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In a series of recent works, Ishihara and Ogawa have investigated nontopological solitons (Q-balls) in a
spontaneously broken Abelian gauge theory coupled to two complex scalar fields. The present paper
extends their investigations to the most general Uð1Þ × Uð1Þ symmetric quartic potential. Also, a new class
of charged Q-ball solutions with vanishing self-interaction terms is investigated and some of their
remarkable properties are exhibited.
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I. INTRODUCTION

The term Q-ball denotes finite energy, nonradiating
solutions in theories containing scalar fields with time-
periodic phases and associated conserved charges. Their
discovery goes back to the pioneering works of Rosen [1].
Prototype Q-balls appear in pure scalar field theories con-
taining a complex scalar with a quartic potential coupled to a
real one [2]. They have been shown to be stable, their stability
being related to their conserved charge. For an excellent
review, see Ref. [3]. The term Q-ball comes from Ref. [4]
where such scalar lumps with harmonic time-dependent
phases have been shown to occur in a scalar field theory
containing a single complex scalar with a self-interaction
potential of at least degree six. It turned out that similar lumps
appear in gauge theories [5–7]; for some detailed numerical
investigations, see Refs. [8–10] (with one complex and one
real scalar). For recent reviews, see Refs. [11,12].
Q-balls have gained large attention due to the possibility

of their formation in the early Universe [13], them being
candidates as dark matter [14], their possible role in
baryogenesis [15], and also their appearance in a large
class of supersymmetric extensions of the Standard Model
of particle physics [16,17].
The authors of Ref. [18] have found that for a spherically

symmetric distribution of external charges coupled to an
Abelian Higgs model, the Higgs field provides for perfect
charge screening, canceling out all long-range fields of the
external charges. In Refs. [19,20], this observation has been

tested on Q-balls in an Abelian Higgs model coupled to
another charged, massive scalar field whose mass is provided
by the Higgs mechanism. We note that coupling the scalars
thisway is analogous to themuch studiedHiggs portalmodels
[21,22]where a scalar dark sector is coupled exclusively to the
Higgs fields of the Standard Model of particle physics.
In the present paper, we extend the results of Refs. [19,20]

to the case of themost generalUð1Þ × Uð1Þ symmetric scalar
sector with quartic self-interaction potentials. We show that
the remarkably precise numerically observed cancellation of
the charge contribution between the two charged scalar fields
pointed out in Refs. [19,20] follows fromGauss’s theorem. It
can therefore serve as an excellent test for the correctness of
the numerical computations. In carrying out a detailed
investigation of a larger phase space which appears to be
a natural setting for the models considered, an interesting
subfamily of chargedQ-balls is foundwhere the quartic self-
interaction terms are put to zero. This new family of charged
Q-balls is a natural extension of previously considered
ungauged Q-balls with vanishing potential in Ref. [23]
and investigated in more detail in Ref. [24].

II. THE MODEL CONSIDERED

Following Refs. [18–20], we shall consider an Abelian
Higgs model containing two charged, complex scalar fields
with an action given by

S¼
Z

d4x

�
−
1

4
FμνFμνþDμϕ

�DμϕþDμψ
�Dμψ−V

�
; ð1Þ

where indices are raised and lowered by the Minkowski
metric g ¼ diagðþ;−;−;−Þ, Fμν ¼ ∂μAν − ∂μAν, Dμϕ ¼
ð∂μ − ie1AμÞϕ, Dμψ ¼ ð∂μ − ie2AμÞψ . The interaction
potential is given as
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V¼ λ1
2
ðjϕj2−η2Þ2þλ2

2
jψ j4þλ12ðjϕj2−η2Þjψ j2þm2jψ2j;

