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The Coleman-Weinberg (CW) renormalization scheme for renormalization-group improvement of the
effective potential is particularly valuable for CW symmetry-breaking mechanisms (including the
challenging case of models with multiple scalar fields). CW mechanism is typically studied using models
with classical scale invariance which not only provide a possibility for an alternative symmetry breaking
mechanism but also partially address the gauge hierarchies through dimensional transmutation. As outlined
in our discussion section, when the couplings are not large, models with CW symmetry-breaking
mechanisms have also been shown to naturally provide the strong first-order phase transition necessary for
stochastic gravitational wave signals. A full understanding of the CW-MS scheme transformation of
couplings thus becomes important in the era of gravitational wave detection and precision coupling
measurements. A generalized Coleman-Weinberg (GCW) renormalization scheme is formulated and
methods for transforming scalar self-couplings between the GCW and MS (minimal-subtraction)
renormalization schemes are developed. Scalar λΦ4 theory with global Oð4Þ symmetry is explicitly
studied up to six-loop order to explore the magnitude of this scheme transformation effect on the couplings.
The dynamical rescaling of renormalization scales between the GCW and MS schemes can lead to
significant (order of 10%) differences in the coupling at any order, and consequently GCW-MS scheme
transformation effects must be considered within precision determinations of scalar couplings in extensions
of the Standard Model.
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I. INTRODUCTION

The Coleman-Weinberg (CW) symmetry breaking
mechanism [1] has been an important research area from
both theoretical and phenomenological perspectives. On the
theory side, the CW mechanism is the only known alter-
native symmetry breaking mechanism beyond con-
ventional1 symmetry breaking in the perturbative regime.2

Also, studying the CWmechanism typically requires models

with classical scale invariance, where, similar to QCD, a
hierarchy of the energy scales can be dynamically generated
through dimensional transmutation, which partially
addresses the well-known gauge hierarchy problem [2].
From the phenomenological perspective, the era of

gravitational wave detection and precision coupling
measurements represents promising opportunities for
observing new physics beyond the Standard model
(SM). Detection of stochastic gravitational wave signals
typically require a strong first-order phase transition [3]
(see also [4]). Contrary to the cases where the models
can be engineered3 to provide a strong first-order phase
transition, models with Coleman-Weinberg (CW) sym-
metry breaking can naturally4 lead to this necessary strong
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1Conventional in the sense of spontaneous symmetry breaking
as Higgs mechanism.

2In the nonperturbative regime, there is also a strong dynamical
symmetry breaking mechanism.

3The typical way of engineering the model is to increase the
coupling of ϕ3 term by hand, where ϕ denotes a general scalar
field.

4Natural is in the sense of without tuning the parameters by
hand.
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first-order phase transition if the couplings are not too
large [5–7]. Thus models with CW symmetry-breaking
have been an interesting and meaningful element in the
study of strong first-order phase transition and its asso-
ciated stochastic gravitational waves.
On the other hand, Higgs cubic and quartic coupling

measurements are extremely important in exploring the
underlying mechanism of electroweak symmetry breaking
(see e.g., typical Coleman-Weinberg type cases [8–15]
and implications of various forms of the effective potential
[16]) and the nature of the electroweak phase transition
[17]. The targeted sensitivity in future collider experiments
should have sufficient accuracy to distinguish the conven-
tional SM with most of the beyond-SM new physics (see
e.g., Refs. [18,19]). Thus it is important to understand
how couplings in CW symmetry-breaking models are
related to MS (minimal subtraction) scheme couplings
and observables, and to assess the magnitude of these
scheme-transformation effects.
In the CW symmetry breaking mechanism, the associ-

ated CW renormalization scheme [1,20] provides a valu-
able framework for the effective potential. In particular,
advantages of this renormalization scheme include much
simpler implementations of renormalization-group (RG)
improvement properties [5,8,21], the ability to address
complications associated with multiple scalar field models
when couplings are large enough that some form of
resummation is necessary [22,23], the absence of kinetic
term corrections in the effective action, and the ability to
uniquely specify the effective potential from the RG
functions [24]. Interesting phenomenological models
involving CW effective potentials include (conformal)
two-Higgs doublet model [8,21], and various hidden-sector
models such as the real/complex singlet model [14,25] and
the Uð1Þ0 model [26]. However, the CW renormalization
scheme affects the RG functions of the theory [27], and
hence there are scheme-transformation effects on the CW-
scheme couplings that must be considered when comparing
to MS benchmark values of the couplings.
In general considerations of renormalization scheme

