the opacity is zero, the maximum
packing limit of the MEFD closure also matches well,
though it performs poorly inside the sphere. The opposite is
true of most of the other closures, and already it is apparent
that none of these closures performs well everywhere, as
concluded by Refs. [58,77]. The goal of this paper is to
perform a similar assessment of these closures for up to the
rank-3 moments and in the multidimensional and relativ-
istic environment of a neutron star merger.

B. Tensor invariants

The pressure tensor in the comoving orthonormal tetrad
is diagonalizable, meaning that with the proper rotation of
coordinates, one can express the pressure tensor with only
three diagonal elements. These correspond to the neutrino
pressure in three directions:

Pij ¼

2
64
Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

3
75 ¼ R

2
64
λ0 0 0

0 λ1 0

0 0 λ2

3
75RT: ð55Þ

Following Ref. [78], the eigenvalues can be expressed as

0 ¼ jλIij − Pijj ¼ λ3 − J1λ2 þ J2λ − J3; ð56Þ

where

J1 ¼ TrðPijÞ ¼ E;

J2 ¼
1

2
½TrðPijÞ2 − TrðPijPjkÞ�;

J3 ¼ jPijj: ð57Þ
λ, J1, J2, and J3 are all invariant under rotation.
Furthermore, we can write the eigenvalues as a function
of the J invariants as

λk ¼
1

3
J1 þ 2

ffiffiffiffi
Q

p
cos

�
θ þ 2π

3
k

�
; ð58Þ

where Q ¼ ðJ21 − 3J2Þ=9, θ ¼ ½cos−1 ðRQ−3=2Þ�=3, and
R ¼ ð23J3 − 9J1J2 þ 2J31Þ=54. Thus, the three eigenvalues
can be visualized as projections onto the x axis of three
equally spaced points on a circle centered at (E=3; 0). The
magnitude of the differences between the eigenvalues is
determined by Q, and the configuration of the eigenvalues
is determined by θ.
In our analysis, we will refer to the dimensionless

quantities

anisotropy ¼ 3
ffiffiffiffi
Q

p
J1

∈ ½0; 1�;

oblateness ¼ 3θ

π
∈ ½0; 1�: ð59Þ

FIG. 3. Uniform sphere test. There is a constant absorption
opacity of κabs ¼ 4 cm−1 below r ¼ 1 cm and vacuum above.
The top panel shows the resulting radial flux factor f, the middle
panel shows the radial component of the pressure tensor p, and
the bottom panel shows the radial component of the rank-3 tensor
l. The analytic result (e.g., Ref. [76]) is shown as a black dashed
curve, and the Monte Carlo results computed by Sedonu are
shown with a thick blue curve. The bottom two panels also show
the results from several approximate moment closures described
in more detail in Sec. IV B. No closure reproduces the physical
results everywhere, though the MEFDmp closure is well suited to
this test problem for r > 1 cm.
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The pressure tensor can be visualized as a triaxial ellipsoid,
where the size of each axis represents the size of an
eigenvalue—i.e., the magnitude of the pressure in the
direction of the corresponding eigenvector. An anisotropy
of 0 indicates that the pressure in all directions is equal,
while an anisotropy of 1 indicates that the pressure in all but
one direction is zero. An oblateness of 0 means the ellipsoid
is prolate—i.e., that two eigenvalues are equal and one is
larger. An oblateness of 1 means the ellipsoid is oblate—
i.e., that two eigenvalues are equal and one is smaller. An
oblateness between 0 and 1 means that no two of the
eigenvalues are equal. These rotation-independent quan-
tities are useful for understanding the limitations imposed
by moment closures.
Similarly, there are 11 invariants for the rank-3 tensor

Lijk [79]. However, several of these invariants are degen-
erate or represent the known relationship between the trace
of L and the flux. After ignoring all of the known or
degenerate invariants, only one remains, which we call L4

(using the subscript from Ref. [79]).

L4 ¼ LijkLijk: ð60Þ

We will use this as a scalar quantity representing L so we
can compute differences between closures without needing
to refer to particular directions.

IV. RESULTS

We perform time-independent Monte Carlo neutrino
radiation transport on a simulation snapshot from the
LS220_M135135_M0_L25 simulation of Ref. [80]. The
snapshot is at t ¼ 31.3 ms after merger and is after the
formation of a black hole. The neutrino interaction rates
and comoving frame radiation field are binned into 24
energy bins spaced logarithmically from 1 MeV (bin width
of 2 MeV) to 270 MeV (bin width of 37 MeV). We
performed the transport on a single refinement level with a
Cartesian grid spacing of 0.74 km, a domain of −66 km to
þ66 km in each coordinate direction, and a reflecting

boundary condition at z ¼ 0. This refinement level was
chosen to be the smallest level that contained the regions of
the accretion disk where transport is relevant.
A x-z slice of the fluid data is shown in Fig. 4. The

