
 

Chiral separation effect in nonhomogeneous systems
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We discuss chiral separation effect in the systems with spatial nonhomogeneity. It may be caused by
nonuniform electric potential or by another reasons, which do not, however, break chiral symmetry of an
effective low energy theory. Such low energy effective theory describes quasiparticles close to the Fermi
surfaces. In the presence of constant external magnetic field the nondissipative axial current appears. It
appears that its response to chemical potential and magnetic field (the CSE conductivity) is universal. It is
robust to smooth modifications of the system and is expressed through an integral over a surface in
momentum space that surrounds all singularities of the Green function. In itself this expression represents
an extension of the topological invariant protecting Fermi points to the case of inhomogeneous systems.
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I. INTRODUCTION

In the recent years the nondissipative transport effects
attract attention both in the framework of condensed matter
physics and in the high energy physics [1–14]. An
important arena for the experimental observation of these
effects is given by Dirac and Weyl semimetals [15–22].
These materials also represent the bridge between high
energy theory and condensed matter physics because the
physics of fermionic quasiparticles inside them models
physics of elementary particles. The chiral separation effect
(CSE) is one of the nondissipative transport effects. It has
been proposed by M. Metlitski and A. Zhitnitsky [1].
The essence of this effect is appearance of a nondissipative
axial current in the direction of external magnetic field. The
original calculations of this effect have been performed in
the system of continuum Dirac fermions. Without external
magnetic field this system is homogeneous. It has been
found that in the chiral limit (when Dirac fermions are
massless) the axial current is proportional to the external
magnetic field strength Fij and the ordinary chemical
potential μ counted from the Fermi point (the point in
momentum space where fermion energy levels cross each
other):

Jk5 ¼ −
1

4π2
ϵijk0μFij ð1Þ

The theoretical prediction of this effect has been followed
by the number of papers discussing the possibility to
observe it during heavy ion collisions [2–5]. The fireballs
appeared during the heavy ion collisions are widely
believed to contain the new state of matter called quark-
gluon plasma [6,23–32]. In this state quarks are free and
almost massless. Their masses may actually be neglected
completely and we may speak of the system of true chiral
fermions. External magnetic field appears here because the
ion beams carry electric current. During the noncentral
collisions the two colliding ions, therefore, produce strong
magnetic field orthogonal to their trajectories. The CSE
results in the appearance of axial current within the fireball.
After decay of the fireball the asymmetry in the distribution
of outgoing particles carries the signature of the chiral
separation effect. It is worth mentioning, that the CSE as
well as its cousin—the chiral vortical effect (CVE) may
also be relevant for the description of the quark matter
under extreme conditions in the rotated neutron stars [33].
Actually, the CSE represents a certain incarnation of

chiral anomaly. This relation has been discussed in a
number of papers (see, for example, [20]). The similar
conjecture has been proposed for the so-called chiral
magnetic effect (CME) [2,34–37]. The important difference
between the two is, however, that the true equilibrium
theory does not admit the presence of the CME [11–
14,16,38–40] while the CSE exists as an equilibrium
phenomenon [41]. Out of equilibrium, however, the
CME is back [42], which, possibly, manifests itself in
experiments with Dirac semimetals [43].
Wewould like to notice several recent works on the CSE.

In the framework of continuum quantum field theory the
CSE was discussed, for example, in [9]. The lattice
regularization has been used in [14] and in [41]. It has
been shown that if the model is considered at small but
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finite temperatures, then the lattice regularization gives the
conventional result for the CSE. It appears that in the
framework of continuum theory the order of summation
over Matsubara frequencies and integration over momenta
is important. The uncertainty appears if integration over the
3-momenta is performed first. This explains the importance
of lattice regularization for the investigation of the CSE.
[41] reports conventional expression for the conductivity of
CSE in the lattice models, which describe chiral fermions at
low energies. In the presence of the finite mass of the
fermions the expression for the CSE is changed. On the
formal level the theory with massless fermions suffers from
various infrared divergencies [44–46]. For this reason the
finite fermion masses are worth to be introduced even if
the limit of small masses is assumed. Notice, that in [34] the
neutral particles were discussed, and for them there are no
infrared divergencies related to radiation of photons.
Interaction corrections to CSE have been considered, for
example, in [47]. It has been argued that the higher orders
of perturbation theory do give corrections to the version of
the CSE of massive fermions.
To the best of our knowledge the CSE has not been

considered in sufficient details for the inhomogeneous
systems. At the same time in any real situation, when
the CSE takes place, it exists in essentially inhomogeneous
systems. In case of the heavy ion collisions the chiral
quarks in the fireballs exist in the presence of nonuniform
environment. The effective action of the chiral quarks here
cannot have the form of a homogeneous Dirac action.
Instead it should depend on various background fields that
depend on coordinates. The external magnetic field in this
problem as well as the quark chemical potential is also
coordinate dependent. In case of the CSE in Dirac/Weyl
semimetals the more or less uniform external magnetic field
can be provided as well as the uniform chemical potential.
However, the effective action for electron quasiparticles in
itself is always not homogeneous even in the absence of
external magnetic field. There are always impurities, and
various sources of elastic deformations—both internal
(dislocations and disclinations) and external (mechanical
stress caused by external forces). In the present paper we
concentrate on the latter situation—uniform external mag-
netic field and uniform chemical potential, but nonuniform
fermionic action. In order to deal with the nonhomogene-
ous systems we use the Weyl-Wigner formalism.
Weyl-Wigner formalism [48,49] as an alternative for-

mulation of nonrelativistic quantum mechanics has been
developed by H. Groenewold [50] and J. Moyal [51]. Later
it was adopted in some form both for the quantum field
theory and for the condensed matter physics. It is based on
the notions of the Weyl symbol of operator and the Wigner
distribution function. The Wigner-Weyl formalism in
quantum mechanics is often referred to as the phase space
formulation. It is defined in phase space that is composed of
both coordinates and momenta, while, the conventional

formulation uses either coordinate space or momentum
space representations. In the phase space formulation the
quantum state is described by the Wigner distribution
(instead of a wave function), while the product of operators
is replaced by the Moyal product of functions defined in
phase space.
Lattice field theories were proposed as a mathematical

tool to deal with divergences in quantum field theories
calculations in high energy physics. On the other hand, in
addition to the “traditional,” approach of quantummechanics
in solid state physics [52], there is a lot of activity of using
quantum field theory ideas in condensed matter systems. The
attempts to apply the numerical lattice QFT methods in
condensed matter started with Monte Carlo simulations of
graphene [53].
Although there were attempts to construct an exact phase

space formalism for lattice theories and finite state quantum
systems (Schwinger [54], Buot [55–57], Wootters [58],
Leonhardt [59], Kasperkovitz [60], and Ligabo [61]), until
recently such an approach has not been proposed. It has
been developed recently in [62]. However, the present
paper is based on the simplified version of lattice Wigner-
Weyl calculus valid for the case when an inhomogeneity is
sufficiently weak. This method is an approximation in case
of condensed matter physics, where the lattice describes a
real material, but is exact in case of high energy physics
where the lattice is a mathematical tool. In the case of
condensed matter systems, it is shown that this approxi-
mation holds for any physically reasonable fields from the
experimental point of view. In this approach, Weyl-Wigner
phase space formalism is used to calculate Dirac operators
and Green’s functions. These techniques are widely used in
recent research [63–67] dealing with linear response to
electromagnetic fields which are shown to be topological
invariants, as quantum Hall conductance for example.
We consider the lattice tight-binding models of a rather

general type. In these models the fermions are placed in four-
component Dirac spinors. Extra internal indices of these
spinors are also admitted (valley indices, real spin indices
etc). As a result action for the fermionic quasiparticles
contains the structure of 4 × 4 matrix to be expressed
through Dirac matrices γk for k ¼ 1, 2, 3, 4, 5, and their
derivatives σkj ¼ 1

4i ½γk; γj�. We are interested in the situation,
when low energy effective theory of such models obeys
chiral symmetry. For the homogeneous models this would
mean that matrix γ5 commutes or anticommutes with the
one-particle Hamiltonian in a small vicinity of Fermi
surfaces/Fermi points, where the low energy effective theory
arises. The Fermi surface manifests itself in the two-point
Green function Ĝ ¼ Q̂−1 as the position of its singularities
in momentum space. Here Q̂ is the so-called lattice Dirac
operator. For the nonhomogeneous systems with sufficiently
weak inhomogeneity operator Q̂ is not diagonal in momen-
tum, and the notion of ordinary Fermi surface/Fermi
point may be replaced by the coordinate-dependent Fermi
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surface/Fermi point [68]. The space dependent Fermi point is
known also as emergent gauge field. Mathematically the
weakness of inhomogeneity means that the poles of the
Wigner transformed two-point Green function GWðp; xÞ at
each value of x are given by zeros of the Weyl symbol
QWðp; xÞ of operator Q̂. (The precise definitions of Wigner
transformation and Weyl symbol will be given in the next
section of the present paper.) For the case when inhomo-
geneity is more strong the zeros of QW do not coincide with
the poles ofGW . An extension of the notion of Fermi surface
to this case may be given by the hypersurface in phase space
(space of both coordinates x and momenta p). We may
choose the hyper-surface, where QWðp; xÞ ¼ 0. The other
possible definition is localization of the singularities of
GWðp; xÞ. One may also consider position of the singular-
ities of a certain combination of QW and GW entering
expression for the CSE conductivity (to be specified below),
and this is our way for the definition of hypersurface Ξ in
phase space, which is the extension of the notion of the
Fermi surface. For the nonhomogeneous systems the low
energy physics appears in a certain vicinity of Ξ, and we
require thatQW andGW commute or anticommute with γ5 in
this vicinity. Recall that the precise chiral symmetry cannot
be maintained within the whole phase space for the lattice
tight-binding models except for the marginal cases. An
example of the marginal case is the system of naive lattice
Dirac fermions. In this case the 16 fermion doublers appear,
and the sum of their contributions to the CSE conductivity
vanishes [41].
We show that under the above conditions (chiral sym-

metry of low energy effective theory) the axial current of
CSE in the nonhomogeneous system of general type is still
proportional to external magnetic field. Being averaged
over the whole volume of the system it may be expressed as

J̄k5 ¼ −
N
4π2

ϵijk0μFij ð2Þ

where N is a topological invariant expressed through GW

and QW . (Here μ is counted from the level, where J̄5 ¼ 0.)
This expression contains an integral over a surface Σ3 in
momentum space surrounding the singularities of an
expression standing inside the integral (that is the hyper-
surface Ξ mentioned above). Being the topological invari-
ant N is robust to an arbitrary smooth modification of the
given system as long as this modification does not break
chiral symmetry of quasiparticles existing close to Ξ.
All inhomogeneous lattice systems with chiral fermions

(those with the chiral symmetry at low energies) may be
subdivided into the homotopic classes. Within each class
the operators Q̂ are connected to each other by smooth
deformation. The values of N are constant within each
homotopic class. For the homogeneous representative of
each homotopic class the value of N may be calculated
easily. It is given by the number of the species of chiral

Dirac fermions in the corresponding low energy effective
theory. This allows to calculate easily the CSE conductivity
N =ð2π2Þ for any inhomogeneous system.
In the present paper we do not consider interactions

between the quasiparticles. It is worth mentioning that in the
case of Integer Quantum Hall effect the similar problem has
been considered recently (see [66]). It has been shown that
the expression for Hall conductivity through Ĝ has the same
form as for the noninteracting case but with Ĝ replaced by
the complete interacting Green function. Based on the
approach of [66] we expect that the same refers to expression
for N of Eq. (2). However, the consideration of this issue
remains out of the scope of the present paper.

