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Neutron star (NS) binaries formed dynamically may have significant eccentricities while emitting
gravitational waves (GWs) in the LIGO/VIRGO band. We study tidal effects in such eccentric inspiralling
NS binaries using a set of hybrid equations. The NS is modeled as a compressible ellipsoid, which can
deform nonlinearly due to tidal forces, while the orbit evolution is treated with the post-Newtonian (PN)
theory up to 2.5-PN order. We find that in general, the tidal interaction can accelerate the inspiral, and cause
orbital frequency and phase shifts. For circular inspirals, our calculations reproduce previous linear result
at large binary separations, but incorporate the dynamical response of the NS at small separations. For
eccentric inspirals, the frequency and phase shifts oscillate considerably near pericenter passages, and the
oscillating amplitudes increase with eccentricities. As a result, the GW phase is also significantly
influenced by the tidal effect. At merger, the cumulative GW phase shift can reach more than 10 radians
(for typical NS mass 1.4 M⊙ and radius 11.6 km), much larger than the circular inspiral case. Although the
event rate of eccentric NS mergers is likely low, the detection of such mergers could provide a useful
constraint on the NS equation of state.

DOI: 10.1103/PhysRevD.102.083005

I. INTRODUCTION

Binary neutron star (BNS) mergers are one of the
primary sources for multimessenger astrophysics. They
produce gravitational waves (GWs) and copious electro-
magnetic signals. The recent LIGO detection of the first
binary neutron star merger event GW170817, together with
its joint detection in multiple electromagnetic bands,
heralded the beginning of multimessenger astronomy [1].
There are two broad classes of formation channels for

merging double compact object (CO) binary systems. The
first is the standard isolated binary evolution channel,
where the binary components are brought closer by
dynamical frictions in mass-transferring or common
envelope phases [e.g., see [2–8], and references therein].
CO binaries formed in this channel are expected to have
circular orbits while emitting high-frequency GWs in the
LIGO/Virgo band. The second class of formation channels
involve gravitational interactions between multiple stars
and COs. For instance, black hole (BH) binaries in dense
star clusters can become bound and shrink in separation due
to three-body encounters (e.g., an exchange interaction

between a binary and a CO) and/or secular interactions
[e.g., [9–16]]. Dynamical formation of merging compact
binaries can also occur in the galactic field or near super-
massive BHs, where CO mergers are induced in hierar-
chical triple or quadruple systems [17–21]. Eccentric
inspirals of CO binaries in the LIGO/Virgo band may be
produced in these dynamical channels, although the for-
mation rate is uncertain.
GWs from the final inspiral of BNS systems carry

important information of the matter properties under
extreme conditions. Tidal effects on the gravitational
waveform in circular neutron star (NS) binary inspirals
have been studied extensively [e.g., see [22–30], and
reference therein], including quasi-equilibrium tides
[31,32] and resonant tides [30,33–41]. Observations of
the NS merger events GW170817 [42] and GW190425
[43] provide direct constraints on the dimensionless tidal
deformability parameter, which are then used to constrain
the equation of state of the NS.
Recently, a number of studies have examined the tidal

effects on eccentric NS binary inspirals [41,44–47]. These
works treat the tidal deformation or forced NS oscillation in
the linear approximation. This is expected to break down at
small binary separations, where the tidal effects on the*jiesh.wang@gmail.com
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gravitational waveform are strongest. In this paper, we
study the tidal effects on the orbital evolution and gravi-
tational waveform of eccentric NS binaries, going beyond
the linear approximation. We treat the NS as a deformable
ellipsoid, and directly incorporate the tidal force in the
evolution of the orbit and the NS. The advantage of
adopting this ellipsoid model is that it includes the tidal
effects in both the linear and nonlinear regimes. In Sec. II,
we introduce the dynamical equations used to model the
NS binary evolution. We present sample numerical results
in Sec. III, and discuss the tidal effects on the GW signal in
Sec. IV. The conclusions are presented in Sec. V.