complicated matter, velocity, and spacetime structure pose
a significant challenge for radiation transport algorithms.
There is a dense emitting disk and a sparse polar region.
Though the second panel in Fig. 4 only shows the
magnitude of the three-velocity, the large velocity in the
disk is in the azimuthal direction, while the velocity in
the polar region is in the positive z direction. There is also a
large x velocity in the boundary between the two within
10–15 km from the black hole. The large temperature in the
inner regions of the disk (third panel) indicate where most
of the neutrinos are being produced, and the disk still has a
low Ye (fourth panel) as antineutrino losses continue to
drive up the Ye.
We simulate 2 × 109 neutrino packets to generate a

steady-state radiation field according to Sec. II. As in
the original dynamical calculation, we use the LS220
equation of state [81] and use NuLib [69] to calculate
neutrino absorption and elastic scattering rates. The result-
ing comoving-frame maximum occupation number (top
panel) and energy-density-averaged flux factor (bottom
panel) computed by SedonuGR are shown in Fig. 5. The
maximum occupation number of a given energy bin is
computed by dividing the energy density in an energy bin
by the energy density that would be present in that bin if the
occupation number were 1. Though neutrinos can become
very degenerate in a proto- or hypermassive neutron star, in
this disk they are only mildly degenerate. The flux factor
plot shows that the disk is on average optically deep
(resulting in a flux factor close to 0), and the polar regions
are optically thin (resulting in a flux factor approaching
unity). Even with only two moments, it is apparent that
there is interesting structure in the radiation field, especially
in the interface between the disk and polar regions. This
will prove to be a very difficult region for analytic closures.
The simulation in Ref. [80] was performed with the M0

scheme, which combines a leakage method for radiation

FIG. 4. Background fluid profile from the LS220_M135135_M0_L25 simulation of Ref. [80], on top of which we calculate steady-
state neutrino radiation fields using Sedonu. First panel: baryon rest density. Second panel: magnitude of the three-velocity. Third
panel: fluid rest temperature. Fourth panel: electron fraction.
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losses with a diffusion method for neutrino reheating. The
goal of the rest of this section is not to analyze the
differences between the two methods (as in, e.g.,
Refs. [17,60]), but to quantify the errors induced by the
assumptions that go into closure relations. To do this, we
will compare the rank-2 and rank-3 moments with the
energy density and flux, all computed in the same calcu-
lation by SedonuGR.

A. Assessing closure assumptions

The analytic closure method described in Sec. III
attempts to capture the dominant structure of the radiation
field present in the rank-2 and rank-3 moments. In this
section, we use SedonuGR to assess the ability of such a
closure to represent the real second and third angular
moments of the radiation field. While other authors have
compared the results of simulations performed using
Monte Carlo and moment methods (e.g., Ref. [17]), here
we focus instead on how well the Monte Carlo radiation
field respects the fundamental assumptions that go into
forming such a closure. These assumptions are (1) that the
pressure tensor depends only on the flux factor and perhaps
the energy density, (2) that the pressure tensor is prolate,
(3) that the pressure in the direction of the flux matches the
largest eigenvalue of the pressure tensor, and (4) that the
third moment can be closed using the same functional form
as the pressure tensor.

1. The pressure tensor depends only on the flux

The most well-known feature of moment closures is the
parametrization of the shape of higher moments based on a
single quantity—the flux factor. It is also well known that
there is no single functional form of the closure that works
well in all test cases (e.g., Ref. [58]). Comparing the
Eddington factor in the top panel of Fig. 6 to the flux factor
in the bottom panel of Fig. 5, there indeed appears to be a
correlation between the flux factor and the magnitude of the
pressure in the direction of the flux. The bottom panel of
Fig. 6 shows the functional form of each of the closures in
Table I on top of a histogram of the corresponding
relationship between fluxes and pressures in the simulation
domain. The color indicates the number of grid cells that
have a flux factor and Pff indicated by the location on the
plot. The sharp boundary on the lower-right side of the
colored region is a geometric limitation—it is not possible
to simultaneously have all energy moving in one direction
(flux factor of 1) and no pressure in that direction.
Although most closures lie close to the dark ridge, the

distribution is too broad to be described by a single curve.

FIG. 5. Top panel: neutrino occupation number, maximized
over neutrino species and neutrino energy. Bottom panel:
comoving-frame neutrino flux factor, averaged over species
and neutrino energy, weighted by the energy density in the
corresponding species-energy bin. Neutrinos are mildly degen-
erate and trapped in the disk and free-streaming in the polar
regions. The goal of an analytic closure is to use just this
information to predict all higher-rank moments.

FIG. 6. Eddington factor. Top panel: neutrino pressure in the
flux direction normalized by energy density on a x-z slice. As
expected, there is a correlation with the flux factor in Fig. 5.
Bottom panel: histogram of the number of spatial species-energy
grid cells that have each combination of flux factor (x axis) and
Eddington factor (y axis). The white curves show the closure
relations listed in Table I. The blue curves are the MEFDmaximal
packing (lower) and MEFD classical (upper) closures. No simple
closure can describe all grid cells.
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In fact, there appears to be a second dark ridge at flux
factors ≳0.5 near the MEFDmp curve (bottom blue curve).
The bottom ridge becomes more prevalent at higher
latitudes, while the main ridge is more prevalent near
the equator. The majority of the closures (white and blue
curves) trace the main ridge, since the equatorial regions
have a smoother transition from trapped to free-streaming
regimes that is more typical of spherical problems. The
match between the boundary of this region and the
MEFDmp curve hints that the full MEFD closure may
be able to account for both ridges, but we will see in
Sec. IV B 1 that the extra information provided by the
MEFD closure does not account for the spread.