dependence, an observable calculated to n-loop order in
a single coupling is known to differ between schemes and
only align as n → ∞ [28]. The primary emphasis in the
literature is on methods to mitigate this scheme dependence
to control theoretical uncertainties at a fixed-order of
perturbation theory [29–33]. Within these approaches,
the combined scheme dependence in the β function and
the perturbative coefficients in the observable’s loop
expansion is studied. However, a key underlying
assumption in these analyses is the equivalence of the β
function coefficients up to next-to-leading order between
the renormalization schemes. As discussed below, this β
function property is not upheld in the CW renormalization
scheme, motivating our investigation of the relation
between the CW and MS scheme couplings.

The CW renormalization scheme was developed for the
effective potential to study symmetry-breaking mecha-
nisms [1,20] and is not directly used within perturbative
calculations of other observables. However, the constraints
on couplings that emerge in CW-symmetry breaking may
be implicitly referenced to the CW renormalization scheme,
and hence cannot be used as input into an MS-scheme
observable without scheme transformation of the coupling
between MS and CW renormalization schemes. The key
purpose of this paper is to develop a bridge to convert a
CW-scheme coupling (e.g., as emerges from a beyond-SM
CW symmetry-breaking mechanism) to a MS scheme
coupling which can then be used as input into MS-scheme
observables.
In Sec. II we formulate a generalization of the CW

renormalization scheme that provides greater flexibility
for model building and develops methods for transforma-
tion of scalar couplings between the generalized Coleman-
Weinberg (GCW) and MS schemes. In Sec. III, numerical
effects of the MS-GCW coupling scheme transformations
are studied in detail for λΦ4 theory with global Oð4Þ
symmetry (the scalar sector of the SM) up to six-loop order
in the MS-scheme RG functions [34,35]. The availability of
RG functions to this high-loop order enables a systematic
study of loop effects in the scheme transformation. We find
that the numerical effects of scheme transformation on
the coupling can be significant (order of 10%) within the
available parameter space, and hence for accurate phenom-
enology it is important to account for coupling scheme
transformation effects in models that employ the CW
renormalization scheme within their symmetry-breaking
mechanisms.

II. GENERALIZED COLEMAN-WEINBERG
RENORMALIZATION SCHEME

In its original form, the Coleman-Weinberg (CW)
renormalization scheme is defined from the following
condition for the effective potential for OðNÞ globally-
symmetric scalar field theory [1,20]:

d4Veff

dΦ4

����
μ2¼Φ2

¼ 24λ; Φ2 ¼
XN
i¼1

ϕiϕi; ð1Þ

where μ is the CW renormalization scale and condition (1)
is chosen to align with the definition of the tree-level
Lagrangian. However, as first noted in Ref. [27], the CW
renormalization scale μ can be related to the minimal-
subtraction (MS) renormalization scale μ̃ via

λðμ̃Þ=μ̃2 ¼ 1=μ2; ð2Þ

where λðμ̃Þ is the MS-scheme running coupling.
Equation (2) allows conversion between MS and CW
renormalization schemes. It is evident that (2) will
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map typical MS-scheme effective potential logarithms
log ðλΦ2=μ2Þ into CW-scheme effective potential logarithms
logðΦ2=μ2Þ. However, (2) also implies that the RG functions
in the CW and MS schemes will be different [24,27]:

μ
dλ
dμ

¼ βðλÞ ¼ β̃ðλÞ
1 − β̃ðλÞ

2λ

; μ̃
dλ
dμ̃

¼ β̃ðλÞ; ð3Þ

where β̃ denotes the MS-scheme beta function and β denotes
the CW-scheme. A perturbative expansion of (3) provides the
relation between the coefficients of the RG functions in the
MS and CW schemes

β̃ðλÞ ¼
X∞
k¼2

b̃kλk; βðλÞ ¼
X∞
k¼2

bkλk; ð4Þ

with the first few terms given by [24]

b2 ¼ b̃2; b3 ¼ b̃3 þ
1

2
b̃22; b4 ¼ b̃4 þ b̃2b̃3 þ

1

4
b̃32:

ð5Þ

A notable feature of the CW scheme is the deviation from the
MS-scheme β function beginning at two-loop order (i.e., b3).
Relations similar to (3) and (5) exist for the anomalous field
dimension RG function [24]. It can be verified that the two-
loop CW-scheme effective potential [20] satisfies the RG
equation containing the CW-scheme RG functions [24].
The CW-MS scheme transformation expression (2)

represents a dynamical rescaling between the renormaliza-
tion scale in the two schemes governed by the MS running
coupling. Given an MS coupling λðμ̃Þ at scale μ̃, the
corresponding CW-scale μ can be calculated via (2) and
the corresponding CW coupling is then given by λðμÞ. In
principle the process can be inverted: given a CW coupling
λðμÞ at scale μ, (2) can be solved for μ̃ and then the
correspondingMS coupling is given by λðμ̃Þ. The couplings
in the two schemes match at a special scale μ� where

λðμ�Þ ¼ 1; μ ¼ μ̃ ¼ μ� → λðμÞ ¼ λðμ̃Þ ¼ 1: ð6Þ

Since the MS-scheme scalar couplings increase with
increasing energy scale in the perturbative regime λðμ̃Þ<1,
Eq. (2) implies that for μ < μ�, μ > μ̃ and therefore the
CW-scheme coupling is naturally enhanced compared to
the MS-scheme coupling. It is also clear that the difference
between the scales could be significant when λðμ̃Þ ≪ 1,
corresponding to a large dynamical rescaling between μ
and μ̃.
The alignment of the two schemes at the scale μ�

represented by (6) suggests a natural extension of the
CW scheme (2)

λðμ̃Þ=μ̃2 ¼ λ0=μ2; ð7Þ

defining the generalized Coleman-Weinberg (GCW)
scheme transformation. This generalization does not alter
the relationship between the beta functions in the two
schemes given in (3) and will still map MS-scheme
effective potential logarithms into CW-scheme logarithms.5

The parameter λ0 then characterizes the matching between
the two schemes:

λðμ�Þ ¼ λ0; μ ¼ μ̃ ¼ μ� → λðμÞ ¼ λðμ̃Þ ¼ λ0; ð8Þ

providing greater flexibility for model building where it
may be desirable to match the CW and MS schemes at a
coupling λ0 and a scale μ� that emerge from a UV
completion of the SM scalar sector. Similar to the case
where λ0 ¼ 1, for scalar couplings that increase with
increasing energy scale, there will be a natural enhance-
ment of the CW coupling compared to the MS coupling for
μ < μ� and a natural suppression for μ > μ�.
The matching condition which determines λ0 should

originate from a physics condition while there is no clear
physics behind the original CW matching condition (i.e.,
both MS coupling and CW coupling are matched at
λ0 ¼ 1). There are a variety of possibilities for fixing the
model-dependent parameter λ0. For example, Eq. (3)
implies that the MS and GCW schemes will share the
same fixed points (both UV and IR) that could define λ0.
Similarly, the anomalous dimension will have the same
zeroes in the two schemes thereby providing a value for λ0.
Because the GCW scheme transformation maps MS to the
CW forms of the effective potentials, λ0 can be constrained
by matching the effective potentials at a particular loop
order. A UV boundary condition on λ0 could also emerge
from a UV completion (e.g., asymptotic safety [36–40]).
For example, an asymptotic safety condition that provides a
coupling referenced to a UV scale μ� then provides a
matching condition to define λ0 for a CW symmetry-
breaking mechanism which results in a GCW-scheme
coupling at the symmetry-breaking scale. The connection
to low-energy MS-scheme observables (including other
couplings in the model) then requires GCW-MS scheme
conversion of the coupling. Finally, λ0 could be determined
through approaches for physical observables such as the
principle of minimal sensitivity for a particular observ-
able [29] or the recently developed principle of observable
effective matching [41].
Dimensionless CW and MS scales associated with the

GCW matching condition (8) are defined by

ξ ¼ μ=μ�; ξ̃ ¼ μ̃=μ�; λðξ ¼ 1Þ ¼ λðξ̃ ¼ 1Þ ¼ λ0; ð9Þ

providing a boundary condition for the RG equations (3)
expressed in terms of the dimensionless scales

5This freedom is also anticipated in [27].
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ξ̃
dλ

dξ̃
¼ β̃ðλÞ; λðξ̃ ¼ 1Þ ¼ λ0 ð10Þ

ξ
dλ
dξ

¼ βðλÞ ¼ β̃ðλÞ
1 − β̃ðλÞ

2λ

; λðξ ¼ 1Þ ¼ λ0: ð11Þ

Similarly, the GCW scheme transformation (7) expressed in
terms of dimensionless scales is

