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A dark matter overdensity around a black hole may significantly alter the dynamics of the black hole’s
merger with another compact object. We consider here intermediate mass-ratio inspirals of stellar-mass
compact objects with intermediate-mass black holes “dressed” with dark matter. We first demonstrate that
previous estimates based on a fixed dark-matter dress are unphysical for a range of binaries and dark-matter
distributions by showing that the total energy dissipated by the compact object through dynamical friction, as
it inspirals through the dense dark matter environment toward the black hole, is larger than the gravitational
binding energy of the dark-matter dress itself. We then introduce a new formalism that allows us to self-
consistently follow the evolution of the dark-matter dress due to its gravitational interaction with the binary.
We show that the dephasing of the gravitational waveform induced by dark matter is smaller than previously
thought, but is still potentially detectable with the LISA space interferometer. The gravitational waves from
such binaries could provide powerful diagnostics of the particle nature of dark matter.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) [1–4]
has opened up new opportunities for fundamental physics.
Present and upcoming experiments such as LIGO/Virgo
[5,6], KAGRA [7], LISA [8], Einstein Telescope [9] and
pulsar timing arrays [10–13] will soon shed light on a
variety of problems at the intersection between gravita-
tional waves, black holes and fundamental physics [14],
and, in particular, on the distribution and nature of dark
matter (DM) [15,16].
Here, we focus on the prospects for detecting and

characterizing cold dark-matter overdensities around black
holes (BHs) using gravitational waves. If dark matter is
made of cold collisionless particles, the adiabatic growth of
black holes may induce the formation of large overdensities
(often referred to as “spikes”) around supermassive [17–19]
and intermediate-mass [20–22] astrophysical black holes,
as well as around primordial black holes [23–26]. It is
in principle possible to detect and characterize DM

overdensities around black holes by measuring their impact
on the gravitational waveform as BHs merge with other
compact objects [27–35].
In this paper, we revise previous calculations of the

orbital evolution of and gravitational waveforms from
intermediate mass-ratio inspirals (IMRIs) around “dressed”
black holes, as illustrated in Fig. 1. In such a system, a
stellar-mass compact object (black hole or neutron star)
inspirals toward an intermediate-mass black hole (IMBH)
with mass 103–105 M⊙. The presence of DM exerts a
dynamical friction force [36–38] on the compact object,
causing it to inspiral more rapidly. The resulting gravita-
tional waveform accumulates phase at a different rate
compared to the vacuum case (in the absence of DM).
This “dephasing” effect should be detectable with future
GW observatories, but accurate waveform modeling is
required to extract the signal and perform parameter
estimation [39–41].
We begin by exploring energy conservation in these

systems, and we show that the work done by dynamical
friction is typically comparable to (and in some cases much
larger than) the total binding energy available in the DM
spike. This means that previous calculations of the dephas-
ing signal, which assumed a non-evolving dark-matter
density profile, do not conserve energy and therefore
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substantially overestimate the size of the effect. In order to
develop a self-consistent description of such systems, we
first present N-body simulations which allow us to accu-
rately model dynamical friction and the scattering of DM
particles with the compact object. In particular, this allows
us to understand where the energy lost by the compact
object is injected in the DM cloud. We then devise a
prescription for evolving the phase space distribution of
DM as energy is injected during the inspiral.
We self-consistently follow the evolution of the binary

and theDMspike, andwe robustly estimate the dephasing of
the gravitational waveform with respect to both the vacuum
inspiral, and to the unphysical case of a static DM halo. We
demonstrate that the dephasing of the gravitational wave-
form induced by dark matter is smaller than previously
assumed, but is still potentially detectable by the LISA
mission, which will have a peak sensitivity at frequencies
between 10−3 and 10−2 Hz [42]. It could thus provide a
powerful diagnostic of the particle nature of dark matter.
The paper is organized as follows: in Sec. II, we

demonstrate that the standard approach to the dephasing
signal induced by DMminispikes is likely to violate energy
conservation; in Sec. III, we present N-body simulations to
validate our model for dynamical friction; in Sec. IV, we
present our prescription for evolving the phase space
distribution of DM; in Sec. V, we use this prescription
to follow the evolution of the binary and the DM spike self-
consistently; finally, in Sec. VI, we discuss some caveats of
this work and possible implications for the detection of
such a DM spike in intermediate mass-ratio inspirals in the
future. We conclude in Sec. VII, and we have several
supplementary results in four Appendices.

II. ENERGY BALANCE CONSIDERATIONS
FOR STATIC DARK MATTER HALOS

In this section, we describe the evolution of a system
composed of a central IMBH with a surrounding DM spike
and a lighter compact object (e.g., a neutron star) orbiting
around the IMBH and through its DM cloud. This is
illustrated in Fig. 1. We model the evolution of this system
using Newtonian gravity, and we include dissipative effects
arising from dynamical friction and gravitational radiation.
Following Eda et al. [27,28], we neglect any feedback on the
DMhalo in this section, andwe consider only circular orbits.

A. Notation for IMBH system and DM distribution

We first define several notions of masses for the binary
and the DM distribution. We will denote the mass of the
IMBH by m1 and the mass of the small compact object by
m2. Other definitions of masses we will need are M ¼
m1 þm2, the total mass; q ¼ m2=m1 ≤ 1, the mass ratio;
μ ¼ m1m2=M, the reduced mass; andMc ¼ μ3=5M2=5, the
chirp mass.
We assume that the IMBH is surrounded by a DM spike,

formed as the adiabatic growth of the black hole enhances
the central density of the host halo [18,20,43–45]. The
dark-matter distribution will be given by

ρDMðrÞ ¼
�
ρspðrspr Þγsp rin ≤ r ≤ rsp
0. r < rin

; ð2:1Þ

where r is the distance from the center of the IMBH. We
define the inner radius of the spike to be rin ¼ 4Gm1=c2

following the results in [43]. We will not treat the DM
distribution at distances r > rsp. We also will not treat rsp as
a free parameter, but as determined by m1, ρsp and γsp via

rsp ≈
�ð3 − γspÞ0.23−γspm1

2πρsp

�
1=3

: ð2:2Þ

This assumes that rsp ≈ 0.2rh, where rh is defined from

Z
rh

rin

ρDMðrÞ4πr2dr ¼ 2m1; ð2:3Þ

as in [28]. We can now compute the DM mass within a
distance r. The result is

mencðrÞ ¼
�
mDMðrÞ −mDMðrinÞ rin ≤ r ≤ rsp
0. r < rin

; ð2:4Þ

where

Compact 
Object

 Intermediate Mass
Black Hole

Dark Matter 'spike'

FIG. 1. Intermediate mass-ratio inspiral (IMRI) system with a
dark matter “spike.” A central intermediate-mass black hole
(IMBH) of mass m1 is orbited by a lighter compact object
m2 < m1 at an orbital radius r2. The IMBH is also surrounded by
a “spike” of dark matter with density profile ρDMðrÞ.
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mDMðrÞ ¼
4πρspr

γsp
sp

3 − γsp
r3−γsp : ð2:5Þ

With this notation set, we can now more easily discuss
issues related to energy balance.

B. Gravitational potential energy
of the DM distribution

To compute the total potential energy in the distribution
of DM, we determine the amount of work required to
assemble the distribution of DM by adding successive
spherical shells of DM of increasing radius r, until the final
distribution ρDMðrÞ is constructed around the BH. We
denote the potential energy of each shell of DM of radius r
by dUshðrÞ. It is given by

dUshðrÞ ¼ −
G½m1 þmencðrÞ�

r
½4πr2ρDMðrÞdr�: ð2:6Þ

After some algebra, we can instead write it as

dUshðrÞ ¼ −
G½m1 þmencðrÞ�mDMðrÞð3 − γspÞdr

r2
: ð2:7Þ

Integrating Eq. (2.7) between the inner radius rin and a
given radius r, we arrive at the total potential energy in
the distribution of DM between the radii rin and r. When
γsp ≠ 2 or γsp ≠ 5=2, the result is

ΔUDMðrÞ ¼ −
GmDMðrÞð3 − γspÞ

r

×

�
m1 −mDMðrinÞ

2 − γsp
þ mDMðrÞ
5 − 2γsp

�
−Uin; ð2:8Þ

where the constant Uin is given by

Uin ¼ −
GmDMðrinÞð3 − γspÞ

rinð2 − γspÞ
�
m1 −

mDMðrinÞð3 − γspÞ
5 − 2γsp

�
:

ð2:9Þ

The total potential energy of the DM spike can be obtained
by evaluating Eq. (2.8) at r ¼ rsp.
Note that we are ignoring the effect of the gravitational

potential of the small compact object on the binding energy.
This will generally lead to relative errors of order q, which
will be small for the systems we are considering.

C. Orbital energy and energy dissipation
through GWs and DF

Next, we will summarize how we compute the orbital
energy and the dissipation of orbital energy through
gravitational waves and dynamical friction. Our formalism
is similar to that presented in Eda et al. [27,28]. Since the

system we are considering is characterized by a small mass
ratio between the IMBH and the orbiting compact object
(q ≪ 1), we will adopt the approximation μ ≃m2 (the
errors in this approximation are of order q). This assumes
that the barycenter position is equal to the IMBH position.
Similarly, assuming M ¼ m1 leads to errors of order q. We
discuss the impact of this approximation in more detail in
Sec. VI. We will also work with circular orbits, and we will
ignore the correction to the Keplerian frequency arising
from the distribution of DM (which will be a percent-level
effect for most of the binaries we study in this paper). In this
approximation, the orbital energy reduces to the familiar
expression

Eorb ¼ −
Gm1m2

2r2
: ð2:10Þ

Since the lighter object moves within the DM minispike
and experiences gravitational interactions with the DM
particles, it loses energy via dynamical friction (DF)
[36–38]. In addition, the orbital energy changes through
the emission of gravitational waves. The timescale over
which energy is dissipated through these processes is slow
compared to the orbital timescale for most of the evolution
of the system. Thus, we will treat the dissipation as an
adiabatic process slowly moving the compact object on a
given circular orbit to another circular orbit with a slightly
smaller radius (i.e., a quasicircular inspiral). In this process,
energy balance is satisfied, in the sense that

dEorb

dt
¼ −

dEGW

dt
−
dEDF

dt
: ð2:11Þ

Gravitational-wave energy losses (for circular orbits in the
quadrupole approximation) are given by

dEGW

dt
¼ 32G4Mðm1m2Þ2

5ðcr2Þ5
: ð2:12Þ

Dynamical friction losses are given by

dEDF

dt
¼ 4πðGm2Þ2ρDMðr2ÞξðvÞv−1 logΛ: ð2:13Þ

The term ξðvÞ denotes the fraction of DM particles moving
more slowly than the orbital speed.1

In Eq. (2.13), logΛ is the usual notation for the Coulomb
logarithm, defined in general as [[46] Appendix L]:

1This term has typically been neglected in previous studies of
DM dephasing [27,28]. For the isotropic spike profile with γsp ¼
7=3 around an IMBH of mass 103 M⊙, we find ξðvÞ ≈ 0.58,
independent of radius. We set ξ ¼ 1 in the analytic analysis of
this section, though as we will see in Sec. III, it will be necessary
to include it later to obtain an accurate description of the
dynamics.
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Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2max þ b290
b2min þ b290

s
; ð2:14Þ

where bmin and bmax are the minimum and maximum
impact parameters for which the two-body encounters that
contribute to the phenomenon can be considered effective.
Moreover, b90 is the impact parameter which produces a
90° deflection of the DM particle:

b90 ¼
Gm2

v20
≈
m2

m1

r2 ¼ qr2; ð2:15Þ

with v0 the orbital speed of the compact object. We fix
Λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
, as we discuss in more detail in Sec. III.