2. Pf f is the largest eigenvalue

The form of Eq. (39) indicates that the flux is always an
eigenvector of the pressure tensor under the analytic closure
approximation, since it is an eigenvector of both the
diffusive and free-streaming limits. Furthermore, Pff must
correspond to the largest eigenvalue for all but the Wilson
and MEFD closures. For these closures, the Eddington
factor is allowed to drop below 1=3 at low flux factors, so
Pff then corresponds to either the largest or smallest
eigenvalue.
The top panel of Fig. 7 shows the energy-averaged

difference between the pressure in the direction of the flux
and the largest eigenvalue. For all but the Wilson and
MEFD closures, the darkness of the color effectively

indicates the amount of deviation from the closure approxi-
mation. The middle panel shows the average difference
between Pff and either the largest or the smallest eigen-
value, so this panel shows the magnitude of the deviation
from fundamental properties of the MEFD and Wilson
closures. Finally, the bottom plot shows the average
minimum difference from any of the three eigenvalues,
and so a dark color indicates that the direction of the flux is
misaligned with all of the eigenvectors, or that the
orientation of the pressure tensor is weakly tied to the
flux direction.
One can also compare the pressures in other directions

with the eigenvalues, though we do not show the results
here. The only other local vector quantity to compare to is
the three-velocity, so we can define the direction w as the
direction in the F-v plane orthogonal to F, and the direction

TABLE I. Integrated difference between the Monte Carlo and
indicated closure solution for representative components of rank-
2 and rank-3 moment tensors. Numbers are displayed to the first
digit that changes using a similar calculation with 0.4 times as
many Monte Carlo particles and are multiplied by 100 to remove
leading zeros for display. Pff and Lfff are the components of the
neutrino pressure tensor and rank-3 tensor along the direction of
the flux.Θ is the oblateness, and A is the anisotropy [Eq. (59)]. L4

is the scalar invariant of the rank-3 tensor [Eq. (60)]. αF μ
annuμ is

the rate of increase of the thermal energy by neutrino pair
processes as measured by an observer at infinity. The pair process
error is an actual error rather than a χ2 value, comparing to the
Monte Carlo result of 4.78 × 1050 erg s−1.

Pff=E Θ A Lfff=E L4=E2 αF μ
annuμ

Closure ×100 ×100 ×100 ×100 ×100 ×100

Thick 12.6 � � � 29.8 2.8 1.5 −16.6
Thin 17.7 6.9 35.6 2.15 1.93 87.4
MEFD 0.297 6.9 1.20 0.316 0.33 1.01
MEFDc 0.297 6.9 1.20 0.316 0.33 1.10
MEFDmp 0.939 13.6 2.26 0.705 0.42 −4.76
Levermore 0.233 6.9 0.93 0.231 0.22 3.98
Kershaw 0.32 6.9 0.90 0.339 0.28 11.1
Wilson 0.33 10 1.27 0.237 0.23 2.17
Janka1 0.442 6.9 1.59 0.198 0.22 −1.76
Janka2 0.274 6.9 0.96 0.213 0.21 2.48

FIG. 7. Misalignment between the pressure tensor and the
eigenvectors. Top panel: the energy- and species-averaged differ-
ence between the Eddington factor and the largest eigenvalue λ0
of the pressure tensor. Middle panel: similar to the above,
showing the energy- and species-averaged minimum of the
difference between the Eddington factor and either the largest
or smallest eigenvalues of the pressure tensor λ0 and λ1. Bottom
panel: similar to the above, but minimizing over the difference
between the Eddington factor and any of the three eigenvalues. In
most regions, the largest axis of the pressure tensor is parallel to
the flux. Where the largest deviations from this occur, the
smallest axis of the pressure tensor is largely parallel to the flux.
In the interface between the disk and polar region, the flux is not
well aligned with any of the pressure tensor axes.
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q as the direction orthogonal to both. Near the equator
beyond a radius of ∼50 km, Pff matches the largest
eigenvalue, Pqq matches the smallest, and Pww matches
the middle one. The radiation there is moving predomi-
nantly radially, hence the dominant component of the
pressure in the direction of the flux. The disk is larger
in the azimuthal direction than in the polar direction, and
the larger solid angle of emitting surface presented in one
direction results in a larger pressure in that direction. The
regions above the disk are more difficult to understand. In
the diagonal regions above the disk but below the curling
flow, the largest eigenvalue is best represented by Pqq, and
in the curling flow Pww and Pqq are both close to the largest
eigenvalue, resulting in the dark regions in the top panel of
Fig. 7. In some regions, Pff matches the smallest eigen-
value (seen in the removal of dark regions between the top
and middle panels) or the middle eigenvalue (seen as the
removal of dark regions between the middle and bottom
panels). We saw no clear trend in local variables that could
account for all of this behavior.