λðξ̃Þ=ξ̃2 ¼ λ0=ξ2: ð12Þ

Geometric aspects of the dynamical rescaling relation-
ship (12) between the GCW and MS schemes is a generic
feature, and in principle can be interpreted in a non-
perturbative context. Given an MS-scheme RG trajectory
and a scale ξ̃2 ¼ Λ̃2, the dynamical rescaling Λ2 ¼ Λ̃2λ0=
λðΛ̃2Þ and the associated GCW coupling λCW ¼ λðΛ2Þ is
illustrated geometrically in Fig. 1 for an RG trajectory
typical of the detailed analysis presented below. As evident
from Fig. 1, the dynamical rescaling inevitably leads to a
difference between the GCW and MS couplings, irrespec-
tive of the underlying origin (e.g., perturbative order) of the
RG trajectory. This geometrical interpretation can thus be
applied to phenomenological-inspired qualitative models
for the MS coupling.

III. SCHEME CONVERSION OF COUPLINGS

For the detailed numerical analysis between the GCW
and MS schemes, the solution to the MS-scheme RG
equation (10) will be denoted by λMSRGðξ̃; λ0Þ and the
solution to the CW-scheme RG equation will be denoted by
λCWRGðξ; λ0Þ. Thus the GCW scheme transformation is

founded on the MS-scheme running coupling through the
dynamical scale transformation

ξ ¼ cðξ̃Þ ¼ ξ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0

λMSRGðξ̃; λ0Þ

s
: ð13Þ

For a given value of the MS scale ξ̃, the corresponding
GCW-scheme coupling is obtained by calculating the
corresponding CW-scale ξ (13), and the resulting GCW
coupling λCW is then given by

λCWðξ̃; λ0Þ ¼ λMSRGðcðξ̃Þ; λ0Þ: ð14Þ

The inverse of this expression has an interesting symmetric
form. The MS coupling λMS corresponding to a CW scale ξ
is given by the x̃ solution of

λMSðξÞ ¼ λMSRGðx̃; λ0Þ; ð15Þ

λCWðx̃Þ ¼ λCWRGðξ; λ0Þ: ð16Þ

However, (7) and (14) can be used to reexpress (16) as

λMSRGðcðx̃Þ; λ0Þ ¼ λCWðx̃Þ ¼ λCWRGðξ; λ0Þ
¼ λMSRGðc−1ðξÞ; λ0Þ → cðxÞ ¼ c−1ðξÞ;

ð17Þ

where c−1ðξÞ is understood as the ξ̃ root of (13) associated
with the scale ξ. Using (17) and (7) leads to the final result
for λMS

FIG. 1. The geometric representation of the dynamical rescaling relationship (12) between GCW scales and couplings is shown in the
right panel, with a magnified region shown in the left panel. The MS RG coupling trajectory is shown in solid blue. The MS scale Λ̃2 and
associated coupling λMS ¼ λðΛ̃2Þ are shown by the red circle and dashed red lines, and the λMS value of the coupling is projected to the
ξ̃2 axis by the dashed red circle. The solid red lines, dotted red line, and coordinate axes are a geometric number-line representation of
the quotient Λ2 ¼ Λ̃2λ0=λðΛ̃2Þ, with the result identified by the intersection of the left solid red line with the dotted red line. The dashed
blue lines and blue circle represent the GCW scale Λ2 and associated coupling λCW ¼ λðΛ2Þ.
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λMSðξ; λ0Þ ¼ λMSRGðx̃; λ0Þ ¼ λCWRGðcðx̃Þ; λ0Þ
¼ λCWRGðc−1ðξÞ; λ0Þ; ð18Þ

which has a form symmetric to (14). Thus, Eq. (16)
performs the mapping of the MS to GCW coupling and
Eq. (18) performs the opposite.
In principle, the transformation of couplings between the

GCW and MS schemes can be performed via a numerical
solution for the MS-coupling within (14) in cases of higher-
loop beta functions where an analytic solution does not
exist. However, this purely numerical approach has some
disadvantages. First, it can be difficult to sample extreme
ranges of the coupling parameter space. For small cou-
plings, (12) leads to large dynamical hierarchies in ξ and ξ̃,
and hence a small change in ξ̃ leads to a large change in ξ.
For large λ the perturbative series may begin to have poor
convergence and because it is necessary to do a numerical
solution from the boundary condition λ0, the coupling
could enter a nonperturbative regime. Thus it is necessary
to go beyond purely numerical solutions and develop
other methodologies for performing GCW-MS scheme
transformation.
The one-loop analysis for λΦ4 theory with Oð4Þ global

symmetry provides a phenomenologically relevant exactly
solvable case that illustrates the main features of the GCW-
MS scheme transformation and motivates the methodology
that will be developed for the higher-loop cases. Using the
one-loop Oð4Þ beta function [34], the solution to (10) is

