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In the present work, we consider the influence on the heavy quark correlators due to the instanton back-
ground in the framework of instanton liquid model (ILM) of QCD vacuum by taking into account also the
perturbative gluon effects. For a single heavy quark, this leads to the mass shift due to the direct-instanton
nonperturbative and ILM modified perturbative contributions, respectively. In the heavy quark-antiquark
(QQ̄) sector, we obtain the potential consisting the direct instanton induced part and the one-gluon
exchange (OGE) perturbative part, which is screened at large distances due to the nonperturbative
dynamics. At the region of interest corresponding to the heavy quark physics, the screening effect in OGE
can be well approximated by a Yukawa-type potential in terms of the dynamically generated gluon mass.
A possible implication of the present studies to the phenomenology of heavy quarkonium is also discussed.
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I. INTRODUCTION

The properties of heavy quarkonium QQ̄ (a colorless
system consisting of a heavy quark Q and another heavy
antiquark Q̄) in the framework of phenomenological
approaches can be well described essentially on a basis
of nonrelativistic potential models. The model quite popu-
lar among them is one with the so-called Cornell potential
[1], which has a nature of a Coulomb-like attractive part at
short distances and a linear confining part at long distances.
The form of potential is given as

VCornellðrÞ ¼
κ

r
þ σr; ð1Þ

where the Coulomb coupling κ < 0 and the string constant
σ > 0. The short-distance behavior of quantum chromo-
dynamics (QCD) is dominated by the one-gluon exchange
interaction, and the corresponding potential can be calcu-
lated perturbatively. At the leading order on the strong
coupling constant αs ¼ g2=ð4πÞ, one reproduces the first
term in Eq. (1) with the constant κ ¼ −ð4=3Þαs, where
“−4=3” is color factor corresponding to the color singlet

QQ̄ state. Nevertheless, in the practical calculations, κ is
mostly considered as a pure phenomenological parameter.
The confining part of the potential is a pure phenom-

enological one, due to the fact that we do not fully under-
stand yet the mechanism of confinement. Therefore, some
authors are using the harmonic oscillator type ∼r2 or the
logarithmic ∼ lnðrÞ dependencies for the confining part of
potential. From the other side, the lattice QCD calculations
showed the linear ∼r dependence of the full potential at
large distances (see, e.g., Ref. [2]), supporting in such a
way the Cornell-type form of potentials. Actually, all these
potential models with the different confining forms rea-
sonably well match with the data due to the reason that they
do not much affect at short distances, where we have the
sensitive probes. This kind of common behavior of differ-
ent confining potentials at the short distances is also a
partial reason for considering the Coulomb coupling κ as a
pure phenomenological parameter.
In principle, one can further try to develop the potential

approach and improve the description of data by taking into
account the relativistic and perturbative corrections on
the strong coupling constant αs of QCD [3,4]. However,
the more influential effects may still be hidden behind the
nonperturbative structure of QCD vacuum. Therefore, one
should develop the more general systematic approach,
which takes into account not only the next order perturbative
effects but also the nonperturbative effects in the properties
of heavy quark systems.
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Here, it is necessary to note that the light quark sector of
hadronic physics is successfully described by means of a
spontaneous breakdown of chiral symmetry in the framework
of an instanton liquid model of QCD vacuum (ILM) (see
reviews [5–7] andRefs. [8–12]). Onemay also expect that the
nonperturbative effects on the heavy quark propagation in the
instanton medium still may be substantial at last but not least.
Consequently, our aim in the present work is the development
of the systematic accounting scheme for the instanton effects
during the calculations of heavy quark correlators. By doing
this, we will work in the framework of the ILM and
simultaneously, consider theperturbativegluoncontributions.
The paper is organized in the following way. In the next

Sec. II, we discuss an applicability of ILM in the heavy
quark sector by comparing the parameters of ILM with the
quark core sizes of hadrons. Then in Sec. III, we explain
the formalism of calculations of the heavy quark correlators
in the instanton medium by also accounting for the
perturbative gluon corrections. Section IV is devoted to
the calculations of the heavy quark propagator in ILM and
estimations of the possible contributions to the heavy quark
mass. Further, the two body heavy quark-antiquark corre-
lator in ILM is presented in Sec. V. In particular, the results
corresponding to the heavy quark potential are discussed in
Secs. VA and V B. In Sec. VI, we will analyze the order of
the instanton effects in the quarkonium spectra and will
make the corresponding conclusions. Finally, in Sec. VII,
the present studies and the outlook for future investigations
will be summarized. The details of the calculations of the
heavy quark correlators with the perturbative gluon cor-
rections in ILM are given in the Appendix.

II. ILM PARAMETERS VS HADRON
QUARK CORE SIZES

QCD vacuum has the rich topological structures, and
probably, the most important among them is an instanton—a
classical solution of Yang-Mills equations in the four-
dimensional Euclidean space. The vacuum of QCD has a
degenerate and periodic structure in the functional space
along the collective coordinate direction, which is called the
Chern-Simons (CS) coordinate. Therefore, QCD vacuum
can be considered as the lowest energy quantum state of the
one-dimensional crystal along the CS coordinate [13,14].
The QCD instanton (anti-instanton) is a tunneling mecha-
nism in the forward (backward) direction between the
different Chern-Simons states corresponding to the degen-
erate vacuum [15]. The (anti-)instanton is described by its
collective coordinates denoted as ξI: the position in four-
dimensional Euclidean space zI, the instanton size ρI , and
the SUðNcÞ color orientation given by the unitary matrixUI ,
4Nc variables altogether.

1 The main parameters of ILM are

the average instanton size ρ̄ and the interinstanton distance
R, or the density of instanton media N=V ≡ 1=R4 given in
terms of the interinstanton distance2 (see reviews [5–7]).
Phenomenologically, their values were estimated as

ρ̄ ¼ 1

3
fm; R ¼ 1 fm: ð2Þ

These values were found to be, in general, reasonable and
confirmed by the theoretical variational calculations [5–7]
and the lattice simulations of the QCD vacuum [16–19].
From the other side, the instanton size distribution

nðρÞ has also been studied by lattice simulations [20] (see
Fig. 1). Aswe can see, for the relatively large-size instantons
(ρ ∼ R), the distribution function nðρÞ is suppressed.
Therefore, a simple sum ansatz for the total instanton field
AðξÞ ¼Pi AiðξiÞ expressed in terms of the single instanton
solutions AiðξiÞ is quite well justified during the practical
applications. Nevertheless, the large-size tail of the distri-
bution function nðρÞ becomes important in the confinement
regime of QCD. Here, one should replace Belavin-
Polyakov-Schwarz-Tyupkin instantons by Kraan-vanBaal-
Lee-Lu instantons [21–23] described in terms of dyons. In
such a way, one gets an extension of ILM—liquid dyon
model (LDM) [24–26], which is able to reproduce confine-
ment–deconfinement phases. Consequently, the small size
instantons can still be described in terms of their collective
coordinates. For comparison, we remind that the average
size of instantons in LDM is ρ̄ ≈ 0.5 fm [24–26], while in
ILM ρ̄ ≈ 0.3 fm. Hereafter, we will neglect the effect of the
size distribution of the width and simply consider the
instanton size ρ equal to its average value, ρ ¼ ρ̄.
At the typical values of the ILM parameters given in

Eq. (2), the instanton background leads to the nonzero
QCD vacuum energy density ϵ ≈ −500 MeV=fm3 [6,7],

FIG. 1. Dependence of the instanton size distribution function n
on the instanton size parameter ρ: the dots correspond to
the ILM, and the continuous lines correspond to the lattice
simulations [20].

