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We investigate the phase transition from hadron to quark matter in the general case without the
assumption of chemical equilibrium. The effects of net strangeness on charge and isospin fractions,
chemical potentials, and temperature are studied in the context of the Chiral Mean Field (CMF) model that
incorporates chiral symmetry restoration and deconfinement. The extent to which these quantities are
probed during deconfinement in conditions expected to exist in protoneutron stars, binary neutron-star
mergers, and heavy-ion collisions is analyzed via the construction of 3-dimensional phase diagrams.

DOI: 10.1103/PhysRevD.102.076016

I. INTRODUCTION

Recent works have discussed the possible similarities
between the conditions in energetic astrophysical environ-
ments, such as protoneutron stars, core-collapse super-
novae, and neutron-star binary mergers, to those present in
heavy-ion collisions (HICs) [1,2]. These similarities are a
consequence of (i) new low-energy heavy-ion experiments
that are starting to produce matter at larger densities,
together with more refined HIC calculations that allow
for large chemical potential fluctuations at all energies [3]
and (ii) high temperatures (compared to the Fermi temper-
ature) achieved in some astrophysical phenomena that,
unlike in the case of cold-catalyzed neutron stars, cannot be
ignored. In particular, the temperature in protoneutron stars
can be as high as 30–40 MeV [4,5] and, in mergers, it can
exceed 50 MeVor even reach 100 MeV [6,7]. On the other
hand, contemporary full general-relativity simulations [8]
indicate that neutron-star mergers cannot attain the large
charge fractions of close to YQ ¼ 0.4 produced in HICs
(e.g., for Au-Au and Pb-Pb) and supernovae [9,10]. This is
a new feature as, before the advent of compact star mergers,
all known hot astrophysical systems out of chemical
equilibrium were newly formed and, therefore, still con-
tained a significant amount of protons from the original
heavy nuclei in the progenitors. The knowledge of such a
large variety of conditions created the need to study hot and
dense matter under a large range of charge fractions.
Phase diagrams for high energy matter (usually referred

to as or quantum chromodynamics—QCD—phase dia-
grams) showing the position of the first-order deconfine-
ment and chiral symmetry restoration phase transition are
usually only depicted in two dimensions, temperature and
baryon number density/chemical potential or temperature

and isospin number density/chemical potential. The latter
are interesting due to the fact that lattice QCD results are
not afflicted by the sign problem at finite isospin chemical
potential μI [11–17], as long as the baryon chemical
potential μB remains zero. When μB ≠ 0 or, equivalently,
when there is a difference in the number of particles and
anti-particles in the system, first-principle methods such as
nonperturbative lattice QCD simulations cannot be per-
formed due to the well-known fermion “sign problem”
[18–21]. Although a considerable amount of theoretical work
has been devoted to the subject [22–68], the phase diagram of
high-energy physics still remains poorly understood.
Another issue raised in the literature is the manner in

which strangeness can affect phase diagrams. Reference [69]
has recently studied this for the particular case of isospin
symmetric matter using functional renormalization theory,
although this is not a new topic [70–73]. Lattice QCD
calculations have also studied the effects of a nonzero strange
chemical potential in, for example, the curvature of the chiral
pseudocritical line [74,75]. In this work, we consider two
scenarios. In one of them, there is no constraint on strange-
ness, assuming that chemical equilibrium with respect to the
weak force has already been achieved, in which case there is
no need to define a strange chemical potential. In the other
case, it is assumed that there is not enough time for
strangeness to be produced, in which case the strange
chemical potential must be numerically determined in each
phase to produce a zero net-strangeness fraction.
When the baryon chemical potential is finite, the