λMSRGðξ̃; λ0Þ ¼
λ0

1 − b̃2λ0 log ξ̃
; b̃2 ¼ 6=π2; ð19Þ

which combined with (14) leads to the relationship between
λCW and λMSRG shown in Fig. 2 for different choices of λ0.
The curves intersect at ξ̃ ¼ 1 as required by the boundary
condition (9), and, as discussed above, the GCW-MS
scheme transformation leads to a natural enhancement of

the CW coupling below ξ̃ < 1 and a suppression for ξ̃ > 1.
Depending on λ0, the enhancement can be numerically
significant and it is clear that a naive assumption that the
CWand MS coupling are identical could introduce an error
of up to order of 10%. Thus depending on the desired
phenomenological precision of the couplings, a careful
consideration of GCW-MS scheme transformation effects
may be needed.
Figure 3 shows the underlying relation (13) between the

GCW scale ξ̃ and MS scale ξ for different choices of λ0. As
discussed above, ξ is enhanced compared to ξ̃ leading to the
natural enhancement of λCW. However, although ξ > ξ̃, it is
apparent that ξ < 1 for ξ̃ < 1 so that it is not necessary to
evolve the MS couplings above λ0, providing some control
over perturbative convergence. This ξ̃ < ξ < 1 property
can be qualitatively understood from Fig. 1 as geometri-
cally arising from the convexity of the coupling RG
trajectory. The nonlinear dynamical rescaling between ξ
and ξ̃ in Fig. 3 illustrates why the GCW-MS scheme
transformation can become significant.
Figure 3 illustrates one of the challenges of the direct

application of the GCW scheme transformation (14). For
ξ̃ ≪ 1, a small variation in ξ̃ leads to a large change in ξ,
thus making it difficult to sample a full range of coupling
parameter space. However, the one-loop case provides a
way forward by solving the MS RG equation (10) to relate
the MS-scheme coupling at two scales

λðξ̃1Þ ¼
λðξ̃2Þ

1 − b̃2λðξ̃2Þ log ðξ̃1=ξ̃2Þ
; ð20Þ

where the notation has been compressed so that λðξ̃iÞ ¼
λMSRGðξ̃i; λ0Þ in (20). By choosing ξ̃1 ¼ ξ ¼ cðξ̃Þ and ξ̃2 ¼
ξ̃ related through the GCW scheme transformation (12),
Eq. (20) provides a direct relation between λCW and λMSRG

0=1

0=1/2

0=1/4

0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

CW/ MSRG

FIG. 2. The ratio of λCW and λMSRG is shown at one-loop order
in Oð4Þ λΦ4 as a function of the dimensionless scale ξ̃ for
selected λ0.

FIG. 3. The ratio of ξ=ξ̃ ¼ cðξ̃Þ=ξ̃ is shown at one-loop order in
Oð4Þ λΦ4 theory as a function of the dimensionless scale ξ̃ for
selected λ0.
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λCW ¼ λMSRGS0ðwÞ; S0ðwÞ ¼ 1=w;

w ¼ 1 −
b̃2
2
λMSRG log

�
λ0

λMSRG

�
; ð21Þ

where the functional arguments of λCW and λMSRG have
been suppressed for simplicity. Equation (21) provides an
analytic relation between the CW and MS couplings
without requiring a solution of the MS RG equation,
addressing the challenges of the direct numerical approach
outlined above. Furthermore, because we do not to solve
(10), λ0 could be in a nonperturbative regime, and the
applicability of (21) is simply constrained by perturbative
convergence of higher-loop contributions as outlined
below. Figure 4 shows how the relation (21) between the
GCW- and MS-scheme couplings can now be examined
across a wider range of coupling parameter space (e.g.,
compare with Fig. 3), and the scale has been extended into a
region of slow perturbative convergence to show the
required λCW=λMSRG ¼ 1 intersection of each curve at
λMSRG ¼ λ0 from the matching condition (9). A natural
enhancement of the CW coupling now occurs for
λMSRG < λ0 and a natural suppression for λMSRG > λ0.
If the expression (20) is expanded as a series in λðξ̃2Þ

then it has the form of a leading-logarithm (LL) summa-
tion, and hence following Ref. [42] a higher-loop extension
of (20) can be found by including subleading logarithms in
the series solution