1Hereafter, we drop the subscript I for the convenience and
note that Nc is the number of colors. 2Here, N is the total number of instantons.
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and it occurs with a spontaneous breakdown of chiral sym-
metry, which plays the pivotal and significant role in descri-
bing the lightest hadrons and their interactions. In such a
way, ILM succeeded explaining the hadron physics at the
light quark sector (see reviews [5–7] and Refs. [8–12]).
In order to understand the applicability of ILM in the

heavy quark sector, one may pay attention to the fact that
the typical sizes of quarkonia are relatively small [27,28].
In particular, the smallness in size is more pronounced in
the case of low laying states; e.g., see rJ=ψ and rϒ in the
Table I. A similar estimate of the nucleon’s quark core size
gives the result rN ∼ 0.3–0.5 fm [29–31]. Due to the fact
that the quark core of hadrons are relatively small in size,
one may conclude that they are insensitive to the confine-
ment mechanism. Consequently, ILM may be safely
applied for the description of hadron properties at the
heavy quark sector too. However, one should take care of
the perturbative effects during the analysis of the heavy
hadrons’ spectra, and we will keep it in mind during our
calculations.

III. HEAVY QUARK CORRELATORS WITH
PERTURBATIVE CORRECTIONS

As we discussed above, in ILM, the background field
due to instantons is given by a simple sum AðξÞ ¼P

i AiðξiÞ, where ξi ¼ ðzi; Ui; ρiÞ are the collective coor-
dinates of instantons. It is also necessary to note that the
instanton field has a specific strong coupling dependence
given as A ∼ 1=g. The corresponding partition function in
ILM Z½j� (it is normalized as Z½0� ¼ 1), with an account of
perturbative gluons aμ and their sources jμ, is approximated
by the expression,

Z½j� ¼
Z

DξDae−½Seff ½a;AðξÞ�þðjaÞ�

≈
Z

Dξe−
1
2
ðjμSμνðξÞjνÞ; ð3Þ

where it neglects the self-interaction terms at the order of
Oða3; a4Þ and uses the following definitions:

ðjaÞ ¼
Z

d4xjaμðxÞaaμðxÞ;

ðjμSμνðξÞjνÞ ¼
Z

d4xd4yjaμðxÞSabμνðx; y; ξÞjbνðyÞ:

Here, Sabμνðx; y; ξÞ is a gluon propagator in the presence of
the instanton background AðξÞ. The measure of integration
in ILM is given as Dξ ¼Qi dξi ¼ V−1Q

i dzidUi, while
the instantons’ sizes ρi, due to the interinstantons inter-
actions, are concentrated around the average size ρ̄.
Therefore, in ILM, for simplicity, ρi ¼ ρ̄.
An infinitely heavy quark interacts only through the

fourth components of the instantons A4 and perturbative
gluon a4 fields, respectively. In this case, we need only the
S44ðξÞ components of a gluon propagator. Hereafter, we
follow the definitions given in Ref. [32]; i.e., θ is the inverse
of the differentiation operator, θ−1 ¼ d=dt, htjθjt0i ¼
θðt − t0Þ, and it is a step function. We also use the following
redefinitions of fields a≡ ia4, A≡ iA4, source j≡ ij4, and
gluon propagator SðξÞ≡ S44ðξÞ.
With these definitions and redefinitions, the correspond-

ing heavy quark Q and antiquark Q̄ Lagrangians can be
written as

LQ ¼ Qþðθ−1 − ga − gAþ � � �ÞQ; ð4Þ

LQ̄ ¼ Q̄þðθ−1 − gā − gĀþ � � �ÞQ̄; ð5Þ

where the next order in the inverse of the heavy quark mass
terms are denoted by dots. In terms of SUðNcÞ generators,
the quantities a and ā are given as a ¼ aaλa=2 and
āa ¼ aaλ̄a=2, where λ̄a ¼ −λTa .

3 The same rule holds for
the fields A and Ā.
During our calculations, we will neglect by the virtual

processes Q → QQQ̄ corresponding to the heavy quark
loops (i.e., the heavy quark determinant equals to 1). In
such a way, the functional space of heavy quarks Q is not
overlapping with the functional space of heavy antiquarks
Q̄. Consequently, the total functional space is a direct
product of Q and Q̄ spaces.
Let us first consider the simplest heavy quark correlator

in our approach, i.e., the heavy quark propagator in ILM.
From Eq. (3), it is seen, that the averaged heavy quark
propagator w with the account of perturbative gluon field
fluctuations a is given by the expression,

TABLE I. Masses and sizes of quarkonium states in the nonrelativistic potential model [27].

Charmonia Bottomonia

Characteristics of states J=ψ χc ψ 0 ϒ χb ϒ0 χ0b ϒ00

Mass [GeV] 3.07 3.53 3.68 9.46 9.99 10.02 10.26 10.36
Size r [fm] 0.25 0.36 0.45 0.14 0.22 0.28 0.34 0.39

3Here, the regular superscript “T” means the operation of
transposition.
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w ¼
Z

DξDa exp½−Seffða; ξÞ þ ðjaÞ�

×

�
θ−1 − ga − g

X
i
Ai

�
−1

¼
Z

Dξ

�Z �
θ−1 − g

δ

δj
− g
X

i
Ai

�
−1

× exp

�
1

2
ðjSðξÞjÞ

��
j¼0

: ð6Þ

It is easy to prove that�
1

θ−1 − g δ
δj − gAðξÞ exp

�
1

2
jSðξÞj

��
j¼0

¼
�
exp

�
1

2

δ

δaa
SabðξÞ

δ

δab

�
1

θ−1 − ga − gAðξÞ
�
a¼0

: ð7Þ

This equation can be extended to any correlator.
Consequently, the QCD path integral of some heavy quark
functional F½AðξÞ; a� in the approximations discussed
above can be given by the following equation:Z

DξDa expf−Seff ½AðξÞ; a�gF½AðξÞ; a�

¼
Z

Dξ

�
exp

�
1

2

δ

δaa
SabðξÞ

δ

δab

�
F½ξ; a�

�
a¼0

: ð8Þ

Similar equation in the absence of an instanton background
AðξÞ ¼ 0 and for the gluon propagator taken in Coulomb
gauge was suggested before in Ref. [33].
The systematic accounting of the nonperturbative effects

in the ILM can be performed in terms of the dimensionless
parameter, the so-called packing parameter λ ¼ ρ4=R4,
using the Pobylitsa equations [34]. The situation here is
quite comfortable since in ILM the expansion parameter λ
is very small at the values of instanton parameters discussed
above, λ ∼ 0.01 [see Eq. (2)].
It is obvious, that the perturbative effects are taken into

account in terms of the expansion parameter αs. Its behavior is
well established only at the perturbative region and remains
poorly known at the nonperturbative region. It is also clear,
that thepureperturbative effects at the leadingorder appearsas
∼αs, e.g., the Coulomb-like interaction part in Eq. (1).
A systematic analysis including the both perturbative

and nonperturbative effects requires a double expansion
series in terms of αs and λ. In order to perform such
an analysis, we assume that αs ∼ λ1=2, which is quite
reasonable according to the phenomenological studies.
Consequently, we will keep the terms at the order of
OðλÞ and Oðαsλ1=2Þ during our calculations.
At this approximation, the gluon propagator in instanton

medium is represented by rescattering series as

SðξÞ ¼ S0 þ
X
i

ΔSiðξiÞ; ΔSiðξiÞ≡ SiðξiÞ − S0;

where S0 is free and SiðξiÞ is single instanton background
gluon propagators, respectively. The averaged value of gluon
propagator S̄ in ILM can be found by the extension of the
Pobylitsa’s equation to the gluon case [35]. It has the form,