It will be convenient to write these losses as a function of
r2 for circular orbits by using the relationship that v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r2

p
. Using the chain rule and Eqs. (2.10), (2.12), and

(2.13), we can also write an explicit expression for the time
evolution of the small compact object’s separation:

_r2 ¼ −
64G3Mm1m2

5c5ðr2Þ3
−
8πG1=2m2ρspξ logΛr

γsp
spffiffiffiffiffi

M
p

m1r
γsp−5=2
2

: ð2:16Þ

As the small compact object inspirals between circular
orbits with two radii ri and rf (with ri > rf), some fraction
of the orbital energy will be carried away by GWs, and
some fraction will be dissipated through dynamical friction.
We write this as

ΔEorbit ¼ ΔEDF þ ΔEGW: ð2:17Þ

While the energy dissipated by GWemission is expected to
have a negligible effect on the distribution of DM, the
energy dissipated through DF will go directly into increas-
ing the energy of the particles in the DM distribution.
Because the DM spike has a finite amount of potential

energy, ΔUDMðrspÞ, it is important to check that the
energy dissipated through dynamical friction, ΔEDF, is
not comparable to (or in excess of) ΔUDMðrspÞ. If they are
comparable, then this would imply that enough energy is
dissipated through DF to alter significantly the distribution
of DM (and perhaps even to unbind all the DM from the
gravitational potential of the IMBH). Even when the ratio
ΔEDF=ΔUDMðrspÞ is comparable to but less than one, then
it is generally not a good approximation that the distribu-
tion of DM would remain invariant during the inspiral of
the small compact object.
Thus, it is important to compute the total energy

dissipated through dynamical friction ΔEDF during the
inspiral. This can be found by integrating Eq. (2.13)
between two given times, or more conveniently, integrating
the following expression between two radii, ri and rf
describing two circular orbits:

ΔEDFðri; rfÞ ¼ −
Z

rf

ri

dEDF

dt

�
dr2
dt

�
−1
dr2: ð2:18Þ

In Eq. (2.18), the radial evolution equation is defined in
(2.16), and the dynamical friction energy loss is defined in
(2.13). After some algebra, the integral in (2.18) can be
expressed as

ΔEDF ¼ −
Gm1m2

2

Z
rf

ri

dr2
ðr2Þ2ð1þ crr−11=2þγspÞ ; ð2:19Þ

where

cr ¼
8G5=2M3=2ðm1Þ2
5πc5ρspr

γsp
sp ξ logΛ

ð2:20Þ

and where for simplicity, in this section, we assume ξ ¼ 1.
The integral (2.19) can be evaluated in terms of hyper-
geometric functions as follows:

ΔEDF ¼
�
Gm1m2

2r2

×2F1

�
1;

2

11 − 2γsp
;
13 − 2γsp
11 − 2γsp

;−crr
−11=2þγsp
2

��
ri

rf

:

ð2:21Þ

This expression has an interesting form: because the hyper-
geometric function is a number in the range (0,1) for positive
r2, then (2.21) represents the difference between two
fractions of the energy of two circular orbits at two radii.
Thus, with Eqs. (2.8) and (2.21), we can compute ratios

of energy dissipated by dynamical friction to binding
energy in the DM distribution surrounding the IMBH.

D. Ratio of energy dissipated to binding energy

In Eda et al., the system investigated in greatest detail is a
binary in which the IMBH has mass m1 ¼ 103 M⊙ and
the small compact object has mass m2 ¼ 1 M⊙. The DM
spike is characterized by a density normalization ρsp ¼
226 M⊙=pc3 and a power law γsp ¼ 7=3 (the correspond-
ing value of rsp is 0.54 pc). The slope γsp ¼ 7=3 is expected
to develop in the center of a halo with an initial profile
scaling as ρ ∼ r−1, such as a Navarro-Frenk-White (NFW)
profile [18]. Eda et al. observe that during the last five years
as the small compact object inspirals toward the IMBH
before merging, the effect of dynamical friction can
significantly change the rate of inspiral. The large change
in the inspiral occurs because a significant amount of
energy is dissipated through dynamical friction (and thus
must be balanced by increasing the kinetic energy of the
DM particles in the halo).
In Fig. 2, we define the energy dissipated between a

separation r2 and rISCO by
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ΔEDFðr2Þ≡ ΔEDFðr2; rISCOÞ; ð2:22Þ

and we plot the ratio of this energy to the total binding
energy of the DM spike, ΔUDMðrspÞ as a function of
separation r2. The three solid curves in red, orange, and
blue correspond to binaries with mass ratios q ¼ 10−3,
10−4, and 10−5. In all three cases, the following three
parameters are the same: ρsp ¼ 226 M⊙=pc3, γsp ¼ 7=3,
andm2 ¼ M⊙. The vertical dashed lines show the positions
of the ISCO radius for the three cases.
The figure highlights a few important points. First, for all

three mass ratios shown, the quantity EDFðr2Þ=ΔUDMðrspÞ
grows rapidly with r2 out to a few hundred ISCO radii,
and then it plateaus to a nearly constant value at larger
separations. Because the ratio EDFðr2Þ=ΔUDMðrspÞ is
nearly constant over a large range of radii, we will use
the number EDFðrspÞ=ΔUDMðrspÞ as a figure of reference
for the characteristic fraction of energy dissipated to the
binding energy of the halo. Second, these curves show that
for more equal mass ratios, the mismatch between the
amount of binding energy in the halo and the amount of
energy dissipated through dynamical friction becomes
worse.2 Using EDFðr2Þ=ΔUDMðrspÞ ≈ 1 as a rough figure
of merit, the 10−3 mass ratio system poorly preserves
energy balance, the 10−4 system roughly satisfies energy
balance, and the 10−5 system does not run into issues with
energy balance.

Figure 2 shows just one specific DM spike, but there
is nothing particularly special about the values ρsp ¼
226 M⊙=pc3 and γsp ¼ 7=3 that were selected. To illustrate
how the results in Fig. 2 change for different values of ρsp and
γsp, we show in Fig. 3 the same ratio EDFðrspÞ=ΔUDMðrspÞ
for a range of DMdensities ρsp and power laws γsp. The three
images correspond to the same three mass ratios shown in
Fig. 2. From left to right, they are q ¼ 10−3, 10−4, and 10−5.
There are some common trends in all three panels: more
dense (larger ρsp) and steeper (larger γsp) spikes tend to have
smaller ratios ΔEDFðrspÞ=ΔUDMðrspÞ (i.e., satisfy energy
balance better). Even over this larger parameter space of DM
spikes, the binary with a 10−3 mass ratio does not have a
region where EDFðrspÞ=ΔUDMðrspÞ < 1. The 10−5 mass-
ratio binary has EDFðrspÞ=ΔUDMðrspÞ < 1 for most spike
parameters, while the 10−4 mass ratio binary has the most
variation about EDFðrspÞ=ΔUDMðrspÞ ≈ 1.
Thus, in many (though not all) of the systems considered

by Eda et al., there is more energy dissipation through
dynamical friction than binding energy in the DM distri-
bution to account for this dissipation. It will therefore be
necessary to modify the distribution of DM in response to
the energy input into the DM spike through dynamical
friction.
Before implementing such a prescription, it would be of

interest to know whether there is enough binding energy in
the DM distribution to have a significant impact on the
evolution of the binary. We introduce a simple effective
model in Appendix A, in which dynamical friction is
assumed to unbind all particles in the DM spike at a given
radius. This model suggests that there is indeed sufficient
binding energy to have an important effect. Thus, we next
turn to a more detailed description of how we implement
this feedback on the DM distribution.

III. N-BODY SIMULATIONS

In order to build a semianalytic prescription for feedback
in the DM Wespike, we need to study in more detail the
physics of dynamical friction in IMRI systems. In particu-
lar, as we will see in Sec. IV, we need to know the minimum
and maximum impact parameter, bmin and bmax to include
in our calculation of the dynamical friction effect. It is also
useful to verify that the standard Chandrasekhar prescrip-
tion for dynamical friction (which is derived for uniform
density distributions) applies also in our setup.
For concreteness, we fix the minimum impact parameter

to be bmin ¼ 10 km, roughly the radius of a neutron star
[47]. In principle, bmin could be smaller (for example, if the
orbiting compact object is a black hole rather than a neutron
star). However, we do not need to worry about the precise
value; these OðkmÞ scales are much smaller than any other
length scales in the problem and can effectively be set
to zero.

FIG. 2. Ratio of energy radiated through dynamical friction to
binding energy of the DM spike versus separation. The solid
curves (red, orange, and blue) correspond to three different mass
ratios for three binaries (q ¼ 10−3, 10−4, and 10−5, respectively).
The dashed vertical lines correspond to the ISCO radii for the
three binaries. Here, we assume ρsp ¼ 226 M⊙=pc3 and γsp ¼
7=3 for the DM spike.