II. WEYL-WIGNER PHASE SPACE FORMALISM

In this section we briefly review the technique of
Wigner transformation applied to quantum mechanics
defined in infinite continuous coordinate space. Phase
space formalism allows to describe quantum mechanics
using c-functions instead of operators. Weyl-Wigner trans-
formation of the matrix elements of operator (that is Weyl
symbol of operator) represents such a correspondence.

A. Weyl symbol of operator and
Wigner distribution function

We start from definition of an average of operator Â with
respect to quantum state Ψ

hΨjÂjΨi ¼
Z

∞

−∞
dx

Z
∞

−∞
dyhΨjxihxjÂjyihyjΨi

¼
Z

∞

−∞
dp

Z
∞

−∞
dqhΨjpihpjÂjqihqjΨi ð3Þ

Here by x, y or p, q we denote the continuous coordinates
or momentum respectively. For simplicity we consider the
case of one-dimensional space R1. The generalization of
our expressions to the case of D-dimensional space RD is
straightforward. Let us change the coordinates:

x ¼ uþ v=2 y ¼ u − v=2 ð4Þ

Then

dxdy ¼ ∂ðx; yÞ
∂ðu; vÞ dudv ¼

�����
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

�����dudv ¼ −dudv ð5Þ

This gives
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hΨjÂjΨi ¼ −
Z

dxdyhxþ y=2jÂjx − y=2i

hΨjxþ y=2ihx − y=2jΨi

¼ −
Z

dxdydzhxþ y=2jÂjx − y=2iδðz − yÞ

hΨjxþ z=2ihx − z=2jΨi

¼ −
Z

dxdydzdphxþ y=2jÂjx − y=2i

eipðz−yÞ

2π
hx − z=2jΨihΨjxþ z=2i

¼
Z

dxdp
2π

dye−ipyhxþ y=2jÂjx − y=2idzeipz

hxþ z=2jΨihΨjx − z=2i ð6Þ

and

hΨjÂjΨi ¼ 1

2π

Z
∞

−∞
dx

Z
∞

−∞
dpAWðx; pÞρWðx; pÞ ð7Þ

Weyl symbol of operator AWðx; pÞ and Wigner
distribution Wðx; pÞ are defined as follows (where the
momentum space representation may be obtained using the
similar way)

AWðx; pÞ≡
Z

∞

−∞
dye−ipy

�
xþ y

2
jÂjx − y

2

�

¼
Z

∞

−∞
dqeiqx

�
pþ q

2
jÂjp −

q
2

�
ð8Þ

Wðx; pÞ ¼
Z

∞

−∞
dyeipy

�
x −

y
2
jΨihΨjxþ y

2

�

¼
Z

∞

−∞
dqe−iqx

�
p −

q
2
jΨihΨjpþ q

2

�
ð9Þ

B. Moyal product

The Weyl symbol of the product of two operators, called
the Moyal product, is defined as follows (this time in the
momentum representation)

ðÂ B̂ÞW ¼
Z

∞

−∞
dqeiqx

�
pþ q

2
jÂ B̂ jp −

q
2

�

¼
Z

∞

−∞
dk

Z
∞

−∞
dqeiqx

�
pþ q

2
jÂjkihkjB̂jp −

q
2

�

ð10Þ

changing variables

q ¼ uþ v k ¼ p − u=2þ v=2 ð11Þ

ðÂ B̂ÞW ¼
Z

∞

−∞
du

Z
∞

−∞
dveiux

�
pþ u

2
þ v
2
jÂjp −

u
2
þ v

2

�

eivx
�
p −

u
2
þ v
2
jB̂jp −

u
2
−
v
2

�

¼
Z

∞

−∞
du

Z
∞

−∞
dv

�
eiux

�
pþ u

2
jÂjp −

u
2

��

e
i
2
ð∂⃖x ∂⃗p −∂⃖p ∂⃗xÞ

�
eivx

�
pþ v

2
jB̂jp −

v
2

��
ð12Þ

ðABÞWðx; pÞ≡ AWðx; pÞ⋆BWðx; pÞ
¼ AWðx; pÞeΔ

↔

BWðx; pÞ ð13Þ

where

Δ
↔ ≡ i

2
ð∂⃖x∂⃗p − ∂⃖p∂⃗xÞ: ð14Þ

An example of the fermionic system is given by that of
the Dirac fermions with the action

S½ψ̄ ;ψ � ¼
Z

d4xψ̄ðxÞD̂ð∂xÞψðxÞ ð15Þ

where ψ̄ and ψ are the Dirac spinor fields. Depending on
the nature of the given problem they may be understood
either as complex-valued spinors or as operators or as the
Grassmann-valued fields. Dirac operator is defined here as

D̂ð∂xÞ ¼ iγμ∂μ −M: ð16Þ

Action may be written as

S½ψ̄ ;ψ � ¼ hψ̄ jD̂jψi ð17Þ

where we introduce shorthand notations hψ̄ j and jψi. Their
meaning is hψ̄ jxi ¼ ψ̄ðxÞ, and hxjψi ¼ ψðxÞ.

C. Relation between the Green function and Dirac
operator in Weyl-Wigner formalism

In the continuous case we have

ðiγμ∂μ
x −mÞGðx − yÞ ¼ δðx − yÞ ð18Þ

which can be rewritten in the “operator” form

hxjD̂ Ĝ jyi ¼ hxjyi: ð19Þ

Applying Weyl-Wigner transformation, we obtain

ðQ̂ ĜÞW ¼ QW⋆GW ¼ 1: ð20Þ

Equation (20) is the Gronewold equation.
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D. Wilson fermions

One of the methods to discretize the Dirac field is Wilson
fermions model (see Appendix B) for more details. Action
for Wilson fermions in Euclidean space discretized using
rectangular lattice has the form

SðWÞ
F ¼

X
n;m
α;β

ˆ̄ψαðnÞDðWÞ
αβ ðn;mÞψ̂βðnÞ ð21Þ

where

DðWÞ
αβ ðn;mÞ ¼ ðM̂ þ 4Þδnmδαβ

−
1

2

X
μ

½ð1 − γμÞαβδm;nþμ̂ þ ð1þ γμÞαβδm;n−μ̂�

ð22Þ

Here lattice sites are referred to as n, m. nþ μ̂ means the
lattice site situated one lattice spacing ahead of n in
direction μ. Indices α and β correspond to Dirac matrices
γk. Inserting Fourier transform of the field

ψðrnÞ ¼
Z
M

dDp
jMj e

irnpψðpÞ ð23Þ

(where jMj ¼ ð2πÞD is volume of momentum space) in the
action (B1) we obtain the terms like

X
rn;rm

ψ̄ðrmÞδrn�ei;rmψðrnÞ

¼
X
rn

ψ̄ðrn � eiÞψðrnÞ

¼
X
rn

Z
M

dDp
jMj e

−iðrn�eiÞpψ̄ðpÞ
Z
M

dDq
jMj e

irnqψðqÞ

¼
Z
M

dDp
jMj ψ̄ðpÞe

∓ieipψðpÞ: ð24Þ

Here ei is the unit lattice vector in the ith direction. Then,
the action in momentum space becomes

Sðψ̄ ;ψÞ ¼
Z

dDp
jMj ψ̄ðpÞQðpÞψðpÞ ð25Þ

where

QðpÞ ¼
X

k¼1;2;3;4

− iγkgkðpÞ þmðpÞ

¼ −i
� X
k¼1;2;3;4

γkgkðpÞ − imðpÞ
�

ð26Þ

with

gkðpÞ ¼ sinðpkÞ mðpÞ ¼ mð0Þ þ
X4
ν¼1

ð1 − cosðpνÞÞ:

ð27Þ

E. Wilson fermions in the presence of gauge field

In continuous coordinates space, the transition from the
Dirac operator in coordinates representation to momentum
representation in presence of a gauge field A, is obvious.

Sðψ̄ ;ψÞ ¼
Z

dDp
jMj ψ̄ðpÞQðp − Aði∂pÞÞψðpÞ: ð28Þ

In lattice theory it demands some work. In coordinates
space, in the presence of gauge field, the Dirac operator
takes the form

Dx;y ¼ −
1

2

X
i

½ð1þ γiÞδxþei;y þ ð1 − γiÞδx−ei;y�Ux;y

þ ðmð0Þ þ 4Þδx;y ð29Þ

while

Ux;y ¼ Pei
R

y

x
dξAðξÞ: ð30Þ

We restrict ourselves by the case of the Uð1Þ gauge field A
and then this parallel transporter is given by

Ux;y ¼ ei
R

y

x
dξAðξÞ ð31Þ

Using the Peierls substitution the partition function

Z ¼
Z

Dψ̄Dψ exp

�
−
X
rn;rm

ψ̄ðrmÞðDrn;rmÞψðrnÞ
�

ð32Þ

may be written in the momentum representation

Z ¼
Z

Dψ̄Dψ exp

�Z
dDp
jMj ψ̄ðpÞQðp − Aði∂pÞÞψðpÞ

�
:

ð33Þ

In fact, the same refers to the other lattice models defined
by operators Q̂ different from that of the model of Wilson
fermions.

F. Approximate generalization of Weyl-Wigner
formalism from continuous space to lattice

Definitions of phase space formalism for the continuous
case (7), (8), (9), (44) are modified for the case of discrete
coordinates xn as follows,
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½Â�Wðxn; pÞ ¼
Z
M

dqeiqxn
�
pþ q

2

����Â
����p −

q
2

�
ð34Þ

½ρ̂�Wðxn; pÞ ¼ Wðx; pÞ ¼
Z
M

dqe−iqxn
�
p −

q
2

����ρ̂
����pþ q

2

�

ð35Þ

hΨjÂjΨi ¼
X
xn

Z
M

dp
M

AWðxn; pÞρWðxn; pÞ ð36Þ

where M is the first Brillouin zone and xn are the lattice
points. We denote the trace of Weyl symbol as follows:

TrAW ¼
X
xn

Z
M

dp
M

AWðxn; pÞ: ð37Þ

In one-dimensional case we will have

½Â�Wðxn; pÞ ¼
Z π

a

−π
a

dqeiqxn
�
pþ q

2

����Â
����p −

q
2

�
: ð38Þ

Let us consider the Moyal product of the Weyl symbols of
two operators in the one-dimensional case. Weyl symbol of
the product of two operators, called the Moyal product, is
defined as follows (this time in momentum representation)

ðÂ B̂ÞWðxn; pÞ

¼
Z

π=a

−π=a
dqeiqxn

�
pþ q

2

����Â B̂

����p −
q
2

�

¼
Z

−π=a

−π=a
dq

Z
−π=a

−π=a
dkeiqxn

�
pþ q

2

����ÂjkihkjB̂
����p −

q
2

�

ð39Þ

changing variables

q ¼ uþ v k ¼ p − u=2þ v=2 ð40Þ

u ¼ 1

2
q − kþ p v ¼ 1

2
qþ k − p ð41Þ

we come to

ðÂ B̂ÞW ¼
Z

Integration
area

du dv eiux
�
pþ u

2
þ v

2

����Â
����p −

u
2
þ v

2

�

eivx
�
p −

u
2
þ v
2

����B̂
����p −

u
2
−
v
2

�
: ð42Þ

In case of the near diagonal operators, the only important
region is around the origin, hence, we can change the
integration area back to the square form

ðÂ B̂ÞW ¼
Z π

a

−π
a

du
Z π

a

−π
a

dveiuxn
�
pþ u

2
þ v
2

����Â
����p −

u
2
þ v

2

�

eivxn
�
p −

u
2
þ v

2

����B̂
����p −

u
2
−
v
2

�

¼
Z π

a

−π
a

du
Z π

a

−π
a

dv

�
eiux

�
pþ u

2

����Â
����p −

u
2

��

e
i
2
ð ⃖∂xn ∂⃗p −∂⃖p ⃗∂xn Þ

�
eivx

�
pþ v

2

����B̂
����p −

v
2

��
ð43Þ

and get the same result, for the Moyal product, as for the
continuous space

ðABÞWðxn; pÞ≡ AWðxn; pÞ⋆BWðxn; pÞ
¼ AWðxn; pÞeΔ

↔

BWðxn; pÞ ð44Þ

where

Δ
↔ ≡ i

2
ð∂⃖xn ∂⃗p − ∂⃖p∂⃗xnÞ: ð45Þ

Although this expression has been derived for the case of
one-dimensional lattice, obviously it remains valid for the
lattice models in any number of dimensions.