S̄ðkÞ ¼ 1

k2 þM2
gðkÞ

; ð9Þ

where the momentum dependent gluon mass is defined by
the following expressions:

MgðkÞ ¼ Mgð0ÞFðkÞ;

Mgð0Þ ¼
2π

ρ

�
6λ

N2
c − 1

�
1=2

;

FðkÞ ¼ kρK1ðkρÞ: ð10Þ

Here, K1 is the modified Bessel function of the second type.
At the typical values of instanton parameters ρ ¼ 1=3 fm,
R ¼ 1 fm, one can estimate the dynamical gluon mass at
zero momentum, Mgð0Þ ≃ 358 MeV, which is close to the
value of the dynamical light quark mass. One can see, that
the dynamical gluon and light quark masses appear at the
order of Oðλ1=2ρ−1Þ. The gauge invariance of Mg was
proven in Ref. [35].
Instantons also generate the nonperturbative gluon-gluon

interactions, which will contribute to the glueballs’ proper-
ties. The investigations in ILM [36,37] of the JPC ¼
0þþ; 0−þ; 2þþ glueballs demonstrated that the instanton-
induced forces between gluons lead to the strong attraction
in the 0þþ channel, to the strong repulsion in the 0−þ
channel, and to the absence of short-distance effects in
the 2þþ channel. In such a way, ILM predicted the hierarchy
of the masses m0þþ < m2þþ < m0−þ and their sizes
r0þþ < r2þþ < r0−þ , which were confirmed by the lattice
calculations [38–44]. At typical values of ILM parameters
ρ ¼ 1=3 fm and R ¼ 1 fm, there were found [36] the mass
of 0þþ glueball m0þþ ¼ 1.4� 0.2 GeV and its size
r0þþ ≈ 0.2 fm, in a nice correspondence with the lattice
calculations [38–40]. Further studies of the 0þþ glueball in
ILM [37] gavem0þþ ¼ 1.29–1.42 GeV, which was also in a
good agreement with the lattice results [43,44].
The main conclusion of the works we discussed above

was that the origin of 0þþ glueball is mostly provided by
the short-sized nonperturbative fluctuations (instantons),
rather than the confining forces.
Summarizing all said above, we may conclude that the

ILM provides the consistent framework for describing the
gluon and the lowest state glueball’s properties.

IV. HEAVY QUARK PROPAGATOR

An averaged infinitely heavy quarkQ propagator in ILM
according to Eqs. (6) and (7) is given as
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w ¼
Z

Dξ exp

�
1

2

�
δ

δa
SðξÞ δ

δa

��
1

θ−1 − ga − gAðξÞ
����
a¼0

;

ð11Þ

where�
δ

δa
SðξÞ δ

δa

�
¼
Z

d4yd4z
δ

δaaðyÞ
Sabðξ; y; zÞ

δ

δabðzÞ
:

ð12Þ
The details of the systematic analysis of the heavy quark
propagator is discussed in the Appendix. From Eq. (A7),
we see that the heavy quark Q propagator in ILM with
perturbative corrections can be written as

w ¼
Z

Dξ

�
θ−1 −

X
i
ðgAiðξiÞ − g2ðΔSiðξiÞθÞÞ

�
−1
; ð13Þ

where the last term in the denominator of (13) has a
meaning of an ILM perturbative, the heavy quark mass
operator of the order Oðαsλ1=2Þ.
The heavy quark propagator Eq. (13) and its g → 0 limit

expression have similar structures according to their depend-
encies on the instanton collective coordinates. Consequently,
we may easily extend the Pobylitsa equation in Ref. [32] for
our purpose. The corresponding extension in the approxi-
mation Oðλ; αsλ1=2Þ has the form,

w−1 ¼ θ−1 −
X
i

Z
dξi

�
θ−1
�

1

θ−1 − gAiðξiÞ
− θ

�
θ−1

þ g2ðΔSiðξiÞθÞ
�

¼ θ−1 −
X
i

Z
dξiθ−1

�
1

θ−1 − gAiðξiÞ
− θ

�
θ−1

− g2ððS̄ − S0ÞθÞ: ð14Þ

In the last term, the averaged gluon propagator S̄ is given by
Eq. (9). In such a way, the second term in the right side of
Eq. (14) leads to the ILM heavy quark mass shiftΔMdir

Q with
the corresponding orderOðλÞ, while the third one is the ILM
modified perturbative gluon contribution to the heavy quark
mass ΔMpert

Q with the order of Oðαsλ1=2Þ, respectively.
The more detailed discussions of the perturbative con-

tributions to the heavy quark mass in ILM ΔMpert
Q are given

in the Appendix [e.g., see Eq. (A13)] while the direct
instanton one ΔMdir

Q was given in Ref. [32]. Finally, we
have the following estimation:

ΔMpert
Q ≤

2

Nc
αsMgð0Þ ∼ ΔMdir

Q ≃ 70 MeV;

atNc ¼ 3 for thegivenvalues ofmodel parameters:αs ¼ 0.3,
ρ ¼ 1=3 fm, R ¼ 1 fm. This estimation is in accordance

with our assumptions Oðαsλ1=2Þ ∼OðλÞ and shows that the
instanton-perturbative gluon interaction accounts for the non-
negligible changes of the perturbative gluon corrections.

V. QQ̄ CORRELATOR

In the ILM, the heavy quark-antiquark correlator hQQ̄i
is given by the equation,

hx̄; a; x; bjWjx̄0; d; x0; gi
¼ h0jTQ̄aðx̄ÞQbðxÞQþ

g ðx0ÞQ̄þ
d ðx̄0Þj0i

¼ δ3ðx⃗ − x⃗0Þδ3ð ⃗x̄ − ⃗̄x0Þθðt − t0Þθðt̄ − t̄0Þ

×
Z

DξDa expð−Seffða; ξÞÞ

×

�
T exp

�
ig
Z

t

t0
dτðaðx⃗; τÞ þ Aðξ; x⃗; τÞÞ

��
bg

×

�
T exp

�
ig
Z

t̄

t̄0
dτ̄ðāð ⃗x̄; τ̄Þ þ Āðξ; ⃗x̄; τ̄ÞÞ

��
ad
; ð15Þ

where the color indexes are given by the latin letters and
T expð…Þ means the time ordered exponent. It was proven
(see, e.g., [33]) that Eq. (15) can be reduced to the Wilson
loop for the colorless QQ̄ state. The corresponding Wilson
loop is going along the rectangular contour, which is shown
in Fig. 2. At T → ∞, one may neglect by contributions of
short sides.
According to Eq. (8), Eq. (15) can be rewritten in the

operator form as

W ¼
Z

Dξ exp

�
1

2

X2
i;j¼1

�
δ

δaðiÞa
SðijÞab ðξÞ δ

δaðjÞb

��

×
1

Dð1Þ − gað1Þ
1

D̄ð2Þ − gāð2Þ

����
a¼0

; ð16Þ

where the operatorDð1Þ is defined asDð1Þ ¼ θ−1 − gAð1ÞðξÞ
and, að1Þ and Að1Þ are the corresponding fields projections
to the line L1, respectively. Similarly, one has D̄ð2Þ ¼
θ−1 − gĀð2ÞðξÞ, where āð2Þ and Āð2Þ are the corresponding
fields projections to the line L2, respectively. The lowest