II. DYNAMICAL EQUATIONS
OF INSPIRALLING NS BINARY

We consider an inspiralling NS binary as an example to
explore the tidal effects on the gravitational wave. We
employ a set of hybrid dynamical equations: The NS is
modeled with the Newtonian dynamical equations
(Eqs. (1)–(5) below) in the compressible ellipsoidal model,
where the buoyancy effect is neglected; And we use the
hybrid post-Newtonian equations of motion (up to the 2.5-
PN order) to evolve the orbital evolution (Eqs. (6) and
(7) below).
The NS is modeled as a compressible Riemann-S

ellipsoid with mass (M) and a polytropic equation of state
P ¼ Kρ1þ1=n. The ellipsoid is characterized by three
principal axes (a1, a2, and a3), the angular frequency of
the ellipsoidal figure (Ω), and the angular frequency of
the internal circulation (Λ) [48,49]. The coordinate
system is shown in Fig. 1, where we set a3, Ω, Λ and
the orbital angular velocity vectors (Ωorb) along the z-axis
(perpendicular to the orbital plane). The NS orbits around a
companion of mass M0 with separation rðtÞ and orbital
phase θðtÞ. The companion here is treated as a point mass
and labeled as “BH.” The dynamical equations for such a
system can be expressed as follows [24,25,50,51]:

ä1 ¼ a1ðΩ2 þ Λ2Þ − 2a2ΩΛ −
2π
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In the above,Mt ¼ M þM0 is the total mass, A1, A2 and A3

are dimensionless functions of a1, a2, a3 as defined in
Section 17 of Ref. [48]. The constants κn, qn ≡ κnð1 − n=5Þ
and k1 depend only on n [49]. For n ≠ 0, the pressure term
satisfies 5k1Pc=ðnκnρcÞ ¼ M=ðqnR0ÞðR=R0Þ−3=n [24,50],
where themean radius isR≡ ða1a2a3Þ1=3 andR0 is its initial
value (with no tidal deformation and rotation). The mean
density is ρ̄ ¼ 3M=ð4πa1a2a3Þ. The angle α ¼ θ − ϕ is
related to the angular frequencies through _θ≡Ωorb and _ϕ≡
Ω (Ωorb is the instantaneous orbital frequency and Ω is the
rotation frequency of the ellipsoidal figure). The various
post-Newtonian correction terms are

FIG. 1. The coordinate system of a NS-BH binary. The z axis is
fixed to be parallel to the principal axis a3 and is perpendicular to
the orbital plane, while the x and y axes lie in the orbital plane and
are parallel to a1 and a2 at t ¼ 0, respectively.
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where v2 ¼ _r2 þ r2 _θ2, η ¼ μ=Mt, μ ¼ MM0=Mt and Iii ¼
κnMa2i =5 for i ¼ 1, 2, 3. Note that the PN terms in the orbital
equations (6)–(7) are of the “hybrid” formderived inRef. [51]:
These hybrid equations augment the Schwarzschild geodesic
equations of motion with the finite-mass terms of the PN2.5
equations of motion; they properly account for the transition
from orbital inspiral at large separations to plunge at small
separations. This hybrid PNmodel is in essence similar to the
effective one-body (EOB)model [52].We find it’s convenient
to incorporate the ellipsoidmodel in the hybrid PN formalism.
A detailed comparison of our results with those using EOB
models (e.g., Ref. [53]) is beyond the scope of this paper.As in
previous semi-analytical works on eccentric mergers, our
dynamical equations (1)–(7) include the dominant gravita-
tional radiation associated with the orbital motion, but not the
enhanced radiation associated with the tidally deformed NS.
We estimate that this effect will contribute to about ≲15% to
the phase error due to tidal effects [see the discussion
below Eq. (13)].