G. Weyl-Wigner transform-general properties

Weyl symbol of operators introduced above establishes
correspondence between operators and functions defined
on phase space. It satisfies a certain set of properties typical
for the constructions of deformational quantization. In fact,
we may use the other definitions of Weyl symbol, which
posses the same properties in order to explore various
nondissipative transport effects. Those basic properties are
(1) Star product identity

AWðx; pÞ⋆BWðx; pÞ ¼ ðÂ B̂ÞWðx; pÞ: ð46Þ

(2) First trace identity

TrAW ¼ tr Â ð47Þ

(3) Second trace identity

Tr½AWðx; pÞ⋆BWðx; pÞ� ¼ Tr½AWðx; pÞBWðx; pÞ�:
ð48Þ

(4) Weyl symbol of identity operator

ð1̂ÞWðx; pÞ ¼ 1: ð49Þ
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(5) Star product

⋆xp ≡ e
i
2
ð∂⃖x∂⃗p−∂⃖p∂⃗xÞ ð50Þ

By tr we understand the trace of the operator itself in the
original Hilbert space, while Tr is the trace operation
defined for the Weyl symbols. In particular, for the
approximate Wigner-Weyl calculus defined above it is
given by Eq. (37). Let us mention also the following useful
property

½Â B̂ Ĉ�W ¼ AW⋆BW⋆CW: ð51Þ

(See Appendix C.)
It is worth mentioning, that the precise Wigner-Weyl

calculus on the lattice has been proposed in [62]. It obeys
the above abstract properties precisely unlike the case of the
introduced above approximate Wigner-Weyl calculus. This
calculus has been designed for the models defined on
rectangular lattices, and it allows to derive useful expres-
sions for Hall conductivity to be discussed partially in the
present paper as well. (Next we will use the similar
constructions to investigate chiral separation effect.) It is
important, however, that throughout the present paper we
are limited to the case, when sums over lattice points in
expressions for the total currents may be substituted by
integrals. This is possible, when various inhomogeneities
existing in the theory, are sufficiently small at the distances
of the order of lattice spacings. Under these conditions the
precise constructions of [62] are not, in fact, necessary, and
we are able to use the approximate Wigner-Weyl calculus
for the lattice models described above.

III. ELECTRIC CURRENT IN WIGNER-WEYL
FORMALISM

A. Partition function variation

In this section we repeat briefly the considerations of
[69] that lead to the construction of topological expression
for the quantum Hall conductivity of nonhomogeneous
systems. We will use later this technique to consider the
nonhomogeneous CSE.
In Euclidian space-time the partition function of a

noninteracting fermionic system is expressed through the
inverse bare Green function. We call it further for simplicity
the Dirac operator and denote by Q̂. The partition function
is given by

Z ¼
Z

Dψ̄DψeS½ψ ;ψ̄ � ð52Þ

Here ψ , ψ̄ are the Grassmann-valued fields, while S is the
action

S½ψ ; ψ̄ � ¼
Z
M

dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

¼
Z
M

dDp
jMj ψ̄

aðpÞQ̂abði∂p; pÞψbðpÞ

¼
X
rn

Z
M

dDp
jMjQ

ab
W ðrn; pÞWbaðrn; pÞ

¼
X
rn

Z
M

dDp
jMj tr½QWðrn; pÞWðrn; pÞ� ð53Þ

where we used Weyl symbols of operators

QWðrn; pÞ ¼ Q̂W ð54Þ

Wðrn; pÞ ¼ ðjψihψ jÞW: ð55Þ

Here by jψihψ j we denote operator with Grassmann-valued
matrix elements ψðxÞψ̄ðyÞ. For simplicity of notations we
discretize both space coordinates and imaginary time. This is
usual for the lattice discretized relativistic field theory and
unusual for the lattice models of condensed matter physics.
In the latter case we are able to take off the discretization of
imaginary time at any step of calculations in order to arrive at
the conventional expression Q̂ ¼ iω − Ĥ, where Ĥ is one-
particle Hamiltonian.
Using Peierls substitution [41], in the presence of gauge

field (54) takes the form

QWðpÞ → QWðp − Aði∂pÞÞ ð56Þ

Z ¼
Z

Dψ̄Dψ exp

×

�
−
X
rn

Z
Mj

dDp
jMj tr½QWðrn; pÞWðrn; pÞ�

�
: ð57Þ

Propagator of fermions is defined as

Ĝ ¼ −
1

Z

Z
Dψ̄Dψ jψihψ̄ j exp

×

�Z
dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

�
ð58Þ

Its expression in momentum space is

Gðp1; p2Þ ¼ hp1jGjp2i

¼ 1

Z

Z
Dψ̄Dψψ̄ðp2Þψðp1Þ exp

×

�Z
dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

�
: ð59Þ

Variation of partition function may be expressed as follows
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δ logZ ¼ −
1

Z

Z
Dψ̄Dψ

�X
rn

Z
dDq
jMj δQ

ab
W ðrn; qÞWbaðrn; qÞ

�
exp

�
−
X
rn

Z
dDp
jMjQ

ab
W ðrn; pÞWbaðrn; pÞ

�

¼ −
X
rn

Z
dDq
jMj δQ

ab
W ðrn; qÞ

�
1

Z

Z
Dψ̄DψWbaðrn; qÞ exp

�
−
X
rn

Z
dDp
jMjQ

ab
W ðrn; pÞWbaðrn; pÞ

��

¼
X
rn

Z
dDq
jMj δQ

ab
W ðrn; qÞGba

W ðrn; qÞ

¼
X
rn

Z
dDq
jMj tr½δQWðrn; qÞGWðrn; qÞ�: ð60Þ

We obtain

δ logZ ¼
X
rn

Z
dDp
jMj tr½δQWðrn; pÞGWðrn; pÞ� ð61Þ

that is

δ logZ ¼ tr½ĜδQ̂� ¼ Tr½GW⋆δQW � ¼ Tr½GWδQW � ð62Þ

here we use definitions from Sec. II G. From now on we use
continuum limit for the coordinates rn → x. This is possible
if variations of fields on the distances of the order of lattice
spacings are neglected. In the presence of gauge field we
substitute p → p − A

QWðx; pÞ → QWðx; p − AÞ: ð63Þ

Variation with respect to the gauge field A → Aþ δA gives

QWðx; p − ðAþ δAÞÞ
¼ QWðx; p − AÞ þ ∂Ai

QWðx; p − AÞδAi ð64Þ

and

δQW ¼ ∂Ai
QWδAi ¼ −∂pi

QWδAi: ð65Þ

Electric current is given by

jiðxÞ ¼
δ logZ
δAkðxÞ

¼ −
Z
M

dDp
jMjTr½GWðx; pÞ∂pi

QWðx; pÞ�:

ð66Þ

B. Groenewold equation

Dirac operator and Green function obey the following
equation

Q̂ Ĝ ¼ 1: ð67Þ

Weyl-Wigner transform gives Groenewold equation

QWðp; xÞ⋆GWðp; xÞ ¼ 1: ð68Þ

As a result of the variation with respect to the gauge field
A → Aþ δA

ðQW þ δQWÞ⋆ðGW þ δGWÞ ≈QW⋆GW ð69Þ

þδQW⋆GW þQW⋆δGW ð70Þ

hence

δGW ¼ −GW⋆δQW⋆GW: ð71Þ

C. Topological invariance

Integrating (or summing on the lattice) local current
density of (66), we obtain the total integrated current

Ji ≡
Z

dxjiðxÞ

¼ −
Z

dx
Z
M

dDp
jMj tr½GWðx; pÞ∂pi

QWðx; pÞ�

¼ −Tr½GWðx; pÞ∂pi
QWðx; pÞ�

¼ −Tr½GWðx; pÞ⋆∂pi
QWðx; pÞ�: ð72Þ

It is worth mentioning that J is not the conventional current
I, which is defined as an integral of current density over the
cross section of a given sample. Relation between the two
may be understood easily for the homogeneous system of
rectangular form with length L at finite temperature 1=β.
Then J ¼ βLI. The last equality in Eq. (72) is valid if
spacial boundary conditions are periodic. For the variation
of J we obtain

δJi ¼ δTr½GW⋆∂pi
QW �

¼ Tr½δGW⋆∂pi
QW þ GW⋆∂pi

δQW � ð73Þ

Using identity

δGW⋆∂pi
QW ¼ −GW⋆δQW⋆GW⋆∂pi

QW ð74Þ
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and

GW⋆∂pi
δQW ¼ ∂pi

ðGW⋆δQWÞ − ∂pi
GW⋆δQW ð75Þ

as well as

∂pi
GW ¼ −GW⋆ð∂pi

QWÞ⋆GW ð76Þ

and periodic boundary conditions in momentum space
we get

δJi ¼ −Tr½−GW⋆δQW⋆GW⋆∂pi
QW

þ GW⋆ð∂pi
QWÞ⋆GW⋆δQW �: ð77Þ

The cyclic properties of the trace will give

δJi ¼ 0: ð78Þ

Hence, Ji is topological invariant in the presence of
periodic spacial boundary conditions. Notice, that the
above consideration fails in the presence of external electric
field, when periodic boundary conditions cannot be
imposed. Therefore, the appearance of nonvanishing
response of J to external electric field does not contradict
with the statement that J is topological invariant for the
systems with periodic boundary conditions.

D. Linear response

Let us consider the case when the external gauge field C
is present

QWðp; xÞ ¼ QWðp − CðxÞ; xÞ ð79Þ

We assume here that QW has an additional space depend-
ence to that coming from the gauge field. The gauge field

itself is divided to the background one BðxÞ and to that for
which we are looking a linear response AðxÞ.