FIG. 2. The rectangular Wilson loop with the long time-
direction sides T and the short space direction sides r.
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orderOðαsλ1=2Þmatrix element ofW is given by Eq. (A18),
corresponding to the first diagram of Eq. (A17).
Formal expression corresponding to Eq. (16) is given by

W ¼
Z

Dξ

�
ðDð1Þ − Σð1ÞÞ

�
1 −

λa
2
ðDð1Þ − Σð1ÞÞ−1

× g2Sð12Þab ðD̄ð2Þ − Σ̄ð2ÞÞ−1 λ̄b
2

�
ðD̄ð2Þ − Σ̄ð2ÞÞ

�
−1
; ð17Þ

where operator Σ is defined by its matrix element Eq. (A3).
Consequently, Pobylitsa’s equation in the approximation
Oðλ; αsλ1=2Þ has the form,

W−1 ¼ wð1Þ−1w̄ð2Þ−1 −
X
i

Z
dξiθð1Þ−1

×

�
1

Dð1Þ
i

− θð1Þ
�
θð1Þ−1θð2Þ−1

�
1

D̄ð2Þ
i

− θð2Þ
�
θð2Þ−1

− g2
λa
2

λ̄b
2

Z
DξSð12Þab ; ð18Þ

where wð1Þ−1 is given by Eq. (14). Note, that similar to
Eq. (14), the equation for w̄ð2Þ−1 also can be written.
In order to get theQQ̄ potential VðrÞ, we have to find the

asymptotic form of the QQ̄ correlator (15) at a large time
T → ∞, given by the expression expð−VTÞ. Here, the cor-
responding potential V ¼ Vdir þ Vpert contains the direct
instanton induced part Vdir originated from the second term
of Eq. (18) and the perturbative one-gluon exchange part
Vpert originated from the third term, respectively. A cal-
culation method of Vdir from the Pobylitsa’s equation was
described in Ref. [32], and its explicit form is given in the
next Sec. VA. Similar calculations will lead to Vpert, the
final form of which is given in the Sec. V B.

A. Direct instanton induced singlet potential in ILM

Let us first start from the direct instanton induced
potential VdirðrÞ. It can be evaluated by repeating the
calculations presented in Ref. [32]. Further analysis per-
formed in Ref. [45] showed that VdirðrÞ can be written as

VdirðrÞ ¼
4πλ

Ncρ
Idir

�
r
ρ

�
; ð19Þ

where IdirðxÞ-dimensionless integral of the form,

IdirðxÞ ¼
Z

∞

0

y2dy
Z

1

−1
dt

"
1 − cos

 
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
!

× cos

 
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2 þ 2xyt

y2 þ x2 þ 2xytþ 1

s !

−
yþ xtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ x2 þ 2xyt
p sin

 
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
!

× sin

 
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2 þ 2xyt

y2 þ x2 þ 2xytþ 1

s !#
: ð20Þ

At the small distances (x ≪ 1), IdirðxÞ can be evaluated
analytically, and one has the potential,

VdirðrÞ ≃
4πλ

Ncρ

�
π2

3

�
π

16
− J1ð2πÞ

�
r2

ρ2

− π

�
π2ð438þ 7π2Þ

30720
þ J2ð2πÞ

80

�
r4

ρ4
þ…

�
; ð21Þ

in terms of the Bessel functions Jn. At the large values of
the QQ̄ interdistance (r ≫ ρ), the potential has the form,

VdirðrÞ ≃ 2ΔMdir
Q −

2π3λ

Ncr
: ð22Þ

The function IdirðxÞ can be calculated numerically or
parametrized with the very high precision as it was done in
Ref. [46]. However, it also can be fitted in the Gaussian
form as

VdirðrÞ ¼
4πρ3

NcR4
Idir

�
r
ρ

�
; ð23Þ

IdirðxÞ ¼ Id
0

�
1þ

X2
i¼1

½adi x2ði−1Þ þ ad3ð−bd3xÞi�e−b
d
i x

2

þ ad3
x
ð1 − e−b

d
3
x2Þ
�
; ð24Þ

depending on the practical purposes. The parameters
corresponding to this parametrization have the values,

Id
0 ¼ 4.41625;

ad1 ¼ −1; ad2 ¼ 0.128702; ad3 ¼ −1.1047;

bd1 ¼ 0.404875; bd2 ¼ 0.453923; bd3 ¼ 0.420733:

ð25Þ

The comparison of numerical and parametrized forms of
IdirðxÞ are shown in Fig. 3. One can see almost the one to
one correspondence of the numerical calculations and the
parametrization Eq. (24).
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B. Perturbative one-gluon exchange singlet
potential in ILM

From Eq. (A24), it is seen that the perturbative one-gluon
exchange potential has the form,

Vpert ¼ g2
�
λa
2

λ̄b
2

�Z
dτS̄abðr⃗; τÞ: ð26Þ

Using the momentum representation of the averaged gluon
propagator in Eq. (9) and the singlet color factor (A25)
from the Appendix, one can get

VpertðrÞ ¼ −
4

3
g2
Z

d3q
ð2πÞ3

eiq⃗·r⃗

q2 þM2
gðqÞ

; ð27Þ

where r is a distance betweenQ and Q̄ quarks andMgðqÞ is
given by Eq. (10). After the angular integration and intro-
ducing the dimensionless variables, x ¼ r=ρ and y ¼ qρ,
one can obtain the perturbative one-gluon exchange poten-
tial in the form of

VpertðrÞ ¼ −
4αs
3r

fscrðxÞ; ð28Þ

fscrðxÞ ¼ 1 −
2x
π

Z
∞

0

dyj0ðxyÞ
3π2λK2

1ðyÞ
1þ 3π2λK2

1ðyÞ
; ð29Þ

where fscrðxÞ plays the role of screening function
(see Fig. 4).
Naturally, from the Eq. (29), at short distances, one can

obtain the Coulomb-like potential,

VpertðrÞ ≃ −
4αs
3

�
1

r
− A

�
;

A ¼ 2

πρ

Z
∞

0

dy
3π2λK2

1ðyÞ
1þ 3π2λK2

1ðyÞ
: ð30Þ

It is easy to understand the meaning of A comparing with
Yukawa-like potential VY , corresponding to the constant
gluon mass MY . Its general expression and the behavior at
r → 0 are given as