λðξ̃1Þ ¼ λ2½1þ T1;1Lλ2 þ λ22ðT2;1Lþ T2;2L2Þ þ…�
L ¼ log ðξ̃1=ξ̃2Þ; λ2 ¼ λðξ̃2Þ; ð22Þ

which can be rearranged as sums of NnLL terms as

λðξ̃1Þ ¼
X∞
n¼0

λnþ1
2 Snðλ2LÞ; SnðuÞ ¼

X∞
k¼1

Tnþk;kuk:

ð23Þ

The notation has again been compressed so that λðξ̃Þ ¼
λMSRGðξ̃; λ0Þ and will be restored later for clarity. The
requirement that (23) is independent of the scale ξ̃2 [42]

0 ¼ d

dξ̃2
λðξ̃1Þ ¼

�
ξ̃2

∂
∂ξ̃2 þ β̃ðλ2Þ

∂
∂λ2

�
λðξ̃1Þ ð24Þ

provides an RG equation defining the Sn. For example, at
LL order the RG equation for S0 is

0 ¼ ð1 − b̃2uÞ
dS0
du

− b̃2S0; S0ð0Þ ¼ 1; ð25Þ

where the boundary condition for S0 ensures that (23) is
self-consistent when ξ̃1 ¼ ξ̃2. The solution to (25) is

S0ðwÞ ¼ 1=w; w ¼ 1 − b̃2u; ð26Þ

and hence

λðξ̃1Þ ¼ λ2S0ðλ2LÞ ¼
λ2

1 − b̃2λ2L
; ð27Þ

identical to the one-loop result (20). At NnLL order the
generalization of (25) to n > 0 is

0 ¼ −ð1 − b̃2uÞ
dSn
du

þ ðnþ 1Þb̃2Sn

þ
Xn−1
k¼0

b̃nþ2−k

�
ðkþ 1ÞSk þ u

dSk
du

�
; Snð0Þ ¼ 0:

ð28Þ

Since the MS beta function is known to six-loop order (i.e.,
up to b̃7) [35] (28) can be iteratively solved up to S5ðuÞ.
The next two solutions are

S1ðwÞ ¼ −
b̃3
b̃2

logw
w2

; w ¼ 1 − b̃2u;

S2ðwÞ ¼
ðb̃2b̃4 − b̃23Þð1 − wÞ − b̃23 logwþ b̃23log

2w

b̃22w
3

; ð29Þ

and the remaining solutions up to S5 are too lengthy to
be presented. The resulting NnLL expression relating the
MS-scheme coupling at the scales ξ̃1 and ξ̃2 is

λðnÞðξ̃1Þ ¼
Xn
k¼0

λkþ1
2 SkðwÞ; w ¼ 1 − b̃2λ2 log ðξ̃1=ξ̃2Þ;

λ2 ¼ λðξ̃2Þ: ð30Þ

The accuracy of the NnLL approximations (30) can be
checked by setting ξ̃2 ¼ 1, λ2 ¼ λ0, and then comparing

FIG. 4. The relationship (21) between the GCW coupling λCW
and MS coupling λMSRG is shown at one-loop order in Oð4Þ λΦ4

theory for selected λ0.
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against numerical solution of MS-scheme coupling at the
same order. As expected, agreement tends to worsen as λ0
increases because the truncated perturbative expansion will
have slower convergence. The estimated limitations on λ
are discussed below.
Although the development of (30) involved an RG

equation in the scale ξ̃2, Ref. [42] argues that the RG
equation in ξ1 is contained within the ξ̃2 RG equation for
the series expansion (22). For the truncated series solutions
(30) it can be verified that the NnLL expression self-
consistently satisfies the ξ̃1 RG equation up to NnLL order
(i.e., residual RG terms are proportional to next-order
corrections). Finally, by choosing ξ̃1 ¼ ξ and ξ̃2 ¼ ξ̃ related
through the GCW scheme transformation (12), Eq. (30)
provides a direct NnLL relation between λCW and λMSRG

λðnÞCW ¼
Xn
k¼0

λkþ1
MSRGSkðwÞ; w ¼ 1 −

b̃2
2
λMSRG log

�
λ0

λMSRG

�
:

ð31Þ

Before showing the higher-loop scheme transformation
results it is important to note that the six-loop MS-scheme
beta function contribution is surprisingly large for Oð4Þ
λΦ4 theory [35] which restricts the coupling parameter
space that can be explored reliably. For example, the six-
loop MS-scheme beta function has a zero at approximately
λ ¼ 0.93, and hence couplings beyond this apparent fixed
point should be excluded because they are in conflict
with nonperturbative lattice studies of scalar field theory
[43–46]. Similarly, the two- and four-loop MS-scheme beta
functions have false zeroes, respectively, at λ ¼ 3.04 and
λ ¼ 1.35 which are safely avoided by respecting the six-
loop bound.6

