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Quark matter with only u and d quarks (udQM) might be the ground state of baryonic matter at large
baryon number A > Amin. With Amin ≳ 300, this has no direct conflict with the stability of ordinary nuclei.
An intriguing test of this scenario is to look for quantum nucleation of udQM inside neutron stars due to
their large baryon densities. In this paper, we study the transition rate of cold neutron stars to ud quark stars
(udQSs) and the astrophysical implications, considering the relevant theoretical uncertainties and
observational constraints. It turns out that a large portion of parameter space predicts an instantaneous
transition, and so the observed neutron stars are mostly udQSs. We find this possibility still viable under the
recent gravitational wave and pulsar observations, although there are debates on its compatibility with some
observations that involve some complex structures of quark matter. The tension could be partially relieved
in the two-families scenario, where the high-mass stars (M ≳ 2 M⊙) are all udQSs and the low-mass ones
(M ∼ 1.4 M⊙) are mostly hadronic stars. In this case, the slow transition of the low-mass hadronic stars
points to a very specific class of hadronic models with moderately stiff EOSs, and udQM properties are also
strongly constrained.
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I. INTRODUCTION

Quark matter, a state consisting purely of quark and
gluon degrees of freedom without confining into individual
nucleons, is expected to form at high density or high
temperature. Bodmer [1], Witten [2] and Terazawa [3],
on the other hand, hypothesized that quark matter with
comparable numbers of u, d, s quarks, also called strange
quark matter (SQM), might be the ground state of baryonic
matter at the zero temperature and pressure. However, the
original proposals are based on the bag model that fails to
model the flavor-dependent feedback of the quark gas on
the QCD vacuum. In our recent study [4], with this being
adequately included in a phenomenological quark-meson
model, we demonstrated that u, d quark mater (udQM) is in
general more stable than SQM, and it can be more stable
than the ordinary nuclear matter when the baryon number A
is sufficiently large above Amin ≳ 300. This lower bound for

Amin ensures the stability of ordinary nuclei and helps to
avoid a catastrophic conversion of our empirical world.1 It
also implies that the new form of stable matter has a
relatively large positive charge, with Z ≳ 100 for udQM
staying just beyond the periodic table. These high-electric-
charge objects can be searched for by their large ionization
effects.2 The consequence of eþe− pair production for
udQM with a large charge has also been investigated
recently [9].
One important question for the stable udQM scenario

is the implications for the neutron star physics. In the
conventional picture, astrophysical neutron stars are
assumed to be mostly hadronic stars (HSs) described by
one family of equations of state (EOS), where hyperons
are expected to appear in the high-density region. However,
the discovery of heavy pulsars with large masses above
2 M⊙ [10–12] ruled out a large number of soft hadronic
matter EOSs as predicted by the presence of hyperons
in the interiors. This conflict, which is also referred to as
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1A stability analysis of the finite-size udQM over giant nuclei
in supernovae matter was carried by Ref. [5].

2There have been searches for SQM in the cosmic ray or in
samples of ordinary matter [6]. AMS in the space in particular has
great potential to identify high-charge particles with Z ≳ 100 [7].
Recently there is a collier search for such high-charge objects by
using the LHC data [8].
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“the hyperon puzzle”, motivates an alternative explanation
of these heavy pulsars as being pure quark stars.
This possibility has been extensively studied in the

context of the SQM hypothesis [13–18], while it is a more
natural option for the stable udQM scenario. On one hand,
with an intrinsic smaller effective bag constant for udQM,
ud quark stars (udQSs) can satisfy the 2 M⊙ constraint
more easily than strange stars [4,19,20]. On the other hand,
hadronic stars consist mainly of u, d quarks, and heavy
stars are expected to convert to udQSs much faster with an
enhanced quantum nucleation rate of udQM. There are still
two possibilities, depending on the transition time for low-
mass stars. If the transition rate becomes significantly slow
as the mass decreases to 1.4 M⊙, these low-mass stars can
remain hadronic in the present universe, leading to the two-
families scenario that quark stars and hadronic stars coexist
[14]. If the transition is fast at all relevant masses, it points
to the less considered possibility that all compact stars are
quark stars [21]. Probes of udQM and udQSs via gravi-
tational wave observations were explored in [19,22].
In this paper, we conduct a comprehensive and system-

atic study for the above two possibilities in the context
of the stable udQM scenario, taking into account various
uncertainties on the hadronic matter and quark matter
properties, and the most recent observational constraints.
We start with a discussion of udQM and udQSs properties
in Sec. II, as motivated by our recent study [4]. To a good
approximation, these properties are determined by the
effective bag constant and the surface tension, the ranges
of which are closely related to the stability condition of
udQM. In Sec. III, by adopting the standard calculation
formalism for quantum nucleation, we identify the hadronic
matter and udQM features essential for the determination
of the transition rate. The relevance of these two possibil-
ities then becomes clear. In Sec. IV, we discuss these two
possibilities and their astrophysical observations in detail,
where different information on udQM and hadronic matter
properties can be inferred. We conclude in Sec. V. In
Appendix, we present the detailed calculations for the tidal
deformability constraints with updated results for the recent
event GW190425 from LIGO/Virgo [23]. In the rest of the
paper, we use the natural unit with c ¼ ℏ ¼ kB ¼ 1.

II. PROPERTIES OF udQM AND udQS

The novel possibility that udQM is actually the ground
state of baryonic matter was explored in an effective theory
of sub-GeV mesons in our recent paper [4]. Assuming a
linear signal model, we fixed the free parameters in the
meson potential by the masses and decay widths of mesons.
In the presence of finite quark densities, the meson fields
are pushed away from the vacuum along the least steep
direction. As a result, the constituent quark masses are
reduced, and quark matter becomes energetically favorable.
Due to the badly broken flavor symmetry in QCD, the

potential shape around the vacuum is much stiffer along the
strange direction than the nonstrange one. The u, d quark
mass then drops first as the Fermi momentum gradually
increases from small values. Within the viable parameter
space, an intermediate Fermi momentum is found to
minimize the bulk energy per baryon ε≡ E=A, where u,
d quark mass already becomes negligible and the strange
fraction remains zero. Thus, in contrast to the naive
expectation from the bag model, udQM is more stable
than SQM after taking into account the flavor symmetry
breaking in the potential energy.
Around the Fermi momentum that ε is minimized, the

energy per baryon for udQM in the bulk limit (large baryon
number A ≫ 1) can be well approximated by contributions
from a relativistic quark gas and a spatially constant
potential energy,

ε≡ ρ

n
≈
3

4
NCpFχ þ

3π2Beff

p3
F

; ð1Þ

where ρ is the energy density, and n is the baryon number
density. NC ¼ 3 is the color factor for quarks, χ ¼ P

i f
4=3
i

is the flavor factor with the fraction fi ¼ ni=ðNCnÞ, and
pF ¼ ð3π2nÞ1=3 is the Fermi momentum. The effective bag
constant Beff denotes the potential difference along the
valley oriented close to the nonstrange direction. It is rather
insensitive to pF and is closely related to the lightest meson
mass. The minimum energy per baryon is then