III. NUMERICAL RESULTS

We consider a NS binary system with M ¼ M0 ¼
1.4 M⊙, R0 ¼ 11.6 km. The NS is modelled as a polytrope
with n ¼ 0.5, as it represents a reasonable approximation to
a large class of NS equations of state, especially stiff ones.
The initial condition is obtained by setting äi ¼ _ai ¼ _Ω ¼
_Λ ¼ ̈r ¼ _r ¼ θ̈ ¼ 0 and α ¼ θ ¼ ϕ ¼ 0 (so that a1 and a2
are along x and y axes, respectively). The binary is initially
at the apocenter with separation r0¼rp;0ð1þe0Þ=ð1−e0Þ,
where rp;0 is the initial pericenter distance. The initial
eccentricity e0 is defined in terms of the initial orbital

angular frequency Ωorb;0 and Ωcirc;orb;0, the angular fre-
quency for circular orbit at r0 (in the absence of tidal effects
and PN effects):

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e0

p ¼ Ωorb;0=Ωcirc;orb;0. We set the
initial Ω0 ¼ Ωorb;0, and Λ0 ¼ 2a1;0a2;0Ω0=ða21;0 þ a22;0Þ,
corresponding to an irrotational NS [49]). We integrate
Eqs. (1)–(7) forward in time and stop the integration at
t ¼ tmerge, when the binary separation decays to r ¼ 2.5R0.
The evolution equations (1)–(7) can be stiff because of

the small quantity (a2=a1 − a1=a2) that appears in the
denominators of Eqs. (4) and (5). To check the accuracy of
our integration, we first turn off all PN terms and consider a
pure Newtonian binary system by setting AH ¼ BH ¼
A5=2 ¼ B5=2 ¼ 0. Figure 2 shows the evolution of the
separation and various components of the angular momen-
tum and energy of the system for a binary with e0 ¼ 0.2.
The angular momentum of the NS (JNS), the orbital angular
momentum (Jorb), the energy of NS (ENS) and the orbital
energy (Eorb), as well as the total angular momentum and
energy of the system (Jtot ¼ JNS þ Jorb, Etot ¼ ENS þ Eorb)
are expressed as Eqs. (2.4)–(2.9), (2.12) and (2.15) in
Ref. [24]. We see that our integration conserves energy and
angular momentum to high precision (better than 10−6).
We then solve the complete hybrid equations (1)–(7),

including the tidal effects and PN terms, for NS-BH
inspirals with different initial eccentricities (all with the
same initial rp;0 ¼ 7R0). Figure 3 shows the evolution of
the ellipsoid radii, and the angular frequency of the

FIG. 2. Conservation test of our integration for a pure New-
tonian binary with the initial eccentricity e0 ¼ 0.2 and the initial
(apocenter) separation r0 ¼ 10.5R0. The three panels show the
evolution of binary separation (r), and various components of the
energy and angular momentum of the system. The various
quantities (r; Jorb; JNS; Eorb; ENS) oscillate significantly with
time, while Jtot and Etot are conserved. Note that Jtot;0 and
Etot;0 are the initial total angular momentum and energy of the
system.
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ellipsoidal figure (Ω), internal circulation (Λ), and the
angular momentum of the NS. The tidal effects result in the
elongation of a1, but the contraction of a2 and a3. It also
leads to significant oscillating behavior of Ω and Λ, and a
slight increase of the NS spin angular momentum as the
orbit decays. The changes of these parameters grow as the
orbit decays. For better visualization, we focus on the last
100 ms of the evolution in the figures, where these
parameters change significantly. For zero initial eccentric-
ity, these parameters change gradually, while for larger
initial eccentricities, their changes oscillate significantly
near each pericenter passage, and strongly influenced by
the f-modes.
To quantitatively examine the tidal effect on the orbital

evolution, we compare the time evolution of the orbital
phase (θ), angular velocity (Ωorb), and binary separation (r)
between the NS-BH inspiral and BH-BH inspiral (with no
tidal effect) in the left panels of Fig. 4. It can be seen that
the tidal effects accelerate the merger, and influence the
evolution of the orbital parameters prior to the merger. We
define the shifts of these parameters between the BH-BH
and NS-BH cases as Δx ¼ xBH−BH − xNS−BH for x ¼ θ;
Ωorb; r; t to quantify these effects. We show the evolution of
the shifts for e0 ¼ 0.0, 0.2, 0.8 in the right panels of Fig. 4.
For the circular case, the shifts change gradually. For
eccentric orbits, the shifts oscillate, and the amplitudes

of oscillation increase with the initial eccentricity. For the
orbital phase, we find that the tidal effects will always lead
to a positive shift of orbital phase (Δθ > 0).
Figure 5 shows the net shift at the merger (defined as