VYðrÞ ¼ −
4

3
g2
Z

d3q
ð2πÞ3

eiq⃗·r⃗

q2 þM2
Y

¼ −
4αs
3r

expð−MYrÞ

→ −
4αs
3

�
1

r
−MY

�
þ � � � ð31Þ

In such a way, MY ¼ A and MY must be smaller than
Mgð0Þ ≃ 358 MeV since it is influenced by the form factor
in MgðqÞ. From Eq. (30), it is seen that MY ≃ 218 MeV at
ρ ¼ 1=3 fm, R ¼ 1 fm. One can see from the left panel of
Fig. 5, that at small r < 0.5ρ, there is a coincidence of VY in
Eq. (31) with the exact numerical result [see Eq. (29)] as it
was expected. But at the large distances, r > 0.5ρ, the slope
of the curve corresponding to the exact solution is different,
and VY must be described by another parameter, i.e.,
MY;1 ≈ 282 MeV (see the right panel in Fig. 5). This
conclusion is natural since the large distance r corresponds
to the smaller momentum q, and one should have
MY < MY;1 < Mgð0Þ. The parametrization of Vpert in the
form of a Yukawa potential may be useful for the quick and
crude applications.
For the high accuracy calculations, one can parametrize

the potential VpertðrÞ in a much better way. For that pu-
rpose, we introduce the dimensionless integral IpertðxÞ in

FIG. 4. Dependence of screening function fscr on r=ρ at ILM
parameters R ¼ 1 fm and ρ ¼ 1=3 fm.

FIG. 3. The dimensionless integral IdirðxÞ from the instanton
vacuum. The numerical result of Eq. (20) is depicted as the red
dashed curve, whereas that of parametrization given in Eq. (24) is
drawn as the blue dotted curve.
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the expression of screening function fscr [see Eq. (29)] in
such a way,

fscrðxÞ ¼ 1 −
2x
π
I scrðxÞ: ð32Þ

Then I scr can be parametrized with the high precision
analogously to Idir as

I scrðxÞ ¼ I s
0

�X2
i¼1

½asix2ði−1Þ þ as3ð−bs3xÞi�e−b
s
i x

2

þ as3
x
ð1 − e−b

s
3
x2Þ
�
: ð33Þ

The parameters corresponding to this parametrization have
the values,

I s
0 ¼ 0.578695;

as1 ¼ 1; as2 ¼ 0.121348; as3 ¼ 2.71619;

bs1 ¼ 0.144123; bs2 ¼ 0.189758; bs3 ¼ bs1; ð34Þ
for the ILM parameters ρ ¼ 1=3 fm and R ¼ 1 fm.4 For
another set of parameters, ρ ¼ 0.36 fm and R ¼ 0.89 fm,
one has the following parameters:

I s
0 ¼ 0.743964;

as1 ¼ 1; as2 ¼ −0.0362548; as3 ¼ 2.11812;

bs1 ¼ 0.329341; bs2 ¼ 0.460567; bs3 ¼ bs1: ð35Þ

One can see that the relations I s
0a

s
3 ≃ π=2 is hold. The

comparison of numerical and parametrized forms of I scrðxÞ

is shown in Fig. 6. Like in the case of Idir, here also we
have almost the one-to-one correspondence.
At large distances, r > ρ the potential VpertðrÞ is not long

ranged anymore and quickly goes to zero. In such a way, at
large distances, the instanton medium produces the screen-
ing effect in the one gluon exchange perturbative potential.

VI. ORDER OF INSTANTON EFFECTS

Obviously, the best and most straightforward way of
estimation of the instanton effects is the analysis of
charmonia and bottmonia states and a comparison of the
results in the ILM approach with the results of other
phenomenological approaches. For that purpose, one needs
the spin-dependent parts of the QQ̄ potential. Although the
relations between the central and spin-dependent parts of

FIG. 5. Dependence of expð−rMYÞ (left panel) and expð−rMY;1Þ (right panel) on r=ρ (dashed curve) in comparison with the exact
numerical result for Vpertðr=ρÞ (solid curve) at ILM parameters R ¼ 1 fm and ρ ¼ 1=3 fm. The effective gluon mass must be different at
different regions of r (see the text), and their values in the left and right panels are chosen as MY ¼ 218 MeV and MY;1 ¼ 282 MeV,
respectively.

FIG. 6. The dimensionless integral I scrðxÞ from the instanton
vacuum, including the perturbative corrections. The numerical
result is depicted as the red dashed curve, whereas that of
parametrization Eq. (33) is drawn as the blue dotted curve.
The ILM parameters are set as ρ ¼ 1=3 fm and R ¼ 1 fm.

4Note, that Idir is an ILM parameters independent paramet-
rization, while the parametrization I scr depends on the ratio ρ=R.
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the direct instanton contributions are already known, one
should recalculate such relations in the case of a one gluon
exchange perturbative interaction, which includes the
instanton contributions. Such a detailed analysis we will
leave for the future work and concentrate here only on the
central part of QQ̄ interactions.
In the present work, we will ignore the spin splitting

effects in the charmonium spectra and concentrate only on
some low lying S-wave states. First, we perform the fully
variational calculations considering the different sets of
potentials without and with the instanton effects. Next, we
consider the instanton effects in the first order pertubation
theory and compare with the results of the fully variational
calculations. The corresponding conclusions from these
studies will be helpful in our future works.
Further, we define the full central QQ̄ potential, which

includes all possible instanton effects in the following form:

VðrÞ ¼ σrþ VpertðrÞ þ VdirðrÞ; ð36Þ

which supplies the confinement phenomena at large dis-
tances. This potential leads to the standard Cornell’s
potential Eq. (1) in the absence of instanton effects. In
order to account for the instanton effects in the first order
perturbation theory, we divide the Hamiltonian into two
parts,

H ¼ H0 þ H̃; ð37Þ

where H0 is Hamiltonian of the Cornell’s model and H̃ is
the perturbative part of Hamiltonian. They are defined as

H0 ¼ −
1

mQ
∇⃗2 þ VCornell;

H̃ ¼ V − VCornell ≡ Vdir þ Vscr;

Vscr ¼ −
4αs
3

ðfscr − 1Þ: ð38Þ

The results of the full variational calculations are
presented in Table II for the possible two sets of ILM
parameters. The details of calculations can be found in
Ref. [46]. As an example of the Cornell’s model param-
eters, we chose the parameter set model without instantons
(MWOI) presented in Table I of Ref. [46]. For comparison,
in Table II, we present the results for Cornell’s potential,
“Cornellþ instanton” potentials, which have the nature of
instanton contributions from the different regions and also
for the full potential, which takes into account all possible
instanton effects from the different regions.
We note that the both potentials Vscr and Vdir are

positively defined and, therefore, give the positive con-
tributions to the whole spectrum. One can see the
corresponding results in Table II. Our results are pre-
sented for the two values of a strong coupling constant,
αs ¼ 0.2 and αs ¼ 0.4, in order to investigate αs depend-
ence. Obviously, the increasing value of αs leads to the
strengthening of a Coulomb-like attraction and lowers the
states.
The order of instanton contributions is not big, but

they are not negligible too. One may conclude that the
corresponding instanton effects may be considered as the
perturbative corrections. In order to understand this sit-
uation better, we will consider the first order perturbative
corrections to the Cornell’s model results, considering the
instanton effects as the small perturbations.

TABLE II. The results of full variational calculations. It considers only some of the S-wave states corresponding to
the charmonium states. (Spin dependent parts of interactions are not included.) The general parameters are set as
mQ ¼ 1275 MeV and σ ¼ 0.17 GeV2. Other ILM and the potential related parameters are given in the table. The
first column is radial excitations, and the other columns are the results corresponding to the different sets of
potentials. All states are given in units of MeV.