εmin ≈ 3
ffiffiffiffiffiffi
2π

p
χ3=40 B1=4

eff ; ð2Þ

at the Fermi momentum pF;0 ≈
ffiffiffiffiffiffi
2π

p
χ−1=40 B1=4

eff , with χ0 ¼
ð2=3Þ4=3 þ ð1=3Þ4=3 for a charge neutral u, d gas. This
shows the direct connection between the energy per baryon
and the effective bag constant. For a large part of parameter
space, we find udQM in the bulk limit more stable than the
most stable nuclei 56Fe, i.e., εmin ≲ 930 MeV, and so it is
the ground state of baryonic matter with zero pressure.
Small udQM becomes less stable due to the finite size

effects and the Coulomb energy contribution. For the baryon
number A not too small, the former can be well approxi-
mated by a surface-tension term for the quark-vacuum
interface. From the numerical fit, the surface tension is
found to be quite insensitive to the variation of relevant
parameters, with a robust value σs0 ≈ 20 MeV fm−2. To not
ruin the stability of ordinary nuclei, it is safe to have the
minimum baryon number Amin of udQM larger than 300,
corresponding to εmin ≳ 900 MeV. Therefore, with Eq. (2),
the scenario of stable udQM predicts the range of the
effective bag constant to be

50 MeV fm−3 ≲ Beff ≲ 57 MeV fm−3: ð3Þ
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The stable udQM scenario could be realized in a more
general setup. Going beyond the simple model in [4], the
upper bound on Beff remains intact as it is directly related
to the stability condition in the bulk limit. The lower
bound derived from the condition Amin ≳ 300, on the other
hand, could be relaxed if the effective surface tension is
larger, as predicted in some other models [24]. Assuming
the same Coulomb contribution in the analytical approxi-
mation for the energy, a more general lower bound is
σs0=ðMeV fm−2Þ þ 2Beff=ðMeV fm−3Þ ≳ 120, e.g., σs0 ≳
30 MeV fm−2 is required for Beff ≈ 45 MeV fm−3. As for
SQM, a large perturbative QCD effect or a color super-
conducting phase could reduce Beff to a smaller range for
the same stability condition of εmin [17,18,25].
The physics of compact stars relies on the properties of

hadronic matter and udQM at certain temperatures and
pressures [16,26,27]. In this paper, we restrict to cold stars
with zero temperature as a good approximation for mature
neutron stars being formed after some time. The approxi-
mation Eq. (1) ceases to apply at large pressure when a
nonzero strange fraction becomes favored. It turns out that
the pressure within reach for stable udQSs remains small,
and the strange fraction can be safely ignored, as we will
show at the end of this section. Thus, in the rest of the
paper, we stick with the effective bag constant range (3)
inferred from the udQM properties. Quantum nucleation of
udQM in the hadronic matter phase relies on quark matter
and hadronic matter properties at the same pressure. The
flavor composition of udQM is then determined by that of
the hadronic matter in chemical equilibrium due to the
conservation of baryon and lepton numbers, and differs
from udQM in equilibrium. Depending on the models,
there could be a considerable fraction of electrons and
muons in a neutron star interior, corresponding to an
increasing number of protons.
To derive udQM properties as functions of the pressure,

we start from udQM with relativistic electrons. The muon
contribution is corrected by the non-negligible mass, and it
will be discussed later. The energy density ρ as a function
of n and fi can be found from Eq. (1) with NC ¼ 1 for
leptons,

ρ ≈
9

4
ð3π2Þ1=3χn4=3 þ Beff ;

χ ¼
�
2

3
−
1

3
fp

�
4=3

þ
�
1

3
þ 1

3
fp

�
4=3

þ 1

3
f4=3e : ð4Þ

fe, fp denote the electron and proton fractions of the
hadronic matter, and fe ¼ fp when muons are absent. With
Eq. (4), the pressure can be found through the thermody-
namic relation

P ¼ n2
∂ðρ=nÞ
∂n

����
fi

≈
1

3
ðρ − ρ0Þ; ð5Þ

where ρ0 ¼ εminn0 ≈ 4Beff is the surface density with zero
pressure. Combining these two equations, we obtain the
baryon number density

nðPÞ ≈ 2

3

ffiffiffi
2

π

r
χ−3=4ðPþ BeffÞ3=4: ð6Þ

The chemical potential μ can be found by substituting
Eqs. (5) and (6) into another thermodynamics relation

μðPÞ ¼ ρþ P
n

≈ 3
ffiffiffiffiffiffi
2π

p
χ3=4ðPþ BeffÞ1=4; ð7Þ

with μð0Þ ¼ εmim at the surface. This expression is equiv-
alent to μ ¼ P

i¼u;d;e NCfiμi, where μi ¼ pFi for relativ-
istic particles. For increasing electron fraction fe, the flavor
factor χ is larger, and udQM formed via transition has a
smaller nðPÞ and a larger μðPÞ in comparison to that in
β-equilibrium. For fe ∼Oð10%Þ, the chemical potential
can change by the order of 10 MeV.
Including muons, instead of a mere redefinition of χ,

there are non-negligible mass corrections to the energy
density in Eq. (4) with the muon mass comparable to pF.
For thermodynamic quantities relevant to quantum tunnel-
ing, the major change is for μðPÞ with the additional
contribution fμμμ in Eq. (7). Due to the chemical equilib-
rium, μμ ¼ μe, fμ < fe, and the muon contribution is
bounded from above by that from electrons.
As a useful approximation, if the P dependence of the

flavor factor χ is mild, the thermodynamic relation in
Eq. (5) can be rewritten as P ≈ n2dðρ=nÞ=dn. Together
with Eq. (7), this leads to a simple relation dμ=dP ≈ 1=n
for either hadronic matter or quark matter. In the integral
form, it becomes

μðPÞ ≈ μð0Þ þ
Z

P

0

dP0 1

nðP0Þ : ð8Þ

As we will show in Sec. III, this relation is crucial in
understanding the general feature of hadronic matter to
udQM transition.
Next, we discuss the properties of udQSs. The crucial

quantity is the EOS of udQM in Eq. (5). It takes the same
form as SQM in the bag model if ignoring the effect
of strange quark mass, with the coefficient for ρ expected
for a relativistic gas and a nonvanishing surface density
ρ0 ¼ 4Beff . Referring to Eq. (2), udQM with the same
minimum energy par baryon εmin as SQM has a smaller
surface density ρ0 due to a larger value of the flavor factor
χ. For quark stars with an enormous A, gravitational
interaction becomes important, and the density profile
can be found by solving the Tolman-Oppenheimer-
Volkoff (TOV) equation [28,29]
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dPðrÞ
dr

¼ −
G½mðrÞ þ 4πr3PðrÞ�½ρðrÞ þ PðrÞ�

rðr − 2GmðrÞÞ ;

dmðrÞ
dr

¼ 4πρðrÞr2; ð9Þ

with the udQM EOS in (5). As in the case for strange stars,
this linear form of udQM EOS enables one to rewrite the
TOV equation in terms of the following dimensionless
variables [30,31],