Δxmerge ¼ xBH−BHmerge − xNS−BHmerge ) as a function of the initial
eccentricity. We see that the tidal effects lead to faster
mergers withΔtmerge ∈ ð22; 58Þ ms, and higher final orbital
frequencies with ΔΩorb;merge ∈ ð−86; 0Þ rad=s. The cumu-
lative orbital phase shifts at the merger areΔθmerge ∈ ð3; 7Þ.
Especially in some caseswith e0 ∼ 0.5–0.8, the phase shift is
>2π, meaning that the NS-BH case takes more than one
orbit less than the BH-BH case to merge.
To contrast with previous works, we first consider the

case of a circular orbit (e0 ¼ 0). The cumulative orbital
phase shift in the linear tidal regime is given by (see
Eq. (66) of Ref. [31]),

ΔθfullLinear¼
1

16
k2

�
39

4
þMt

M0

�
R5
0

M2M1=2
t

ðr−5=2f −r−5=2i Þ; ð12Þ

where k2 ¼ 3κnqn=2 is the tidal Love number, and ri and rf
are initial and final orbit separation. This phase shift is the
same as the widely used expression given by Ref. [32] after
translating the binary separation r into the orbital frequency
(see Eqs. (25) and (28) in Ref. [47]). However, since our
dynamical equations (1)–(7) do not include GW emission

FIG. 3. The last 100 ms dynamical evolution of the ellipsoid radii (a1, a2, and a3) and the NS angular frequency of the ellipsoidal
figure (Ω) and internal circulation (Λ), angular momentum (JNS) for a NS-BH inspiral with e0 ¼ 0.0, 0.2, 0.8. Note that Ω and Λ are
scaled by Ωc ¼

ffiffiffiffiffiffiffiffiffiffiffi
πGρ0

p
, and JNS is scaled by the critical value JNS;c ¼ ð2=5ÞκnMR2

0

ffiffiffiffiffiffiffiffiffiffiffi
πGρ0

p
.
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from the tidally deformed NS, the corresponding linear
orbital phase shift is

ΔθLinear ¼
39

64
k2

R5
0

M2M1=2
t

ðr−5=2f − r−5=2i Þ: ð13Þ

Comparing Eq. (12) with Eq. (13), we see that the enhanced
GW emission due to tidally deformed NS introduces only
9% (for M0 ≫ M) or 17% (for M0 ¼ M) correction to the
tide-induced orbital phase shift. The derivation of the above
two equations assumes that the tidal forcing frequency
(2Ωorb) is much less than the intrinsic f-mode frequency
(ωf) of the NS. Taking into account the dynamical response
of the f-mode, the above equation becomes [29],

ΔθdynLinear ¼ ΔθLinear
1

1 − 4Ω2
orb=ω

2
f

; ð14Þ

where ωf ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πGρ̄=ð15qnÞ

p
(see Eq. (3.30) in Ref. [50]).

We compare our numerical results with these analytical
results for circular orbits in Fig. 6. We study two cases: one
with full PN terms as in Eqs. (6)–(7), and the other with
PN2.5 terms only (i.e., setting AH ¼ BH ¼ 0, while keep-
ing A5=2 and B5=2). The latter case is considered because of
the fact that the analytical results [Eqs. (12)–(14)] are
obtained without the non-dissipative first or second-order