3. The pressure tensor is prolate

Once again, for all but the MEFD and Wilson closures,
the assumed pressure tensor is prolate (oblateness of zero),
and for the MEFD and Wilson closures the pressure tensor
can only be prolate (oblateness of zero) or oblate (oblate-
ness of 1). The top panel of Fig. 8 shows an x-z slice of the
species- and energy-averaged oblateness of the pressure
tensor. Far from the disk, the oblateness indeed tends to
zero as expected. In the optically deep regions of the disk,
there is significant noise, since the distribution is nearly
isotropic in the fluid rest frame, and small Monte Carlo
statistical fluctuations correspond to large changes in
oblateness because the anisotropy is so small. The first
interesting note is that very close to the black hole and in
the interface between the disk and polar region, the
oblateness can take on the full range of values. Once
again, this is another indicator that the analytic closure
approximation is poor in these regions. Interestingly, the
oblateness is also nonzero in the equatorial optically thin
regions at radii larger than 50 km. This is a result of the
aspect ratio of the disk. As described in Sec. IVA 2, the
pressure in the azimuthal direction is larger than in the z
direction because the disk is larger in that direction. As
such, the radial pressure is largest, followed by the
azimuthal pressure, followed by the z pressure. The triaxial
nature of the pressure tensor yields oblateness values
of ≲0.5.
The bottom panel of Fig. 8 shows a histogram of

oblateness and flux factor. The boundary at the right side
of the plot is a geometric limit—in the limit of flux factor
approaching 1, all of the energy must be moving in one
direction, and so the pressure in directions orthogonal to the
flux direction tend to zero. The histogram shows that there
is an inverse correlation between the flux factor and the

oblateness, but once again does not follow a simple
functional form. In addition, this trend varies with polar
angle. The dark region on the left side of the plot comes
from equatorial regions at cos θ ≲ 0.5, since this comes
from the region of low flux factor in the optically deep part
of the disk with near random oblatenesses. On the right side
of the plot, the slope of the dark ridge is steeper at low polar
angles (cos θ ≲ 0.2), indicating that some of this trend
comes from the distal equatorial regions. If we only include
grid zones at high polar angles (cos θ ≳ 0.6), the slope of
the dark region at jFj=E≳ 0.6 becomes shallower than in
Fig. 8, but then quickly rises to an oblateness of 1 at a flux
factor of 0.5. This is also a geometric effect. The flux factor
is small and the oblateness large at small radii despite a very
low optical depth, since the radiation is crossing largely in
the equatorial direction with little upward component. This
trend is potentially useful information for designing a

FIG. 8. Oblateness of the pressure tensor as defined in Eq. (59).
The analytic closures in Table I only allow for an oblateness of 0
or 1. Top panel: x-z slice showing the species- and energy-
averaged oblateness. The interface between the disk and the polar
region, and the region just above the black hole show large
deviations from analytic closure assumptions. The noise in the
disk is because at small anisotropies, small changes in the
radiation field map to radically different oblateness. Bottom
panel: histogram showing the number of grid cells in the five-
dimensional space-energy-species grid with each combination of
oblateness and flux factor. There is an inverse correlation between
flux factor and oblateness, and few zones have an oblateness of
zero. The dark region on the left is due to the optically deep
regions of the disk, where the flux factor is small and any
oblateness can be realized through statistical Monte Carlo noise.
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closure that uses the coordinate position as extra informa-
tion for the closure, though wewere unsuccessful in finding
a means to do so (see Sec. IV B 2).

4. L can be closed with χ p
The top panel of Fig. 9 shows a slice of the component of

the rank-3 tensor in the direction of the flux Lfff. Once
again, there is a correlation between this and the flux factor
in Fig. 5. Since both the rank-2 and rank-3 tensors are being
interpolated from optically thin to thick limits, the same
closure relation is often used for both. That is, χl is assumed
to be equal to χp. The only closure with a self-consistent
third moment interpolator is the MEFD closure, which we
derive in Sec. III A.
The bottom panel of Fig. 9 shows a histogram of the flux

factors and values for Lfff, with the flux factor also
subtracted from the y-axis value to show more detail in
the plot. Similar to the case of the pressure histogram in
Fig. 6, there is an upper and a lower dark ridge, and the
distribution is too broad to be described by a single curve.
The white curves show values of Lfff inferred by using the
χp from the bottom set of closures in Table I in lieu of an
appropriately derived χl. The blue curves show the results
from the χl derived in Sec. III A for the MEFD maximal
packing (lower) and classical (upper) limits. It seems that
the white curves do generally follow the upper ridge but are
unable to account for the lower ridge. The MEFD maxi-
mum packing curve, however, once again nicely encom-
passes this region, leading to a hope that the MEFD closure
may be able to account for both regions. However, we will
show in Sec. IV B 1 that in this snapshot, the MEFD closure
closely resembles its classical limit, and the extra informa-
tion from the degeneracy cannot explain the spread.
The green curves in Fig. 9 show the results when using

Eq. (53) for the free-streaming limit. This results in
unequivocally poor results. Although one can construct
an interpolator for this flavor of interpolation [e.g., Eq. (54)
for the MEFD closure], it is more straightforward to use
Eq. (40). Doing so requires that the trace of the rank-3
tensor be the flux and makes χp a reasonable approximation
for χl.