ð2Þ

which is the most general quartic, gauge invariant potential
for the two complex scalar fields with a Uð1Þ × Uð1Þ
symmetry.
In the model defined by the action (1), there are two

separately conserved U(1) currents:

jϕμ ¼ ie1ðϕ�Dμϕ − ϕDμϕ
�Þ;

jψ μ ¼ ie2ðψ�Dμψ − ψDμψ
�Þ: ð3Þ

The conserved charges are given as

Qϕ;ψ ¼
Z

d3xj0ϕ;ψ : ð4Þ

It is convenient to adimensionalize the fields and the
coordinates as ϕ → ηϕ, ψ → ηψ , Aμ → ηAμ, and xμ →
xμ=ðeηÞ and in the action (1), which then becomes

S ¼ 1

e2

Z
d4x

�
−
1

4
FμνFμν þDμϕ

�DμϕþDμψ
�Dμψ − V

�
;

ð5Þ

with qi ¼ ei=e, (i ¼ 1; 2), Dμϕ ¼ ð∂μ − iq1AμÞϕ, Dμψ ¼
ð∂μ − iq2AμÞψ ,

V ¼ β1
2
ðjϕj2 − 1Þ2 þ β2

2
jψ j4 þ β12ðjϕj2 − 1Þjψ j2 þ μjψ j2;

ð6Þ

where β1;2 ¼ λ1;2=e2, β12 ¼ λ12=e2, and μ ¼ m2=ðe2η2Þ.

III. SPHERICALLY SYMMETRIC
Q-BALL SOLUTIONS

We shall seek spherically symmetric Q-ball solutions of
the model defined by the action (1). The simplest spheri-
cally symmetric, purely electric ansatz leading to nontrivial
finite energy solutions can bewritten in the Lorenz gauge as

A0 ¼ α̃ðrÞ; ϕ ¼ f1ðrÞeiω1t; ψ ¼ eiω2tf2ðrÞ; ð7Þ
where r; ϑ;φ are spherical coordinates, and all other vector
potential components vanish. It is convenient to gauge
transform (7) to a simpler form where one of the scalars is
time independent, leading to the ansatz also employed in
Refs. [19,20]:

A0 ¼ αðrÞ; ϕ ¼ f1ðrÞ; ψ ¼ eiωtf2ðrÞ; ð8Þ
which shall also be used in this paper. The reduced action of
the configuration within ansatz (8) can be written as

Seff ¼ 4π

Z
drr2ðKeff −UeffÞ;

where Keff ¼ ðf01Þ2 þ ðf02Þ2 − ðα0Þ2=2; ð9Þ

with the effective potential given by

Ueff ¼ −β1ðf21 − 1Þ2=2 − β2f42=2 − β12ðf21 − 1Þf22
− μf22 þ q21α

2f21 þ ðq2α − ωÞ2f22: ð10Þ

The spherically symmetric field equations resulting from
the variation of the reduced action (9) are given as

1

r2
ðr2f01Þ0 ¼ f1½−q21α2 þ β1ðf21 − 1Þ þ β12f22�; ð11Þ

1

r2
ðr2f02Þ0 ¼ f2½−ðq2α − ωÞ2 þ β2f22 þ μþ β12ðf21 − 1Þ�;

ð12Þ

1

r2
ðr2α0Þ0 ¼ 2½q21αf21 þ q2ðq2α − ωÞf22�: ð13Þ

The boundary conditions required for the solution of
Eqs. (11)–(13) are derived, on one hand, from regularity
of the fields at the origin,

f1 ∼ f1ð0Þ þ fð2Þ1 r2 þ…; f2 ∼ f2ð0Þ þ fð2Þ2 r2 þ…;

α ∼ αð0Þ þ αð2Þr2 þ…; ð14Þ

and from the requirement of vanishing energy density at
infinity, i.e., approaching the vacuum manifold of the
theory,

f1 → 1; f2 → 0; α → 0: ð15Þ

The energy of a field configuration defined by the ansatz
(8) is expressed as

E ¼ 4π

e
η

Z
∞

0

drr2
�
ðf01Þ2 þ ðf02Þ2 þ

1

2
ðα0Þ2 þ q21α

2f21

þ ðq2α − ωÞ2f22 þ V

�
; ð16Þ

where

V ¼ β1
2
ðf21 − 1Þ2 þ β2

2
f42 þ β12ðf21 − 1Þf22 þ μf22:

The electric charges of ϕ resp. ψ are written as

Qϕ ¼ 4π

e

Z
drr2ρϕ; Qψ ¼ 4π

e

Z
drr2ρψ ; ð17Þ

where
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ρϕ ¼ 2q21αf
2
1; ρψ ¼ 2q2ðq2α − ωÞf22:

In order to show the “perfect” charge screening in this
setting, integrate Eq. (13) from zero to ∞, which yields,
taking into account that α decays exponentially,

0 ¼ 4π

e

Z
∞

0

drr22½q21αf21 þ q2ðq2α − ωÞf22�

¼ Qϕ þQψ : ð18Þ

As it has been analyzed in the literature, Q-balls typically
exist within a frequency interval

ωmin < ω < ωmax; ð19Þ

where ωmin and ωmax are determined by the parameters of
the theory. In the present case, these parameters are β1, β2,
β12, μ, and the charges qi. We also note that one can set, for
example, β12 ¼ 1 without losing generality.
The maximal frequency is determined by demanding

f2 → 0 for large radii to ensure the finiteness of the energy.
Since f2 ∼ F2 expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − ω2

p
rÞ=r for r → ∞ with F2 a

constant, it follows that ωmax ¼ ffiffiffi
μ

p
.

The value of ωmin is determined as follows [19,20]: The
effective potentialUeff (10) has critical points corresponding
to the “false” vacuum f1 ¼ 1, f2 ¼ α ¼ 0 and to a “true”
vacuum f1 ¼ f01, f2 ¼ f02, α ¼ α0. Near the minimal
frequency ω ≈ ωmin, the Q-ball tends to a homogenous ball
filled by the true vacuum. The minimal frequency is
determined by the condition that the values of the effective
potential are the same for the false resp. true vacua. For
general values of the parameters of the theory, this leads to a
somewhat complicated algebraic equation of degree five for
ω2
minðβ1; β2; β12; μ; q1; q2Þ. In the special case when β2 ¼ 0

and μ ¼ β12, one obtains an easily solvable cubic equation
and finds ωmin ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

ffiffiffiffiffiffiffiffiffiffi
2β1μ

p
− q2β1

p
(q ¼ q2=q1).

Let us note another interesting special case considered in
our paper: For β1 ¼ 0, it is found that ωmin ¼ 0.
Yet another constraint for the existence of a Q-ball

solution has been exhibited for the case β2 ¼ 0, μ ¼ β12 in
Refs. [19,20], where it has been shown (in the case
q1 ¼ q2 ¼ 1) that

β1 < β12=2 ð20Þ

is necessary for the existence of a Q-ball solution arising as
a condition for the existence of the true vacuum with
ðf01;2Þ2 ≥ 0.
By numerical evaluation of ωminðβ1; β2; β12; μ; q1; q2Þ,

we have found that for fixed values of β1, β12, and μ, for
values satisfying the criterion (20), ωmin is an increasing
function of β2. We have also found ωmin to be an increasing
function of μ. This indicates that a nonzero β2 decreases the
domain of existence of the solutions (by increasing ωmin).

We also note that from a standard Derrick-type scaling
argument (r → λr, Refs. [25,26]), one obtains from the
effective action Seff ¼ I1 − I3 the virial relation

I1 ¼ 3I3; ð21Þ

where

I1 ¼ 4π

Z
drr2Keff ; I3 ¼ 4π

Z
drr2Ueff : ð22Þ

An interesting consequence of the virial relation (22) is

E
η
¼ −ω

Qψ

q2
þ 2

3e
I1: ð23Þ

The reason of Eq. (23) only containingQψ and not bothQϕ

and Qψ in a symmetric way, is the gauge choice implicit in
ansatz (8). Using ansatz (7) the symmetry between Qψ and
Qϕ becomes manifest. A more symmetric form is readily
found using ansatz (7):