ρ̄¼ ρ

ρ0
; P̄¼ P

ρ0
; r̄¼ r

ffiffiffiffiffiffiffiffi
Gρ0

p
; m̄¼m

ffiffiffiffiffiffiffiffiffiffi
G3ρ0

q
; ð10Þ

and the ρ0 or Beff dependence in the TOV equation is fully
absorbed into the rescaled solution.
Figure 1(a) displays the mass-radius relation for the

rescaled solution. Since quark matter is self-bound, the
radius vanishes when the mass approaches zero. The stable
branch of udQSs extend all the way up to the maximum
mass configuration with M̄max ≈ 0.052, corresponding to
Mmax ≈ 15.2M⊙ðBeff=MeV fm−3Þ−1=2. The radio measure-
ments of heavy pulsar masses around 2 M⊙ provide a lower
bound forMmax and then an upper bound for Beff. The most
stringent upper bound comes from the recent observation
of J0740þ 6620 with M ≈ 2.14þ0.10

−0.09M⊙ [11],3 indicating
Beff ≲ 50.3þ4.5−4.4 MeV fm−3 at 68% confidence level [19].
We can see that the Beff range (3) in the stable udQM
scenario remains consistent with this upper bound. Due to
uncertainties related to the hadronic matter and udQM
properties, the lower mass neutron stars with M ∼ 1.4 M⊙
could be either hadronic stars or quark stars. For the latter
case, i.e., all compact star being quark stars scenario, the
radii of udQSs with M ∼ 1.4 M⊙ can be compared with

observations. This then provides additional constraints on
Beff , as we will discuss in Sec. IVA.
Figure 1(b) shows the tidal deformability Λ of udQSs in

terms of the rescaled mass. As a useful quantity to
characterize the tidal properties of udQS, the tidal deform-
ability is determined by the Love number k2 and the
compactness C ¼ GM=R ¼ M̄=R̄ with Λ ¼ 2k2=ð3C5Þ.
As discussed in Appendix, the dimensionless rescaling
Eq. (10) can be extended to equations for k2 so that the
Love number for udQSs is determined only by C and is
independent of Beff . We find k2 ranging from 0.7 to 0.06
as the compactness increases. Given the M̄ − R̄ relation, we
can present Λ as a function of M̄. Since the compactness
increases with the mass, the tidal deformability becomes
small for heavy stars with strong gravitational interactions,
and it reaches the minimum value Λmin ≈ 23 at the
maximum mass. The possibility that gravitational wave
observations of coalescing neutron stars involve udQSs has
been discussed in [19,22] for GW170817 from LIGO/Virgo
[33]. In this paper, we extend the discussion to a newer
event GW190425 [23], and constrain Beff together with
other observations considering the transition rate estimation
of neutron stars.
As a final remark, we justify the earlier assumption

of ignoring the strange fraction. The central pressure for
the maximum mass udQSs has the rescaling relation:
Pmax ≈ 1.3ρ0 ¼ 5.1Beff . From Eq. (6), the corresponding
Fermi momentum pmax

F ¼ ð3π2nmaxÞ1=3 ≈ 4.1B1=4
eff , which

can reach up to 590 MeV for Beff in Eq. (3). In comparison
to the Fermi momentum that nonzero strange fraction is
favored, pmax

F is larger only for about ten percent of models
from our parameter scan [4].4 Thus, for most of the
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FIG. 1. (a) Rescaled mass M̄ vs rescaled radius R̄ and (b) tidal deformability Λ vs M̄ for udQSs. The black dot denotes the maximum
mass configuration with ðM̄; R̄Þ ≈ ð0.052; 0.19Þ.

3More massive pulsars have been suggested based on the
optical spectroscopic and photometric observations [32]. But, as
we will show later in Fig. 6, this imposes less stronger constraints
due to large uncertainties of this method in comparison to the
Shapiro delay measurements through radio timing.

4The strange fraction will turn on above the special Fermi
momentum pðsÞ

F , when it is energetically favorable to produce
nonrelativistic or relativistic strange quarks. This gives pðsÞ

F ≈
min½1.1ms; 3.2ΔV

1=4
s �, where ms ≳ 550 MeV is the constituent

mass for nonrelativistic strange quark and ΔVs≳7.4×108 MeV4

is the potential energy change due to a shift of the fields.
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parameter space, it is a reasonable assumption to ignore
the strangeness at the pressure accessible from a stable
quark star.

III. QUANTUM NUCLEATION OF udQM
IN COLD NEUTRON STAR MATTER

We start by reviewing the calculation framework for the
quark matter nucleation rate. Inside a cold neutron star,
a droplet of more stable udQM nucleates in the metastable
hadronic phase through quantum tunneling. In the semi-
classical approximation, the virtual droplet can be
described by a sphere with radius RðtÞ. The potential
energy for such a fluctuation can be represented as [34,35]

UðRÞ ¼ 4

3
πnQðμQ − μHÞR3 þ 4πσsR2

≡ −CPR3 þ 4πσsR2 ð11Þ

where CP ≡ 4πnQðμH − μQÞ=3. μH, μQ are the chemical
potentials of hadron and quark matter, and nQ is the baryon
number density of the later. σs is the surface tension for the
quark-hadron interface, and it differs from σs0 for the quark-
vacuum interface in general. As σs may suffer more from the
theoretical uncertainties, i.e., σs∼10–150MeVfm−3 found
for different models in the literature,5 we treat σs as a free
parameter in this paper. For this potential, the first term
denotes the negative volume contribution that favors the
quark matter with μQ < μH, and the second term denotes the
positive surface contribution that prevents nucleation at
smaller radii. A potential barrier forms due to the competi-
tion of the two contributions, as shown in Fig. 2. It is useful
to characterize the potential by its peak value and a special
radius that denotes the typical size of a droplet,

Umax ¼
256π3σ3s
27C2

P
; Rc ¼

4πσs
CP

: ð12Þ

The kinetic energy of a droplet results from a flow in
the medium around the droplet when there is a density
discontinuity between the two phases. For a general case,
the Lagrangian for the fluctuation can be written as [35]

L ¼ MðRÞ −MðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
− UðRÞ; ð13Þ

where _R is the growth rate and MðRÞ is the effective mass
for the droplet,

MðRÞ ¼ 4πρH

�
1 −

nQ
nH

�
2

R3 ≡ CMR3; ð14Þ

where CM ≡ 4πρHð1 − nQ=nHÞ2 and ρH is the energy
density for the hadronic phase. The kinetic term incorpo-
rates the relativistic effects. When _R ≪ 1, it takes the
nonrelativistic form 1

2
MðRÞ _R2 as in the Lifshitz-Kagan

theory [44].
For the quantum tunneling problem, a state of energy E

satisfies the Schrodinger equation,

�
−

d2

dR2
þ ðUðRÞ − EÞð2MðRÞ þ E − UðRÞÞ

�
ψðRÞ ¼ 0:

ð15Þ

With the standard semiclassical (WKB) approximation, the
tunneling probability for one droplet is

p0 ¼ exp ½−AðE0Þ�: ð16Þ

In the nonrelativistic limit, AðEÞ is roughly the action under
the potential barrier. Taking into account relativistic effects,
it takes the form

AðEÞ ¼ 2

Z
Rþ

R−

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2MðRÞ þ E −UðRÞ�½UðRÞ − E�

p
:

ð17Þ

R� denote the classical turning points as given by
UðR�Þ ¼ E. The ground state energy E0 is determined
from Bohr’s quantization condition

IðE0Þ ¼ 2π

�
m0 þ

3

4

�
; ð18Þ

0

E

Umax

R

Rc

R– R+

FIG. 2. The potential energy UðRÞ for a stable phase droplet
with a radius R. Umax denotes the potential peak value.Rc is the
nontrivial zero of the potential and denotes the typical size of a
droplet. R� denote the classical turning points in the tunneling
rate calculation of a state of energy E.