B. Specific closures

The particular closures we compare to are listed in
Table I and shown in the bottom panels of Figs. 6 and 9.
The Thick and Thin closures simply take the corresponding
limit in Eq. (39) irrespective of the flux factor, providing a
sense of scale for the errors the other more reasonable
closures make. The MEFD closure, along with its classical
(MEFDc) and maximum-packing (MEFDmp) limits, was
described in detail in Sec. III A and guarantees that the set
of moments is possible to realize with a fermionic radiation
field. This is also the only closure with a self-consistent
closure for the third moment. The Levermore closure [56] is

derived by assuming that the radiation field is isotropic in
the frame where the net radiation flux is zero. The Kershaw
closure [74] is just a simple, nonunique quadratic function
interpolating between the optically thick and thin limits in a
way that is always realizable for a Bose-Einstein gas. The
Wilson [82] closure is the harmonic mean of the diffusive
and free-streaming limits [77]. Finally, the Janka closures
[83] were determined from fits to Monte Carlo neutrino
transport data in one-dimensional simulations of core-
collapse supernovae.

1. The MEFD closure

The MEFD maximum packing curve neatly outlines the
bulk of the dark regions in Figs. 6 and 9. Unlike any of the
other closures, the MEFD closure also uses the occupation
number as input, so one might be tempted to guess that the
spread is neatly accounted for by this extra information.
The salient feature of the MEFD closure for the pressure
tensor is that there is a single universal curve of ζpðxÞ

FIG. 9. Top panel: x-z slice of the species- and energy-averaged
component of the rank-3 moment tensor in the direction of the
flux. Similar to the other moments, there is a correlation with
the flux factor in Fig. 5. Bottom panel: histogram showing the
number of cells with each combination of Lfff and flux factor.
The flux factor is subtracted from the y axis to be able to show
more detail in the plot. The white curves show the closures listed
in Table I, while the blue curves show the MEFD maximal
packing (lower) and MEFD classical (upper) derived in Sec. III
A. The green curves are equivalent to the white curves, but
interpolating using Eq. (53). Most of the closures do a decent job
of tracking the most dense region on the plot, but the MEFD
closure covers a larger portion of the high-density region.
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[Eq. (46)] for all values of the occupation number, and the
effects of the occupation number come in only through
Eq. (44) and the definition of the flux saturation x. The top
panel of Fig. 10 is similar to the bottom panel of Fig. 6,
though the x axis is flux saturation x instead of flux factor,
and the y axis is pressure saturation ζp instead of Eddington
factor. The white curve shows the approximate universal
function from Eq. (49). If the information from the
occupation number were able to account for the spread
of the dark regions in Fig. 6, we would expect the dark
regions to collapse to the white line in this figure.
Unfortunately, that is not the case—since the occupation
numbers only reach at most 0.5, fjFj=E;Pffg and fx; ζpg
are nearly identical. The same applies to the bottom panel,
which shows the rank-3 saturation ζl and the semiuniversal
curve in Eq. (49). Since ζl is not universal except in the
limits of x → f0; 1g, we do not expect the distribution to
collapse to a single line, but this does comfortingly
demonstrate that the approximate curve does lie in the
most dense regions of the plot.

2. Other closures

Table I shows the errors in integrated values of various
quantities relative to the Monte Carlo results. Specifically,
the numbers for a quantity q are computed as

1

nxnynznϵ

X
i;j;k;l

ðqclosure;i;j;k;l − qMC;i;j;k;lÞ2; ð61Þ

where the prefactor contains the number of grid zones in x,
y, z, and energy, and the sum is over the corresponding grid
zones labeled by fi; j; i; lg. The exception is the farthest
right column, which we discuss in Sec. IV C.
The thick and thin closures are obviously poor choices,

but are shown for reference of scale. Many of the closures
are similarly accurate, since they all generally lie within the
rather broad distribution of the flux factor and pressure/
rank-3 tensor in Figs. 6 and 9. Even so, the Janka 2 closure
shows the smallest error for Pff=E and L4=E2, and the
Janka 1 closure shows the smallest error for Lfff=E. These
are followed closely by the MEFD closure, which performs
reasonably well in the pressure categories (columns 2–4),
although somewhat poorly in the rank-3 categories (col-
umns 5–6). Ironically, using the rank-2 closure for the
rank-3 moments produces smaller errors than the rank-3
closure freshly derived in Sec. III A.
Many of the closures yield similar errors for the oblate-