usual practice in the literature has been to construct
2-dimensional phase diagrams (with temperature on the
other axis) either in weak-chemical equilibrium, referring
to fully evolved neutron star matter with the charged che-
mical potential set to minus the electron chemical potential
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μQ ¼ −μe, or in an isospin-symmetric configuration with
μI ¼ 0, referring to matter created in relativistic HICs. In
this work, we examine the behavior of the deconfinement
coexistence region in 3-dimensional phase diagrams as a
function of either the (hadronic and quark) charge fraction
YQ or the isospin fraction YI (with temperature and baryon
chemical potential/free energy completing our coordinate
system). We do that numerically by varying the charged or
isospin chemical potential, and in some cases also the
strange chemical potential. Note that the charge fraction YQ

is the variable usually employed in equations of state for
astrophysical applications, while the isospin fraction YI
is more commonly used in HIC applications. The relation
between the two quantities is trivial only when net
strangeness is zero. Our calculations and discussion extend
to phase diagrams in which the charge and isospin fractions
are replaced by the corresponding chemical potentials, both
at zero and nonzero net strangeness. As pointed out in
Ref. [76], it is important to understand which plane of the
high-energy phase diagram is being probed, e.g., in the HIC

Beam Energy Scan experiment, as the traditional critical
point for isospin-symmetric matter without strangeness
constraints may never be reached in the experiment.

II. FORMALISM

A. The CMF model

In order to construct our phase-diagrams, we make use of
the Chiral Mean Field (CMF) description. It is based on a
nonlinear realization of the SU(3) sigma model and
constructed in such a way that chiral invariance is restored
at large temperatures and/or densities. In its present version,
it contains hadronic, as well as quark degrees of freedom,1

and its Lagrangian density is given by [79,80]:

L ¼ LKin þ LInt þ LSelf þ LSB −U; ð1Þ

where LKin is the kinetic energy density of hadrons and
quarks. The remaining terms are

LInt ¼ −
X

i
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U ¼ ðaoT4 þ a1μ4B þ a2T2μ2BÞΦ2

þ a3T4
o ln ð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ: ð3Þ

Here, LInt represents the interactions between baryons (and
quarks) mediated by the vector-isoscalar mesons ω and ϕ
(strange quark-antiquark state), the vector-isovector ρ, the
scalar-isoscalars σ and ζ (strange quark-antiquark state),
and the scalar-isovector δ. LSelf describes the self-
interactions of the scalar and vector mesons. The chiral
symmetry breaking term responsible for producing the
masses of the pseudoscalar mesons is given byLSB. U is the
effective potential for the scalar field Φ. It depends on
the temperature and the baryon chemical potential in order
to reproduce the standard view of the high-energy phase
diagram concerning the shape of the deconfinement first-
order phase transition coexistence line and its intersection
with the zero-temperature axis. Its pure temperature con-

tribution was fitted to reproduce the results of the Polyakov
loop in the PNJL approach [81,82] at zero baryon chemical
potential (see details below when discussing quark cou-
plings). The chemical potential and mixed terms were
motivated by symmetry and simplicity. The former one
also contains the correct scale in the asymptotic zero-
temperature case. The index i runs over the baryon octet
and the three light quarks. Leptons are not included in this
calculation, since they are not present in HIC initial
conditions and are not in chemical equilibrium with the
rest of the system in the astrophysical scenarios we discuss.
The coupling constants of the hadronic part of the model

are given in Ref. [83]. They were fitted to reproduce the
vacuum masses of baryons and mesons, nuclear saturation
properties (density ρ0 ¼ 0.15 fm−3, binding energy per
nucleon B=A¼−16MeV, compressibility K¼ 300MeV),
symmetry energy (Esym ¼ 30 MeV with slope L ¼
88 MeV), and reasonable values for the hyperon potentials
(UΛ ¼ −28.00 MeV, UΣ ¼ 5 MeV, UΞ ¼ −18 MeV).
The predicted critical point for the nuclear liquid-gas
phase transition of isospin symmetric matter lies at
Tc ¼ 16.4MeV, μB;c ¼ 910 MeV. The vacuum expectation

1Note that an alternative version of the CMF model includes in
addition the chiral partners of the baryons and gives the baryons a
finite size [77,78].
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values of the scalar mesons are constrained by reproducing
the pion and kaon decay constants.
As a result of their interactions with the mean field of

mesons and the field Φ, the baryons and the quarks acquire
(Dirac) effective masses, which have the form:

M�
B ¼ gBσσ þ gBδτ3δþ gBζζ þM0B

þ gBΦΦ2;

M�
q ¼ gqσσ þ gqδτ3δþ gqζζ þM0q

þ gqΦð1 −ΦÞ; ð4Þ

where the bare masses are M0 ¼ 150 MeV for nucleons,
354.91 MeV for hyperons, 5 MeV for up and down quarks,
and 150 MeV for strange quarks (see Ref. [83] for the
coupling constants in the quark sector). Notice that for
vanishing values of Φ, M�

q is large, which suppresses the
quarks. Conversely, values of Φ close to 1 suppress the
hadrons. In this sense, Φ acts in our approach as an order
parameter for deconfinement, as it only gives rise to a quark
phase in the expected regime of large temperatures and/or
densities.
The coupling constants of the quark sector are fitted to

lattice data and to expectations from the phase diagram.
The lattice data include (i) the location of the first-order
phase transition and the pressure functional PðTÞ at μB ¼ 0
for pure gauge (the latter resulting from the PNJL model
fitted to lattice) [82,84] and (ii) the crossover pseudo-
critical temperature and susceptibility dΦ=dT at vanishing
chemical potential, together with the location of the (T; μB)
critical end-point for zero net-strangeness isospin-symmet-
ric matter [85]. The phase diagram expectations include a
continuous first-order phase-transition line that starts at
T ¼ 167 MeV temperature for zero-strangeness isospin-
symmetric matter and terminates on the zero-temperature
axis at four times the saturation density of chemically-
equilibrated and charge-neutral matter. See Ref. [83,86] for
a detailed description of the effects of deconfined quarks
inside neutron and protoneutron stars within the CMF
model.
Note that the CMF description allows for the existence of

a small admixture of quarks in the hadronic phase and a
small admixture of hadrons in the quark phase at finite
temperature. This feature becomes more prominent with
increasing temperature and is required for the reproduction
of the crossover transition known to take place at very large
temperatures [87]. Despite this, quarks always have the
dominant contribution in the quark phase (defined by a
large Φ), and hadrons in the hadronic phase (defined by a
small Φ). The first-order phase transition is characterized
by a discontinuity in Φ, which disappears at the critical
point, beyond which (for higher temperatures) only one
phase exists. Note that at zero temperature, the hadronic
phase only contains hadrons (Φ ¼ 0) and the quark phase
only contains quarks (Φ ∼ 1).
In this work, we choose to only show our phase diagrams

up toT ¼ 160 MeV, a little bit below the critical temperature
Tc ¼ 167 MeV predicted by the current parametrization of

themodel for zero net-strangeness isospin-symmetricmatter.
This is done for two different reasons. First, our critical point
positionwas fitted and anymodification to it would not affect
the qualitative conclusions of our work. Second, we want to
keep the discussion entirely general and the inclusion of a
“special” feature, such as the critical point, would detract
from our goals. In addition, the CompOSE [88] repository
contains equation of state tables that go up toT ¼ 160 MeV,
so all of our results could be reproduced as soon as our tables
are uploaded to their website. So far, only the hadronic
version of our tables are available online [89], but complete
ones with quarks will be available soon.

B. Useful relations

We are interested in systems that are in equilibrium with
respect to the strong and electromagnetic interactions,
therefore, baryon number B and electric charge Q are
conserved. In some of the cases we study, chemical
equilibrium is not attained because weak interactions
operate over much longer timescales (than the time scale
of the system), introducing an extra condition of zero net
strangeness S. The conserved quantities listed above
correspond to our three independent chemical potentials
μB, μQ, and μS. The total chemical potential μi of each
fermionic species i can be expressed as a linear combina-
tion of these:

μi ¼ QB;iμB þQiμQ þQS;iμS: ð5Þ

This equation was derived in detail throughout Ref. [90]
without any model assumption using Lagrange multipliers.
The conventions we adopt for the values of the quantum
numbers Q’s for the baryon octet and the three light quark
species are given in Table I of Appendix A, followed by the
resulting chemical potentials of the various species. Note
that we consider the strangeness of particles to be positive
in our notation, otherwise, all strangeness related quantities
would have to have their signs reversed. For the purposes of
our calculations, it is more convenient to work with
fractions, the charge fraction being the amount of charged
baryons and quarks over the total amount of baryons and
quarks:

YQ ¼ Q
B
¼ nQ

n0B
¼

P
iQiniP
iQB;ini

; ð6Þ

where the n0s are number densities. Note that within the
CMF model n0B ¼ P

i QB;ini is not the same as the baryon
number density nB, as the latter comes from the derivative
of the pressure with respect to the baryon chemical
potential and, therefore, also contains a contribution from
the potentialUðΦÞwhen quarks are present (see Eq. (3) and
discussion at the end of this section). For low temperatures,
this contribution can be safely ignored on the hadronic-
phase side of the phase-coexistence region, where Φ is
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approximately zero and, thus, n0B ≃ nB. Furthermore, we
can insert the Gell-Mann-Nishijima relation [91]:

Qi ¼ QI;i þ
1

2
QB;i −

1

2
QS;i; ð7Þ

where QI;i is the isospin of particle i, in the definition of
charge density from Eq. (6) to obtain:

nQ ¼ Σi

�
QI;i þ

1

2
QB;i −

1

2
QS;i

�
ni;

¼ nI þ
1

2
n0B −

1

2
nS; ð8Þ

where we have also used the definitions of the isospin
density nI ¼ ΣiQI;ini and strangeness density nS ¼
ΣiQS;ini. Dividing Eq. (8) by n0B and using the definitions
of isospin fraction YI ¼ nI=n0B and strangeness fraction
YS ¼ nS=n0B results in:

YQ ¼ YI þ
1

2
−
1

2
YS; ð9Þ

so we can finally write:

YI ¼ YQ −
1

2
þ 1

2
YS; ð10Þ

as a new way to calculate the isospin fraction in a formalism
in which charge is the conserved quantity.
Combining Eqs. (5) and (7) gives:

μi ¼ QB;iμB þ
�
QI;i þ

1

2
QB;i −

1

2
QS;i

�
μQ þQS;iμS;

¼ QB;i

�
μB þ 1

2
μQ

�
þQI;iμQ þQS;i

�
μS −

1

2
μQ

�
;

¼ QB;iμ
0
B þQI;iμI þQS;iμ

0
S: ð11Þ

A comparison of the above with Eq. (5) reveals that our
conserved charge formalism is equivalent to another in
which the isospin is fixed, leaving the isospin chemical
potential as the independent chemical potential (together
with μB and μS), provided we use the following new
variables:

μ0B ¼ μB þ 1

2
μQ and μ0S ¼ μS −

1

2
μQ: ð12Þ

In this way, the chemical potentials correspond, μI ¼ μQ,
and no modifications to our numerical codes are required to
show isospin fractions and isospin chemical potentials. To
the best of our knowledge, these model-independent
fractions and isospin correspondences Eqs. (10)–(12) have
never been discussed before. The expressions for the

chemical potential of each particle included in the model
derived using Eq. (5) or Eq. (11) are given in Appendix A.
It is also convenient to define a Gibbs free energy per

baryon (henceforth called simply free energy) of the
system, a quantity that is always the same on both sides
of a first-order phase transition in order to fulfill phase
equilibrium. In our case (when, besides baryon number,
charge fraction and strangeness fraction are also fixed), it is

μ̃ ¼ μB þ YQμQ þ YSμS: ð13Þ

Note that the free energy will be equal to the baryon
chemical potential only in the particular cases of zero
charge fraction or zero charge chemical potential and zero
strange fraction or strange chemical potential. This is the
case in the modeling of the typical examples of delepton-
ized cold neutron stars (charge neutral in chemical equi-
librium YQtotal