5Conventional MIT bag model [36], NJL model [37,38],
linear sigma model [39–41] predict small surface tension
σs ≲ 30 MeV fm−2. However, large values are also obtained,
e.g., σs ≈ 145–165 MeV=fm2 for NJL model in the multiple
reflection expansion framework [42] and σs ≈ 50–150 MeV=fm2

for models including charge screening effects [43].
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where IðEÞ is the action for the zero-point oscillation,

IðEÞ ¼ 2

Z
R−

0

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2MðRÞ þ E − UðRÞ�½E −UðRÞ�

p
:

ð19Þ

m0 ¼ ½IðEminÞ=ð2πÞ þ 1=4�, with [...] the Gauss’ notation
and Emin ¼ max½UðRÞ − 2MðRÞ� ∝ σ3s=ðCP þ 2CMÞ2 the
minimum allowed energy for E0 when the relativistic
effects are large, i.e., UðRÞ > 2MðRÞ. The transition time
for one droplet is then,

τ ¼ ðν0 exp ½−AðE0Þ�Þ−1; ð20Þ

where ν−10 ¼ dI=dEjE¼E0
.

Inside a hadronic star, the transition time Eq. (20) for a
udQM droplet at the radius r is determined by the
properties of udQM and hadronic matter evaluated at the

pressure PðrÞ, through the coefficients CP, σs in the
potential energy Eq. (11) and CM in the effective mass
Eq. (14). After its quantum formation, the first droplet
quickly expands by eating up nucleons and the whole star
will be converted almost instantaneously. The transition
time for a hadronic star τs can then be approximated by
formation time of the first droplet,

τs ≈
τmin

Ns
; ð21Þ

where τmin denotes the minimum transition time a droplet
could have inside the star and Ns ≫ 1 denotes the number
of such droplets. Given that the neutron star radius is
around 10 km and the typical size of a droplet is in the order
of fm, we have roughly Ns ∼ ðkm=fmÞ3 ∼ 1054. A more
careful estimate for transition at the core gives Ns ∼ 1048

[35]. To account for the related uncertainties, we assume
Ns ∼ 1045–1055 in the rest of the paper.
Figure 3 shows the contours of τs being the age of the

universe on the CP − CM plane for a given surface tension
for the quark-hadron interface. Considering the large
uncertainties for σs, we show the contour for some different
values within the plausible range. A larger σs increases the
height of the potential barrier, leading to a larger AðEÞ in
Eq. (17) and a smaller tunneling probability. A smaller
effective mass CM, on the other hand, lifts Emin and thus the
lowest energy E0, which then increases the tunneling
probability. When CM approaches zero, corresponding to
vanishing discontinuity of the number densities, Emin rises
up to U0, inducing an instantaneous transition. CP
influences both the potential barrier and E0. A decreasing
CP lifts the potential barrier height more than its lifting of
Emin, and this makes the transition slower.
It turns out that the two important quantities CP ∝

μH − μQ and CM ∝ ðnQ − nHÞ2 are closely related.
Figure 4 displays the chemical potential μ and the number

1 5 10 50 100 500 1000
0

50

100

150

CM

C
P

s 20 MeV fm 2

s 50 MeV fm 2

s 100 MeV fm 2

FIG. 3. Contours of the transition time for a hadronic star
τs ≈ t0 ≈ 4 × 1017 s (the age of the universe) on the plane of
CP ¼ 4

3
πnQðμH − μQÞ and CM ¼ 4πρHð1 − nQ=nHÞ2 for Ns ∼

1045 − 1055 and the surface tension σs ¼ 20, 50, 100 MeV fm−2.
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FIG. 4. (a) Number density nðPÞ and (b) chemical potential μðPÞ for two examples of widely used hadronic matter EOSs [45],
SLy (blue), GM1 (green), and udQM with Beff ¼ 52 MeV fm−3 (black).
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density n as functions of the pressure P for some hadronic
matter and udQM models. The surface properties at zero
pressure are more or less fixed. The chemical potential
difference Δεmin ≡ μHð0Þ − μQð0Þ ≈ 930 MeV − εmin > 0

is directly related to the binding energy of udQM, with
μHð0Þ ≈ 930 MeV for 56Fe. For the density, nHð0Þ approx-
imately vanishes for hadronic matter in general, while
nQð0Þ is nonzero for self-bound udQM as determined also
by εmin. The properties in the interior depend on the
stiffness of the hadronic matter EOS. A soft hadronic
EOS has the density increasing more rapidly with the
pressure, e.g., SLy, and its nðPÞ curve may intersect with
the udQM curve at a small pressure. For such a case, CM
approaches zero around the intersection radius and the
transition is instantaneously fast regardless of the values for
other quantities. The intersection of nðpÞ curves can be
avoided for a stiff hadronic EOS such as GM1, but the
chemical potential difference and then CP also become
larger for this case. The final result for the transition time
depends on the competition between CP and CM. This
competition is expected due to the relation between the
density difference and the chemical potential difference as
from the thermodynamic relation in Eq. (8),

μH − μQ ≈ Δεmin þ
Z

P

0

dP

�
1

nH
−

1

nQ

�
: ð22Þ

Therefore, for the case that nH is bounded from above by
nQ, both CM and CP become larger for a stiffer hadronic
matter EOS. At a certain point, a too-large CP dominates
the transition time and the increasing stiffness would not
help slow down the transition.

IV. CONVERSION OF NEUTRON STARS AND
ASTROPHYSICAL OBSERVATIONS

For a more comprehensive understanding of the conver-
sion of neutron stars, we start from a brief review of the
hadronic matter EOSs in compact stars. A typical neutron
star has an atmosphere and an interior. Figure 5(a) summa-
rizes our current understanding of the hadronic matter EOSs
in the interior. Below 0.5ρnuc is a crust consisting of ions and
electrons (and free neutrons when the density is above the
neutron drip density). Although there could be complex
structures such as nuclear pasta [46], the crust EOS is known
to a good accuracy. The outer core that ranges from 0.5ρnuc
to 2ρnuc is a mixture of protons, neutrons, electrons and
sometimes muons in β-equilibrium. Its EOS has been
systemically studied in the chiral perturbation theory
(ChPT) with baryons, and the theoretical uncertainties are
well under control. A heavy neutron star may have an inner
core with an intermediate density ρ≳ 2ρnuc. Although
predictions are made by some models, including hyperons
or not, the composition and EOS in this region remain
largely unknown. Astrophysical observations for neutron
stars provide an important clue to the EOS in this region.
Comparing with the joined constraints from recent obser-
vations, some models for example are disfavored at
ρ≳ 4ρnuc. Perturbative QCD (pQCD) applies at an ultrahigh
density, i.e., ρ≳ 100ρnuc. Although this region is far from
accessible in a neutron star, its prediction may serve as an
asymptotical limit for any model of the intermediate density
region. Phenomenologically, an EOS needs to satisfy the
monotony and causality conditions, i.e., 0 ≤ dP=dρ ≤ 1.
As highlighted in Sec. III, the spacing between the