ness Θ, because the Thin, MEFDc, Levermore, Kershaw,
and Janka closures all assume an oblateness of exactly 1.
The MEFD, MEFDmp, and Wilson closures do allow for
an oblateness of exactly 1 at low flux factors (as indicated
by the curves dipping below 1=3 in Fig. 6), resulting in a
larger error. The only way to drive this error smaller is to
create a closure that allows for triaxial pressure tensors. We
attempted to create such a closure by assuming that the
oblateness follows Θ ¼ ð1 − jFj=EÞ2 (estimated from
Fig. 8), setting the eigenvector with the largest eigenvalue
along F=E, that with the smallest eigenvalue along the
component of the three-velocity orthogonal to F=E, and
that with the middle eigenvalue along the direction
perpendicular to both. This results in a smaller oblateness
error of 0.0442, though at the cost of a marginal increase of
the error in Pff=E to 0.00304. We were unable to find a
good way to set the oblateness and orientation of the
pressure tensor using only local variables, since the trends
differ in different regions of the system (see Sec. IVA). In
addition, although the MEFD and Levermore closures
guarantee a realizable distribution (i.e., they never require
occupation numbers larger than 1 or smaller than 0), once
we break the assumptions on the symmetry directions used
in the derivation, it is not clear how to ensure that the
triaxial closure is realizable.
It is worth noting that the MEFD and MEFDc closures

yield nearly identical results, indicating that the neutrino
field in this snapshot is not very degenerate (see Fig. 5).

FIG. 10. Evaluation of the maximum entropy closure assump-
tions. Top panel: 2D histogram of the flux saturation x and the
maximum-entropy universal pressure-closure curve [Eq. (49)].
Bottom panel: similar, but for the semiuniversal rank-3 moment
closure curve [Eq. (49)]. If the Monte Carlo–derived distributions
looked like the maximum-entropy distributions [Eq. (41)], all
points would lie along the dotted white curve in the top panel.
The curve is not as universal away from the x ¼ f0; 1g limits, but
this shows that the approximate curve neatly lies within the most
dense regions of the plot.
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The ability of the MEFD closure to yield realizable
moments in highly degenerate scenarios is little used.
For the same reason, the MEFDmp closure yields com-
paratively large errors, since the closure assumes that the
distribution is maximally degenerate for a given flux factor.

C. Annihilation

Figure 11 shows the momentum (top three panels) and
thermal energy (bottom panel) deposition rate in a slice of
the domain normalized by the mass energy density. Since
we include both absorption and emission, the net effect on
the dense optically thick regions of the disk is minimal. The
value of the number then indicates the rate at which the
thermal energy density or momentum becomes relativistic.
The top panel shows that the right side of the polar region is

being pushed left, and the left side right, possibly helping to
collimate the flow very close to the black hole. The second
panel shows the azimuthal momentum deposition, which is
in the direction of the disk orbit. The third panel shows the z
component of the momentum deposition, indicating that
the annihilation can directly provide a great deal of upward
momentum. Finally, the bottom panel shows the rate of
deposition of thermal energy. Even without direct momen-
tum, this thermal energy will drive a polar outflow.
For an order-of-magnitude estimate of the power avail-

able from neutrino annihilation for powering polar out-
flows, we compute the net deposition of thermal energy in
the region within 45° of the polar axis. The fiducial
Monte Carlo annihilation calculation yields 4.78 ×
1050 erg=s of deposited thermal energy. The specific
heating rate, annihilation power, and density in the polar
region are comparable to those seen in dynamical calcu-
lations including neutrino annihilation [26,28]. Because of
this, we echo the conclusions of these works that the
neutrino pair annihilation will modify the dynamics and
leptonization of polar ejecta, but the mass in this region will
likely preclude a neutrino-driven jet.
The time component of the four-force due to neutrino

pair annihilation in Eq. (33) only depends on the number of
neutrino field moments equal to the number of terms used
in the Legendre expansion of the kernel Φ. Using this, we
can demonstrate the importance of each of these terms. If
we only include the Φ0 term, the annihilation power comes
out to 1.22 × 1051 erg s−1 (larger by a factor of 2.5 than the
fiducial result above using three terms). Including only the
Φ0 and Φ1 terms yields 3.98 × 1050 erg s−1, or 0.83 times
the fiducial result. Thus, including the estimate for the third
moment of the annihilation kernel in Eq. (35) has roughly a
17% effect on the available annihilation power.
Since the term in Eq. (33) with Φ2 depends on the

pressure tensor, the choice of closure can affect the
calculated annihilation rate in a two-moment radiation
transport scheme. The farthest right column of Table I
shows the relative error of the integrated annihilation power
due to the choice of closure. The MEFD and MEFDc
closures exhibit the smallest error, while the Kershaw
closure yields a large error of 1%. The rest of the other
closures yield an error of only a few percent. Thus, despite
the complexity of the radiation field in the polar regions, the
choice of a closure is important only to get percent-level
accuracy of the integrated annihilation power.
Finally, we briefly note the impact of two other assump-

tions. If we do not subtract off the mass energy of the
electron-positron pairs, we get a polar annihilation power of
5.85 × 1050 erg s−1 (difference of 22%). Second, although
we include the ΦðpÞ terms in Eq. (33), they do not actually
affect the polar annihilation power to the presented accu-
racy, since the vast majority of the neutrino pair production
is occurring in the dense disk.