PN corrections. We see that our numerical “PN2.5 terms
only” result significantly deviates from ΔθLinear at small
radii, but is consistent with ΔθdynLinear except at r≲ 3R0. The
“PN2.5 terms only” result also deviates from the “Full
PN terms" result at r≲ 7R0, with a deviation amount
ΔθFull PN − ΔθPN2.5 ≲ 1. The nonlinear effect becomes
important only very close to merger (r≲ 3R0). Overall,
Fig. 6 indicates that the tide-induced phase shift is strongly
influenced by the dynamical effect and by the nondissipa-
tive PN effect on the orbit.
Looking back at Fig. 5, we see that Δθmerge depends on

e0 in a nonmonotonic way. The reason is that at the merger
(r ¼ 2.5R0), the orbit can still be eccentric, and the peri-
center distance of the final orbit can be rather different
between the NS-BH and BH-BH cases. As a result, the
phase shift and orbit frequency shift would depend on the
phase at the merger, i.e., whether the binary reaches r ¼
2.5R0 near the pericenter or apocenter. The behavior of
Δθmerge − e0 for the rp;0 ¼ 6R0 case [54] is largely similar
to the result obtained in Ref. [47] using the linear tidal
theory, where Δθmerge < 0 is observed for some eccen-
tricities. In our example depicted in Fig. 5, Δθmerge > 0 is
found for all values of e0. This can be attributed to the fact
that we consider the NS with n ¼ 0.5 in this paper, whereas
Ref. [47] adopts n ¼ 1. The difference in the results
between the case of rp;0 ¼ 7R0 and that of rp;0 ¼ 6R0

FIG. 4. Left panels: the last 100 ms of the dynamical evolution of the orbital phase (θ), angular velocity (Ωorb) and separation (r) for
the BH-BH insprial (with no tidal effect) and NS-BH inspiral with e0 ¼ 0.8. Right panels: the shifts of orbital parameters between the
BH-BH and NS-BH cases for e0 ¼ 0.0, 0.2, 0.8, where Δθ ¼ θBH−BH − θNS−BH, ΔΩorb ¼ ΩBH−BH

orb − ΩNS−BH
orb (scaled by Ωc ¼

ffiffiffiffiffiffiffiffiffiffiffi
πGρ0

p
)

and Δr ¼ rBH−BH − rNS−BH. In all cases, the binary has initial pericenter distance rp;0 ¼ 7R0, and starts at the apocenter with separation
r0 ¼ rp;0ð1þ e0Þ=ð1 − e0Þ.
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arises from the fact that the more compact initial orbits can
retain a higher eccentricity near merger, giving rise to a
stronger dependence of Δθ on the orbital phase at merger.

IV. EFFECTS ON GRAVITATIONAL WAVES

The leading-order gravitational wave forms of the two
polarization modes are given by [e.g., [47]]

hþ ¼ ð1þ cos2ΘÞμ
d

ð_r2 cos 2θ þ r ̈r cos 2θ − 4r_rΩorb sin 2θ

− 2r2Ω2
orb cos 2θ − r2θ̈ sin 2θÞ; ð15Þ

h× ¼ 2 cosΘμ
d

ð_r2 sin 2θ þ r̈r sin 2θ þ 4r_rΩorb cos 2θ

− 2r2Ω2
orb sin 2θ þ r2θ̈ cos 2θÞ: ð16Þ

where d is the distance to the source,Θ is the angle between
the line of sight and the orbit normal direction (the z-axis),
and we have neglected the contribution from the quadruple
moment of the NS. For simplicity, we consider Θ ¼ 0. The
GW amplitude (A) and phase (Ψ) are given by

FIG. 5. The shifts of orbital parameters at the merger time between the BH-BH and NS-BH cases vs the initial eccentricity. Note that
ΔΩorb;merge is scaled by Ωc ¼

ffiffiffiffiffiffiffiffiffiffiffi
πGρ0

p
. The initial pericenter distance is rp;0 ¼ 7R0 for blue curves, and rp;0 ¼ 6R0 for the orange dotted

line in the bottom panel.