CðxÞ ¼ AðxÞ þ BðxÞ ð80Þ

Hence, the Dirac operator may be written as

QWðp; xÞ ≈Qð0Þ
W ðp; xÞ þ δQWðp; xÞ

¼ Qð0Þ
W ðp; xÞ − ∂pk

Qð0Þ
W ðp; xÞAkðxÞ ð81Þ

where

Qð0Þ
W ðp; xÞ ¼ Qð0Þ

W ðp − BðxÞ; xÞ: ð82Þ

The propagator may also be presented as a perturbation

GWðp; xÞ ≈Gð0Þ
W ðp; xÞ þ δGWðp; xÞ ð83Þ

substituting this variation back into Groenewold equa-
tion (68), and leaving only the first order, we get

ðQð0Þ
W þ δQWÞ⋆ðGð0Þ

W þ δGWÞ
¼ Qð0Þ

W ⋆Gð0Þ
W|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼1

þQð0Þ
W ⋆δGW þ δQW⋆Gð0Þ

W ¼ 1 ð84Þ

with

δGW ¼ −Gð0Þ
W ⋆δQW⋆Gð0Þ

W

¼ Gð0Þ
W ⋆∂pk

Qð0Þ
W ðp; xÞAkðxÞ⋆Gð0Þ

W ð85Þ

using the identity (C5) we may write, up to the linear terms
in Aij ¼ ∂iAj − ∂jAi:

δGWðp; xÞ ¼
h
Gð0Þ

W ðp; xÞ⋆e−i
2
∂⃖p∂⃗y∂pk

Qð0Þ
W ðp; xÞAkðyÞei

2
∂⃖y∂⃗p⋆Gð0Þ

W ðp; xÞ
i
y¼x

≈
�
Gð0Þ

W ðp; xÞ⋆
�
1 −

i
2
∂⃖p∂⃗y

�
∂pk

Qð0Þ
W ðp; xÞAkðyÞ

�
1þ i

2
∂⃖y∂⃗p

�
⋆Gð0Þ

W ðp; xÞ
�
y¼x

≈
h
Gð0Þ

W ðp; xÞ⋆ð∂pk
Qð0Þ

W ðp; xÞÞ⋆Gð0Þ
W ðp; xÞ

i
AkðxÞ −

i
2

h
ð∂pi

Gð0Þ
W ðp; xÞÞ⋆ð∂pk

Qð0Þ
W ðp; xÞÞ⋆Gð0Þ

W ðp; xÞ
i
∂xiAkðxÞ

þ i
2

h
Gð0Þ

W ðp; xÞ⋆ð∂pk
Qð0Þ

W ðp; xÞÞ⋆ð∂pi
Gð0Þ

W ðp; xÞÞ
i
∂xiAkðxÞ

¼
h
Gð0Þ

W ⋆ð∂pk
Qð0Þ

W Þ⋆Gð0Þ
W

i
Ak þ

i
2

h
Gð0Þ

W ⋆ð∂pi
Qð0Þ

W Þ⋆Gð0Þ
W ⋆ð∂pj

Qð0Þ
W Þ⋆Gð0Þ

W

i
Aij ð86Þ

we used above the following identity

∂pi



Gð0Þ

W ⋆Qð0Þ
W

�
¼ 0 ¼



∂pi

Gð0Þ
W

�
⋆Qð0Þ

W þGð0Þ
W ⋆



∂pi

Qð0Þ
W

�
ð87Þ

as well as
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∂pi
Gð0Þ

W ¼ −Gð0Þ
W ⋆ð∂pi

Qð0Þ
W Þ⋆Gð0Þ

W : ð88Þ

Hence, we may represent δGW as follows

δGWðp;xÞ¼Gð1Þ
WðkÞAkþGð2Þ

WðijÞAij

¼
h
Gð0Þ

W ⋆ð∂pk
Qð0Þ

W Þ⋆Gð0Þ
W

i
Ak

þ i
2

h
Gð0Þ

W ⋆ð∂pi
Qð0Þ

W Þ⋆Gð0Þ
W ⋆ð∂pj

Qð0Þ
W Þ⋆Gð0Þ

W

i
Aij

ð89Þ

GWðp; xÞ ≈Gð0Þ
W þ Gð1Þ

WðkÞAk þ Gð2Þ
WðijÞAij ð90Þ

Gð1Þ
WðiÞ ¼

h
Gð0Þ

W ⋆ð∂pi
Qð0Þ

W Þ⋆Gð0Þ
W

i
¼ −∂pi

Gð0Þ
W ð91Þ

Gð2Þ
WðijÞ ¼

i
2

h
Gð0Þ

W ⋆ð∂pi
Qð0Þ

W Þ⋆Gð0Þ
W ⋆ð∂pj

Qð0Þ
W Þ⋆Gð0Þ

W

i
: ð92Þ

E. Electric current and gradient expansion

In case of sufficiently weak inhomogeneity discussed
above (61) becomes

δ logZ ¼
Z

dx
Z
M

dDp
jMj tr½δQWðx; pÞGWðx; pÞ� ð93Þ

or, generally speaking

δ logZ ¼ tr½ĜδQ̂� ¼ Tr½GW⋆δQW � ¼ Tr½GWδQW �: ð94Þ

In the presence of gauge field

δ logZ¼−
Z

dx
Z
M

dDp
jMj tr½GWðx;pÞ∂pk

QWðx;pÞ�δAkðxÞ:

ð95Þ

As it was mentioned above the definition of current

δ logZ≡
Z

dxjkðxÞδAkðxÞ ð96Þ

gives

jkðxÞ ¼
δ logZ
δAkðxÞ

¼ −
Z
M

dDp
jMj tr½GWðx; pÞ∂pk

QWðx; pÞ�:

ð97Þ

The total integrated current (defined as an integral over
space-time of the current density) is given by response to
external uniform electric field

Jk ¼
Z

dxjkðxÞ

¼ −
Z

dx
Z
M

dDp
jMj tr½GWðx; pÞ∂pk

QWðx; pÞ�: ð98Þ

Using property (48) (it is valid if periodic spacial
boundary conditions are imposed), we obtain

Jk ¼ −Tr½GWðx; pÞ∂pk
QWðx; pÞ�

¼ −Tr½GWðx; pÞ⋆∂pk
QWðx; pÞ�: ð99Þ

Here

∂pi
QW ¼ ∂pi

Qð0Þ
W − ð∂pi

∂pj
Qð0Þ

W ÞAj ð100Þ

and

GW∂pk
QW ¼



Gð0Þ

W þGð1Þ
WðlÞAl þ Gð2Þ

WðmnÞAmn

�


∂pi

Qð0Þ
W −



∂pi

∂pj
Qð0Þ

W

�
Aj

�
ð101Þ

the first two terms in (101) are


Gð0Þ

W þGð1Þ
WðlÞAl

�

∂pi

Qð0Þ
W −



∂pi

∂pj
Qð0Þ

W

�
Aj

�

¼ Gð0Þ
W ∂pi

Qð0Þ
W −Gð0Þ

W



∂pi

∂pj
Qð0Þ

W

�
Aj

þ Gð1Þ
WðlÞAl∂pi

Qð0Þ
W þOðA2Þ: ð102Þ

Since

Gð1Þ
WðjÞAj∂pi

Qð0Þ
W ¼ −ð∂pj

Gð0Þ
W ÞAj∂pi

Qð0Þ
W ð103Þ

up to the linear terms in A we have



Gð0Þ

W þGð1Þ
WðlÞAl

�

∂pi

Qð0Þ
W −



∂pi

∂pj
Qð0Þ

W

�
Aj

�

¼ Gð0Þ
W ∂pi

Qð0Þ
W −Gð0Þ

W



∂pi

∂pj
Qð0Þ

W

�
Aj

−


∂pj

Gð0Þ
W

�

∂pi

Qð0Þ
W

�
Aj

¼ Gð0Þ
W ∂pi

Qð0Þ
W − ∂pj



Gð0Þ

W ∂pi
Qð0Þ

W

�
Aj: ð104Þ

The third term in (101) gives (we keep only the linear terms
in Aij):

Gð2Þ
WðklÞAkl



∂pi

Qð0Þ
W −



∂pi

∂pj
Qð0Þ

W

�
Aj

�
≈Gð2Þ

WðklÞ∂pi
Qð0Þ

W Akl

¼ i
2

h
Gð0Þ

W ⋆


∂pk

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pl

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pi

Qð0Þ
W Akl:

ð105Þ
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Writing current of Eq. (97) in terms of Ak and Amn, we get

jiðxÞ ¼ −
Z
M

dDp
jMjTr

�
Gð0Þ

W ∂pi
Qð0Þ

W − ∂pk



Gð0Þ

W ∂pi
Qð0Þ

W

�
Ak

þ i
2

h
Gð0Þ

W ⋆


∂pm

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pn

Qð0Þ
W

�
⋆Gð0Þ

W

i

× ∂pi
Qð0Þ

W Amn

�
: ð106Þ

We may define

jiðxÞ ¼ jð0Þi ðxÞ þ jð1ÞiðkÞðxÞAkðxÞ þ jð2ÞiðmnÞðxÞAmnðxÞ ð107Þ

where

jð0Þi ðxÞ ¼ −
Z
M

dDp
jMj tr

h
Gð0Þ

W ∂pi
Qð0Þ

W

i
ð108Þ

and

jð1ÞiðkÞðxÞ ¼
Z
M

dDp
jMj tr

h
∂pk

ðGð0Þ
W ∂pi

Qð0Þ
W Þ

i
ð109Þ

in case of periodic boundary conditions in momentum

space jð1ÞiðkÞðxÞ ¼ 0 since it is a total derivative while

jð2ÞiðmnÞðxÞ ¼ −
Z
M

dDp
jMj tr

�
i
2

h
Gð0Þ

W ⋆


∂pm

Qð0Þ
W

�

⋆Gð0Þ
W ⋆



∂pn

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pi

Qð0Þ
W

�
: ð110Þ

The jð2ÞiðmnÞðxÞ is the local electric conductivity tensor since it
is a coefficient in front of electromagnetic tensor. The
average electric conductivity (we assume Aij ¼ const) is to
be obtained from

J̄ð2Þi ¼ Jð2Þi =Vð4Þ ≡ 1

Vð4Þ Amn

Z
dDxjð2ÞiðmnÞðxÞ ¼

1

βV
Amn

Z
dxjð2ÞiðmnÞðxÞ

¼ −
iAmn

2βV

Z
dDx

Z
M

dDp
jMj tr

h

Gð0Þ

W ⋆


∂pm

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pn

Qð0Þ
W

�
⋆Gð0Þ

W

�
∂pi

Qð0Þ
W

i

¼ −
iAmn

2βV
Tr
h


Gð0Þ
W ⋆



∂pm

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pn

Qð0Þ
W

�
⋆Gð0Þ

W

�
∂pi

Qð0Þ
W

i
¼ WmniAmn ð111Þ

where Vð4Þ is the overall volume of Euclidean space-time
while V is the three-dimensional volume. We defined

Wmni ≡ −
i

2βV
Tr
h


Gð0Þ
W ⋆



∂pm

Qð0Þ
W

�

⋆Gð0Þ
W ⋆



∂pn

Qð0Þ
W

�
⋆Gð0Þ

W

�
∂pi

Qð0Þ
W

i
: ð112Þ

Thus the term in electric current giving response to external
field strength is

J̄i ¼ WmniFmn: ð113Þ

F. Hall conductance

Using expressions of Appendix A we obtain in the
presence of external electric field

Ji ¼ σijEj: ð114Þ

Using (113) and (A17) we get

Ji ¼ W4jiFE
4j ¼

W4ji

i
Ej: ð115Þ

We can define an averaged Hall conductivity

σmn ≡W4½ji�
i

¼ 1

i
ðW4mn −W4nmÞ ð116Þ

For the 3þ 1D systems it may be rewritten as follows [69]:

σkj ¼
1

2π2
ϵkjl4N l;