FIG. 11. Neutrino pair annihilation rate normalized by mass-
energy density. The rates of deposition of x, y, and z momentum
are shown in the first, second, and third panels, respectively. The
rate of thermal energy deposition is shown in the bottom panel.
Neutrino pair annihilation is not dynamically important in the
disk, but in the polar regions it rapidly heats the low-density
matter and drives it inward, around in the direction of the disk’s
orbit, and upward.
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V. CONCLUSIONS

We use a newly developed steady-state Monte Carlo
radiation transport code to evaluate assumptions used by
analytic closures to the moment equations for radiation
transport in neutron star merger disks.
We first extend the MEFD closure to include the rank-3

moment for use in spectral M1 simulations (Fig. 2). The
proposed approximation to the closure [Eq. (49)] accurately
represents the full solution under the assumptions that go
into the closure to at most 3.5% error for all flux factors and
neutrino degeneracies. This is the only closure with a self-
consistent treatment of the third moment, though we do not
expect the impact to be large.
In order to test this and other closures in the context of

neutron star merger simulations, we developed the
Monte Carlo neutrino transport code SedonuGR to com-
pute the steady-state neutrino radiation field on a static
discretized fluid and spacetime background from a three-
dimensional simulation snapshot in three dimensions. We
calculate the full steady-state radiation field including
moments up to rank 3 and compare these moments against
fundamental assumptions used in all analytic closure
relations (Sec. IVA). We demonstrate the expected result
that a single analytic closure is unable to reproduce the
Eddington factor (Fig. 6). Furthermore, the largest axis of
the pressure tensor ellipsoid is not aligned with the flux
direction just above the black hole and in the interface
between the disk and the evacuated polar regions (Fig. 7),
contrary to the assumptions commonly used in generating
analytic closures. In these same regions, the pressure tensor
ellipsoid is largely triaxial (Fig. 8), unlike the prolate
ellipsoid assumed by analytic closures. This is also true
near the equator outside of the dense part of the disk due to
the aspect ratio of the disk. Finally, we demonstrate that the
analytic relations used to determine the pressure tensor are
also reasonable closures for the rank-3 moment (Fig. 9),
though they once again cannot explain the full spread seen
in various parts of the disk.
None of the closures listed in Table I spring out as an

obvious best choice, including the MEFD closure that we so
carefully extend, though the MEFD, MEFDc, Levermore,
and Janka 2 closureswere as accurate as couldbe expectedby
such a closure. Although we tried to use additional informa-
tion like the oblateness of the pressure tensor to improve the
analytic closures, the lackof clear trendsmade improvements
based on estimations of little benefit.
Finally, we briefly touch on the impact of the moment

expansion in calculating the rate of deposition of energy
and momentum in the polar regions (Fig. 11). Assuming
the annihilation kernels are expanded in terms of Legendre
polynomials, keeping up to the third term in the expansion
(which involves the pressure tensor) yields a 17% enhance-
ment of the net annihilation power over keeping only the
first two terms. The choice of closure among those listed in

Table I made at most a 5% impact on the annihila-
tion power.
We intentionally avoid investigating nonlocal closures

(e.g., closures that depend on the coordinate position or on
derivatives of the radiation field) because they fundamen-
tally change the nature of the transport equation. For
instance, if the pressure tensor is evaluated based on the
gradient of the flux factor, the flux of the neutrino flux
would then depend on the second derivative of itself,
adding an elliptic character to an otherwise hyperbolic
equation.
It may yet be possible to construct a closure specific to

neutron star mergers using, for example, a neural network
and exact transport data from a large number of snapshots
of many models evolved using exact methods like
Monte Carlo [55,84], discrete ordinates [36], or character-
istics [52,54]. In addition, it is possible to extend moment
methods to dynamically evolve the pressure tensor as well
(e.g., Refs. [70,85]), requiring a closure for the rank-3 and
rank-4 moments. However, the problem certainly appears
to be complex enough to warrant using full transport
methods directly.
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APPENDIX: CODE TESTS

1. Schwarzschild geodesics

Geodesics in a Schwarzschild spacetime have simple
analytic solutions, making them ideal tests for the accuracy
of the general-relativistic particle integrator. We construct a
coarse spacetime in spherical symmetry with an inner radius
of rsch and grid zones spaced as rout;i ¼ 1.51=prsch. We
perform the test with three resolutions, using p ¼ 1, 2, 4. In
all of the tests, neutrinos start at the photon sphere
(r ¼ 1.5rsch), where a photon can orbit the black hole
circularly. We try to expose the code to challenging tests
that expose the limitations of a spacetime represented on a
discrete grid.
In Fig. 12, we show trajectories of neutrinos moving