hadronic matter and udQM nðpÞ curves is crucial in
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FIG. 5. (a) Hadronic matter EOSs on the P − ρ plane; (b) hadronic matter and udQM EOSs on the n–P plane. The purple line shows
a typical EOS for the crust [47]. The black lines are predictions from the chiral perturbation theory (ChPT) [48]. The green lines are
some well known models for the npeμ fluid in the interior [45] that agree with the ChPTwithin uncertainties. The yellow band shows the
joint constraints (the 90% credible interval) on hadronic matter EOSs from the recent gravitational wave and pulsar observations [49].
The magenta lines in (a) denote the pQCD results. The red band in (b) is the prediction of udQM with the Beff range in Eq. (3).
ρnuc ¼ 157 MeVfm−3 is the nuclear saturation density.
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determining the transition rate. Here we present the
comparison of various nðpÞ curves in Fig. 5(b). Given
the theoretical range of Beff in Eq. (3), the udQM pre-
diction is a quite narrow band as approximated by
nðpÞ ≈ 0.003 MeV−1Pþ nð0Þ. Interestingly, most of the
hadronic models considered before are quite soft, and their
nðpÞ curves can easily intersect with the udQM band at
some low pressure, i.e., below 30 MeV fm−3, accessible
from an astrophysical neutron star. Thus, newly formed
hadronic stars described by these EOSs will experience an
instantaneous transition, and observed compact stars with
M ≳ 1.4 M⊙ are most likely to be udQSs. On the other
hand, the uncertainty range of the hadronic matter EOSs
as from the low energy theory and astrophysical observa-
tions remain large, where the major part of the udQM
band is covered. A slow transition is then possible for a
special set of viable EOSs with the nHðPÞ curve sitting
moderately below the udQM band. In the following, we
discuss these two possibilities and their observational
implications in detail.
As a side remark, for the case that a crossing of nðpÞ

curves occurs, the chemical potential difference μH − μQ
starts to decrease above the crossing point with nH > nQ,
referring to Eq. (22). At some higher pressure, μH may
become smaller than μQ, indicating that the hadronic matter
becomes more stable again. If this pressure is accessible
from udQSs, there will be a transition back to the hadronic
matter in the deep interior of the quark stars. This points to
a new type of hybrid stars, in contrast to the conventional
ones with a quark matter core. We leave the detailed study
for future work.

A. All compact stars being udQSs

Neutron stars described by a soft hadronic matter EOS is
more likely to convert to udQSs, the maximum mass of
which remains compatible with the observed heaviest
pulsars. The possibility that all compact stars are udQSs
then provides a natural solution to the hyperon puzzle. In
this case, the main question is the consistency of udQS
predictions with most of the other neutron star observations
that involve objects considerably lighter than 2 M⊙. Note
that the joined constraints found in [49] and other refer-
ences rely on the nuclear theory input for the hadronic
matter at the low density, and they cannot be directly used
for udQM and udQSs.
Figure 6 compares the theoretical range of Beff in Eq. (3)

with the recent gravitational wave and pulsar observations
of neutron stars. Three types of constraints are considered
here. For the observations of massive pulsars with
M ≳ 2 M⊙, we include another pulsar J2215þ 5135 with
a heavier mass but a much larger uncertainty. Overall, the
theoretical range is consistent with these 2 M⊙ bounds at
90% C.L.. NICER measures the x-ray emission from a
rotating neutron star and is expected to reach better
sensitivity for the mass and radius measurements. As the

first target, J0030þ 0451 points to a star with the mass
around 1.4 M⊙ and the radius around 13 km. Given the
rescaled mass and radius relation for udQSs in Fig. 1(a), the
inferred range on the M–R plane can be translated to a
range for Beff. A relatively small Beff is favored by this
observation, with the theoretical prediction disfavored at
68% C.L. The tension nonetheless goes away at 90% C.L.,
and there is even less concern if considering the theoretical
uncertainties associated with the surface tension σs0.
Gravitational-wave observations provide a unique

chance to measure the tidal properties for the binary
system. The average tidal deformability Λ̃ can be extracted
from a waveform at the inspiral stage, and it is a function of
the mass ratio and the rescaled chirp mass. The constraints
from GW170817 favor a relatively large Beff , with the
theoretical prediction sitting right within the lower boun-
dary of the 90% range [19]. The more recent event
GW190425, on the other hand, has a larger chirp mass

FIG. 6. Observational constraints on Beff at 68% C.L. (blue)
and 90% C.L. (red) in the scenario that all compact stars are
udQSs. The three constraints on the bottom show the upper
bounds on Beff from radio measurements of heaviest pulsar
masses, withM=M⊙ ¼ 2.14þ0.10

−0.09 , 2.01
þ0.04
−0.04 , 2.27

þ0.17
−0.15 (68% C.L.)

for J0740þ 6620 [11], J0348þ 0432 [12], J2215þ 5135 [32],
respectively. The constraint in the middle comes from the mass
and radius measurement of J0030þ 0451 with NICER. Here we
use the results from a recent analysis [50] withM ¼ 1.44þ0.15

−0.14M⊙
and R ¼ 13.02þ1.24

−1.06 km (68% C.L.) [The Beff constraint from
another analysis of NICER data [51] is comparable and differs by
less than 5%]. The two constraints on the top are from
gravitational wave measurements of neutron star binaries with
LIGO/Virgo, with the chirp mass Mc=M⊙ ¼ 1.186� 0.001,
1.44� 0.02, the mass ratio q ¼ 0.73 − 1, 0.8–1, the average
tidal deformability Λ̃ ¼ 300þ420

−230, ≲600 (90% C.L.) for
GW170817 [33] and GW190425 [23] respectively. The vertical
green band shows the theoretical prediction in Eq. (3).
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and imposes a much weaker lower bound on Beff . The
upper bound comes solely from the observed mass for the
heavier udQS, where the rescaled M̄ exceeds the maximum
allowed value for a too-large Beff . More details on tidal
constraints can be found in Appendix. As we can see,
different observations push Beff toward the opposite direc-
tions, while the theoretical prediction remains compatible
with all the constraints at 90% C.L..
On the other hand, there are a few neutron star obser-

vations that the compatibility with quark stars remains
under debate. One long-established phenomenon is the
pulsar glitch, a sudden increase of the pulsar spin fre-
quency, as being observed for the Vela and Crab pulsars.
The most popular interpretation involves a superfluid
component and a rigid structure [52,53], with glitches
produced by their angular momentum transfer. In the
standard scenario, the rigid structure is provided by a solid
crust, and the crustal moment of inertia is bounded from
below by the observations of “giant glitches.”Although still
under debate [31,54,55], the normal nuclear crust of a
quark star below the neutron dip pressure [56] is probably
too small to account for the demanded crustal momentum
inertia. An alternative for quark stars is a crust consisting of
small chunks of quark matter instead of ordinary nuclei. For
strange stars, this new crust might be large enough with the
energy density contributed mainly by the strangelets [57].
The two ingredients may also be related to the peculiar
properties of quark matter. One example is the inhomo-
geneous crystalline color superconducting phase, which is
rigid as well as superfluid and may provide an explanation
without a crust [58]. For the stable udQM case, the nuclear
crust for udQS would be larger than that for strange stars
due to a larger positive charge for udQM and a stronger
Coulomb support of the crust. Implications of other
mechanisms deserve further studies.
A more recent example for such kind of observations is