N l ¼ −
Tϵijkl
V3!8π2

Z
d4xd4pTr

�
GWðp; xÞ⋆ ∂QWðp; xÞ

∂pi

⋆ ∂GWðp; xÞ
∂pj

⋆ ∂QWðp; xÞ
∂pk

�
: ð117Þ

IV. CHIRAL SEPARATION EFFECT

A. Axial current

Nowwe are equipped by all necessary tools to study chiral
separation effect in nonhomogeneous systems. This is an
appearance of axial current in the fermionic systems with
finite chemical potential and external magnetic field. The
latter is supposed to be uniform, but the nonhomogeneity of
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an arbitrary nature is present in the system even when
the external magnetic field is off. It is assumed that the
lattice model is similar somehow to the model of Wilson
fermions—its “Dirac operator” Q̂ is a 4 × 4 matrix
expressed through the gamma matrices. However, the form
of Q̂ not necessarily repeats that of the Wilson Dirac
operator. Moreover, the considered operators Q̂ are in
general not diagonal with respect to momentum. The local
axial current density may be defined as

j5kðxÞ ¼ −
Z
M

dDp
jMj tr½γ

5GWðx; pÞ∂pk
QWðx; pÞ�: ð118Þ

Repeating all steps of the previous section we come to the
following term containing the linear response to external
field strength:

j5kðxÞ ¼ −
i
2

Z
M

dDp
jMj tr

h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�

⋆Gð0Þ
W ⋆



∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
Fij: ð119Þ

Integrating (or summing on the lattice) the local current
given in (118), we get

J5i ≡
Z

dDxj5i ðxÞ

¼ −
Z

dDx
Z
M

dDp
vjMj tr½γ

5GWðx; pÞ∂pi
QWðx; pÞ�

¼ −Tr½γ5GWðx; pÞ∂pi
QWðx; pÞ�

¼ −Tr½γ5GWðx; pÞ⋆∂pi
QWðx; pÞ�: ð120Þ

Here v is volume of the lattice cell. We have a useful formula
vjMj ¼ ð2πÞD. Dividing by the total 4-volume we obtain
the average axial current

J̄5k ¼
J5k
βV

¼ −
i
2

1

βV

Z
dDx

Z
M

dDp
ð2πÞD tr

h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�

⋆Gð0Þ
W ⋆



∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
Fij: ð121Þ

B. (The absence of) topological invariance
for the total axial current

Integrating over all space-time (or summing over the
lattice) the local current density of (118), we get the total
integrated axial current

J5i ≡
Z

dDxj5i ðxÞ

¼ −
Z

dDx
Z
M

dDp
ð2πÞD tr½γ5GWðx; pÞ∂pi

QWðx; pÞ�

¼ −Tr½γ5GWðx; pÞ∂pi
QWðx; pÞ�

¼ −Tr½γ5GWðx; pÞ⋆∂pi
QWðx; pÞ�: ð122Þ

As for the case of electric current, the total integrated
axial current differs from the conventional total current I5

through the cross section of the sample. For example,
for the case of a uniform rectangular sample in the case
when nothing depends on time we have J5 ¼ βLI5, where
β ¼ 1=T is inverse temperature (assumed to be large)
while L is the length of the sample. Variation of J5 is
given by

δJ5i ¼ −δTr½γ5GW⋆∂pi
QW �

¼ −Tr½γ5δGW⋆∂pi
QW þ γ5GW⋆∂pi

δQW �: ð123Þ

Using identities

γ5δGW⋆∂pi
QW ¼ −γ5GW⋆δQW⋆GW⋆∂pi

QW ð124Þ

and

γ5GW⋆∂pi
δQW ¼ γ5∂pi

ðGW⋆δQWÞ − γ5∂pi
GW⋆δQW

ð125Þ

as well as

∂pi
GW ¼ −GW⋆ð∂pi

QWÞ⋆GW ð126Þ

we obtain (for the case of periodic boundary conditions)
that under the trace we may substitute

γ5GW⋆∂pi
δQW ¼ γ5GW⋆ð∂pi

QWÞ⋆GW⋆δQW: ð127Þ

As a result we come to

δJi ¼ −Tr½−γ5GW⋆δQW⋆GW⋆∂pi
QW

þ γ5GW⋆ð∂pi
QWÞ⋆GW⋆δQW �: ð128Þ

If γ5 commutes (or anticommutes) with G and Q then

Tr½γ5GW⋆δQW⋆GW⋆∂pi
QW �

¼ Tr½∂pi
QW⋆γ5GW⋆δQW⋆GW �

¼ Tr½GW⋆∂pi
QW⋆γ5GW⋆δQW �

¼ Tr½γ5GW⋆∂pi
QW⋆GW⋆δQW �: ð129Þ
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The latter condition means that the model possesses
precise chiral symmetry. Under this (very restrictive)
condition we obtain

δJ5i ¼ 0: ð130Þ

In the above considerations we also implied that there are
no singularities of the Green function. The latter con-
dition means that the fermions are gapped, and the Fermi
energy is within the gap. We conclude that for the systems
with gapped fermions in the presence of precise chiral
symmetry the total integrated axial current J5i would be a
topological invariant. In practise, however, the corre-
sponding requirements are too restrictive. For example,
for lattice Dirac fermions the presence of a gap (mass)
excludes chiral symmetry. Therefore, in practise the total
axial current cannot be topological invariant unlike the
total electric current. (Recall that for the latter we need
periodic boundary conditions, which exclude, in particu-
lar the presence of external electric field.) Below we will
see, that the topological invariance ever appears in the
consideration of axial currents of realistic systems in the
form of robustness of the response of axial current to
external magnetic field and chemical potential.

C. Axial current for gapless fermions
at finite temperature

We are going to regularize the theory by finite (but small)
temperature in order to deal with gapless fermions.

Matsubara frequencies are p4 ¼ ωn ¼ 2πðnþ1
2
Þ

β . Here inverse

temperature β ¼ 1=T is taken in lattice units: Nt ≡ 1
T, and

the values of p4 are p4 ¼ 2πðn4þ1
2
Þ

Nt
, n4 ¼ − Nt

2
;…; Nt

2
− 1.

The boundary values are ωn¼−Nt
2
¼ 2πð−Nt

2
þ1

2
Þ

Nt
¼ −π þ π

Nt
and

ωn¼Nt
2
−1 ¼ 2πðNt

2
−1
2
Þ

Nt
¼ π − π

Nt
. The Matsubara frequencies

most close to zero are ωn¼0 ¼ π
Nt

and ωn¼−1 ¼ − π
Nt
. One

can see that ωn never equals to zero. Therefore, even for the
system of massless/gapless fermions the propagator never
has poles in momentum space. As a result the expression
for the axial current is well defined

J̄5k ¼ −
i
2

1

βV

XNt
2
−1

n¼−Nt
2

Z
d3x

×
Z
M3

d3p
ð2πÞ3 tr

h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�
⋆Gð0Þ

W

⋆


∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
Fij ð131Þ

Introducing the chemical potential ωn → ωn − iμ we
obtain

J̄5k ¼ −
1

2Vβ

XNt
2
−1

n¼−Nt
2

Z
d3x

Z
M3

d3p
ð2πÞ3

∂ωn
tr
h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�
⋆Gð0Þ

W

⋆


∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
Fijμ: ð132Þ

Here jM3j is volume of the three-dimensional Brillouin
zone. We represent the above expression as

J̄5kðxÞ ¼ σijkFijμ ð133Þ

where

σijk ¼ −
1

2Vβ

XNt
2
−1

n¼−Nt
2

Z
d3x

Z
M3

d3p
ð2πÞ3

∂ωn
Tr
h
γ5
h
Gð0Þ

W ⋆


∂p½iQ

ð0Þ
W

�
⋆Gð0Þ

W

⋆


∂pj�Q

ð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
ð134Þ

has the meaning of the CSE conductivity when external
field strength corresponds to a constant magnetic field H:
Fij ¼ −ϵijkHk. Then

J̄5kðxÞ ¼ −σijkϵijk0Hk0μ:

Here we assume antisymmetrization with respect to indices
i and j. We will see below that for the wide range of
systems ϵijkσijk0 ¼ δkk

0
σCSE with a scalar CSE conductivity.

We represent expression for the CSE conductivity as

σijk ¼
XNt
2
−1

n¼−Nt
2

∂ωn
σð3Þijk ð135Þ

where

σð3Þijk ¼ −
1

2V

Z
d3x

Z
M3

d3p
ð2πÞ3

tr
h
γ5
h
Gð0Þ

W ⋆


∂p½iQ

ð0Þ
W

�
⋆Gð0Þ

W

⋆


∂pj�Q

ð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
: ð136Þ

D. The limit of small temperature
and CSE conductivity

The limit of small temperature T → 0, Nt → ∞, π
Nt

¼
ϵ → 0 allows to replace the sum by an integral. However,
the point ω ¼ 0 is excluded from this integral due to the
above mentioned properties of finite temperature theory:

CHIRAL SEPARATION EFFECT IN NONHOMOGENEOUS … PHYS. REV. D 102, 076019 (2020)

076019-13



XNt
2
−1

n¼−Nt
2

→
β

2π

Z
0−ϵ

−πþϵ
dωþ β

2π

Z
π−ϵ

0þϵ
dω: ð137Þ

Then (134) becomes

σijk ¼ lim
ϵ→0

Z
0−ϵ

−πþϵ
dω∂ωσ

ð3Þ
ijk þ

Z
π−ϵ

0þϵ
dω∂ωσ

ð3Þ
ijk

¼ lim
ϵ→0

½σð3Þijkð−π þ ϵÞ − σð3Þijkð0 − ϵÞ

þ σð3Þijkð0þ ϵÞ − σð3Þijkðπ − ϵÞ� ð138Þ

using periodicity

σð3Þijkð−πÞ ¼ σð3ÞijkðπÞ ð139Þ

we obtain

σijk ¼ lim
ϵ→0

�
σð3Þijkð0þ ϵÞ þ



−σð3Þijkð0 − ϵÞ

��
ð140Þ

where

σð3Þijkðω ¼ 0� ϵÞ ¼ −
1

2V

Z
d3x

Z
M3

d3p
ð2πÞ4 tr

h
γ5
h
Gð0Þ

W ⋆


∂p½iQ

ð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pj�Q

ð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i���
ω¼0�ϵ

¼ −
1

2V

Z
M3

d3p
ð2πÞ4

Z
d3xtr

h
γ5
h
Gð0Þ

W ⋆


∂p½iQ

ð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pj�Q

ð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i���
ω¼0�ϵ

ð141Þ

In the static case both the Green function G and its
inverse Q do not depend on time. Therefore all possible
singularities of the above expressions are situated at ω ¼ 0.
Our integrals avoid these singularities due to the small but
finite values of ϵ. In the absence of inhomogeneity (when
the stars may be omitted in the above expressions) at ω ¼ 0
the singularities of expressions standing in the integrals
mark positions of Fermi surfaces. The presence of inho-
mogeneity changes positions of those singularities.
However, weak inhomogeneity cannot force those singu-
larities to approach boundary of the Brillouin zone. On the
language of effective low energy continuum theory of our
lattice model we say that the inhomogeneity cannot force
singularities of the Green functions and their products to
approach infinity.