E
η
¼ −

�
ω1

Qϕ

q1
þ ω2

Qψ

q2

�
þ 2

3e
I1: ð24Þ

A. Numerical solutions

Q-ball solutions of the model defined by the action (1)
conforming to the ansatz (8) have been obtained by the
numerical solution of the radial equations (11)–(13) using
the COLNEW package [27,28] implementing collocation on
Gaussian points. We have used an interval 0 ≤ r ≤ rmax,
which was large enough for the radial functions to reach
their limiting values within numerical precision. For addi-
tional numerical data, see also Ref. [29].
In Fig. 1(a), an example of a Q-ball in the full nonlinear

model is shown. The visual appearance of solutions with
and without the quartic self-interaction term of the field ψ
are almost identical. In Fig. 1(b), the energy and charge
distributions of the solution of the nonlinear model are
displayed. The cancellation of the charge densities due of
the two fields is again local.
We have chosen the parameters β1 ¼ 0.5, β12 ¼ μ ¼ 1.4

as in Refs. [19,20],1 and considered the numerically
available frequency range 1.174 ≤ ω ≤ 1.183. For each
value of the frequency ω, we calculated the Q-ball solutions
for a range of the parameter β2, starting from β2 ¼ 0,
increasing β2 to upper values of the order 0.1. In these
ranges, we have found that the energy E and the magnitude
of the charges jQϕj and jQψ j were monotonically increas-
ing functions of the parameter β2. The frequency

1To translate from the conventions of Refs. [19,20] to ours,
the replacement λ → 2λ1 shall be performed; i.e., λ ¼ 1 in
Refs. [19,20] corresponds to λ ¼ 1=2 here.
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dependence of the energy and charges is depicted in Fig. 2.
In Figs. 3(a)–3(c), we present the change of solutions when
approaching the lower limiting frequency (see also
Refs. [19,20]). Upon approaching the minimal frequency,
the difference between the effective potential Ueff of the
false vacuum at the origin and the real one becomes smaller,
and therefore, due to a Derrick-type argument, the gradient
terms must become small as well, and the Q-ball expands.
Approaching the upper frequency limit ωmax ¼ ffiffiffi

μ
p

, the
exponent of the asymptotic radial decay of f2 becomes
small, and the asymptotic tail of the solutions in f2
expands, in contrast to the lower limit, where the core of
the solution expands; see Figs. 3(c) and 3(d).
The behavior for large β2 is similar to the one for the

frequency approaching the minimal one; see Fig. 4. The
core of the Q-ball expands, and the energy and the charge
diverge. The energy E and the charge Qϕ are depicted as a
function of β2 in Fig. 5. Stability of the theory requires

β2 ≥ 0, and for β2 ¼ 0, the solutions of Refs. [19,20] are
recovered.
Varying the parameter μ is quite similar to the above

ones. There is a lower limit due to the exponent of the radial
decay of the profile function f2, μmin ¼ ω2, and upon
approaching it, the tail of the solution in f2 expands and not
the core; see Fig. 6(a). There is also an upper limit
μ ¼ μmax, where the core expands depicted in Fig. 6(b).
The dependence of the integrated quantities E, Qϕ, and Qψ

is depicted in Fig. 7.
In agreement with our analytical result (18), we have

found that the total charges Qϕ and Qψ cancel each other
for all solutions considered within numerical precision. In
addition, we have considered the precision of the cancel-
lation of the charges as a function of the radius for various
parameters. In Fig. 8, we have depicted the charge
remaining after the cancellation for different frequencies.

(a) (b)

FIG. 2. The frequency dependence of the conserved quantities, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, (a) β2 ¼ 0 and (b) β2 ¼ 0.25.