2BecausemDMðrÞ satisfies the propertymDMðrspÞ ∼m1, then it
is not too difficult to see that the ratioΔEDFðrspÞ=ΔUDMðrspÞwill
scale linearly with the mass ratio.
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Instead, fixing the value of the maximum impact
parameter bmax is crucial, as it determines which DM
particles in the spike interact gravitationally with the
orbiting compact object and therefore governs how energy
is injected into the spike. Fixing bmax can also be seen as
fixing the Coulomb logarithm logΛ, because for bmin → 0,
Eq. (2.14) becomes:

logΛ ≈ log

�
bmax

b90

�
: ð3:1Þ

For the systems we consider here, a range of values have
been previously assumed for the Coulomb logarithm.
Reference [34] set bmax equal to the orbital radius, which
would be appropriate for the motion of a compact object
through a diffuse host such as a galaxy [[46] p. 664]. For a
mass ratio of q ¼ 10−4 and an orbital radius of 20Gm1=c2,
this gives logΛ ∼ 3, the value used by Eda et al. [27,28].
For a compact object orbiting around a central point mass,
we can combine Eqs. (3.1) and (2.15), to show that logΛ ¼
logð1=qÞ under these assumptions.
However, the dynamics of DM particles at small radii

will be dominated by the central IMBH, so it seems
implausible that these particles can be deflected by the
smaller orbiting compact object. A more plausible
approach then is to fix bmax the distance at which
perturbations from the small compact object can become
relevant. The gravitational force from the central BH and
from the compact object will be equal at a distance:

bmax ≈
ffiffiffiffiffiffi
m2

m1

r
r2; ð3:2Þ

from the compact object. The corresponding Coulomb
logarithm would then be

logΛ ¼ log

ffiffiffi
1

q

s
¼ log

ffiffiffiffiffiffi
m1

m2

r
: ð3:3Þ

In order to determine the value of the maximum impact
parameter, we perform a number of simulations using the

publicly available GADGET-2 code [48,49] as a pure N-body
solver. For each simulation, we initialize a binary on a
circular orbit with mass ratio q ¼ 10−3 − 10−2, as well as a
DM spike in dynamical equilibrium consisting of N ¼ 215

particles. We evolve the system forward several hundred
orbits and follow the evolution of the orbital separation.
This allows us to calibrate the dynamical friction force and
therefore determine logΛ and bmax. In all simulations, we
use as a benchmark a DM spike with ρsp ¼ 226 M⊙=pc3

and a slope of γsp ¼ 7=3. Further details about the N-body
simulations are given in Appendix C.
Figure 4 shows the change in orbital separation of the

binary for a mass ratio q ¼ 10−2 and initial separation
r2 ¼ 3 × 10−8 pc. Each curve shows the simulation result
for a different random realization of the DM spike. These
simulations cover approximately 3 days in physical time

FIG. 3. Ratio of energy radiated through dynamical friction to binding energy of the DM spike for a range of DM spikes. The three
panels from left to right are the mass ratios q ¼ 10−3, 10−4, and 10−5. The implications of this figure are discussed in more detail in
Sec. II D.

FIG. 4. Change in binary separation. We show the results
of 5 N-body simulations which are identical except for having
different initial random realizations of the DM halo. The black
dashed line shows the expected change in binary separation r2,
assuming dynamical friction losses as in Eq. (2.13) and assuming
Λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
, while the black dot-dashed line shows the

expectation for Λ ¼ m1=m2.
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and take roughly the same length of time to simulate on
16 cores. Such simulations are therefore not suitable to
follow the full evolution of the binary over many years, but
do allow us to measure the size of the dynamical friction
losses from the change in orbital energy:

dEDF

dt
≈
Gm1m2

2ðr2Þ2
Δr2
Δt

: ð3:4Þ

For each binary configuration, we run at least 5 simula-
tions, each for at least 100 orbits. The rate of dynamical
friction energy loss in each simulation is estimated using
Eq. (3.4). This allows us to estimate the mean energy loss
rate, as well as the error associated with different random
realizations of the DM spike.
Figure 5 shows the fractional energy-loss rate due to

dynamical friction for binaries with central BH mass
m1 ¼ 100 M⊙ (top panel), m1 ¼ 300 M⊙ (middle panel)
andm1 ¼ 1000 M⊙ (bottom panel). The dotted line in each
panel shows the physical energy loss rate assuming
logΛ ¼ 1=

ffiffiffi
q

p
. For the systems we are studying, we can

typically set bmin → 0, as discussed above. However, the
simulations have a different minimum impact parameter
due to their finite softening lengths lsoft. The dashed lines
show the energy loss rate which we expect to observe in the
simulations, taking into account this finite softening
lengths. The data points are well fit by bmin ¼ 1

2
lsoft. As

we move toward smaller separations, the maximum impact
parameter shrinks, as the gravitational influence of the
central BH increasingly dominates. At some point, the
maximum impact parameter becomes comparable to the
softening length of the simulations and the dynamical
friction effect is no longer observable, shown as a sharp
drop-off in the dashed curve.3

We see that in each panel of Fig. 5, the standard
Chandrasekhar prescription for dynamical friction, for
which we use Λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
, provides a good fit to the

simulations. As we increase m1, the uncertainties on the
energy loss rate increase, as the central density of the spike
grows. This in turn means that for a fixed number of DM
pseudoparticles, the mass per pseudoparticle grows, giving
a larger discretization noise in the simulations. Even so, the
mean dynamical friction effect estimated from the simu-
lations matches Eq. (2.13) well. This good match requires
us to include the factor ξ, which accounts for the fraction of
slow-moving DM particles and which was neglected in
previous studies.
In Fig. 6, we take the data points for r2 ¼ 3 × 10−8 pc in

each of the panels of Fig. 5 and plot them together. We also

plot the expected size of the dynamical friction loss for
different values of the Coulomb term Λ. The best fit is
provided by Λ ¼ ffiffiffiffiffiffiffiffi

1=q
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
, which was motivated

by limiting the scattering to the gravitational sphere of
influence of the orbiting compact object. We therefore use
this value throughout the remainder of this paper, along
with the corresponding value of bmax:

bmax ¼ b90

ffiffiffiffiffiffi
m1

m2

r
¼

ffiffiffiffiffiffi
m2

m1

r
r2: ð3:5Þ

FIG. 5. Dynamical friction energy loss estimates from N-body
simulations. The orbiting compact object has a mass m2 ¼ 1 M⊙
and we show results for three masses of the central black hole:
100 M⊙ (top), 300 M⊙ (middle) and 1000 M⊙ (bottom). The
diagonal dotted line shows the predicted energy loss from
Eq. (2.13), assuming Λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
. The curved dashed line

shows the energy loss accounting for the finite softening length.
We also highlight in each panel the innermost stable circular orbit
risco of the central IMBH, as well as the softening length lsoft of
the simulations.

3Using the same logic, the maximum impact parameter is
smaller form1 ¼ 1000 M⊙ than for the less massive central black
holes. In the case of m1 ¼ 1000 M⊙, we therefore use a slightly
smaller softening length in order to preserve the dynamical
friction effect down to smaller orbital separations.
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With these results, we can also verify the standard
Chandrasekhar prescription for dynamical friction, which
relies on the assumption of a uniform background distri-
bution of scattering particles. Figure 5 shows already that
the dynamical friction correctly traces the DM density as a
function of orbital radius, despite the fact that the DM
distribution is not uniform. From Eq. (3.5), bmax=r2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m1

p
, meaning that for a mass ratio of q ¼ 10−3, bmax

is some 30 times smaller than the binary separation. The
dynamical friction process therefore takes place only over a
small region close to the orbiting compact object. This
implies that it is consistent to model the dynamical friction
force for nonuniform systems using the local density, and it
further implies that the dephasing effect could be used to
accurately trace out the density profile as a function of
radius.

IV. HALO FEEDBACK

We now describe a prescription to incorporate feedback
in the DM spike, which we then use in Sec. V to follow the
evolution of the binary self-consistently. This prescription
is semi-analytic and allows us to track the phase space
distribution of the DM spike as energy is injected by the
inspiraling compact object. We begin by discussing the key
assumptions behind our approach.
(a) We assume that the orbital elements evolve on a

timescale that is long compared to the orbital period.
This assumption is justified over most of the inspiral,
as discussed below Eq. (2.10), and allows us to
consider the rate of energy being injected into the
halo as constant over a small number of orbits. Note
that we will not attempt to resolve changes to the
distribution of DM on timescales shorter than a single

orbit (because of the varying orbital phase of the
compact object).

(b) We assume that the equilibration timescale for the DM
halo is much shorter than the timescale for the secular
evolution of the system. When DM particles in the
halo receive a “kick” from the compact object, they
move to a new orbit with a larger semimajor axis. It
will thus take a few orbital periods before the
distribution of these particles reflects the new equi-
librium density profile. However, as discussed above,
the evolution of the orbital elements is slow compared
to these timescales. This allows us to compute the new
equilibrium density profile of the DM “instantane-
ously” after energy is injected.

(c) We assume that the DM halo is spherically symmetric
and isotropic, and remains so throughout the evolution
of the system. This allows for a simpler treatment of
the halo, as we need only keep track of the evolution of
the energy of the DM particles and not their angular
momentum. We discuss this assumption in more detail
in Sec. VI.

With these assumptions, we can describe the DM in the
spike at all times with an equilibrium phase space dis-
tribution function f ¼ mDMdN=d3rd3v. If the distribution
of DM is spherically symmetric and isotropic, then f ¼
fðEÞ and depends only on the relative energy per unit mass:

Eðr; vÞ ¼ ΨðrÞ − 1

2
v2: ð4:1Þ

Here,ΨðrÞ ¼ Φ0 −ΦðrÞ is the relative potential, withΦðrÞ
the standard gravitational potential and Φ0 a reference
potential. Gravitationally bound particles then correspond
to those with E > 0. The orbital separations we are
interested in lie well within the sphere of influence of
the central IMBH. We therefore neglect the gravitational
potential due to the DM halo and write ΨðrÞ ¼ Gm1=r
(see, e.g., Appendix II of Ref. [50] for a numerical
comparison). This also allows us to assume that the DM
halo evolves in a fixed gravitational potential, rather than
having to update the potential as the DM halo is perturbed.
For a given density profile ρðrÞ, the distribution function

fðEÞ can be recovered using the Eddington inversion
procedure [[46] p. 290]. The initial equilibrium distribution
function of the power-law spike is given by [50]:

fiðEÞ ¼
γspðγsp − 1Þ
ð2πÞ3=2 ρsp

�
rsp
Gm1

�
γsp

×
Γðγsp − 1Þ
Γðγsp − 1

2
Þ E

γsp−3=2; ð4:2Þ

where Γ is the complete Gamma function. For a given
distribution function, the density can be recovered as:

FIG. 6. Dynamical friction energy loss as a function of IMBH
mass. The data point for each of the three masses is the same as
the right-most data point in the corresponding panel of Fig. 5.
Lines correspond to the predicted rates of energy loss for three
different values of the Coulomb factor Λ, where q ¼ m2=m1.
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ρðrÞ ¼ 4π

Z
vmaxðrÞ

0

v2f

�
ΨðrÞ − 1

2
v2
�
dv; ð4:3Þ

where vmaxðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðrÞp

is the escape velocity at radius r.
Thus, if we can study the evolution of the distribution
function f, then we can self-consistently evolve the DM
halo along with the binary and reconstruct the density
profile, which is required to calculate the dynamical friction
force. A similar approach to the evolution of DM around
BHs was applied in Refs. [20,51].
The number of particles with energies E → E þ dE is