FIG. 6. The cumulative phase shift between BH-BH and NS-
BH inspirals for circular orbits. The binary starts at the initial
separation r0 ¼ 12R0 and e0 ¼ 0. The linear analytical results are
given by Eq. (13) and (14), respectively. The “numerical PN2.5
terms only” result is obtained by setting AH ¼ BH ¼ 0, but
keeping A5=2 and B5=2 in Eqs. (6)–(7). The full numerical PN
result is obtained by integrating Eqs. (1)–(7) including all PN
terms.
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Ae−iΨðtÞ ¼ hþ − ih×: ð17Þ

Figure 7 shows the time evolution of the amplitudes and
phases of the BH-BH and NS-BH inspirals in the left
panels; in the right panels, we show the difference between
the two cases, i.e., Δx ¼ xBH−BH − xNS−BH for x ¼ A;Ψ.
We see that the tidal effects can significantly modify both
the amplitude and the phase evolution. For the case of
e0 ¼ 0.8, the amplitude difference oscillates considerably

with jΔAj=A reaching as large as 40%. The cumulative
phase shift also oscillates significantly just like the orbital
phase (see Fig. 4, the top right panel), and the phase shift at
the merger reaches ΔΨ ∼ 12.
Figure 8 shows the cumulative phase shift (ΔΨmerge) at the

merger.We see that the tidal effects in theNS-BHbinary lead
to a significant phase shift ΔΨmerge ∈ ð7.1; 13.4Þ. Note for
the circular case, the GW phase shift ΔΨmerge ¼ 2Δθmerge.
The oscillating behavior in the ΔΨmerge − e0 plot is similar
to that in theΔθmerge − e0 plot (see Fig. 5), and is caused by
the strong dependence of Δθ on the orbital phase at the
merger if the binary is not fully circularized at r ¼ 2.5R0.

V. CONCLUSION

In this paper, we have studied the tidal effects in
eccentric inspiralling NS binaries, where the NS is modeled
as a Newtonian compressible ellipsoid (which can deform
nonlinearly in response to tidal forcing) and the PN terms
(up to the 2.5-PN order) are incorporated for the orbital
evolution. Our treatment in this paper complements the
linear mode approach in our recent work [47] and other
related works (see Sec. I). We find that the tidal effects can
accelerate the inspiral process, and induce orbital frequency
and phase shifts. It can also lead to the elongation of a1, but
the contraction of a2 and a3. The change of ellipsoid radii at
the merger can reach ∼10%. For eccentric orbits, these
shifts oscillate significantly around pericenter passages,
and the amplitudes of the oscillation increase with eccen-
tricities. In contrast, for circular inspirals, the phase shift

FIG. 7. The GW waveforms for inspirals with e0 ¼ 0.8 and the initial rp;0 ¼ 7R0. Left panels: the evolution of GW amplitude and
phase for NS-BH and BH-BH inspirals. Right panels: the evolution of the amplitude difference ΔA and cumulative phase shift ΔΨ
between the BH-BH and NS-BH cases.

FIG. 8. The cumulative phase shift ΔΨmerge between the BH-
BH and NS-BH inspirals as a function of the initial eccentricity
for binaries with initial rp;0 ¼ 7R0.
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evolves gradually as the orbit decays, and our calculation
reproduces previous linear result at large binary separations
but also indicates that the dynamical tidal response of the
NS is important at small separations. At the merger, the
cumulative orbital phase shift reaches Δθmerge ∈ ð3; 7Þ for
different values of initial eccentricities at the initial peri-
center distances of 7R0 and canonical NS parameters (mass
M ¼ 1.4 M⊙ and radius R0 ¼ 11.6 km). In particular, for
some cases with e0 ∼ 0.5–0.8, the phase shift can be larger
than 2π, implying that without the tidal effects, the binary
will undergo at least one more orbit.
The tidal effect on the GW is also significant, as it can

induce significant phase shift with ΔΨmerge ∈ ð7.1; 13.4Þ at
the merger, as shown in Fig. 8. For most eccentric insprials,
the phase shifts are much larger than that of circular

inspirals. Overall, these results are consistent with the
previous calculations based on linear models (e.g., [47]).
As noted in Sec. I, the event rate of eccentric NS binary

mergers is highly uncertain. The results presented in this
paper show that if such systems (with sufficiently large
eccentricities) are detected, they would provide useful
information on the NS equation of state through the
enhanced tide-induced phase shift. But this would require
more accurate waveform templates for eccentric NS merg-
ers, due to the nonmonotonic dependence ofΔΨmerge on e0.
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