(a) (b)

FIG. 1. (a) The profile functions of a typical Q-ball; β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, β2 ¼ 0.25, ω ¼ 1.180. (b) The energy and charge
distributions of the same Q-ball.
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It can be seen that the precision of the (local) cancellation
decreases with lower frequencies, and the remaining charge
is sharply peaked, and the peak moves to larger radii when
the frequency ω approaches the lower limit ωmin. Upon
approaching the upper limit ωmax ¼ ffiffiffi

μ
p

, the remaining
charge becomes smaller, but remains there for larger radii,
in a less peaked shape.
The dependence on other parameters can be explained by

considering what happens when changing the given param-
eter. When the parameter increases ωmin, the same happens
(for fixed frequency) as when ω approaches ωmin; this is the
case for increased μ and β2. On the contrary, upon lowering
μ, the solutions behave as if ω was increased.

B. Stability of the solutions

A detailed analysis of the stability of Q-balls is still a
challenging subject with some open questions (see the

review [12]). However, an approximate indication of
stability can be obtained by comparing the energy E of
the solution to the energy Efree of free ψ particles with the
same charge [3]; if the energy of free ψ particles is larger, it
is energetically not favorable for the soliton to fall apart into
free particles where

N ¼ Qψ=q2; Efree ¼ ffiffiffi
μ

p
N: ð25Þ

In addition, if the ratio E=Efree is not only below 1, but
a decreasing function of N, it is also not favorable for
the Q-ball to split into smaller Q-balls.
The ratio E=Efree is depicted in Fig. 9(a) as a function of

ω. The behavior for nonzero quartic coupling β2 is the same
as found in Refs. [19,20] for β2 ¼ 0, i.e., below a critical
frequency ω ¼ ωcr, E=Efree < 1, indicating the solutions
are stable against falling apart into free particles (with

(a) (b)

(c) (d)

FIG. 3. The frequency dependence of the solutions approaching the frequency limits, ωmin and ωmax, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, β2 ¼ 0.
[(a) ω ¼ 1.174, (b) ω ¼ 1.176, (c) ω ¼ 1.18, and (d) ω ¼ 1.183].
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(a) (b)

(c) (d)

FIG. 4. The dependence of the solutions on the parameter β2, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, ω ¼ 1.18. [(a) β2 ¼ 0, (b) β2 ¼ 0.15, (c)
β2 ¼ 0.3, and (d) β2 ¼ 0.45].

(a) (b)

FIG. 5. The β2 parameter dependence of (a) the energy E and the (b) charge Qϕ, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4.
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(a) (b)

FIG. 6. The dependence of the solutions on the parameter μ upon approaching (a) the maximal value determined by ωmin reaching ω
and (b) the minimal value determined by ω2.

(a) (b)

FIG. 7. The dependence of the conserved quantities on the parameter μ, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, ω ¼ 1.18, (a) β2 ¼ 0 and
(b) β2 ¼ 0.25.

(a) (b)

FIG. 8. The dependence of the screened (summed over species) charge Qϕ þQψ on the frequency ω, β1 ¼ 0.5, β12 ¼ μ ¼ 1.4,
β2 ¼ 0, upon (a) decreasing ω and (b) increasing ω.
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arbitrarily large energy and charge when approaching ωmin).
At β1 ¼ 0.5, β12 ¼ μ ¼ 1.4, we have found that for
β2 ¼ 0.25, ωcr ¼ 1.1810 and for β2 ¼ 0, ωcr ¼ 1.1795.
Figure 9(b) depicts the energy ratio as a function of the

number of ψ particles. Note that on the branch of the figure
corresponding to ω < ωcr, the function is monotonically
decreasing, indicating that the corresponding Q-balls are
also stable against falling apart into smaller ones.

C. The effect of varying the charges

We have also considered the effect of varying the charges
q1 resp. q2 of the fields ϕ and ψ . In this section, we restrict
ourselves to the case β2 ¼ 0 and β12 ¼ μ.
The limiting cases are quite remarkable here.