NðEÞdE ¼ 1

mDM
gðEÞfðEÞdE: ð4:4Þ

The density of states gðEÞ denotes the volume of phase
space per unit energy [46] [p. 292]. In the potential of the
central BH, this can be calculated as:

gðEÞ ¼
Z

δðE − Eðr; vÞÞd3rd3v

¼ 16π2
Z

rE

0

drr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ − EÞ

p
¼

ffiffiffi
2

p
π3G3m1

3E−5=2; ð4:5Þ
where rE ¼ Gm1=E is the maximum radius for a particle of
energy E.4

Let us write PEðΔEÞ as the probability (over a single
orbit) that a particle with energy E scatters with the compact
object and gains an energy ΔE. Then, the change in the
number of particles at energy E over a single orbit can be
written as:

ΔNðEÞ ¼ −NðEÞ
Z

PEðΔEÞdΔE

þ
Z

NðE − ΔEÞPE−ΔEðΔEÞdΔE; ð4:6Þ

where the integration is over the range ½ΔEðbmaxÞ;ΔEðbminÞ�.
The first term in Eq. (4.6) describes those particles initially at
energy E which scatter to another energy, while the second
term corresponds to those particles which scatter from
energies E − ΔE to energy E.
We will describe the evolution of the system in terms of

the distribution function fðEÞ¼mDMNðEÞ=gðEÞ. Assuming
that the evolution of the system is much slower than the
orbital frequency, we can write Δf ≈ Torb∂f=∂t, with
Torb¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2Þ3=ðGMÞ

p
the orbital period. Thus, we obtain:

Torb
∂fðE; tÞ

∂t
¼−pEfðE; tÞ

þ
Z �

E
E−ΔE

�
5=2

fðE−ΔE; tÞPE−ΔEðΔEÞdΔE; ð4:7Þ

where pE ¼ R
PEðΔEÞdΔE is the total probability for a

particle of energy E to scatter with the compact object
during one orbit. We note that while we do not write
PEðΔEÞ with an explicit time-dependence, this probability
depends implicitly on time through the orbital velocity and
orbital radius r2ðtÞ. Using Eq. (4.7), we can evolve the
distribution function over a number of orbits (assuming that
the binary separation changes slowly compared to the
orbital period). The density profile throughout the spike
can then be derived using Eq. (4.3), which in turn is used to
evaluate the rate of energy loss due to dynamical friction,
given in Eq. (2.13).
The final step is then to evaluate PEðΔEÞ. When a DM

particle passes the compact object with impact parameter b,
it is deflected and the velocity of the compact object parallel
to its motion changes.5 The change in speed of the compact
object is [46][Appendix L]:

Δvk ¼ −2v0
mDM

m2

�
1þ b2

b902

�−1
; ð4:8Þ

where v0 is the relative speed of the encounter and b90 was
defined in Eq. (2.15). The change in energy of the compact
object is then

ΔECO ¼ 1

2
m2½ðv0 þ ΔvkÞ2 − v20� ≈m2v0Δvk; ð4:9Þ

meaning that by energy conservation the change in relative
energy per unit mass E of a single DM particle is

ΔEðbÞ ¼ −
ΔECO

mDM
¼ −2v20

�
1þ b2

b902

�−1
: ð4:10Þ

In principle, encounters between DM particles and the
compact object occur with a range of relative speeds (owing
to the velocity distribution of DM). Here for simplicity we
fix the encounter speed to be equal to the orbital speed
v0 ¼ vorb. We assume that only DM particles with speeds
slower than v0 ¼ vorb will scatter and gain energy from the
orbiting compact object [36]. For an isotropic velocity
distribution, these assumptions give the correct total dynami-
cal friction force on the compact object [[46] Sec. 8.1].

4We note that formally gðEÞfðEÞ diverges as E → 0 for
γsp < 4. However, we have so far only considered a DM spike
which extends out to infinity. In practice, the DM spike will be
smoothly truncated at large radii, modifying the distribution
function as E → 0 and ensuring that the total number of DM
particles remains finite.

5Note that we do not consider changes in the velocity
perpendicular to the motion of the compact object because on
average these do not give rise to a change in energy.
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Note that particles moving faster than v0 will instead give
rise to dynamical heating, increasing the energy of the
compact object. However, this effect is suppressed by
the ratio mDM=m2 and can safely be neglected in this
scenario [[46] p. 582].
The scattering probability can now be evaluated as:

PEðΔEÞ ¼
1

gðEÞ
Z Z

r<rE ;v<v0

δðEðr; vÞ − EÞ

× δðΔEðbÞ − ΔEÞd3rd3v: ð4:11Þ

Evaluating the integral over v, as in Eq. (4.5), and using
Eq. (4.10) to change the argument of the second δ-function,
we obtain:

PEðΔEÞ ¼
πb290
gðEÞv20

Z
rE

rcut

1

b

�
1þ b2

b902

�
2

× δðb − b⋆ðΔEÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ − EÞ

p
d3r: ð4:12Þ

Here, we have defined b⋆ ¼ b90
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v20=jΔEj − 1

p
and the

lower limit rcut ¼ Gm1=ðE þ 1
2
v20Þ ensures that only par-

ticles with v < v0 can scatter with the orbiting compact
object.
Equation (4.12) now involves an integral over the entire

DM spike, with a contribution only from positions with
impact parameters b ¼ b⋆ðΔEÞ. This corresponds to an
integral over the torus with minor radius b⋆ðΔEÞ and major
radius r2, the orbital radius of the compact object. For
b ≪ r2, we can perform the azimuthal integral over the
orbit:

Z
r2drd cos θdϕ → 2πr2

Z
sin θrdrdθ; ð4:13Þ

where ðr; θ;ϕÞ are the standard spherical polar coordinates.
Finally, we change variables from ðr; θÞ to ðb; αÞ, where the
angle α ∈ ½0; 2π� is defined as in Fig. 7. With this, we have:

Z
sin θrdrdθ → 2

Z
π

0

Z
∞

0

sin ðθ½b; α�Þbdbdα: ð4:14Þ

Substituting in Eq. (4.12) and performing the integral over
b, we finally obtain:

PEðΔEÞ ¼
4π2r2
gðEÞ

b902

v20

�
1þ b2⋆

b902

�
2

×
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΨðr½b⋆; α�Þ − EÞ
p

sin ðθ½b⋆; α�Þdα:

ð4:15Þ

Note that here the value of bmax ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m1

p
discussed in

Sec. III sets the minimum value of ΔE, through Eq. (4.10).
The radial coordinate r is now expressed as:

r½b⋆; α� ¼ ½r22 þ b2⋆ þ 2r2b⋆ cos α�1=2; ð4:16Þ

and we integrate over all values of α ∈ ½0; π� such that
r½b⋆; α� ∈ ½rcut; rE �. We work to first order in b⋆=r2, in
which case Eq. (4.15) can be written in terms of elliptic
integrals; more details are provided in Appendix D. Code
for computing the properties and time evolution of the DM
spike is publicly available online at https://github.com/
bradkav/HaloFeedback [52].

A. Testing the halo feedback

Before tackling the complete IMRI system including a
dynamic DM spike, we first test the formalism by following
the evolution of the DM distribution in a simpler scenario.
We consider a mass m2 ¼ 1.4 M⊙ orbiting a central BH
m1 ¼ 1400 M⊙ at a distance r2 ¼ 10−8 pc. This configu-
ration is a typical snapshot of an IMRI signal which would
be observable by LISA, except that we will keep the orbital
separation fixed. That is, we will look only at how the DM
spike evolves in response to energy injection, without
allowing the orbit of the compact object to change.
Figure 8 shows the result of this “test” simulation, run

over 40000 orbits. We plot the density profile of the spike,
including only those particles moving more slowly than the
local orbital speed v < vorbðrÞ (i.e., only those particles
which would produce a net dynamical friction effect on the
orbiting compact object). DM particles are gradually
depleted from close to the compact object through scatter-
ing; at the end of the simulation, the density at the orbital
radius has dropped to 3% of the initial density. We note
that particles with some energy E naturally populate radii
between r ¼ 0 and r ¼ rE ¼ Gm1=E. This means that
particles scattering at a radius r2 will also deplete particles
at smaller radii, as observed in Fig. 8. These scattered
particles gain energy and their average radius increases,
leading to a bump in the density profile at r > r2.
By comparing the change in energy of the DM spike and

the work which would be done on the compact object by

FIG. 7. Geometry of DM scattering around the compact object.
The compact object position is denoted ⊙, at a radius r2 from the
central IMBH. The motion of the compact object is into (or out
of) the page. See Eqs. (4.12)–(4.16) for more details.
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dynamical friction, we have confirmed that energy is
conserved at the level of 0.1%, with approximately 6%
of the total energy carried away by particles which become
completely unbound from the spike. Unlike in the case of a
static DM spike, this feedback formalism allows us to
follow the system self-consistently, ensuring that energy is
conserved throughout its evolution.

V. EVOLUTION OF THE BINARY
WITH HALO FEEDBACK

In this section, we incorporate the halo feedback pre-
scription in Sec. IV into our evolution of the binary system.
We first discuss the evolution equations and our numerical
methods for solving these equations; we then discuss the
results of our numerical simulations.