ρ ¼ 1=3 fm, R ¼ 1 fm ρ ¼ 0.36 fm, R ¼ 0.89 fm

n VCornell VCornell þ Vscr VCornell þ Vdir V VCornell þ Vscr VCornell þ Vdir V

αs ¼ 0.2

1 3069 3129 3111 3172 3131 3146 3208
2 3611 3664 3682 3736 3661 3747 3798
3 4035 4079 4119 4163 4078 4198 4241
4 4405 4443 4496 4534 4442 4582 4621

αs ¼ 0.4

1 2905 3026 2943 3063 3031 2973 3100
2 3509 3617 3579 3688 3612 3642 3747
3 3956 4044 4038 4128 4043 4116 4205
4 4337 4414 4428 4505 4413 4514 4591

HEAVY QUARK CORRELATORS IN AN INSTANTON LIQUID … PHYS. REV. D 102, 076022 (2020)

076022-9



The comparisons of the corresponding perturbative and
variational calculations are shown in Table III. In the left
half of the table, we present the first order perturbative
corrections due to instantons [see H̃ in Eq. (37)] calculated
on a basis of the Cornell’s model wave functions corre-
sponding to the Hamiltonian H0. On the right half of
the table, we present the corresponding differences of
variational calculations with and without instanton gener-
ated potentials. For example, “Vscr” means the difference
between the results of the potential models, “VCornell þ
Vscr” and “VCornell,” obtained by means of the variational
calculations. (The corresponding results are presented in
Table II.) It should be compared with the first order
perturbative corrections corresponding to the perturbation
potential Vscr. One can see that almost 100% of the effects
due to instantons can be considered as the first order
perturbative corrections to the spectrum.
When the value of αs is changed, the general picture will

not change if one concentrates to the order of instanton
contributions; i.e., they still remain as the first order
perturbative corrections. It can be seen from the upper-
half and the lower-half parts in Table III. The relative sizes
of all possible instanton effects in comparison with the
results corresponding to the Cornell’s model results are
found to be from 3% to 6%, depending on the parameters of

the instanton liquid model and the excitation state; e.g.,
compare the column VCornell in Table II with the column
Vscr þ Vdir in Table III.
From the other side, it is interesting to see that the

contribution amount itself increases 2 times if we concen-
trate on the Vscr value (compare the upper-half and the
lower-half parts of Table III). This is the obvious result,
while the parameter αs is the overall factor in the expression
of Vscr in Eq. (28). In contrast, Vdir is independent of the
parameter αs and depends on it only by the wave function
changes, which are small (again compare the upper-half
and the lower-half parts of Table III).
It is also interesting to note that the increasing value of

packing parameter λ will not change much the contribution
from the screening part Vscr. This can be seen by compar-
isons of Vscr or “Vscr” values for the fixed value of αs (see
the upper-half or the lower-half part of Table III). This is
due to the fact that fscr depends on λ in a nontrivial way [see
Eq. (29)]. In contrast, the contribution from the direct
instanton interactions increases almost linearly, which is
seen from the columns Vdir or “Vdir” in Table III. One can
note that an approximately 2 times increased value of λ
increases the value of direct instanton interaction contri-
butions also approximately 2 times (again see the upper-
half or the lower-half part of Table III). This can be seen

TABLE III. The perturbative vs full variational calculations. The first column is radial excitations, 2–4 columns
are the first order perturbative corrections, 5–7 columns are the corresponding differences of variational calculations
with and without instanton generated potentials, respectively (see explanations in the text). The parameters and other
definitions are same as in the Table II.

First order perturbative corrections The corresponding variational calculations

n Vscr Vdir Vscr þ Vdir “Vscr” “Vdir” “Vscr þ Vdir”

αs ¼ 0.2, ρ ¼ 1=3 fm, R ¼ 1 fm, λ ¼ 0.01235

1 60.124 44.305 104.430 60.119 42.439 102.611
2 52.826 72.224 125.050 52.707 71.438 124.651
3 43.864 84.342 128.206 43.743 83.873 127.954
4 38.247 91.518 129.765 38.172 91.193 129.561

αs ¼ 0.2, ρ ¼ 0.36 fm, R ¼ 0.89 fm, λ ¼ 0.02677

1 61.661 82.116 143.777 61.607 77.142 139.449
2 50.557 138.826 189.383 50.451 136.343 187.599
3 43.144 163.750 206.893 43.047 168.332 205.956
4 37.891 178.749 216.640 37.820 177.813 216.013

αs ¼ 0.4, ρ ¼ 1=3 fm, R ¼ 1 fm, λ ¼ 0.01235

1 120.343 39.088 159.432 120.311 37.369 157.725
2 108.071 70.832 178.902 107.662 69.962 178.584
3 89.237 83.728 172.965 88.733 83.231 172.671
4 77.342 91.216 168.558 77.030 90.877 168.317

αs ¼ 0.4, ρ ¼ 0.36 fm, R ¼ 0.89 fm, λ ¼ 0.02677

1 125.739 72.026 197.765 125.593 67.620 194.298
2 102.992 135.925 238.918 102.579 133.184 237.412
3 87.474 162.424 249.898 87.085 160.914 249.191
4 76.523 178.078 254.601 76.226 177.090 254.114
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also from the expression of Vdir, where λ is the overall
factor [see Eq. (19)].5

Although the direct comparisons of the results with the
experimental data can be done after inclusion of the spin-
dependent parts in the potential, here we already can make
some qualitative predictions. For that purpose, first we will
refer to the Tables I and II presented in Ref. [46]. One can
see that with the value of αs ¼ 0.2068 denoted as MWOI, it
is possible to fit the experimental data by using Cornell’s
type potential and concentrating on the first six low-lying
S-wave states during the fitting process (see Table II in
Ref. [46] and explanations there). While the low-lying
states are well reproduced more or less, the excited states
are estimated lower. Inclusion of the direct instanton
interactions improves the low-lying states much better,
but the excited states are overestimated (see columns M–I
and M–IIb in Table II of Ref. [46]).
Now, let us concentrate back to the Table III in the

present work. From the column Vdir or “Vdir,” one can see
that the direct instanton interactions will contribute more
and more to the excited stated. It is remarkable that the
inclusion of the screening effect from the instantons
changes the situation drastically. This is due to the fact
that the screening effect softens the contributions to the
excited states from the instantons (see columns Vscr or
“Vscr”). As a result, the instanton effects from both Vscr and
Vdir accumulated in such a way that the ground state is
changed in a different way, while the excited states have
more or less overall shift effect (see columns Vscr þ Vdir or
“Vscr þ Vdir”). This situation may be quite helpful in
describing the experimental data related to the charmonium
states by using the potential approach in the framework of
an instanton liquid model.
Summarizing all our discussions we note that the instan-

ton effects are at the level of few percent. Nevertheless, one
cannot ignore the instanton effects in the heavy quarkonium
spectra. They may also be important during the fine-tuning
processes of the whole spectrum, which takes into account
the spin-spin, spin-orbit, and tensor interactions.