quasiperiodic oscillations for the highly magnetized com-
pact stars. In the simplest model, they are associated with
the seismic oscillations of the stellar crust, and the
frequencies are determined mainly by the crust thickness.
Quark stars are disfavored due to their much thinner crust
and the much higher frequency, even considering a crust
consisting of quark matter [59]. However, to infer the crust
thickness, modes identification between the observation
and theory is needed, and this may depend crucially on
other unknown features of the stars [60]. All in all, the
current observations in tension with the quark star explan-
ation seem to involve some complex structures of quark
matter, and further studies are required for a more con-
clusive analysis.
Mergers of quark stars may produce small chunks of

udQM, which we name as udlets, in line with the strangelets
in the SQM hypothesis. Normally, a udlet would not be
absorbed by an ordinary nucleus due to the Coulomb
repulsion of the positive charges. But those generated from

mergers may acquire large kinetic energy to overcome the
Coulomb barrier, and their encounter with smaller hadronic
stars, e.g., white dwarfs, planets, may lead to fast conversion
into small quark stars. The final results depend on the
flux and spectrum of udlets. A recent numerical simulation
[61] shows that the strangelet flux from strange stars merger
is negatively correlated with Beff through the mass-radius
relation. Since udQM has a smaller Beff than SQM with the
same εmin, the conversion rate induced by the udlets might
be higher than that for strangelets.

B. Coexistence of hadronic stars and udQSs

In the two-families scenario, high-mass stars with
M ∼ 2 M⊙ are all udQSs, while low-mass ones remain
hadronic with a slow enough transition rate. As mentioned
before, this points to a special class of hadronic matter
EOSs, which is a little fine-tuned. But in view of obser-
vations, it shows that the transition behavior in this scenario
is extremely sensitive to the variations of hadronic matter
EOSs, and could be used to provide information that is
otherwise inaccessible. Another advantage of this scenario
is the possibility to avoid the long-time debate regarding the
compatibility with observations such as pulsar glitches,
given that these observations are consistent with lower
mass stars within uncertainties.
Figure 7 displays two benchmark models for hadronic

matter EOSs on the n–P plane. To avoid an instantaneous
transition, the hadronic matter nHðPÞ curve is bounded from
above by the nQðPÞ curve. On the other hand, it cannot be
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FIG. 7. The hadronic matter and udQM EOSs on the n–P
plane. The gray lines are predictions from the ChPT [48]. The
yellow band (dotted line) shows joint constraints (the 90%
credible interval) from astrophysical observations [49]. The green
band (dot-dashed lines) shows the range of EOS that the low
density ChPT results and high density pQCD results can be
interpolated under the causality and monotony condition, i.e.,
0 ≤ dP=dρ ≤ 1. The black line is the prediction of udQM with
Beff ¼ 52 MeV fm−3. The blue and red lines are the two bench-
mark models of the hadronic matter EOSs, HM1 and HM2, as
detailed in the text.
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too stiff and is bounded from below by the observational
constraints as well as the requirement of matching to the
high-density pQCD prediction. For EOS in this range, the
center pressure Pc for 1.4 M⊙ neutron stars varies only in a
narrow range, i.e., Pc ≈ 35–45 MeV fm−3. Thus, only the
behavior at P≲ 50 MeV fm−3 is relevant to transition of
1.4 M⊙ neutron stars, as we focus on in Fig. 7. The blue line
denotes an example (HM1) that smoothly interpolates the
high density and low density regimes as described by the
pQCD and ChPT. Matching to the crust at 0.5ρnuc, its EOS
at higher density is given by the analytical expression6

nðPÞ ¼ ðaþ bPÞð1 − expð−cPdÞÞ − f; ð23Þ

with the parameters ða; b; c; d; fÞ ¼ ð0.4; 0.0019; 0.4; 0.3;
0.04Þ. Below 20 MeV fm−3, this model is close to the stiffest
EOS within the ChPT uncertainty band. The red line, on the
other hand, is roughly the softest EOS (HM2) allowed by the
ChPT that is below the udQM curve. The abrupt change of
the slope at P ≈ 1.5 MeV fm−3 indicates a drastic variation
of the speed of sound, which may come from a phase
transitions inside neutron stars.
Figure 8 shows the main properties relevant to the

transition of 1.4 M⊙ neutron stars. Different benchmark
models of hadronic matter and udQM are chosen to
demonstrate the dependence on the effective bag constant
Beff , the surface tension σs, the hadronic matter EOS and
the flavor composition. As shown in Fig. 3, the transition
time is determined by the competition among CM, CP
and σs. A large σs and Beff both raise the height of the
potential barrier and increase the transition time. For the
two hadronic matter models HM1 and HM2, their nðPÞ

approach the same values at high density, and the difference
of the transition time in Fig. 8(b) mainly comes from the
distinct CP, as being proportional to the chemical potential
difference in Fig. 8(a). Since HM2 is softer at lower density,
it has a smaller μH and then a smaller chemical potential
difference.
A nontrivial P-dependence of the flavor composition can

also be helpful by reducing the chemical potential differ-
ence at high pressure. For illustration, we focus on hadronic
matter models with a negligible strangeness, and the flavor
composition varies mainly with the lepton fractions.7

For the case with negligible contribution from leptons,
given the thermodynamic relation Eq. (22), the chemical
potential difference μH − μQ increases with pressure as
expected from the condition nHðPÞ < nQðPÞ, and the
transition at the center of stars is the fastest. In the presence
of nonzero lepton fractions, the chemical potential of
udQM becomes larger, and the difference μH − μQ can
be significantly reduced at high pressure due to the non-
trivial P-dependence of the lepton fractions, which reach up
to 20% for this model.
It is then clear that a soft hadronic matter EOS at a lower

density and a nontrivial lepton fractions can help to slow
down the transition. For instance, as from Fig. 8(b),
assuming HM2 and a large lepton faction, it is possible
to have 1.4 M⊙ hadronic stars not yet converted at present
for the Beff range in Eq. (3) and for the surface tension as
small as our prediction for the quark-vacuum interface, i.e.,
σs0 ≈ 20 MeVfm−2. The narrow bands of the transition
time contours in Fig. 8(b) results from the exponential
sensitivity of τsNs on the shape of the potential barrier.
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FIG. 8. (a) Chemical potential difference as a function of the pressure for Beff ¼ 52 MeV fm−3. (b) Contours of the transition time
τs ¼ t0 for 1.4 M⊙ neutron stars on the ðσs; BeffÞ plane for Ns ≈ 1045 − 1055, where we restrict to the range of Beff in Eq. (3). On both
panels, the blue and red lines correspond to HM1 and HM2 in Fig. 7. The dark and light lines are for udQM with a negligible lepton
fraction and with a large lepton fraction from the Sk15 model [45].