A. Evolution equations and numerical methods

In Sec. II, we could determine the dissipative dynamics
of the binary from solving a single, ordinary differential
equation for the orbital separation of the binary, Eq. (2.16),
in a static distribution of dark matter, Eq. (2.1). In this
section, we instead simultaneously evolve the orbital
separation of the binary in a spherically symmetric dis-
tribution of dark matter, which itself evolves in response to
the inspiral of the small compact object from dynamical
friction. Thus, the evolution equation for _r2 has a similar

form to that in Eq. (2.16), but we replace ρDMðr2Þ with the
time-dependent DM distribution evaluated at r2, which we
denote ρDMðr2; tÞ. Similarly, the fraction of DM particles
slower that the circular speed at r2 is written ξðr2; tÞ. The
expression, in full, is

_r2 ¼ −
64G3Mm1m2

5c5ðr2Þ3

−
8πG1=2m2 logΛr

5=2
2 ρDMðr2; tÞξðr2; tÞffiffiffiffiffi
M

p
m1

: ð5:1Þ

Because the evolution of the DM spike at all radii r,
ρDMðr; tÞ, depends upon r2 we must simultaneously evolve
Eq. (5.1) with the prescription in Sec. IV for evolving the
dark-matter distribution.
Thus, the evolution equations that we must solve take the

form of a coupled system of an ordinary differential
equation and an integro-partial differential equation.
Schematically, the system has the form

dr2ðtÞ
dt

¼ F1

�
r2;

�Z
d3vfðE; t; r2Þ

�
r¼r2

�
; ð5:2aÞ

∂fðE; t; r2Þ
∂t ¼ F2

�
fðE; t; r2Þ;

Z
dΔEfðE − ΔE; t; r2Þ

�
;

ð5:2bÞ

where the explicit forms of the functionals F1 and F2 can
be obtained from Eqs. (4.7) and (5.1) [as well as the
relationship given in Eq. (4.3)]. Here we also added an
explicit dependence of fðE; tÞ on r2 using the notation
fðE; t; r2Þ, so as to emphasize that the ordinary and partial
differential equations are coupled. When discretizing the
system in Eq. (5.2) to solve it numerically, we first use
Simpson’s rule to evaluate the integrals, and then we use the
method of lines (discretizing the partial differential equa-
tion on a grid of E values and solving the resulting system
of ordinary differential equations on these grid points) and a
second-order-accurate Runge-Kutta method to numerically
solve the coupled ordinary and integro-partial differential
equations. Because there are only integrals rather than
derivatives appearing on the right-hand side of the partial
differential equation, we did not find that there was a
Courant-Friedrichs-Lewy condition [53] that limited the
size of our timestep (unlike for explicit numerical schemes
for solving the advection equation, for example).
There are also two somewhat subtle issues that arise

when evolving the binary with the halo feedback, which are
related to (i) initial conditions and (ii) the size of the time
steps used to evolve the system. We discuss each of these
issues now in more detail.
(i) Regarding initial conditions, for simplicity, one might

like to be able to use the static DM distribution, Eq. (2.1),
as the initial condition for evolving the binary with halo

FIG. 8. Evolution of the DM spike density profile due to
feedback from the orbiting object. We consider a compact object
m2 ¼ 1.4 M⊙ orbiting at a fixed radius r ¼ 10−8 pc from the
IMBH withm1 ¼ 1400 M⊙. Note that we plot ρDMðrÞmultiplied
by the fraction of DM at radius r moving more slowly than the
local orbital speed vorbðrÞ. The upper panel shows the evolution
of the density profile normalised to the density profile ρ0 at the
start of the simulation.
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feedback. However, unless the small compact object
suddenly materialized in its orbit, this will generally not
be a realistic initial condition. Rather, one would expect
that the small compact object was either captured, or it
formed at a larger radius, and altered the dark-matter
distribution via feedback on the halo until it reaches an
orbital separation from where it could be detectable by
LISA. This could make simulating the binary challenging,
because the exact initial conditions could depend upon the
history of how the binary formed.
However, as we saw in Sec. III, the particles that

contribute to this gravitational drag force lie within some
small range of impact parameters from the compact object.
We anticipate then that outside of some distance from the
small compact object, the distribution of dark matter is not
strongly affected, and the static distribution of dark matter,
Eq. (2.1), remains a good approximation for the density
within this region. If we are interested in evolving the
binary using more realistic initial conditions for an initial
separation ri, then we would need to start evolving the
system from a larger separation ri þ Δri, where we have
defined Δri to be the distance outside of which the
distribution of dark matter is not significantly affected
by the gravitational scatterings that produce dynamical
friction. We will take this approach described here to set
what we believe to be reasonable initial conditions for the
evolution of the binary and the dark-matter spike; in
practice, we set Δri ¼ 2ri.
(ii) Regarding the size of time steps, we note that the

method of Sec. IV for evolving the dark-matter halo is only
valid over timescales of (at least) a few orbital periods.
Thus, we will be limited in the size of the time steps that we
can take to be this size or greater. While this will not be
problematic when the system is adiabatically evolving
between circular orbits, our errors could be large when
the binary is more relativistic, and the orbital radius
changes more rapidly. Ultimately, we do not view this as
a large problem, because the Newtonian approximation that
we adopt throughout this paper runs into other inaccuracies
when the system is sufficiently relativistic that we would
like to be taking a smaller time step. Also, the dynamical
friction effect is of a negative post-Newtonian order for
quasicircular binaries, meaning that it is largest when the
binary is less relativistic. We discuss these issues in more
detail in Sec. VI. Nevertheless, because we can only take
timesteps that are an integral number of the orbital periods,
we will not be able to resolve the orbital phase (or changes
in phase) to less than a few integral multiples of 2π (i.e.,
less than a few orbits).
We check the accuracy of our numerical methods

through two types of tests. First, to determine whether
taking timesteps that are an integral number of the orbital
period has an affect on our solving Eq. (2.16) for a static
DM distribution, we compare our numerical solution for
the number of GW cycles as a function of the GW

frequency to the analytical expression in Eq. (B4). We
find that we can resolve the number of GW cycles to 10s of
cycles. Second, we ran numerical simulations of the
dynamic DM spike at several different numerical resolu-
tions (we considered a sequence of timesteps that were a
different number of orbital periods) for the binary with
q ¼ 10−3 and the DM spike with the initial DM spike given
by ρsp ¼ 226 M⊙=pc3 and γsp ¼ 7=3. We found by com-
paring the two highest resolutions that the accuracy of our
simulations was more of order of 100 GW cycles.

B. Results of numerical simulations

First, we will qualitatively describe the behavior of the
binary with a dynamical DM spike. As we saw in Sec. IVA,
feedback on the DM halo leads to a depletion of the DM
density at the orbital radius. This in turn reduces the size of
the dynamical friction force and thus slows the inspiral.
There is therefore competition between how quickly the
compact object depletes DM and how rapidly dynamical
friction causes it to lose energy. If the inspiral is sufficiently
fast, the compact object moves to an orbit at smaller radius
before much of the DM is depleted and the overall effect of
feedback will be relatively small. Instead, if the inspiral is
slow, most of the DM will be depleted at the current orbital
radius and the binary will effectively stall. At this stage GW
energy losses become more significant, and the binary must
move slowly to a smaller radius before dynamical friction
can dominate again. In this case, the behavior of the
system is significantly altered by feedback. Animations
showing the coevolution of the binary and DM profile are
available online at https://doi.org/10.6084/
m9.figshare.11663676 [54].
To quantify the size of the dephasing effect, we estimate

the difference between the number of gravitational wave
cycles Ncycles during the inspiral in vacuum and in presence
of the DMminispike, for both the dynamic and static cases.
We define the number of GW cycles by integrating the GW
frequency between two times,

Ncyclesðtf; tiÞ ¼
Z

tf

ti

fGWðtÞdt: ð5:3Þ

In the quadrupole approximation, the GW frequency fGW is
twice the orbital frequency ΩorbðtÞ=ð2πÞ. The GW fre-
quency grows monotonically with time during the
inspiral and we can therefore also express the number of
cycles in terms of the initial and final GW frequencies:
NcyclesðfGW;f ; fGW;iÞ.
In Fig. 9, we show the difference in the number of GW

cycles with and without DM,

ΔNcycles ¼ Nvac
cyclesðfGW;f; fGW;iÞ − NDM

cyclesðfGW;f; fGW;iÞ;
ð5:4Þ
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for a binary with masses m1¼1400M⊙ and m2 ¼ 1.4 M⊙,
and a fiducial spike with ρsp ¼ 226 M⊙=pc3 and slope
γsp ¼ 7=3.6 We fix the final frequency as the GW frequency
at the ISCO fGW;f ≈ 3.1 Hz and show ΔNcycles as a
function of fGW;i.

7 The solid red line shows results for a
static DM spike (as described in Sec. II). The dot-dashed
orange line instead shows results for the model in
Appendix A, which we refer to as the “shell model.” In
this model, the rate of dynamical friction energy loss is set
equal to binding energy in the DM spike at any given
radius. This toy model respects energy conservation and
corresponds to the case where dynamical friction is
maximally efficient, in the sense that all of the DM halo’s
binding energy is converted into work by dynamical
friction. It is clear from Fig. 9 that the maximum allowed
size of the dephasing effect, obtained in this toy model, can
be as much as two orders of magnitude smaller than that
estimated in the static case. The dashed blue curve shows
our results for the dynamic DM spike, obtained using the
prescription described in Sec. IV.

At the lower range of the frequencies depicted in Fig. 9,
ΔNcycles for the dynamic spike is a factor of a few smaller
than ΔNcycles for the shell model; however, as functions of
frequency, both cases roughly follow the same power law.
This suggests that at lower frequencies (before GW energy
loses become more efficient than loses from dynamical
friction) the effects of dynamical friction on the orbital
dynamics of the binary are similar to unbinding a fraction
of a shell of DM particles at the orbital radius. At the higher
range of frequencies shown, ΔNcycles for the dynamic case
follows a power law closer to that for the static case, but
again it is a factor of a few smaller than the result for the
static DM spike. The following argument can explain this
result: for the higher frequencies shown, GWs are more
efficient in causing the binary to inspiral; thus, dynamical
friction is not able to significantly change the DM spike and
the dynamics of the system can be approximated well by
having a static DM spike. The magnitude of the dephasing
is smaller in the dynamic case than in the static one,
because the DM density is somewhat depleted by the
effect of dynamical friction from earlier in the inspiral
(cf. the discussion of initial conditions in Sec. VA).
In Table I, we list numerical values of ΔNcycles for

different configurations of the IMRI system and DM spike.
Having in mind a 5 year observation with LISA, we
measure ΔNcycles starting from a separation (or, equiva-
lently, an initial frequency) such that the time-to-merger is
5 years in the both the vacuum and DM cases. Note that this
means that the systems with DM will start at a larger
separation (or lower initial frequency) than the vacuum
case, in order to give a merger in the same time.8 Note that
this convention for specifying ΔNcycles differs somewhat
from the definition used in Eda et al. (their convention is
equivalent to that used in Fig. 9); however, because LISA
will operate for a fixed amount of time, and because sources
like IMRIs typically will not merge on a timescale shorter
than that of LISA’s operation, we opt to compare the
number of cycles over a fixed time rather than from a fixed
initial frequency. These different conventions do change the
difference in the number of cycles, so, for example, the
results in Fig. 9 and the numbers in Table I cannot be
directly compared, even for the same binary and DM spike.
For a central IMBH with m1 ¼ 1.4 × 103 M⊙, assuming

a static DM spike with slope γsp ¼ 7=3, the dephasing
effect would reduce the number of GW cycles from the
value in vacuum by roughly 5%. However, modeling also
the dynamics of the spike, which responds to incorporating
feedback from the orbiting compact object, we find the
dephasing effect is reduced to 0.07%. As we saw in Fig. 3,
previous calculations assuming a static DM spike over-
estimated the magnitude of energy loses compared to the

FIG. 9. Change in the number of GW cycles with respect to the
vacuum inspiral. For a mass ratio q ¼ 10−3,m1 ¼ 1.4 × 103 M⊙,
ρsp ¼ 226 M⊙=pc3 and γsp ¼ 7=3, we show the change in the
number of cycles (compared to the case without DM) starting
from GW frequency fGW;i up to the merger. The three curves
show the change in cycles for a static DM distribution (solid red),
the dynamic DM distribution (blue dashed) and a shell model
(orange dotted-dashed) described in Appendix A. The vertical
dotted-dashed black line shows the GW frequency such that the
system without DM will inspiral and merge within five years.