Considering q ¼ q2=q1 > 1, the positivity condition (20)
is modified as β1 < μq21=2. Increasing the relative charge q,

while keeping β1 and μ fixed, at q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2β1=μ

p
the

positivity condition becomes violated, ωmin¼ωmax¼ ffiffiffi
μ

p
is reached, and the solutions cease to exist. For this reason,
the solutions of Ref. [8] at q1 ¼ 0 thus cannot be reached
from the solutions considered here by increasing the charge
ratio q continuously; they seem to belong to a different
family of solutions, with the electromagnetic field mass-
less, and α approaching its limit at r → ∞ as ∝ Qψ=r. We
have found numerical evidence (see Fig. 10) showing that
this family of solutions can also be deformed to q1 ≠ 0, at
least for small values. Their detailed investigation will be
part of a further study.
The limit q2 → 0 is, on the other hand, quite simple. In

this case, as q2 decreases, the sum of the local charges
Qϕ þQψ becomes smaller, and at q2 ¼ 0 the purely scalar
solutions of Ref. [2] are recovered (obviously with α ¼ 0);
see Fig. 11.

(a) (b)

FIG. 9. The ratio of the energy of the solutions and that of free ψ particles of the same charge for β1 ¼ 0.5, β2 ¼ 0.25 and 0,
β12 ¼ μ ¼ 1.4, (a) as a function of the frequency ω and (b) of the number of ψ particles in the Q-ball.

(a) (b)

FIG. 10. The (a) profile functions and (b) energy and charge of a Q-ball with vanishing charge q1 ¼ 0; β1 ¼ 25, β2 ¼ 0, β0 ¼ μ ¼ 100,
ω ¼ 8.8.
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(a) (b)

FIG. 11. The (a) profile functions and (b) energy of a Q-ball with vanishing charge q2 ¼ 0; β1 ¼ 0.5, β2 ¼ 0, β12 ¼ μ ¼ 1.4,
ω ¼ 1.180.

(a) (b)

FIG. 12. (a) The profile functions of a Q-ball with vanishing quartic couplings; β1 ¼ β2 ¼ 0, β12 ¼ μ ¼ 1.4, ω ¼ 1.180. (b) The
energy and charge distributions of the same Q-ball.

(a) (b)(a) (b)

FIG. 13. The ratio of the energy of the solutions and that of free ψ particles of the same charge for β1 ¼ 0, β2 ¼ 0, β12 ¼ μ ¼ 1.4,
(a) as a function of the frequency ω and (b) of the number of ψ particles in the Q-ball.
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D. The limit of vanishing quartic couplings

Another interesting limiting case is β1;2 → 0. For this to
be a regular limit, the boundary conditions f1 → 1, f2,
α → 0 as r → ∞ are kept. We have constructed such
solutions parametrized by a frequency 0 < ω <

ffiffiffi
μ

p
. For

an example of such a solution, see Fig. 12.
In the small frequency limit, the charges and the energy

of the solutions increase, and E=Efree, the total energy over
the mass of free particles of type ψ , decreases. Also,
interestingly, as ω approaches ωmax, unlike in the other
cases, charge and energy do not diverge, instead, the
solutions approach the vacuum. Also, instability due to
E=Efree > 1 and the cusp on the E=Efree − N curve has not
been observed here (see Fig. 13).

IV. CONCLUSIONS

In the present paper, we have extended the investigations
of Refs. [19,20] to the case of the most general Uð1Þ ×
Uð1Þ potential when both scalar fields of the model are
self-interacting. We have shown, that the perfect global

charge screening is a consequence of Gauss’ theorem. The
local charge screening, i.e., a high degree of cancellation
between the charge densities of the scalar fields in the outer
region of the Q-ball, as found in Refs. [18–20] is still
present. The main effect of the self-interaction of the
second scalar field is an increase of the energy, of the
charge, and in most cases, a smaller domain of existence.
We have also exhibited a new family of solutions where
both quartic scalar self-interactions terms are absent and
have found that some of their properties differ qualitatively
from the generic case.
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