6We thank Bob Holdom for providing a preliminary version of
this expression.

7There are larger uncertainties for EOSs involving hyperons.
On the quark matter side, a nonzero strange fraction will increase
μQ and a slow transition can be more easily achieved.
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A small shift of parameters within the band leads to a
change of τsNs by ten orders of magnitude, corresponding
to a variation of the transition time τs from the age of the
universe to one year for Ns ≈ 1055. Thus, in the parameter
space above or below the bands, the transition time of a
1.4 M⊙ hadronic star is either too long or too short in the
timescale of interest to human beings.
For heavy neutron stars with M ≈ 2 M⊙, the stiffness

of hadronic matter EOS is essential for the discussion of
transition. For a stiff EOS that the maximum mass is
already compatible with the observed heaviest pulsars,
e.g.,Mmax ≈ 2.1 M⊙ for HM1, the conventional one-family
picture has no direct conflict with observations, and a fast
transition of heavy hadronic stars is not mandatory. It is
for a soft EOS with a smaller Mmax that a fast transition
of heavy hadronic stars to udQSs is motivated. As a soft
EOS in the two-families scenario, HM2 has Mmax ≈ 2 M⊙
and Pc ≈ 100–200 MeV fm−3 for M ≈ 1.9–2 M⊙. The
transition time of heavy hadronic stars then depend on
the EOS in a large range of pressure above the central
pressure Pc ≈ 50 MeVfm−3 for 1.4 M⊙ stars. A fast
transition can be realized if nH gets close to nQ or
μH − μQ becomes large enough at any P within this range,
and these conditions are easy to achieve given the theo-
retical uncertainties in Fig. 7(a). For HM2 with negligible
leptons, a 1.9 M⊙ hadronic star can convert to a udQS
almost instantaneously in the range above the dark red band
covered by Fig. 8(b). The viable parameter space might not
be this large for other cases. But it is clear that a fast
transition of heavy stars is very likely.
Regarding the implication of recent gravitational wave

and pulsar observations, different comparisons need to
be made in the two-families scenario. Observations for
the heaviest pulsars still constrain udQSs, and the upper
bounds on Beff remain the same as in Fig. 6. The NICER
observation of a pulsar with M ≈ 1.4 M⊙, on the other
hand, is to be confronted with the prediction of hadronic
stars. For the two benchmarks HM1 and HM2, the
corresponding radii, which are 13.3,12.5 km, are quite
compatible with the NICER results. The implication of
gravitational wave observations is also different if the
binaries involve at least one hadronic star. For such cases,
as shown in Fig. 11, the hadronic matter EOS plays an
important role, with quite different results for the two
benchmarks. HM1 is ruled out by GW170817 at 90% C.L.
for either a udQS-HS system or a HS-HS system simply
due to a too large tidal effect for the hadronic star. The
situation for HM2 is better, where we find no constraints
for the HS-HS case and Beff ≳ 45 MeV fm−3 for the
udQS-HS case.
In the two-families scenario, low mass hadronic stars not

yet converted by the quantum nucleation may experience a
fast transition by an encounter with a udlet, which can be
produced by binary mergers involving heavy udQSs.
Recent numerical simulations for strange stars show that

the merger product of quark stars tends to promptly
collapse to a black hole with much less ejecta [61]. A
binary with heavy udQSs either have a too small
companion or a too large total mass. For the former case,
the merger is too mild to produce ejecta, while for the latter
case matter is mostly swallowed by the promptly formed
black hole. Thus, the udlet flux as coming only from binary
mergers involving heavy udQSs would be much smaller
than the flux in the “all compact stars being udQSs” case,
and the chance of low-mass stars converted by udlets is
expected to be small. Quantum nucleation could also be
facilitated by the energy injection produced by dark matter
annihilation inside neutron stars [62], while the efficiency
depends crucially on the dark matter mass.

V. SUMMARY

We investigated the astrophysical implications of the
stable udQM scenario in this paper, taking into account
both the transition rate estimation for hadronic stars and the
observational constraints.
With the effective bag constant Beff range (3) derived

from the udQM stability condition [4], we found the
predicted maximum mass of udQSs compatible with
observations of the heaviest pulsars with M ≳ 2 M⊙ at
90% C.L.. Therefore, after a fast conversion to udQSs,
heavy hadronic stars lighter than 2 M⊙ can keep growing
till saturating the maximum mass of udQSs, and this
provides a natural solution to the hyperon puzzle.
The main issue we addressed here is the nature of

low-mass compact stars with M ∼ 1.4 M⊙. As shown in
Fig. 3, the transition time mainly depends on the chemical
potential and the density difference for the hadronic
matter and quark matter phases, as well as the surface
tension σs of their interface. We found it convenient to
track the EOS dependence by comparing the nðPÞ curve of
the two phases. As a result, the transition rate only
becomes significant when moving into the interior.
A prominent feature is that when the two nðPÞ curves
cross, the udQM droplets turn ultra-relativistic, and the
transition is instantaneously fast regardless of the values
for other quantities.
Most of the hadronic models do predict a nðPÞ curve

intersecting with that of udQM at a pressure accessible
from a 1.4 M⊙ compact star. This then points to the
unconventional possibility that the observed neutron stars
are mostly udQSs. This possibility is often overlooked due
to a long-time debate on its compatibility with some well-
established observations. Yet, complex structures of quark
stars are likely to be involved. For a more direct probe of
the basic properties of udQM, we consider constraints from
the recent gravitational wave and pulsar observations. As
shown in Fig. 6, different observations push Beff to the
opposite directions with a small region left open. We found
the theoretical prediction of udQM still viable at 90% C.L.,
which may resurrect interest in this possibility.
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A slow transition of low-mass hadronic stars is also
possible if the hadronic matter nðPÞ curve happens to be
moderately below the udQM one, which is still allowed
given the uncertainties. For this case, the transition time is
extremely sensitive to variations of the relevant quantities,
as summarized in Fig. 8. We found that a softer hadronic
matter EOS at low pressure and a nontrivial lepton fraction
can help to slow down the transition, and a reasonable
lower bound on Beff and σs can be obtained to have 1.4 M⊙
compact stars being hadronic at the present universe. Heavy
hadronic stars with M ≈ 2 M⊙, on the other hand, can
quickly convert to quark stars. Thus, the transition behavior
in the two-families scenario provides useful information for
both udQM and hadronic matter. A softer hadronic EOS is
favored by the recent observations as well, particularly
GW170817 from LIGO/Virgo.
There is more to explore in the future. On the theoretical

side, further model development for stable udQMmay help
to limit the allowed ranges for Beff and σs, which will lend
to a more definite conclusion for the two-families scenario.
On the observational side, a hadronic star conversion is a
dramatic event, where a large amount of energy is expected
to be released. This may trigger a neutrino burst accom-
panied by the emission of gravitational waves [16]. The
implication for udQSs deserves further studies.
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APPENDIX: TIDAL DEFORMABILITY OF udQSs

In this section, we discuss in detail the tidal deform-
ability constraints from the compact star merger events
on udQSs, and we use the geometric unit with G ¼ c ¼
ℏ ¼ kB ¼ 1 here.
The GW170817 event detected by LIGO/Virgo [33] is

the first confirmed merger event of compact stars, with the
chirp mass Mc ¼ 1.186þ0.001