6Our choice of the massm2 is motivated by the Chandrasekhar
limit [55–57], though our results do not depend on the nature of
either compact object (e.g., neutron star or black hole).

7Note that this implies that the time it takes for the system to
inspiral between the initial and final GW frequencies will differ
for the system with and without DM.

8For reference, for a 1.4 × 103 M⊙ (1.4 × 104 M⊙) IMBH, the
initial separation giving a five year inspiral in the vacuum case is
r2 ¼ 1.24 × 10−8 pc (r2 ¼ 3.92 × 10−8 pc).
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binding energy in the DM spike by up to several orders of
magnitude. In this case, we see that incorporating DM
feedback is not a small correction, but instead reduces the
size of the dephasing effect by roughly a factor of 100.
For a heavier central IMBH of m2 ¼ 1.4 × 104 M⊙, the

binding energy available in the DM spike is larger. As
shown in Fig. 3, this available energy is on the same order
as the work done by dynamical friction. This is reflected in
the smaller difference between the results for the static and
dynamic spikes. The dephasing would appear as a roughly
0.5% effect if we assumed a static spike; the dephasing
effect is reduced by a further 50% once we incorporate
dynamic feedback of the DM. For a spike with slope
γsp ¼ 7=3, the dephasing effect still corresponds to a
difference of around 5800 GW cycles.
We note that assuming a static halo, the size of the

dephasing effect is smaller for a heavier IMBH because
dynamical friction is subdominant to GWenergy losses (for
the initial separations we consider here). However, due to
the tighter gravitational binding, the impact of allowing for
a dynamic DM spike is smaller for a heavier IMBH. Thus,
in the dynamic case, the dephasing effect is larger for a
central BH of mass m1 ¼ 1.4 × 104 M⊙ than for m1 ¼
1.4 × 103 M⊙. This suggests that a mass ratio q ¼ Oð10−4Þ
is a promising target for detecting the effect of a DM spike
on the gravitational waveform.
While the dephasing including halo feedback is still

smaller than that predicted by Eda et al., we expect that the
qualitative conclusions of [28] should still hold: namely,
that the effects of the DM on the emitted GWs will allow
properties of the DM distribution to be measured from the
observed GWs by an interferometer like LISA. We leave

computation of how well LISAwill be able to measure the
properties of the DM spike to future work.
Finally, for a central IMBH of m1 ¼ 1.4 × 105 M⊙,

incorporating feedback appears to lead to a percent-level
correction to the dephasing effect. Such percent-level
corrections are important if we wish to model the IMRI
waveform to high precision. However, the overall size of
the dephasing effect is much smaller, and the difference in
ΔNcycles between the static and dynamic case is typically
smaller than our numerical accuracy of Oð100Þ cycles.
Even so, such a small difference is in line with our
expectations from right panel of Fig. 3, which shows that
the binding energy of the DM halo is typically larger than
the work done by dynamical friction, due to the larger
potential of the central IMBH. Further refinements to our
numerical procedure will be required to determine the
precise size of the dephasing effect in this case.
As well as reducing the number of GW cycles, dynamical

friction is also expected to shorten the inspiral time between
two fixed frequencies [33] and change the density profile of
theDMminispike. InFig. 10,weplot spectrograms, showing
the frequency evolution of the GW signal with time, starting
from a fixed initial frequency. For a mass ratio q ¼ 10−3, the
assumption of a static DMspike implies that a 5-year inspiral
in vacuum would be shortened by more than 1 year in the
presence of a DM spike with γsp ¼ 7=3. However, our self-
consistent model substantially reduces the size of the effect,
leading to an inspiral which is just 4 days shorter than the
vacuum case. We also see that the inspiral time is very
sensitive to the slope of the DM distribution, rapidly
becoming undetectable for a mild slope of γsp ¼ 3=2. For
a mass ratio q ¼ 10−4, the impact of allowing for a dynamic

TABLE I. Change in the number of cycles ΔNcycles during the inspiral. Change in the total number of GW cycles due to dynamical
friction, starting 5 years from the merger. We compare results for a static DM halo and a dynamic DM halo incorporating feedback. In
the top, middle and bottom tables, we show results for mass ratios of q ¼ 10−3, 10−4 and 10−5 respectively. We also indicate the number
of cycles expected in vacuum (in the absence of DM). We fix m2 ¼ 1.4 M⊙ in all three cases. Note that 7=3 ¼ 2.333…≡ 2.3̄.

m1 ¼ 1.4 × 103 M⊙, Ncycles ¼ 4.63 × 106 in vacuum

γsp ¼ 1.5 γsp ¼ 2.2 γsp ¼ 2.3 γsp ¼ 2.3̄

Static <1 1.8 × 104 1.1 × 105 2.1 × 105

Dynamic <1 2.4 × 102 1.6 × 103 3.1 × 103

m1 ¼ 1.4 × 104 M⊙, Ncycles ¼ 2.60 × 106 in vacuum

γsp ¼ 1.5 γsp ¼ 2.2 γsp ¼ 2.3 γsp ¼ 2.3̄

Static <1 1.0 × 103 6.3 × 103 1.2 × 104

Dynamic <1 5.0 × 102 3.1 × 103 5.8 × 103

m1 ¼ 1.4 × 105 M⊙, Ncycles ¼ 1.39 × 106 in vacuum

γsp ¼ 1.5 γsp ¼ 2.2 γsp ¼ 2.3 γsp ¼ 2.3̄

Static <1 5.5 × 101 3.3 × 102 6.0 × 102

Dynamic <1 5.3 × 101 3.2 × 102 5.9 × 102
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spike is less extreme, though still gives anOð1Þ change. The
inspiral is shorter by around 48 days in the static case,
reduced to around 20 days in the dynamic case.
Finally, we show in Fig. 11 the effect of the inspiral on

the density profile of the DM minispike. Here, again we
assume a central IMBH mass of 1.4 × 103 M⊙ and a
fiducial spike with ρsp ¼ 226 M⊙=pc3 and slope γsp ¼
7=3 ¼ 2.333…≡ 2.3̄. We notice that, after the inspiral, the
DM density at each radius is altered at most by a factor of 2
with respect to the initial configuration (for a compact
object that begins its inspiral at r2 ≈ 3 × 10−8 pc). This is
because particles which scatter with the orbiting compact
object are typically not completely unbound from the
system but rather increase their average radius slightly.
Thus, as the compact object inspirals, it depletes particles at
its current radius, partially replenishing particles which were

previously depleted further out. At small radii, the density
profile is largely unperturbed, as GW emission (and not
dynamical friction) becomes the dominant energy loss
mechanism here. While we have seen that feedback of the
DM spike can have a dramatic impact on the dephasing
signal, this does not mean that the spike is destroyed in the
process. These results suggest that the DM overdensity may
survive the inspiral with only a small amount of depletion
overall. We expect also that the imprint of the inspiral on the
DM spike will be too small an effect (and occur on too small
an angular scale) to measure by other means (e.g., dynami-
cally orwithmultiwavelength electromagnetic observations).

VI. DISCUSSION

In this section, we discuss a number of caveats to the
calculations we have performed. We suggest a number of
avenues for improvements in the future as well as the
prospects for detecting the effects of dark matter on the
gravitational waveform.

A. Halo relaxation

Thus far, we have assumed that the DM halo is disrupted
by the orbiting compact object and does not evolve further.
We now consider processes which may replenish the
depleted halo. One possibility is that DM particles may
diffuse in energy through small-angle scattering with each
other, ultimately refilling the depleted regions. Following
Refs. [58,59], the relaxation time associated with this
process scales as

trelax ∼
σv

3

G2m2
DMnDM

≈
m3=2

1

G1=2ρDMmDMr3=2
; ð6:1Þ

FIG. 10. Frequency evolution of the IMRI system. Gravita-
tional wave frequency of the binary as a function of time, starting
approximately 5 years before the merger. The black curve shows
the evolution in the absence of a DM spike, while the colored
curves show the evolution for spikes with characteristic density
ρsp ¼ 226 M⊙=pc3 and different slopes γsp. Note that 2.3̄ ¼ 7=3.
Top: mass ratio q ¼ 10−3. Bottom: mass ratio q ¼ 10−4.

FIG. 11. Evolution of the DM minispike profile. The solid lines
refer to the system at the end of the inspiral, while the dashed
lines correspond to the initial, unperturbed configuration. Blue
lines: total density profile. Red lines: density profiles associated
to the particles slower than the circular speed vorbðrÞ for each r.
The “bump” at r ≳ 3 × 10−8 pc is an artifact of starting the
compact object at this radius.
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where the DM velocity dispersion is approximately
σ2v ≈ Gm1=r. For a 100 GeV DM particle, we find trelax ≳
1070 years for the systems we consider here.
We may also worry about DM scattering with the

compact object and losing energy, thereby replenishing
the depleted regions of phase space. This process is only
possible for DM particles moving more quickly than the
orbiting object and would lead to a net “cooling” for these
particles [46][p. 582]. However, this process is suppressed
with respect to the “heating” process we have considered
here by a factor mDM=m2 and can therefore be neglected.
Without external perturbations, then, the disruption of the
halo caused by the compact object should persist on
timescales much longer than the inspiral time.

B. Spherical symmetry

In Sec. IV, we relied on a description of the DM halo as
spherically symmetric and isotropic. However, the binary is
not spherically symmetric so we eventually expect this
description to break down.
One possible issue is that the compact object scatters

with particles in the DM spike only within a torus along its
orbit (see Fig. 7). Thus, energy is not injected into the halo
in a spherically symmetric way. Of course, particles in the
DM halo are not static; particles are on orbits which are (in
general) inclined with respect to the orbital plane of the
binary. Thus, energy injected in the plane of the orbit will
be redistributed throughout the DM halo naturally through
the dynamics of the system.
More concerning is the fact that the binary will inject

angular momentum into the halo, just as it injects energy.
On average, the scattered particles gain angular momentum
and the halo begins to corotate with the binary. We can
estimate how rapidly the halo is spun-up by calculating the
typical change in the specific angular momentum of a DM
particle hΔLi each time it scatters. Comparing the torque
on the compact object with the number of DM particles
which scatter in a single orbit, we obtain:

hΔLi ¼ 4 logΛm2

ffiffiffiffiffiffiffiffi
Gr2
m1

s
: ð6:2Þ

The maximum specific angular momentum at a given
radius is achieved for circular orbits Lmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1r2

p
.