E. CSE conductivity as a topological invariant

In Eq. (140) the integrals entering σ cancel each other
except those in the small vicinities of the mentioned above
singularities. That’s why we may restrict integrations in

Eq. (141) by the small regions of the Brillouin zone above/
below the singularities. Here, in this region we assume the
presence of precise chiral symmetry, which means that the
effective low energy theory of our lattice model is chiral
invariant (if the chiral anomaly is ignored). Recall, that the
chiral symmetry cannot be maintained in the whole
Brillouin zone of the majority of physical models. This
is why the chiral anomaly appears. In the expression of
Eq. (141), however, we restrict integrations to the region,
where γ5 commutes/anticommutes with Q and G. We will
see below that as a result the sum of the integrals in
Eq. (140) represents a topological invariant, which does not
depend on the form of the surface in 4D momentum space
surrounding the singularities. We may deform this surface
arbitrarily in such a way that it remains surrounding
the singularities. This way instead of the two pieces of
the infinitely close planes (situated above and below the
singularities) we may integrate over the sphere in momen-
tum space (this is illustrated by the figure).
Thus we rewrite

σijk ¼ −
1

2V

Z
Σ3

d3p
ð2πÞ4

Z
d3xtr

h
γ5
h
Gð0Þ

W ⋆


∂p½iQ

ð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pj�Q

ð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
: ð142Þ

FIG. 1. Deformation of the surface surrounding singularities of
Eq. (144).
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Here the integral is over Σ3, which is the 3D hypersurface in
4D momentum space. It consists of the two infinitely close
pieces of the planes situated above and below the singu-
larities of expression standing in the integral. Since γ5

commutes/anticommutes with G and Q in this region, we
may rewrite this expression as

σijk ¼ ϵijkσCSE=2

where

σCSE ¼ N
2π2

ð143Þ

and

N ¼ −
ϵijk

48π2V

Z
Σ3

d3p
Z

d3xtr
h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i

¼ −
1

48π2V

Z
Σ3

Z
d3xtr

h
γ5Gð0Þ

W ⋆dQð0Þ
W ⋆Gð0Þ

W ∧ ⋆dQð0Þ
W ⋆Gð0Þ

W ⋆ ∧ dQð0Þ
W

i
: ð144Þ

This expression is topological invariant provided that γ5

commutes or anticommutes with QW and GW in the
vicinity of Σ3. This may be proved easily using methods
of Sec. IV B. Therefore, we may deform the surface Σ3 in
such a way that the deformed Σ3 does not cross the
singularities of expression standing inside the integral.
As it has been mentioned above, we may deform the
surface, for example, in such a way that it will have the
form of a sphere (this is illustrated by Fig. 1).

F. The limit of a homogeneous system
and calculation

of CSE conductivity

When space inhomogeneities are sufficiently weak we
are able to omit the star product in the above expression for
the CSE conductivity (see Appendix D). This simplifies
considerably calculation of σCSE. Our expression is then
reduced to that of [41]:

N ¼ −
1

48π2V

Z
Σ3

Z
d3xtr

h
γ5Gð0Þ

W dQð0Þ
W

Gð0Þ
W ∧ dQð0Þ

W Gð0Þ
W ∧ dQð0Þ

W

i
: ð145Þ

Let us discuss for the definiteness example of the system
with Wilson fermions in the presence of weakly varying
external electric potential (see Appendix B). We assume
that this model is used for the description of the continuous
field theory with one massless fermion. This means that
parameter mð0Þ is set to zero. In the absence of electric
potential the model has one Fermi point at p ¼ 0.
Calculation of Eq. (145) in this case has been given in
Appendix E. It givesN ¼ 1. In the system ofN fermions of
this type we obtain N ¼ N. The presence of electric
potential, which is much smaller than the inverse lattice
spacing, does not break chiral invariance of effective low

energy theory. At the same time, it turns Fermi point into a
Fermi surface. Nevertheless, as far as the introduced
electric potential is weak enough, the value of N remains
equal to that of the trivial homogeneous model. It is still
given by Eq. (145), in which Σ3 embraces the Fermi
surface.
Suppose that we modify functions gi and m entering

Eq. (B4) in such a way that they become depending on a
new parameter of the dimension of length lg. Suppose that
plg is of the order of unity around the singularities of
expression under the integral of Eq. (144). In this case we
already cannot omit star products in Eq. (144). However the
CSE conductivity still remains unchanged if modification
of functions gi andm is continuous. It is given by Eq. (144),
in which Σ3 embraces all singularities of an expression of
the corresponding integral. These singularities already do
not repeat the positions of Fermi surfaces but are supposed
not to approach infinity (or the inverse lattice spacing).
We come to an interesting conclusion, that the CSE

conductivity remains unchanged if we modify the fer-
mionic system under consideration. There are only two
requirements to this modification: (1) it is smooth; (2) it
does not break chiral invariance of an effective low energy
theory. This observation gives us the simple receipt how
to calculate in practise the CSE conductivity for the
given system. We should find the simple homogeneous
system like that of the Wilson fermions (or that of overlap
fermions [41]), which is connected to the given one by a
continuous deformation. The Fermi surface is allowed to
change its form during such a deformation. We should also
require that the chiral symmetry is not broken in effective
low energy theory neither in the original inhomogeneous
system nor during the deformation to the mentioned simple
homogeneous system. Finally, value of the CSE conduc-
tivity in the original complicated system is equal to its value
in the simple one.
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V. CONCLUSIONS AND DISCUSSIONS

In the present paper we discuss the chiral separation
effect in essentially nonhomogeneous systems of chiral
fermions. This is an appearance of nondissipative axial
current along the direction of external magnetic field. Our
main result is expression for the CSE conductivity, i.e., for
the response of axial current to external magnetic field and
to chemical potential (both are assumed to be independent
of time and space coordinates):

σCSE ¼ N
2π2

ð146Þ

with

N ¼ −
1

48π2V

Z
Σ3

Z
d3xtr½γ5GW⋆dQW⋆GW

∧ ⋆dQW⋆GW⋆ ∧ dQW � ð147Þ

Here GW is the Wigner transformed two point Green
function, while QW is Weyl symbol of lattice Dirac
operator. Both are taken in the absence of external magnetic
field. Both are matrices 4 × 4, which may model systems of
Dirac fermions in the lattice regularized QFT or in the
condensed matter systems with emergent Dirac/Weyl
fermions. We assume that the inhomogeneities of the
system under consideration are negligible at the distance
of the order of lattice spacing. In this expression the integral
is taken along the closed surface Σ3 that surrounds
positions ΞðxÞ of all singularities of expression standing
inside the integral. In the case of weak inhomogeneities
(when the Moyal (star) products may be replaced by the
ordinary ones) ΞðxÞ at each x coincides with the position of
the coordinate dependent Fermi surface. In a more general
case the position of ΞðxÞ cannot be predicted easily, and it
does not, in general case, coincide with the position Ξ0ðxÞ
of the singularities of GW . One may consider surface in
phase space Ξ (or surface Ξ0) as an extension of the notion
of Fermi surface to the case of nonhomogeneous system. In
turn, Eq. (147) is an extension of the topological invariant
N3 responsible for the topological stability of the Fermi
points/Fermi surfaces in relativistic quantum field theory
[68] to the case of nonhomogeneous systems. In both cases
chiral symmetry remains essential for the topological
stability of these objects.
We accept assumption that along ΞðxÞ at each xmatrix γ5

commutes or anticommutes with QW . This reflects the
requirement that the considered fermions are chiral in the
low energy limit—close to the zeros of QW or poles of GW .
Under this condition expression of Eq. (147) is a topo-
logical invariant. It is robust to the smooth deformation
of the system as long as Σ3 does not cross ΞðxÞ for any x.
This property of N allows us to make a strong statement
about the CSE conductivity of nonhomogeneous system.

It remains nonsensitive to the particular form of lattice
Dirac operator Q̂. To be explicit, we may start consideration
from the system with lattice Wilson fermions in the
presence of weak external electric potential. In such a
system the value ofN can be easily calculated and is equal
to the number of the species of Wilson fermions (see
Appendix E). In fact, the same value of N (equal to the
number of effective continuum Dirac fermions) can also be
obtained for the other lattice regularizations (say, for
overlap fermions) in the presence of slowly varying
external fields. The details of calculations then repeat those
of [41]. Next, we consider deformation of the system. It
may result, for example, from elastic deformations in case
of solid state systems or, say, from external gravitational
field or from rotation in case of lattice regularized relativ-
istic QFT. There may be the other reasons, which lead to
modification of lattice Dirac operator Q̂. We assume that
under such deformations the chiral fermions remain chiral.
This means that matrix γ5 remains commuting/anticom-
muting with QW at low energies (i.e., in the vicinity of
ΞðxÞ). Surface Σ3 should remain embracing ΞðxÞ for all
values of x. Besides, it remains in the region of the Brillouin
zone, where γ5 remains commuting/anticommuting with
QW . The positions of Σ3, Ξ and Ξ0 are assumed to remain in
the small region of Brillouin zone. The size of this region is
to be much smaller than the size of the Brillouin zone itself.
In the effective low energy theory this region becomes the
vicinity of zero momentum. On the language of effective
low energy theory we require that the positions of singu-
larities of the Green function do not approach infinity. This
requirement is especially natural for the lattice regularized
nonhomogenous relativistic quantum field theory of chiral
fermions. Recall that an ordinary Fermi surface of a
homogeneous system cannot approach infinity. It is natural
to suppose that Ξ being an extension of the notion of Fermi
surface to the case of nonhomogeneous systems, also
cannot approach infinity.
Thus we come to an interesting conclusion. For any

system of chiral fermions the axial current in the presence
of constant external magnetic field is proportional to
magnetic field. The coefficient of proportionality is equal
to constþ σHμ, where μ is chemical potential. Coefficient
σH is universal. Irrespective of the particular form of the
system it is equal to N

2π2
, whereN is the number of species of

chiral Dirac fermions. The positions and forms of Fermi
surfaces (and their extensions to the nonhomogeneous
systems) is irrelevant as long as the chiral symmetry is
maintained in their small vicinities. Recall that we cannot
provide the precise chiral symmetry in the whole Brillouin
zone because of the Nielsen-Ninomiya theorem except for
the marginal case when σH ¼ 0. It is worth mentioning that
the number of chiral Dirac fermions is not always equal
to the number of components of the fermion field divided
by 4. For example, let us consider the model with Wilson
fermions of Appendix B. In this model at mð0Þ ¼ 0 there is
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precisely one chiral Dirac fermion, N ¼ 4=4 ¼ 1. At the
same time for mð0Þ ¼ −2 we will have 4 chiral Dirac
fermions, and N ¼ 4. This is not possible to deform the
model with mð0Þ ¼ −2 to the model with mð0Þ ¼ 0
smoothly keeping chiral symmetry in small vicinity of
the Fermi surface. We conclude, that the systems with
mð0Þ ¼ 0 and mð0Þ ¼ −2 belong to different homotopic
classes of the models describing chiral fermions. Of course,
N , being the topological invariant in the class of chiral
theories, has different values for mð0Þ ¼ 0;−2.
It is worth mentioning that in the above consideration we

ignored completely effect of interactions between the
fermions. We expect, however, that the topological expres-
sion of Eq. (147) remains valid in the presence of
interactions if we replace the noninteracting two-point
Green function Ĝ by the complete interacting Green
function. (The same refers to its inverse Q̂.) This expect-
ation is based on the recent consideration of the similar
question for the quantum Hall effect of systems with
interactions (see [66]). Notice, that radiative corrections
to the CSE in QED calculated in [47] contain singularities
in the limit of vanishing electron or photon mass. This
reflects the well-known problem of infrared/collinear sin-
gularities in the systems with massless fermions interacting
via an exchange by gauge bosons. For this reason in high
energy physics the interacting fermions are typically
considered with finite mass. In the case of Weyl and
Dirac semimetals, however, the emergent Dirac fermions
are true massless. Instead of the exchange by photons we
are to consider Coulomb interactions. We do expect that the
topological nature of CSE conductivity for chiral fermions
survives in the presence of these interactions. Infrared
divergencies are to be treated in this case carefully.
However, the explicit consideration of this question
remains out of the scope of the present paper.
We expect wide applications of results obtained here

both in condensed matter theory and in relativistic high
energy physics. In the latter case the chiral separation effect
of chiral fermions is specific for the quark gluon plasma.
The quark gluon plasma appears, in particular, during the
heavy ion collisions. The fireballs existing just after a
collision are in the presence of strong external magnetic
field. Axial current of the CSE results after the decay of the
fireball in an asymmetry of the outgoing particles. This
asymmetry has been observed in experiment giving an
evidence of the CSE. At the same time, all previous
theoretical descriptions of this phenomenon dealt with
the simplified homogeneous systems. This description is,
of course, far from reality. In practice the system of chiral
quarks inside the fireball is highly inhomogeneous. From
the very beginning it was not clear which kind of CSE
effect we may observe in this case. Our present answer is
very simple—the complicated structure of the system does
not affect at all the value of CSE conductivity σH. It
remains equal to its value from the homogeneous model.