VII. SUMMARY AND OUTLOOK

In this work, we studied one body and two body
correlators, corresponding to the heavy quark sector in the
framework of the instanton liquid model by the inclusion of
the perturbative corrections. Although the instantons cannot
explain a confinement mechanism, we have shown that they
play a nontrivial role, not only in the nonperturbative region
r ∼ ρ but also in the perturbative region r < ρ. In the
perturbative region, the instantons will affect in such way
that the one gluon exchange perturbative potential becomes
the short range and remains screened at large distances. In
such a way, at short distances, the OGE potential, including

the instanton effects, can be approximated by a Yukawa-type
potential with the corresponding dynamical gluon mass
playing the role of parameter in the exponent. The direct
instanton effects reproduce an overall shift at the non-
perturbative region, which can be accounted for as the
renormalization of a heavy quark mass in the instanton
medium. Consequently, our conclusion is that the instanton
effects in both perturbative and nonperturbative regions are
important for understanding the heavy quark physics.
At a quantitative level, we also estimated the instanton

effects to the whole spectrum and found out that they can
completely be considered as the first order perturbative
corrections. The relative size of instanton effects in the
spectra of heavy quarkonia at the level of a few percent
should be taken into account during the fine-tuning proc-
esses. In Ref. [46], it was discussed that the direct instanton
effects from the nonperturbative region may explain the
origin of phenomenological potential parameters fitted to the
spectrum of heavy quarkonia. The inclusion of instanton
effects in the perturbative region may help not only in the
qualitative understanding QQ̄ interactions but also at the
quantitative level concerned with more accurate description
of spectra. For that purpose, one should take into account the
changes in the spin-dependent potentials due to instanton
effects in the perturbative region. This can be done by means
of relating the central and spin-dependent potential in the
framework of heavy quark effective theory. The correspond-
ing studies are currently under the way.
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APPENDIX: DETAILED CALCULATION
OF CORRELATORS

In this Appendix, we discuss the details of perturbative
expansions for the quark and QQ̄ correlators, and the
corresponding ILM contributions to the heavy quark mass
and QQ̄ potential.

1. Contribution to the heavy quark mass in ILM

We begin with the expansion of the propagator in
Eq. (11). First, we note that the nonaveraged in the
instanton medium heavy quark propagator in operator
notations6 D ¼ θ−1 − gAðξÞ is given by the expansion,

5Note, also that the another overall factor 1=ρ is almost same
for the both values of ρ, 1=3 fm and 0.36 fm.

6Note that one can also define an analogous operator in a single
instanton field in the form of Di ¼ θ−1 − gAiðξiÞ.
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It is easy to find that the lowest order OðαsÞ peturbative correction to the heavy quark propagator is
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where repeating xi means integration over xi. Also, g2ðS 1
DÞ has a meaning of the perturbative heavy quark mass operator Σ

in the lowest order OðαsÞ and was defined by its matrix element,
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Analogously, the next order contribution Oðα2sÞ has the form,
1
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We define the sum of all irreducible diagrams as Σ, which has the following form in diagram representation:

ðA4Þ

Now, the series (A1) can be summed up according to the
geometrical progression,
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1
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¼ 1

D
1
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¼ 1

D − Σ
: ðA5Þ

However, as we already mentioned in the text, we neglected
the gluon self-interaction terms, Oðg3; g4Þ. Therefore, we
have to take into account the heavy quark mass operator
only in the lowest order OðαsÞ single-loop approximation.
That is Σ ¼ g2ðSD−1Þ defined by Eq. (A3).
Consequently, we obtain the following expression for the

nonaveraged heavy quark propagator:

1

D − g2ðSD−1Þ : ðA6Þ

Further, we averaged Eq. (A6) over the instanton
ensemble in the Oðλ; αsλ1=2Þ approximation, which leads
to further simplification of the perturbative mass operator
as g2ðSD−1Þ ≈ g2ðSθÞ.
It is obvious that in order to have the ILM perturbative

heavy quark mass operator, we have to remove from Σ the
perturbative heavy quark mass operator in the empty space
as Σ − Σ0, where Σ0 ¼ g2ðS0θÞ þOðg4Þ. Then, Eq. (A6)
should be rewritten as

�
θ−1 − g

X
i
AiðξiÞ − g2

�X
j
ΔSjðξjÞθ

��
−1
: ðA7Þ

To calculate ILM direct and ILM perturbative mass
contributions, we use the more definitive form of Pobylitsa
Eq. (14) as

ht2jw−1jt1i ¼ −δ0ðt2 − t1Þ

þ
X
�

Z
dz4;�fðt2 − z4;�; t1 − z4;�Þ

þ gðt2; t1Þ; ðA8Þ
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where

fðt2 − z4;�; t1 − z4;�Þ

¼ −
N
2V

X
�
trc

Z
d3z�ht2jθ−1ðw� − θÞθ−1jt1i

gðt2; t1Þ ¼ −g2ht2jððS̄ − S0ÞθÞjt1i: ðA9Þ

In the last equations, w� ≡ ðθ−1 − A�ðξ�ÞÞ−1 and “�”
indexes correspond to the instanton/antiinstanton, respec-
tively. Introducing the Fourier transformation [32],

ht2jwjt1i ¼
Z

dω
2π

exp½iωðt2 − t1Þ�wðωÞ

¼
Z

dω
2π

exp½iωðt2 − t1Þ�
1

w−1ðωÞ ; ðA10Þ

and using Pobylitsa Eq. (A8), one can find that

ht2jwjt1i ¼
Z

dω
2π

exp½iωðt2 − t1Þ�
1

iωþ fðωÞ þ gðωÞ
f�ðωÞ ¼

Z
dt2dt1 exp½−iωt2 þ iωt1�

× fðt2 − z4;�; t1 − z4;�Þjz4;�¼0

gðωÞ ¼
Z

dτ exp½iωτ�gðτÞ; τ ¼ t2 − t1: ðA11Þ

One can see that there is a pole within the approximations
discussed above,

iω0 þ fð0Þ þ gð0Þ ¼ 0:

According to this pole, we obtain ILM direct and ILM
perturbative contributions to the heavy quark mass from the
time dependence of the heavy quark propagator Eq. (A11)
as

ht2jwjt1i ∼ expð−ΔMQðt2 − t1ÞÞ;
ΔMQ ¼ ΔMdir

Q þ ΔMpert
Q ;

ΔMdir
Q ¼ fð0Þ;

ΔMpert
Q ¼ gð0Þ: ðA12Þ

Note that the direct instanton contributions to the heavy
quark mass ΔMdir

Q was calculated in Ref. [32].
Taking into account the color factor in ½ðS̄ − S0Þθ�, which

is λa
2
λb
2
δab ¼ 4

Nc
I (I is Nc × Nc unit matrix), we have ILM

perturbative heavy quark mass contribution in the follow-
ing form:

ΔMpert
Q I ¼ −g2

Z
∞

−∞
dðt2 − t1Þht2jððS̄ − S0ÞθÞjt1i

¼ −g2
λa
2

λb
2

Z
∞

0

dtðS̄abðtÞ − S0abðtÞÞ

¼ 2

Nc
Ig2
Z

d3k
ð2πÞ3

M2
gðkÞ

k2½k2 þM2
gðkÞ�

≤
2

Nc
IαsMgð0Þ:

One can estimate that

ΔMpert
Q ≤

2

Nc
αsMgð0Þ ∼Mdir

Q ∼ 70 MeV ðA13Þ

at the values of parameters Nc ¼ 3, αs ¼ 0.3, ρ ¼ 1=3 fm,
R ¼ 1 fm.