We thus find that:

hΔLi
Lmax

≈
4 logΛ
Λ2

≈ 1%; ð6:3Þ

for a mass ratio of q ¼ 10−3. Thus, the spin of the DM halo
increases only by a small amount with each scatter and
Oð100Þ interactions are required before a particle is
expected to be on a circular orbit and corotating with
the compact object.

In a similar way, the typical change in the relative energy
per unit mass of a DM particle can be calculated as:

hΔEi
E

≈ −
4 logΛ
Λ2

≈ −1%; ð6:4Þ

where we have used the fact that the maximum energy for
particles at radius r2 is E ¼ Gm1=r2. Thus, by the time a
particle has scattered enough to be spun up, it will have
gained enough energy to become unbound. We therefore
expect that the halo will not gain a substantial net angular
momentum during the inspiral.
It is also possible to compute the amount of angular

momentum radiated through dynamical friction for a static
halo analogously to what was done in the calculations of
energy dissipated through dynamical friction in Sec. II C.
Using the fact that for binaries in quasicircular orbits
the angular momentum radiated satisfies dEorb=dt ¼
ΩorbdJorb=dt, it is possible to show that the angular
momentum dissipated through dynamical friction satisfies
a relation analogous to Eq. (2.21): namely, it can be written
as the change in μ

ffiffiffiffiffiffiffiffiffiffiffiffi
GMr2

p
times a hypergeometric function

(where the hypergeometric function for positive r2 is again
a number between zero and one). Thus the maximum
amount of angular momentum dissipated via dynamical
friction would go as μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMrsp

p
. Because the angular

momentum for the halo is assumed to be zero initially, it
is not possible to compare the angular momentum dissi-
pated to the amount of angular momentum in the halo, in
analogy to the ratios of energy discussed in Sec. II D.
Consider instead a simple toy model of a DM spike with a
large angular momentum, in which each spherical shell of
DM is rigidly rotating at the Keplerian orbital frequency.
A straightforward calculation of the angular momentum of
this spike shows that it would scale as m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMrsp

p
. Thus,

the ratio of the angular momentum dissipated to the angular
momentum of this rotating distribution goes as μ=m1 ≈ q,
which is small for the binaries that we have considered.
Because this ratio is small for the static halo, it should be
smaller for the dynamic halo, because less energy (and thus
also angular momentum) is radiated.
We note also that if more DM particles are corotating,

the size of the dynamical friction effect should increase.
The relative velocity of encounters with the compact object
will decrease, enhancing the drag force on the compact
object, as described in Eq. (2.13). Thus, our approach may
be seen as a conservative estimate of the size of the
dephasing effect.
Ultimately, to obtain high precision waveforms, it will be

necessary to follow both the energy and angular momen-
tum of DM particles in the halo. However, we expect the
results we present here to be conservative, with corrections
due to angular momentum injection being higher order. We
defer this more detailed analysis to future work.
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C. Relativistic and other corrections to the binary

Our focus in this paper was to understand the effects of
jointly evolving the binary and the DM spike on the emitted
GWs (and we found the effect can be substantial). We made
a number of simplifying approximations in modeling the
orbital dynamics of the binary and the DM spike. Because
we made the same types of assumptions for the orbital
dynamics with and without DM spikes, this allowed us to
obtain a self-consistent estimate of the impact of an
evolving DM spike on the GWs within the context of
our assumptions. However, because the detection of IMRIs
with LISA using matched filtering usually requires gravi-
tational waveform templates that are accurate to within a
few orbital cycles of the binary, the orbital dynamics that
we computed in this paper will likely not be sufficiently
accurate to use for GW data analysis. We now comment on
the types of effects and calculations that we expect need to
be added to make the gravitational waveforms more
suitable for data analysis.
Most notably, we restricted our calculations throughout

this work to a Newtonian description of the orbital dynamics
of the binary and the DM halo. For the system with
q ¼ 10−3, the initial orbital velocity is given roughly by
ðv=cÞ2 ∼ 0.01, so post-Newtonian (PN) effects will produce
a roughly 1% error. Because there are of order 106 GW
cycles during a five-year inspiral, these 1% errors can lead to
inaccuracies of order 104 GW cycles. While this error is
greater than the dephasing shown in Table I, this error will
not contaminate our results for the following reasons:
(i) these leading PN corrections here are corrections to
the conservative dynamics, but the effect of dynamical
friction is a dissipative effect, which will allow these effects
to be distinguished; (ii) the dephasing signal occurs pre-
dominantly when the separation of the binary is large and
when PN effects are small; and (iii) the dynamical friction
corresponds to a negative PN-order effect for quasicircular
orbits, so it will not be confused with standard PN effects.9

A more complete description of the dynamics of the
system will be developed in future work. There we plan to
incorporate a relativistic description of the orbital dynamics
and distribution of dark matter. We also intend to more
carefully understand the effects of assuming the barycenter
and the IMBH are collocated. Finally, we will incorporate
(and revise) the effects of accretion of DM when the small
compact object is a black hole rather than a neutron star that

were discussed in [32]. Attempting to incorporate these
effects goes beyond the scope of this initial work.

D. Detection prospects

For concreteness, we have focused on the final 5 years of
the inspiral, having in mind a 5-year LISA mission. We
chose the final 5 years of inspiral, because the amplitude of
the GWs will be largest during this last stage of the inspiral,
which will typically imply that the system would have the
largest signal-to-noise ratio (though the precise signal-to-
noise will depend upon the details of LISA’s noise curve,
the mass of the system, and the initial orbital frequency of
the binary when the LISA mission begins). Of course, there
is no guarantee that the merger itself will occur during the
LISA observation period (and because the binary spends
more time orbiting at larger radii, it is likely that there
will be more binaries at earlier stages in their inspiral). If
the system is observed at an earlier time, further from the
merger, the signal-to-noise ratio and the size of the
dephasing would be different.
Determining the specific parameters of binaries and the

stage in their orbital evolution for which the dephasing
effect is most likely to be measured is an interesting, but
more complex question, that we plan to consider in future
work. We also postpone to a future analysis a discussion
about the possibility that the effect considered in this work
could be misinterpreted in the context of an actual “real-
world” data analysis, and may lead to a biased estimation of
the orbital parameters. For instance, a larger mass of the
central object (hence, a larger GW reaction force) could
partially mimic the dynamic friction effect considered here,
although the dephasing due to friction is typically accu-
mulated at larger radii.
In addition, in order to assess the prospects for detection,

wemust explore in detail howmany such systemswe expect
to observe andwithwhat properties. It is estimated that LISA
will detect IMRIs at a rate of R ∼ 3–10Gpc−3 yr−1 [61].
However, only a fraction of thesewill be embedded in a DM
spike. Very dense spikes are expected to form only at the
centers of DM halos, around adiabatically growing BHs
[19]. In addition, spikes may be disrupted by mergers and
other dynamical processes [62]. The presence of baryons
may also affect the formation of the spike [19], though there
are a number of scenarios in which we do not expect these
systems to be baryon-dominated (including direct-collapse
IMBHs [21,22] and primordial IMBHs [23–25]). In any
case, we emphasise that the formalism we have developed
here formodeling the dephasing does not require a “pristine”
spike; indeed, our method applies equally well to partially
disrupted spikes. Taking all these effects into consideration
will be important for understanding the likelihood that LISA
will be able to detect such systems during its time of
operation.
Clearly, a more exhaustive exploration of the parameter

space is warranted, taking into account the population

9For the shell model, the effect is a γsp − 3 PN-order effect,
whereas for a static halo, it is a γsp − 11=2 PN-order effect.
Because Fig. 9 showed that for the dynamic case, the power law
of the effect is closer to the shell model, the PN-order will be
closer to a γsp − 3 effect, though it will not be precisely a fixed PN
order. For γsp close to two, the effect might be mistaken for the
effects of dipole radiation that appear in certain modified-gravity
theories (see, e.g., the review in [60]).
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properties of IMRI systems, in order to assess detectability
of the inspiral signal and associated dephasing. These
topics will be addressed in follow-up work.

VII. CONCLUSIONS

Dark matter overdensities around intermediate mass
black holes inevitably modify the dynamics of inspiraling
compact objects, and could potentially be detected through
their impact on the gravitational waveform produced by the
binary inspiral.
We have demonstrated that previous analyses have

largely overestimated the dephasing induced by the
dynamical friction experienced by the compact object
ploughing through the dense dark matter spike. Those
studies relied in fact on the simplifying assumption of a
static dark-matter distribution, whereas we have shown
here that there is an efficient transfer of energy from the
binary to the dark-matter spike. The energy dissipated by
dynamical friction can in fact be much larger than the
binding energy in the DM distribution.
Guided by N-body simulations, we have then introduced

a prescription to update the dark-matter phase space
density as the binary evolves. Dynamical friction in general
speeds up the inspiral, reducing the number of GW cycles
which would be observed by experiments such as LISA.
Compared to the case of a static spike, our prescription
leads to a depletion of the DM density at the orbital radius,
which in turn reduces the size of the dynamical friction
force and thus slows the inspiral. This has dramatic
consequences for the impact of the DM on the emitted
GWs, and the interpretation of the signal.
For a central IMBH with m1 ¼ 1.4 × 103 M⊙ and

orbiting compact object with m2 ¼ 1.4 M⊙, assuming a
static DM spike with slope γsp ¼ 7=3, leads to a 5%
difference in the number of cycles with respect to the
vacuum case. When the dynamical evolution of the spike is
taken into account according to our prescription, we find
that the difference is reduced by a factor of ∼100, to 0.07%.
The effect tends to be smaller for higher mass ratios, as the
DM spike is more tightly bound and less easily disrupted.
For a heavier central IMBH of m2 ¼ 1.4 × 104 M⊙, our
prescription leads only to a 50% difference in dephasing,
with respect to the static case. The effect however still
corresponds to 5800 GW cycles, which should be observ-
able and distinguishable by LISA.
Dynamical friction significantly shortens the inspiral

time. For a mass ratio q ¼ 10−3, a 5-year inspiral in vacuum
would be shortened by more than 1 year in the presence of a
static DM spike with γsp ¼ 7=3. We have however shown
that incorporating the feedback on the dark-matter distri-
bution leads to a difference in inspiral time with respect to
the vacuum case of only 4 days. We also found that the
dephasing effect is very sensitive to the slope of the DM
distribution, rapidly becoming less than one gravitational-
wave cycle for a mild slope of γsp ¼ 3=2.