Figure 5 compares the GCW- and MS-scheme couplings
at successively higher-loop NnLL orders arising from (31)
for different choices of λ0. As in the exact one-loop case,
a natural enhancement of the CW coupling occurs for
λMSRG < λ0 and a natural suppression for λMSRG > λ0. As
λ0 is decreased, the enhancement for λ < λ0 tends to
decrease, while the suppression for λ > λ0 tends to
increase. As noted before, the scheme-transformation
effects can lead to significant (order of 10%) differences
in the coupling, which could be further magnified by
subsequent large-distance RG running to the desired
phenomenological scale.
An interesting feature of Fig. 5 is the persistence of the

relative enhancement (or suppression) as loop order is
increased, emphasizing that the effects of the GCW-MS
scheme transformation are fundamentally related to the
nonlinear dynamical rescaling of the renormalization scales
(12) and cannot be avoided by going to higher-loop order.
A geometric representation of this dynamical rescaling and
the resulting scheme transformation between couplings is
shown in Fig. 1.
The ideas presented in this paper can be extended to

systems with multiple scalar fields and multiple couplings.
In cases where the couplings satisfy the flatness condition,
the Gildener-Weinberg method [22,23] can be implemented
and the single-coupling analysis of this paper can be
applied without modification. Otherwise, multiscale RG
methods [47–49] are required to generalize Eq. (7) to
introduce an additional renormalization scale and associ-
ated parameter λ0 for each required coupling.

IV. DISCUSSIONS: CONNECTION BETWEEN
(ULTRA) STRONG 1ST ORDER PHASE

TRANSITION AND COLEMAN-WEINBERG
SYMMETRY BREAKING

In this section, we discuss the connection between a
(ultra) strong first-order phase transition and Coleman-
Weinberg symmetry breaking.

A. Coleman-Weinberg triggering of
first-order phase transition

The reason why the Coleman-Weinberg mechanism
can help to naturally realize a first-order phase transition
can be simply understood as follows. Imagine a model
can have Coleman-Weinberg symmetry breaking. This
immediately implies that at zero temperature, the system
already possesses a second-order phase transition. When
turning on the temperature T, the finite temperature
contribution will always provide a positive T2 contribu-
tion which will give another curvature in the effective
potential at ϕ ¼ 0. A second-order phase transition at zero
temperature plus a curvature at ϕ ¼ 0 triggered by a T2

term is a first-order phase transition. Thus, we reach our
first conclusion that any model with Coleman-Weinberg

FIG. 5. The relationship (31) between the GCW coupling λðnÞCW
and MS coupling λMSRG is shown to successively higher-loop
NnLL order in Oð4Þ λΦ4 theory for three different λ0.

6In the normalization λ
4!
ϕ4 instead of λϕ4, the six-loop false

fixed point will be rescaled from 1 to 24 ≈ 8π consistent with the
unitarity bound.
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symmetry breaking at zero temperature will automatically
provide a first-order phase transition at finite temperature
(see e.g., Ref. [5]).

B. (Ultra) strong 1st order phase transition

Models with Coleman-Weinberg symmetry breaking at
zero temperature will easily lead to a strong first-order
phase transition and sometimes extremely strong which
implies ultra super cooling. Cases with supercooling and
ultra supercooling have been one of the frontiers of
cosmology and particularly gravitational wave research
(see e.g., [50–53]). The easy formation of a strong
first-order phase transition and associated supercooling
in models with Coleman-Weinberg symmetry breaking
was first discussed in Ref. [54]. The deep reason is that
in a scale invariant theory, the tunneling rate from the
false vacuum would necessarily scale as T4 times a
function of the couplings. For weak couplings, the
vacuum decay rate would be extremely small at arbitrar-
ily small T compared with the ordinary case that the
vacuum decay rate will increase quickly when T is below
the critical temperature Tc. Thus, for the weak coupling
case supercooling occurs, which also means a strong
first-order phase transition is very easily formed. In [54],
it was shown that in an ultra supercooling case, the
electroweak phase transition can only happen when the
universe is cooling down to the QCD scale. Eventually,
the QCD chiral phase transition further triggers the
electroweak phase transition. Thus, contrary to the naive
expectation that weaker couplings in models with
Coleman-Weinberg symmetry breaking will lead to a
weaker first-order phase transition, it actually leads to a
stronger first-order phase transition.