2. Perturbative contribution to the heavy
quark-antiquark potential in ILM

We will proceed with the QQ̄ correlator Eq. (16) in an
analogous way with what we did with the heavy quark
propagator.
Consequently, for the nonaveraged QQ̄ correlator

Eq. (16), one can write the expansion,

exp

�
1

2

X2
i≠j¼1

�
δ

δaðiÞ
SðijÞðξÞ δ

δaðjÞ

��

×
1

Dð1Þ − gað1Þ
1

D̄ð2Þ − gāð2Þ

����
a¼0

¼
X∞
m¼0

1

m!

�
g2

2

�
m
�X2
i≠j¼1

�
δ

δaðiÞ
SðijÞðξÞ δ

δaðjÞ

��m

×

�
1

Dð1Þ a
ð1Þ
�

m 1

Dð1Þ

�
1

D̄ð2Þ ā
ð2Þ
�

m 1

D̄ð2Þ : ðA14Þ

For the lowest order OðαsÞ term, we obtain the explicit
expression,

g2

2

Z
dxð1Þ2 dxð2Þ2

× hxð1Þ3 j 1

Dð1Þ jx
ð1Þ
2 i λa

2
Sð12Þab ðxð1Þ2 ; xð2Þ2 Þhxð1Þ2 j 1

Dð1Þ jx
ð1Þ
1 i

× hxð2Þ1 j 1

D̄ð2Þ jx
ð2Þ
2 i λ̄b

2
hxð2Þ2 j 1

D̄ð2Þ jx
ð2Þ
3 i

þ hxð1Þ3 j 1

Dð1Þ jx
ð1Þ
2 i λb

2
Sð21Þba ðxð2Þ2 ; xð1Þ2 Þhxð1Þ2 j 1

Dð1Þ jx
ð1Þ
1 i

× hxð2Þ1 j 1

D̄ð2Þ jx
ð2Þ
2 i λ̄a

2
hxð2Þ2 j 1

D̄ð2Þ jx
ð2Þ
3 i: ðA15Þ

Accordingly, the lowest Oðαsλ1=2Þ contribution to W is
given by
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g2
Z

dxð1Þ2 dxð2Þ2 hxð1Þ3 jθð1Þjxð1Þ2 ihxð1Þ2 jθð1Þjxð1Þ1 i

×
λa
2

λ̄b
2
S̄abðxð1Þ2 − xð2Þ2 Þ

× hxð2Þ1 jθð2Þjxð2Þ2 ihxð2Þ2 jθð2Þjxð2Þ3 i; ðA16Þ
which corresponds to the first diagram in the following
series of irreducible diagrams (A17):

ðA17Þ

In the approximation Oðαsλ1=2Þ, one should sum up
according to the geometrical progression and make a ladder
by the repetition of only the first diagram in (A17). We
expect that this diagram will provide the perturbative
contribution to the QQ̄ potential in the approximation
Oðαsλ1=2Þ. The corresponding matrix element is given by

g2
λa
2

λ̄b
2

Z
t3

t1

Z
t3

t1

dtð1Þ2 dtð2Þ2 S̄abðr⃗; tð1Þ2 − tð2Þ2 Þ

¼ ðt3 − t1Þg2
λa
2

λ̄a
2

Z
d3k
ð2πÞ3

eik⃗ r⃗

k⃗2 þM2
gðk⃗Þ

: ðA18Þ

In the operator form, one has

W ¼
Z

Dξ
1

Dð1Þ
1

Dð2Þ þ g2θð1Þθð2Þ

×
λa
2

λ̄b
2
S̄abθð1Þθð2Þ þ � � �

S̄ab ¼
Z

DξSð12Þab : ðA19Þ

Here, the matrix element of operator Sð12Þ is given by

hxð1Þ2 ; xð2Þ2 jSð12Þjxð1Þ1 ; xð2Þ1 i ¼ Sð12Þðxð2Þ1 ; xð1Þ1 Þδ4ðxð2Þ2 − xð2Þ1 Þ
× δ4ðxð1Þ2 − xð1Þ1 Þ: ðA20Þ

One has the similar expression for Sð21Þ, while

hxð1Þ2 ; xð2Þ2 jS̄jxð1Þ1 ; xð2Þ1 i ¼ S̄ðxð2Þ1 − xð1Þ1 Þδ4ðxð2Þ2 − xð2Þ1 Þ
× δ4ðxð1Þ2 − xð1Þ1 Þ: ðA21Þ

Operators Sð12Þ and Sð21Þ do not commute with Dð1Þ and
Dð2Þ operators since they are acting in both subspaces.
Formal expression for the operator W is given by Eq. (17),
and Pobylitsa equation in the approximationOðλ; αsλ1=2Þ is
given by Eq. (18), where we will use

Z
DξSð12Þab ðxð1Þ2 ; xð2Þ2 Þ ¼ S̄abðxð1Þ2 − xð2Þ2 Þ:

Asymptotically, the QQ̄ correlator at a large time T → ∞
is given by expð−VTÞ and can be calculated in acco-
rdance with the approach used in the Eqs. (A10)–(A12)
[32]. Consequently, the QQ̄ potential also can be
written as

V ¼ Vdir þ Vpert:

As it is shown in Ref. [32], the direct instanton inducedQQ̄
potential Vdir originated from the matrix elements of the
first and second terms in the Eq. (18). It is explicitly
expressed as

Vdir ¼ −
Z

dtð1Þ2 dtð2Þ2 dtð1Þ1 dtð2Þ1

X
i

Z
dξihxð1Þ2 xð2Þ2 j

× θð1Þ−1θð2Þ−1
�

1

Dð1Þ
i

1

Dð2Þ
i

− θð1Þθð2Þ
�

× θð1Þ−1θð2Þ−1jxð1Þ1 xð2Þ1 i: ðA22Þ

For the one-gluon exchange QQ̄ potential in ILM Vpert, we
have the similar relation,

Vpert ¼
Z

dtð1Þ2 dtð2Þ2 dtð1Þ1 dtð2Þ1

λa
2

λ̄b
2

×

�
S0ab þ

X
i

Z
dξiΔSab

�
ðr⃗; tð1Þ1 ; tð2Þ1 Þ

× δðtð1Þ1 − tð1Þ2 Þδðtð2Þ1 − tð2Þ2 Þ

¼ g2
λa
2

λ̄b
2

Z
dτS̄abðr; τÞ;

τ ¼ tð1Þ1 − tð2Þ1 : ðA23Þ

For the color factor in Eq. (A24), we have the following
expressions (see [33]):

λa
2

λa
2
¼ λ̄a

2

λ̄a
2
¼ N2

c − 1

2Nc
I; λ̄a ¼ −λTa ;

Ia ¼
λa
2
þ λ̄a

2
; IaIa ¼

N2
c − 1

Nc
I þ 2

λa
2

λ̄a
2
: ðA24Þ

One has ðIaIaÞS ¼ 0 in the color singlet state and ðIaIaÞA ¼
Nc in the adjoint state, respectively. Finally, one has�

λa
2

λ̄a
2

�
S
¼ −

N2
c − 1

2Nc
I;

�
λa
2

λ̄a
2

�
A
¼ 1

2Nc
I: ðA25Þ
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