In future work, we will focus on the observational
implications of the dynamical dark-matter spike for the
LISA mission. This will include estimates of the rate of
intermediate and extreme mass-ratio inspirals with dark-
matter spikes, studies of the detection prospects for these
systems, and assessments of how well the properties of the
dark-matter spike can be inferred from the gravitational-
waves measured by LISA. We anticipate that these systems
will be detectable and that they could provide information
about the nature of dark matter.
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APPENDIX A: A HEURISTIC MODEL BASED
ON EJECTING SPHERICAL SHELLS

OF DARK MATTER

In this subsection, we introduce a prescription to evolve a
compact binary with DM between separations ri and rf
such that the total energy input into the DM distribution is
equal to the binding energy of the spherical shell of DM
between ri and rf. We implement this procedure as follows.
Instead of equating the rate of energy dissipation by GWs
in Eq. (2.12) to be equal to minus the rate of change of the
orbital energy, we set the GW dissipation equal to the
orbital energy minus the energy of a shell of DM of width
dr2 at the radius r2 of the circular orbit. Thus, we write

dEGW

dt
¼ dr2

dt

�
dEorb

dr2
−
dUsh

dr2

�
: ðA1Þ

In Eq. (A1) the three derivatives of energies that appear can
be obtained from Eqs. (2.7), (2.10), and (2.12), thereby
leaving dr2=dt as the one unknown quantity. Because the
quantity multiplying dr2=dt in Eq. (A1) is smaller than
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dEorb=dr2, the system will inspiral more rapidly than it will
in vacuum. Consequently, the number of orbital (and GW)
cycles that the binary undergoes when inspiraling between
two radii will be smaller. We will compute analytical
expressions the number of cycles as a function of frequency
for this model in Appendix B.
This model is heuristic in the sense that it assumes that

all the binding energy in the dark-matter distribution
around the black hole will be dissipated through the
scatterings that induce dynamical friction on the small
compact object. It aims to provide a conservative, though
still rough, upper limit on the size of the dephasing effect
ΔNcycles that is likely to occur. The results in Fig. 9 show
that it captures some of the qualitative features of the
dephasing effect of the dynamical halo feedback model,
when feedback is significant, and that it does provide an
upper bound on the magnitude of the effect.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
THE NUMBER OF GRAVITATIONAL-WAVE

CYCLES

In Sec. V, we quantified the size of the dephasing
effect by computing the difference in the number of GW
cycles between two frequencies or over a fixed amount of
time. Here we provide analytical expressions for the number
ofGWcycles between two frequencies invacuum, for a static
DM distribution, and for the shell model in Appendix A.
To compute the number of GW cycles, we combine a

number of results. First, we take the expression for the
number in cycles Eq. (5.3) and rewrite it as a function of the
GW frequency as

Nvac
cycles ¼

Z
fGW;f

fGW;i

fGW
dt

dfGW
dfGW: ðB1Þ

Then we comput the derivative dt=dfGW by using Kepler’s
law for the orbital frequency, the fact that fGW ¼ Ωorb=π,
the expressions for the derivative dr2=dt [we will consider
the three different cases given by Eq. (2.16), with and
without dark matter, and Eq. (A1)], and the chain rule. In
the simplest case, in vacuum, the computation gives the
familiar result

Ncycles ¼
1

π

�
8πGMcf

c3

�
−5=3

����fGW;f

fGW;i

: ðB2Þ

For the static DM halo, the number of cycles is given by

NDM
cyclesðfGW;f;fGW;iÞ

¼
�
1

π

�
8πGMcf

c3

�
−5=3

× 2F1

�
1;

5

11−2γsp
;
16−2γsp
11−2γsp

;−cff−11=3þ2γsp=3

������fGW;f

fGW;i

:

ðB3Þ

The coefficient cf is defined by

cf ¼
5Gc5qρspr

γsp
sp logΛ

ðGMcÞ5=3ðGMÞγsp=3πð8−2γspÞ=3 ðB4Þ

The hypergeometric function is a number between zero and
one for positive frequencies fGW. Like the result for the
energy dissipated in Eq. (2.21), the result including the DM
spike can be written as the difference of two fractions of the
vacuum value at the relevant frequencies.
Finally, we can compute the number of cycles for the shell

model of Appendix A. A similar calculation shows that

Nsh
cycles ¼

1

π

�
8πGMcf

c3

�
−5=3

½1 − cshðfÞ�
����fGW;f

fGW;i

: ðB5Þ

where

cshðfÞ ¼
40πρspr

γsp
sp

ð11 − 2γspÞm2

�
GM
ðπfÞ2

�
1−γsp=3

: ðB6Þ

The term in square brackets is just r
3−γsp
2 , fromwhich one can

see that it has the form of a negative 3 − γsp PN-order effect.
Equations (B2), (B4), and (B5) were used in Fig. 9.

APPENDIX C: N-BODY SIMULATIONS

Here, we provide more technical details about theN-body
simulations described in Sec. III. We use the publicly
available GADGET-2 code [48,49], with minor modifications
which we describe below. In order to specify initial con-
ditions and read the GADGET snapshots in PYTHON, we use
PYGADGETIC [66] and PYGADGETREADER [67].
We fix the softening length to be lsoft ≈ 10−10 pc,

approximately the Schwarzschild radius for a 1000 M⊙
black hole. For the simulations using a central mass of
1000 M⊙, we reduce the softening length by roughly a
factor of 4. This enhances our sensitivity to the small
dynamical friction effect, as described in the main text. We
have modified GADGET-2 to allow for a different maximum
timestep for the DM particles and the compact objects. We
set the maximum timestep for DM particles to be compa-
rable to the typical orbital period Oð1000sÞ, while the
timestep for the orbiting compact objects is set a factor of
10−6 smaller. This allows us to trace the binary separation
with sufficient precision (as illustrated in Fig. 4). A
summary of the parameters used in the simulations is
given in Table II.
Our only other modification of GADGET-2 is to alter the

hard-codedvalueofNewton’s constantG. The releaseversion
of GADGET-2 uses a value G¼6.672×10−11m3 kg−1s−2.
This value of a factor of ∼3 × 10−4 smaller than the current
recommended value for GN [68]. This discrepancy is com-
parable to the relative change in orbital radius which we are
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hoping to observe (see Fig. 4). Thus, it was necessary to
change the hard-coded value to match the current value used
elsewhere in our analysis chain.
For the purposes of the simulations, we model the DM

spike using a generalized NFW profile:

ρDM ¼ ρsp
ðr=rspÞγspð1þ r=rtÞα

: ðC1Þ

We set α ¼ 2, so that the profile drops off rapidly above the
truncation radius rt. This produces an equilibrium con-
figuration with the correct density profile in the inner
region of interest (to within a few percent) while keeping
the total mass of the spike computationally feasible. We set
the truncation radius equal to

rt ¼ 10−5rsp

�
100 M⊙

m1

�
3=2

; ðC2Þ

which means that the total mass of the simulated spike is
approximately the same for the different values of m1 we
consider. We use N ¼ 215 DM particles in each simulation
and have checked that the spike profile is stable on the
timescales of our simulations.
Each binary is initialized on a circular orbit around the

barycenter of the system. We follow the separation of the
two compact objects as a function of time to directly
measure the dynamical friction force. We perform simu-
lations with at least 5 different random realizations of the
DM spike in order to extract an estimate of the error. The
results are reported in Figs. 5 and 6.

APPENDIX D: SCATTERING PROBABILITY

We wish to evaluate the probability that a particle with
energy E scatters to an energy E þ ΔE. This is given in
Eq. (4.15), which we repeat here:

PEðΔEÞ¼
4π2r2
gðEÞ

b902

v20

�
1þ b2⋆

b902

�
2

×
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΨðr½b⋆;α�Þ−EÞ
p

sinðθ½b⋆;α�Þdα: ðD1Þ

We recall that b⋆ ¼ b⋆ðΔEÞ and that the integration is over
values of α ∈ ½0; π� such that r½b⋆; α� ∈ ½rcut; rE �. It is useful
to recall also that ΨðrÞ ¼ Gm1=r and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ b2⋆ þ 2r2b⋆ cos α

q
;

sin θ ¼ r2 þ b⋆ cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ b2⋆ þ 2r2b⋆ cos α

p : ðD2Þ

Expanding to first order in ðb=r2Þ, we obtain:

r ≈ r2 þ b⋆ cos αþOðb2⋆Þ
≈

r2
1 − ðb⋆=r2Þ cos α

: ðD3Þ

This in turn gives:

sin θ ≈ 1þOðb2⋆Þ;
ΨðrÞ ≈Ψðr2Þð1 − ðb⋆=r2Þ cos αþOðb2⋆ÞÞ: ðD4Þ

The integral over the angle α can then be written:Z
α2

α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ − EÞ

p
dα

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ψðr2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2
rE

þ b⋆
r2

s

×

�
E

�
π − α1

2
; m

�
− E

�
π − α2

2
; m

��
; ðD5Þ

where Eðφ; mÞ is the incomplete elliptic integral of the
second kind:

Eðφ; mÞ ¼
Z

φ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sin2 θ

p
dθ; ðD6Þ

and

m ¼ 2ðb⋆=r2Þ
1 − r2

rE
þ b⋆

r2

: ðD7Þ

The limits of integration are set by requiring r ∈ ½rcut; rE �
which gives, again to first order in ðb=r⋆Þ:

α1 ¼ cos−1fmin ððr2 − r22=rEÞ=b⋆; 1Þg;
α2 ¼ cos−1fmax ððr2 − r22=rcutÞ=b⋆;−1Þg: ðD8Þ

The scattering probability PEðΔEÞ can now be evalu-
ated in terms of special functions.10 With this, there is only
a single numerical integral (over ΔE) to be performed to
evaluate ∂f=∂t in Eq. (4.7).

TABLE II. Summary of GADGET-2 parameters. The parameter
ErrTolForceAcc controls the accuracy of force calculations,
while ErrTolIntAccuracy determines the error in the time
integration. We specify the softening lengths lsoft, for which we
use a slightly smaller value for simulations with m1. Each
simulation contains 215 ≈ 33000 DM particles.

ErrTolForceAcc 10−5

ErrTolIntAccuracy 10−3

MaxTimestep (BH) [s] 1.5 × 10−3

MaxTimestep (DM) [s] 1.5 × 103

m1 ¼ 100 M⊙ 300 M⊙ 1000 M⊙

lsoft [pc] 10−10 10−10 2.4 × 10−11

10On a technical note, the SciPy implementation of Eðφ; mÞ is
valid only form ≤ 1. To extend to values ofm > 1, it is necessary
to perform reciprocal modulus transformations; see Eq. (19.7.4)
in Ref. [69].
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