−0.001 M⊙, and a 90% highest
posterior density interval of Λ̃ ¼ 300þ420

−230 with q ¼
0.73–1.00 for the low spin prior from the collaboration
[33,63]. More recently, a new event GW190425 was
identified [23] with Mc ¼ 1.44 M⊙, q ¼ 0.8–1.0 and Λ̃ ≤
600 for the low spin prior at 90% credible interval.8

Reference [19] showed that the GW170817 event may
be a binary system with at least one udQS. In the following,
we update the constraints in the context of the neutron star
conversion, and extend the discussion to GW190425.
The tidal deformability Λ, which characterizes the

response of compact stars to an external disturbance, can
be expressed as Λ ¼ 2k2=ð3C5Þ. The Love number k2 is
defined as [64–67]

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� logð1 − 2CÞg−1;

ðA1Þ

where the compactness C ¼ M=R, and yR is yðrÞ evaluated
at the surface, which can be obtained by solving the
following equation [67]:

ry0ðrÞ þ yðrÞ2 þ r2QðrÞ
þ yðrÞeλðrÞ½1þ 4πr2ðPðrÞ − ρðrÞÞ� ¼ 0; ðA2Þ

with boundary condition yð0Þ ¼ 2. Here

QðrÞ ¼ 4πeλðrÞ
�
5ρðrÞ þ 9PðrÞ þ ρðrÞ þ PðrÞ

c2sðrÞ
�

− 6
eλðrÞ

r2
− ðν0ðrÞÞ2; ðA3Þ

and

eλðrÞ ¼
�
1−

2mðrÞ
r

�
−1
; ν0ðrÞ ¼ 2eλðrÞ

mðrÞþ 4πPðrÞr3
r2

:

ðA4Þ

For quark stars with a finite surface density, a matching
condition should be imposed at the boundary yextR ¼ yintR −
4πR3ρ0=M [68]. Note that we can also utilize Eq. (10) to
transform Eq. (A2) into a fully dimensionless form, with ρ̄
and P̄ obtained from the rescaled TOV equation for quark
stars as introduced in Sec. II. The solution then is in the
form of yðr̄Þ with r̄ ¼ r

ffiffiffiffiffiffiffiffiffiffi
4Beff

p
, and the variable yðR̄Þ

evaluated at the surface can be converted further into the
yðCÞ form with the M̄ − R̄ relation in Fig. 1(a). Therefore,
for udQSs, the Love number k2 and the tidal deformability
Λ are only functions of the compactness C, as shown in
Figs. 9(a) and 9(b) respectively, with the dependence on ρ0
or Beff fully absorbed. This feature crucially relies on the
linear form of quark matter EOSs.

8As motivated by the magnetic braking effect during the binary
evolution [17] and the observed galactic neutron star binary
populations [33], we only consider the tidal deformability
constraints for the low-spin prior here. If the component spin
is non-negligible, which has no strong evidence so far, the mass
and radius can change up to 10%-20% for a stably rotating quark
star [31], and the constraints on Beff will change accordingly.
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For a binary system, with the chirp mass Mc ¼
ðM1M2Þ3=5=ðM1 þM2Þ1=5, the average tidal deformability
is defined as

Λ̃ ¼ 16

13

ð1þ 12qÞ
ð1þ qÞ5 ΛðM1Þ þ

16

13

q4ð12þ qÞ
ð1þ qÞ5 ΛðM2Þ; ðA5Þ

where q ¼ M2=M1 ≤ 1. For an equal mass binary with
q ¼ 1, Λ̃ is simply ΛðMiÞ. In the other limit that q → 0, Λ̃
is dominated by the massive component contribution.
For the udQS-udQS merger case, with ΛðMiÞ ¼ ΛðM̄iÞ,

the average tidal deformability is only a function of the
mass ratio q and the rescaled chirp mass M̄c. The
dependence is shown in Fig. 10, where the lower end of
each black curve for a given q is determined by requiring
each component of the binary system to not exceed its
maximum allowed value. The value of M̄c at the lower end
is negatively correlated with the value of q.
We can see that GW170817 imposes a stronger con-

straint than GW190425. For both cases, the upper bound of
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FIG. 9. (a) Love number k2 and (b) tidal deformability Λ as functions of the compactness C ¼ M=R ¼ M̄=R̄ for udQSs.
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FIG. 10. The average tidal deformability Λ̃ vs the rescaled chirp
mass M̄c for the udQS-udQS merger case (black lines) for q ¼
ð0.1; 0.2; 0.3; 0.4; 0.5; 0.7; 1Þ from left to right, respectively. Red
and blue bands with solid (dashed) edge lines denote the range of
M̄c with Beff ∈ ½45; 55� MeV fm−3 and the constraints on Λ̃ for
GW170817 (GW190425) respectively. The red dotted lines at the
center of each red band denote M̄c with Beff ¼ 50 MeV fm−3.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

q

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

q

FIG. 11. The average tidal deformability Λ̃ vs q for the two-families scenario for (a) GW170817 and (b) GW190425, where the
binaries include at least one hadronic star. The blue and grey bands show the constraints on Λ̃ and q from LIGO/Virgo. The black and red
lines are for the two benchmark models of hadronic matter EOSs, HM1 and HM2, respectively. For each color, the dashed line denotes
the HS-HS case. The solid lines are for the udQS-HS case with M2 the hadronic star mass and Beff ¼ ð45; 50; 55Þ MeV fm−3 (a darker
color for a larger value) for udQSs. For all lines, the solid dots denote the lower bound on q that ensures the component mass to not
exceed the maximum allowed value.
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the average tidal deformability Λ̃ can be converted to a
lower bound of M̄c and thus a lower bound for Beff, and
we find Beff ≳ 49.5, 36.2 MeV fm−3 for GW170817 and
GW190425 respectively. Similarly, the lower bound of Λ̃
for GW170817 is translated to a quite mild upper bound
Beff ≲ 106.6 MeV fm−3. For GW190425, there is an upper
bound by requiring the rescaled M̄ to not exceed the
maximum allowed value M̄max ≈ 0.052, and this gives
Beff ≲ 84.2 MeV fm−3 for Mc ¼ 1.44 M⊙. These bounds
of Beff map to the top two lines in Fig. 6.
For the two-families scenario, a binary with at least

one low-mass star could be either a udQS-HS system or a
HS-HS system. Here we use the two benchmarks of hadron

matter EOSs introduced earlier in Fig. 7, i.e., HM1 and
HM2, which are proposed to realize a slow transition of the
low-mass hadronic stars. This is in contrast to the previous
study in Ref. [19], where Bsk19, SLy, Bsk21 models are
chosen for a more general representation of the hadronic
matter EOSs.
The corresponding results of Λ̃ for GW170817 and

GW190425 are shown in Fig. 11. We can see that for
GW190425 either a udQS-HS merger or a HS-HS merger
is well compatible with the current constraint. For
GW170817, the observations favor a relatively soft had-
ronic EOS and Beff ≳ 45 MeV fm−3 for udQM, which
match the expectation of Ref. [19].
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