C. Models with classical scale invariance
as a limiting case

It is important to view the classical-scale invariant model
with Coleman-Weinberg symmetry breaking as an impor-
tant limiting case even if we study the case without
classical-scale invariance. Any tree level mass term can
be viewed as a term which breaks the classical scale
invariance and will increase the vacuum tunneling rate
and weaken the first-order phase transition. Actually, it
can be shown that to obtain a strong first-order phase
transition, the explicit mass term cannot be too big and
should only be around the Coleman-Weinberg mass pre-
dicted in the models [5]. In addition, models with classical
scale invariance have their own beauty of naturalness in the
sense that less engineering of the parameters in the theories
are required.
The conventional Standard Model without any exten-

sion is not a scale invariant theory because the explicit
Higgs mass term breaks the scale invariance. Thus, the
Standard Model without extensions does not apply to
the discussions in Sec. IV B and there is no

contradiction of the well accepted statement that the
Standard Model without extensions is either a second-
order or weakly first-order phase transition. Actually,
one piece of evidence in the Standard Model also
supports the above statement that models with
Coleman-Weinberg symmetry breaking favor a strong
first-order phase transition. It is well known that larger
Higgs mass in the Standard Model (i.e., when Higgs
mass is above 70 GeV) will favor a second-order or
weakly first-order phase transition while for smaller
Higgs mass it will in general lead to a stronger first-
order phase transition [5]. The classical scale invariant
theory viewed as a limiting case of small Higgs mass is
consistent with this conclusion.

D. Coleman-Weinberg renormalization scheme
and Gildener-Weinberg technique

One of the reasons for the importance of the Coleman-
Weinberg renormalization scheme is its deep connection
to the Gildener-Weinberg technique [23]. As stated
above, models with Coleman-Weinberg symmetry break-
ing are very important and naturally provide a strong
first-order phase transition. However, it is well known
that the Standard Model by itself cannot have Coleman-
Weinberg symmetry breaking. The deep reason is even if
we get rid of the explicit Higgs mass term, the vacuum
will be destabilized by the large top Yukawa coupling
which is unbounded from below. Thus, an extension of
the scalar sector of the Standard Model is inevitable and
will necessarily lead to a model with multiscalar fields.
To study Coleman-Weinberg symmetry breaking in mod-
els with multiple scalar fields, the main technique is
known as Gildener-Weinberg method [23]. The advantage
of this method is the multiple scalar fields can be treated
as a single scalar field case which significantly simplifies
the analysis. In particular, when the couplings are not too
small where renormalization group (RG) analysis is
required, the Gildener-Weinberg method is necessary to
perform the RG analysis. However, the Gildener-
Weinberg method is only rigorously consistent in the
Coleman-Weinberg scheme. In conclusion, the Coleman-
Weinberg scheme is extremely important when studying
Coleman-Weinberg symmetry breaking in models with
multiple scalar fields due to the Gildener-Weinberg
method. Thus, a rigorous treatment of scheme trans-
formation between MS and Coleman-Weinberg scheme
as provided in this paper is also very meaningful.

V. CONCLUSIONS

In this paper, the GCW scheme generalizing the
Coleman-Weinberg renormalization scheme [1,20,27] has
been developed and GCW-MS scheme transformation of
the coupling has been analyzed for Oð4Þ globally sym-
metric λΦ4 theory up to six-loop order.
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The key messages of our paper are:
(i) Dynamical rescaling of renormalization scales

leads to the transformation of couplings between
generalized Coleman-Weinberg (GCW) and MS
schemes. The transformation of the GCW coupling
to MS-scheme then provides a bridge to determine
MS-scheme observables. The dynamical rescaling
and GCW-MS scheme transformation can be con-
ceptualized in the geometric representation of Fig. 1.

(ii) Effects of GCW-MS scheme transformation on the
coupling can be large (order of 10%) and can
therefore have important phenomenological conse-
quences if the GCW-scheme coupling is naively
identified with the MS-scheme coupling within an
observable (e.g., nucleation rate in first-order phase

transition scales as an exponential function of the
scalar quartic coupling [55]).

(iii) Efficient methodologies have been developed to
perform the GCW-MS scheme transformation,
where the key parameter in the GCW-MS scheme
conversion is λ0 where the couplings in the two
schemes align at a common energy scale μ�.
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