In order to prove this statement, we need to assume, though,
that the external magnetic field is homogeneous. This
requirement is not realistic as well. But overall, the pattern
of the CSE that follows from the above study is much more
close to reality than the one that follows from the consid-
eration of naive homogeneous systems.
In condensed matter physics the analogue of the chiral

separation effect emerges, first of all, in an effective
description of fermionic superfluid 3He − A. In this system
the chiral fermions appear in vicinities of the Fermi points.
The superfluid component of liquid may exist in the
nonhomogeneous state (say, forming various vortices) thus
giving rise to the nonhomogeneous effective theory of
fermionic quasiparticles. We expect that indirectly the
results obtained above may be extended to this effective
theory. The direct extension is not possible here because
atoms of 3He are neutral, and therefore, only the emergent
Uð1Þ gauge field appears in this case. This emergent gauge
field is axial rather than vector. And this fact complicates
an analogy.
The direct observation of chiral separation effect may be

performed for the Dirac and Weyl semimetals, where
emergent relativistic chiral Dirac fermions appear in the
vicinity of the Fermi points. Here we may apply constant
external magnetic field and consider the axial current of the
CSE that appears due to the finite chemical potential.
Again, the realistic systems are not homogeneous because
of the presence of impurities, because of dislocations and
disclinations of the crystals, and because of elastic defor-
mations. This is an ideal setup for the observation of the
CSE of inhomogeneous systems, where, as we expect, our
findings may become an important ingredient of its
description. It is worth mentioning that there is a certain
technical difficulty related to the experimental detection of
the axial current in Dirac/Weyl semimetals. It is not as
simple as the detection of electric current or even spin
current. However, we hope that the future development of
experimental technique will resolve this difficulty.
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APPENDIX A: TENSOR CONVENTIONS IN
MINKOWSKI AND EUCLIDEAN SPACES

In 4D Minkowski space with metric ημν ¼ ðþ − −−Þ,
where μ, ν ¼ 0, 1, 2, 3, we have

xμM ¼ ðt; x⃗Þ x0M ¼ t xiM ¼ ðx⃗Þi
xMμ ¼ ðt;−x⃗Þ xM0 ¼ t xMi ¼ −ðx⃗Þi ðA1Þ

and
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pμ
M ¼ ðE; p⃗Þ p0

M ¼ E pi
M ¼ ðp⃗Þi

pM
μ ¼ ðE;−p⃗Þ pM

0 ¼ E pM
i ¼ −ðp⃗Þi ðA2Þ

Therefore,

∂M
i ¼ ∂

∂xiM ¼ ð∂t; ∇⃗Þ

∂i
M ¼ ∂

∂xMi ¼ ð∂t;−∇⃗Þ: ðA3Þ

Conventional quantum mechanical operators are

p̂0
M ¼ p̂M

0 ¼ i∂t ¼ i∂M
0 ¼ i∂0

M

p̂i
M ¼ −i∇i ¼ i∂i

M

p̂M
i ¼ i∇i ¼ i∂M

i ðA4Þ

and

p̂μ
M ¼ i∂μ

M p̂M
μ ¼ i∂M

μ : ðA5Þ

In 4D Euclidean space metric is ημν ¼ ðþ þþþÞ, where μ,
ν ¼ 1, 2, 3, 4. Therefore,

xμE ¼ xEμ ¼ ðx⃗; ix0Þ xEi ¼ xiM ¼ ðx⃗Þi xE4 ¼ ixM0 ¼ it

ðA6Þ

and

∂E
μ ¼ ∂

∂xEμ : ðA7Þ

Correspondingly,

∂E
i ¼ ∂

∂xiM ¼ ∂M
i ¼ ∇⃗i

∂E
4 ¼ ∂

∂x4 ¼
∂

∂ix0 ¼ −i∂M
0 ¼ −i∂t: ðA8Þ

We may choose definitions of conventional quantum
mechanical operators as follows p̂E

μ ¼ i∂E
μ

p̂E
i ¼ i∂E

i ¼ p̂M
i ¼ −p̂i

M ¼ −ð ˆp⃗Þi
p̂E
4 ¼ i∂E

4 ¼ ið−i∂0Þ ¼ −ip̂0 ðA9Þ

and

xEμpE
μ ¼ xEi p

E
i þ xE4p

E
4 ¼ −x⃗ · p⃗þ x0p0 ¼ xMμ p

μ
M: ðA10Þ

Alternatively, we may define p̂E
μ ¼ −i∂E

μ

p̂E
i ¼ −i∂E

i ¼ −p̂M
i ¼ p̂i

M ¼ ð ˆp⃗Þi
p̂E
4 ¼ −i∂E

4 ¼ −ið−i∂0Þ ¼ ip̂0 ðA11Þ

and

xEμpE
μ ¼ xEi p

E
i þ xE4p

E
4 ¼ x⃗ · p⃗ − x0p0 ¼ −xMμ p

μ
M: ðA12Þ

Therefore,

Fi0 ¼ ∂iA0 − ∂0Ai ¼ −∂iA0 − ∂0Ai

¼ −ð∇ϕÞi − ∂tðA⃗Þi ¼ Ei ðA13Þ

and

F0i ¼ ∂0Ai − ∂iA0 ¼ ∂tð−A⃗Þi − ð∇ϕÞi ¼ Ei: ðA14Þ

In Euclidean space with x4 ¼ ix0, ∂4 ¼ −i∂0 we choose
p̂E
μ ¼ i∂E

μ . Hence

pE
i ¼ −ðp⃗Þi p4 ¼ −ip0

AE
i ¼ −ðA⃗Þi A4 ¼ −iA0 ðA15Þ

and

Ei ¼ FM
0i ¼ ∂M

0 A
M
i − ∂M

i A
M
0

¼ ∂M
0 ðAE

i Þ − ∂M
i ðiAE

4 Þ
¼ i∂E

4 ðAE
i Þ − ∂E

i ðiAE
4 Þ

¼ ið∂4AE
i − ∂iAE

4 Þ ¼ iFE
4i: ðA16Þ

Thus we come to the following relation between Euclidean
field strength and real electric field of Minkowski space

FE
4i ¼ −iEi: ðA17Þ

APPENDIX B: WILSON FERMIONS

Action for the Wilson fermions (defined on rectangular
lattice) is

SðWÞ
F ¼

X
n;m
α;β

ˆ̄ψαðnÞKðWÞ
αβ ðn;mÞψ̂ βðnÞ ðB1Þ

where

KðWÞ
αβ ðn;mÞ ¼ ðM̂ þ 4Þδnmδαβ −

1

2

X
μ

½ð1 − γμÞαβδm;nþμ̂

þ ð1þ γμÞαβδm;n−μ̂�: ðB2Þ

Here indices m, n enumerate lattice points while α, β are
spinor indices. By nþ μ̂ we denote shift of the lattice point
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by one link in the μth direction. Let us calculate the Fourier
transform

KαβðnmÞ ¼
Z

π

−π

d4p
ð2πÞ4 K̃αβðpÞeipðn−mÞ: ðB3Þ

Lattice Dirac operator of Wilson fermions is then defined as

QαβðpÞ≡ K̃αβðpÞ

¼
�X

k¼1;2;3;4
iγkgkðpÞ þmðpÞ

�
αβ

¼ i

�X
k¼1;2;3;4

γkgkðpÞ − imðpÞ
�
αβ

ðB4Þ

where

gkðpÞ ¼ sinðpkÞ mðpÞ ¼ mð0Þ þ
X4
ν¼1

ð1 − cosðpνÞÞ:

ðB5Þ

The two-point function

Gαβðn;mÞ≡ K−1
αβ ðn;mÞ ¼ −hψ̂αðnÞ ˆ̄ψβðmÞi: ðB6Þ

The inverse matrix is defined by

X
λ;l

K−1
αλ ðn; lÞKλβðl; mÞ ¼ δαβδnm: ðB7Þ

Then in four-dimensional space

K−1
αβ ðn;mÞ ¼

Z
π

−π

d4p
ð2πÞ4GαβðpÞeipðn−mÞ: ðB8Þ

Inserting (B8) and (B3) into (B7), we get

X
λ;l

Z
π

−π

d4p
ð2πÞ4GαλðpÞeipðn−lÞ

Z
π

−π

d4k
ð2πÞ4 K̂λβðkÞeikðl−mÞ

¼ δαβδnm ðB9Þ

and

Z
π

−π

d4p
ð2πÞ4

X
λ

GαλðpÞK̂λβðpÞeipðn−mÞ

¼ δαβ

Z
π

−π

d4p
ð2πÞ4 e

ipðn−mÞ: ðB10Þ

Then

X
λ

GαλðpÞK̂λβðpÞ ¼ δαβ ðB11Þ

gives

� X
k¼1;2;3;4

iγkgkðpÞ þmðpÞ
�

αλ� X
q¼1;2;3;4

− iγqgqðpÞ þmðpÞ
�

λβ

¼ δαβ

� X
k¼1;2;3;4

g2kðpÞ þm2ðpÞ
�
: ðB12Þ

Hence

GαβðpÞ ¼
½Pq − iγqgqðpÞ þmðpÞ�

αβP
kg

2
kðpÞ þm2ðpÞ : ðB13Þ

In the presence of electromagnetic field, p → p − Aði∂pÞ,
using Peierls formula, the Dirac operator for Wilson
fermions may be represented as QðpÞ → Qðp − Aði∂pÞÞ

Qαβðp−Aði∂pÞÞ

¼
�X

k
iγkgkðp−Aði∂pÞÞþmðp−Aði∂pÞÞ

�
αβ

ðB14Þ

or, in the operator manner:

Qαβðp̂ − Aðx̂ÞÞ

¼
�X

k
iγkgkðp̂ − Aðx̂ÞÞ þmðp̂ − Aðx̂ÞÞ

�
αβ

: ðB15Þ

We are interested to find the inverse of Q in this case in the
same way as in (B12). It can be shown that the contribution
due to the commutation relations ½p̂; Aðx̂Þ� is the one lattice
spacing shift to each harmonic. So, as long as the space
dependence of the field is much larger than lattice spacing,
we may neglect this contribution. Hence, the Green’s
function in the presence of gauge field under the conditions
described above [we use (B13)] takes the form

Gαβðp − Aði∂pÞÞ

≈
½Pq − iγqgqðp − Aði∂pÞÞ þmðp − Aði∂pÞÞ�αβP

kg
2
kðp − Aði∂pÞÞ þm2ðp − Aði∂pÞÞ

ðB16Þ

in the operator notations (and matrix form) we obtain

Ĝðp−Aði∂pÞÞ

≈
½Pq− iγqgqðp−Aði∂pÞÞþmðp−Aði∂pÞÞ�αβP

kg
2
kðp−Aði∂pÞÞþm2ðp−Aði∂pÞÞ

ðB17Þ
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APPENDIX C: TRANSLATION OPERATOR AND
THE MOYAL PRODUCT PROPERTIES

Let us consider translation operator

ea∂xfðxÞ ¼ fðxþ aÞ ðC1Þ

ea∂xðfðxÞgðxÞÞ ¼ fðxþ aÞgðxþ aÞ
¼ ðea∂xfðxÞÞððea∂xgðxÞÞÞ: ðC2Þ

One can prove this identity as follows. The left-hand side
has the form

ea∂xðfðxÞgðxÞÞ ¼
X∞
n¼0

1

n!
∂n
xðfðxÞgðxÞÞ

¼
X∞
n¼0

1

n!