azimuthally around the black hole, where we expect the
radius (top panel) and the kt component of the momentum
(bottom panel) to remain constant as the photon orbits the
black hole (dashed lines). Since the starting radius of
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1.5rsch is at the interface between two grid cells and the
values of the metric are interpolated from the grid centers,
the metric values are rather approximate elsewhere in the
grid cell. The derivatives of the metric, however, are
constant between two grid zone centers and are most
accurate at the zone interfaces. The coarseness of the grid
clearly shows, as after a quarter of an orbit the neutrino has
diverged from the Schwarzschild solution by 0.02rsch. As
we double (green curve) and quadruple (red curve) the grid
resolution while keeping the neutrino step size constant,
the errors reduce, showing second-order convergence.
However, all three of these cases show similar errors in
the conservation of the neutrino’s momentum (bottom
panel). If we shorten the neutrino step by a factor of 2
(blue curve) or 4 (yellow curve), the conserved momentum
is better conserved, though it shows only first-order
convergence.
Figure 13 shows deviations from an analytic solution for

the trajectory of a radially moving neutrino starting at the
same radius of 1.5rsch. The coordinate time at which the
neutrino reaches radius r is given by

ctðrÞ ¼
�
rþ rsch ln

�
r
rsch

− 1

��
− rschð1.5þ lnð0.5ÞÞ:

ðA1Þ

The colors of the curve represent calculations with the same
parameters as in Fig. 13. In addition, we plot the analytical
time required for a neutrino to get to a grid cell boundary

(plotted as gray vertical lines) as a proxy to show the size of
individual grid cells at the base resolution. For the neutrino
traversing through the base resolution grid (black curve),
sizable errors build up, but we once again see second-order
convergence as we double (green) and quadruple (red) the
grid resolution, keeping the neutrino step size fixed. The
conserved energy (bottom panel) shows a steady accumu-
lation of error until the neutrino crosses the bin center, at
which point the metric derivatives change discontinuously,
resulting in a discontinuous jump in the error of the
solution.

2. Neutrino oven

Now that the errors associated with motion in a discrete
spacetime are established, we move on to a full equilibrium
test of the transport. We set up a spherical spacetime
generated by a shell of mass at r ¼ 1.5rs. That is, our
metric is

α2 ¼ 1 −
rs

maxðr; 1.5rsÞ
;

X ¼ 1

α
: ðA2Þ

We know that the equilibrium temperature should vary with
T ∝ 1=

ffiffiffiffiffi
gtt

p
[89]. For concreteness, we choose rs ¼ 1.5 km

and a core temperature (inside 1.5rs) of 10 MeV. We set the
fluid temperature outside of the core according to T ¼
Tcoreαcore=α and check that the radiation field, absorbed

FIG. 12. Neutrino orbit test. A neutrino starts at a radius of
1.5rsch, moving tangentially to the central black hole. The top
panel shows the neutrino radius, and the bottom panel shows the
conserved energy (time component of kμ), both of which are
expected to remain constant (dashed lines). The curve color
delineates the grid resolution and particle step size.

FIG. 13. Neutrino radial trajectory test. A neutrino starts at a
radius of 1.5rsch moving radially outward. The top panel shows
the deviation of the neutrino radius from the analytic solution,
and the bottom panel shows the violation of the neutrino
conserved energy. The colors of the curves differentiate the grid
resolution and particle step size. The gray vertical lines show the
time required for a neutrino to reach each grid cell boundary in
the base-resolution grid based on the analytic solution.
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energy, and absorbed lepton number match a blackbody
distribution, the emitted energy, and the emitted lepton
number, respectively. We set a gray scattering opacity
of κs ¼ 1 cm−1 and a gray absorption opacity of κa ¼
10−10 cm−1. This ensures that each grid zone is very
optically deep to scattering, forcing us to use the new
random walk Monte Carlo implementation. The low
absorption opacity, however, causes the effective absorp-
tion optical depth of a grid zone to be κeffΔr ¼ffiffiffiffiffiffiffiffiffi
κaκs

p ð104 cmÞ ¼ 0.1. If the absorption optical depth is
too large, neutrinos never actually leave their cell of origin,
and the intercell transport properties of the random walk
algorithm are not tested. We use an evenly spaced energy
grid of 300 bins from 0 to 150 MeV. In this test, we emit 10
packets from each radius-energy bin for a total of 147 000
packets. We roulette the packets if their weight decreases to
10−3 of their original weight. Finally, the step size, and
hence the random walk sphere size, is set to always
be 0.4Δr.
Despite being a simple one-dimensional test, the calcu-

lation is actually still rather expensive due to the fact that
the neutrinos scatter many times, and random walk events
are significantly more expensive than regular scattering
events, since each step requires three separate move/
interpolate events (see Sec. II E).
The results from simulating match the theoretical pre-

dictions well. The top panel of Fig. 14 shows the neutrino
energy density in each grid cell (dots) and the theoretical
expectation (green curve). At small radii, the noise is much
larger, since fewer packets pass through the cells due to an
equal number of packets being created in each grid zone,
and the noise decreases with particle count.

We found that in this test, it is particularly important to
have a second-order integration of the neutrino momentum.
Using a scheme that was second order in the neutrino
position but first order in the neutrino momentum resulted
in a over/undershoot at the cusp.
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