Xn
k¼0

n!
ðn − kÞ!k! f

ðn−kÞgðkÞ: ðC3Þ

The right-hand side is

ðea∂xfðxÞÞðea∂xgðxÞÞ ¼
�X∞

n¼0

1

n!
∂n
xfðxÞ

��X∞
k¼0

1

k!
∂k
xgðxÞ

�

¼ 1

0!
fð0Þ

1

0!
gð0Þ þ 1

1!
fð1Þ

1

0!
gð0Þ þ 1

0!
fð0Þ

1

1!
gð1Þ þ 1

2!
fð2Þ

1

0!
gð0Þ þ 1

1!
fð1Þ

1

1!
gð1Þ þ 1

0!
fð0Þ

1

2!
gð2Þ

þ 1

3!
fð3Þ

1

0!
gð0Þ þ 1

2!
fð2Þ

1

1!
gð1Þ þ 1

1!
fð1Þ

1

2!
gð2Þ þ 1

0!
fð0Þ

1

3!
gð3Þ…

¼
X∞
n¼0

Xn
k¼0

1

ðn − kÞ!k! f
ðn−kÞgðkÞ: ðC4Þ

Hence

ea∂xðfðxÞgðxÞÞ ¼ ðea∂xfðxÞÞððea∂xgðxÞÞÞ: ðC5Þ

We may represent Moyal product of Weyl symbols of three operators as follows

ðÂ B̂ ĈÞWðx; pÞ ¼ ðAWðx; pÞ⋆BWðx; pÞÞ⋆CWðx; pÞ
¼ AWðx; pÞ⋆ðBWðx; pÞ⋆CWðx; pÞÞ ðC6Þ

that is

ðf1ðx; pÞ⋆f2ðx; pÞÞ⋆f3ðx; pÞ ¼ ðf1ðx; pÞei
2
ð∂⃖x∂⃗p−∂⃖p∂⃗xÞf2ðx; pÞÞei

2
ð∂⃖x∂⃗p−∂⃖p∂⃗xÞf3ðx; pÞ

¼ ½ei
2
ð∂x1∂p2−∂p1∂x2

þ∂x1∂p3
þ∂x2∂p3−∂p1∂x3−∂p2

∂x3 Þf1ðx1; p1Þf2ðx2; p2Þf3ðx3; p3Þ� x1¼x2¼x3¼x
p1¼p2¼p3¼p

¼ ½ei
2
ð∂x1 ð∂p2

þ∂p3 Þþ∂x2 ð∂p3−∂p1 Þþ∂x3
ð−∂p2−∂p1 ÞÞf1ðx1; p1Þf2ðx2; p2Þf3ðx3; p3Þ� x1¼x2¼x3¼x

p1¼p2¼p3¼p
ðC7Þ

APPENDIX D: MODEL BASED ON WILSON
FERMIONS. CONDITIONS FOR THE
ELIMINATION OF STAR PRODUCTS

Expression

h
γ5
h
Gð0Þ

W ⋆


∂pi

Qð0Þ
W

�
⋆Gð0Þ

W ⋆


∂pj

Qð0Þ
W

�
⋆Gð0Þ

W

i
∂pk

Qð0Þ
W

i
ðD1Þ

includes the terms like

gi⋆gj ðD2Þ

where

⋆ ¼ e
i
2
ð∂⃖x∂⃗p−∂⃖p∂⃗xÞ ¼ 1þ i

2
ð∂⃖x∂⃗p − ∂⃖p∂⃗xÞ þ � � � ðD3Þ

Hence

gi⋆gj ¼ gigj þ gi
i
2
ð∂⃖x∂⃗p − ∂⃖p∂⃗xÞgj þ � � � ðD4Þ

½∂xgiðpa − AðxÞaÞ� ¼ −∂pi
gi∂xAiðxÞ ¼ ag0i∂xAiðxÞ ðD5Þ

½∂pgjðpa − AðxÞaÞ� ¼ ag0j: ðD6Þ

Therefore,

½∂xgi�½∂pgj� ¼ g0ig
0
ja

2∂xAiðxÞ: ðD7Þ
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Since

−1 ≤ gi; g0i ≤ 1 ðD8Þ
if

a2∂xAiðxÞ ≪ 1 ðD9Þ
then the star products may be replaced by the ordinary ones.
The physical meaning of the above statement may be

easily understood if we will consider the sinusoidal space
dependence AðxÞ ∼ sinð2πx=λÞ. Then

a2
A
λ
≪ 1 aA ≪

λ

a
: ðD10Þ

Under these conditions in the above expression of Eq. (D1)
we may omit the star.

APPENDIX E: CALCULATION OF
TOPOLOGICAL INVARIANT RESPONSIBLE FOR
THE CSE CONDUCTIVITY FOR THE WILSON
FERMIONS IN THE PRESENCE OF SLOWLY

VARYING EXTERNAL FIELDS

It has been shown in Appendix D that for sufficiently
weak inhomogeneity for the model of Wilson fermions the
Moyal products may be replaced by the ordinary ones in the
expression for Hall conductivity. The condition for this is
a2 A

λ ≪ 1, where a is the lattice spacing, A is the external
electromagnetic potential while λ is the typical wavelength
of external field A. Therefore, the singularities of expres-
sion standing in the integral in this case are placed along the
singularities of the (Wigner transformed) Green functions.
We have

Qðp̂ − Aðx̂ÞÞ ¼
�X

k

iγkgkðp̂ − Aðx̂ÞÞ þmðp̂ − Aðx̂ÞÞ
�

ðE1Þ
and

Ĝðp̂ − Aðx̂ÞÞ ¼ ½Pq − iγqgqðp̂ − Aðx̂ÞÞ þmðp̂ − Aðx̂ÞÞ�P
kg

2
kðp̂ − Aðx̂ÞÞ þm2ðp̂ − Aðx̂ÞÞ

ðE2Þ
where

gkðpÞ ¼ sinðp̂kÞ ðE3Þ

mðp̂Þ ¼ mð0Þ þ
X4
k¼1

ð1 − cosðp̂kÞÞ

¼ mð0Þ þ
X4
k¼1

2sin2
�
p̂
2

�

¼ mð0Þ þ
X4
k¼1

2g2k

�
p̂
2

�
: ðE4Þ

The Green’s function poles are given by the solutions of
equation

X
k

g2kðp̂ − Aðx̂ÞÞ þm2ðp̂ − Aðx̂ÞÞ ¼ 0: ðE5Þ

For the massless fermions, when mð0Þ ¼ 0,

Qðp̂ − Aðx̂ÞÞ ¼
X
k

�
iγkgkðp̂ − Aðx̂ÞÞ þ 2g2k

�
p̂ − Aðx̂Þ

2

��

ðE6Þ

and

Ĝðp̂ − Aðx̂ÞÞ ¼
hP

q − iγqgqðp̂ − Aðx̂ÞÞ þ 2g2qðp̂−Aðx̂Þ2
Þ
i

P
kg

2
kðp̂ − Aðx̂ÞÞ þ 4


P
jg

2
j



p̂−Aðx̂Þ

2

��
2

≡ Rðp − AÞ
Uðp − AÞ ðE7Þ

we have

R ¼
X3
k¼1

−iγk sinðpk − AkÞ þ 2sin2
�
pk − Ak

2

�

− iγ4 sinðp4 − A4Þ þ sin2
�
p4 − A4

2

�
ðE8Þ

and

U ¼
X3
k¼1

sin2ðpk − AkÞ þ sin2ðp4 − A4Þ

þ 4

�X3
k¼1

sin2
�
pk − Ak

2

�
þ sin2

�
p4 − A4

2

�
2

:

�
ðE9Þ

The poles are space dependent and for A4 ¼ iϕ ¼ 0 they
correspond to the single points

pi ¼ AiðxÞ: ðE10Þ

In the neighborhood of these points

pi − AiðxÞ ¼ ξi → 0 → giðξÞ ≈ ξi: ðE11Þ

In the case of nonzero A4ðxÞ ¼ iϕðxÞ → 0 instead of the
singularities concentrated at a point in momentum space for
any given x we have singularities concentrated along the
closed surfaces in momentum space. The form of these
surfaces depends on x. More explicitly, we have spheres
with the center at p ¼ AðxÞ and radius jϕ0ðxÞj. The Dirac
operator becomes
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Qðp̂ − Aðx̂ÞÞ ¼
X
k

�
iγkξk þ

1

2
ξ2k

�
ðE12Þ

while

∂pi
Q ¼ ∂ξiQ ¼ iγi þ ξi: ðE13Þ

For the Green function we have

Ĝðp̂ − Aðx̂ÞÞ ¼ ½Pq − iγqξq þ 1
2
ξ2q�P

kξ
2
k þ 1

4
ðPjξ

2
jÞ2

: ðE14Þ

Topological invariant responsible for the CSE effect is
given by

N ¼ −
1

48π2V

Z
Σ3

Z
d3xtr½γ5GdQG ∧ dQG ∧ dQ�:

ðE15Þ

Here surface Σ3 surrounds all singularities of the Green
functions at all values of x. The key point for the calculation
ofN is that we may deform the system smoothly removing
the fields A, ϕ at all. This will bring us to a homogeneous
system with A ¼ ϕ ¼ 0. Then we chose Σ3 of the form of
the 3 sphere that surrounds point p ¼ 0. Then

QðξÞ ¼
X
k

iγkξk þ 2ξ2 ðE16Þ

and

∂pi
Q ¼ ∂ξiQ ¼ iγi þ ξ ≈ iγi: ðE17Þ

At the same time

ĜðξÞ ¼ −
P

qiγqξ
q þ ξ2=2

ξ2 þ ξ4=4
≈
−
P

qiγqξ
q

ξ2
ðE18Þ

and

∂pi
G ¼ ∂ξiG ¼ −i

γi − 2ξiðγξÞ=ξ2
ξ2

ðE19Þ

as a result integral over x is irrelevant, and we have an
integral over the surface of sphere (dσi is a vector
orthogonal to the surface of the sphere, its absolute value
is equal to the area element):

N ¼ 1

48π2

Z
Σ3

tr½γ5GðdQÞ ∧ dG ∧ ðdQÞ�

¼ ϵijkl
48π2

Z
Σ3

dσitr½γ5G∂jQ∂kG∂lQ�

¼ ϵijkl
48π2

Z
Σ3

dσi

ξ4
tr½γ5γaξaγjγkγl�

¼ 4ϵijkl
48π2

Z
Σ3

dσiξa

ξ4
ϵajkl

¼ 24∂ia

48π2

Z
Σ3

dσiξa

ξ4
¼ 1: ðE20Þ
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