¼ 0, μQ ¼ −μe and with no constraint on net
strangeness μS ¼ 0) and relativistic HICs (no net isospin
μQ ¼ 0 and no net strangeness YS ¼ 0).
Equation (13) was derived without any model assump-

tion throughout Ref. [90] for the particular case in which
net strangeness is not constrained (which implies μS ¼ 0)
and charge neutrality is enforced by leptons. It was then
later discussed in full in the Appendix D of Ref. [92]. This
equation can be derived either by a Legendre transforma-
tion of the grand-potential or by taking the derivative of
minus the grand-potential with respect to the baryon
number, giving:

μ̃ ¼
X

i

μini=n0B: ð14Þ

Substituting μi from Eq. (5) in Eq. (14) results in:

μ̃¼ðPiQB;iniÞμB
n0B

þðPiQiniÞμQ
n0B

þðPiQS;iniÞμS
n0B

: ð15Þ

which, using the definitions above, results in Eq. (13).
Alternatively, replacing μi from Eq. (11) in Eq. (14) leads to:

μ̃ ¼ μ0B þ YIμI þ YSμ
0
S: ð16Þ

This general equation for the free energy in a formalism in
which the isospin and strangeness are conservedhadnot been
discussed before in the literature.
In the particular case of the CMF model, the grand-

potential density of the system is

Ω ¼ −P ¼ ε − Ts −
X

i

μini − μBnΦ; ð17Þ

where the last term is a nonbaryonic contribution nΦ ¼
−ð4a1μ3B þ 2a2T2μBÞΦ2 (with negative coefficients) nec-
essary to ensure thermodynamical consistency. This fol-
lows from the fact that our potential U for Φ contains

ARYAL, CONSTANTINOU, FARIAS, and DEXHEIMER PHYS. REV. D 102, 076016 (2020)

076016-4



baryon chemical potential terms and, therefore, contributes
to nB. One can understand these terms as arising from a
chemical-potential dependence of the confinement phase
transition temperature, see e.g., discussions in Refs. [93–95].
Replacing Eq. (5) in (17) gives:

Ω ¼ ε − Ts −
�X

i

QB;ini

�
μB

−
�X

i

Qini

�
μQ −

�X

i

QS;ini

�
μS − μBnΦ; ð18Þ

Ω ¼ ε − Ts − n0BμB − n0BYQμQ − n0BYSμS − μBnΦ: ð19Þ

Taking the derivative of minus the CMF grand-potential
density Eq. (19) with respect to the baryon number divided
by volume n0B gives once more Eq. (13).

III. RESULTS

A. Nonstrange matter YS = 0

We start by discussing 3-dimensional phase diagrams
with first-order phase transition deconfinement coexistence
regions calculated within the CMF model for temperatures
in the range 0–160 MeV, charge fractions in the range
0–0.5, and the corresponding baryon chemical potentials
μB or free energies μ̃. In order to construct those, at each
given temperature and charge fraction, the free energy is
varied. The free energy of the deconfinement coexistence
region is determined by finding a jump in the deconfine-
ment order parameter Φ. This jump is very large (basically
from 0 → 1) at zero temperature, but its size decreases with
temperature until it becomes very close to zero at our
chosen maximum temperature near the critical point. At the
coexistence region, our numerical code determines the
baryon chemical potential (see equation below) and
charged chemical potential that reproduce the given charge
fraction. In addition, in this subsection, the strange chemi-
cal potential is also determined numerically in order to
produce a zero net strangeness YS ¼ 0 in each phase. This
is the case for matter produced in HICs, where there is no
time for strangeness to emerge. Note that for nonstrange
matter Eq. (13) simplifies to:

μ̃ ¼ μB þ YQμQ: ð20Þ

Having YQ ¼ 0 means that there is no net charge in the
system even though the presence of charged particles is not
prohibited insofar as the sum of their charges is zero.
Having YQ ¼ 0.5 corresponds to the situation where the
total baryon number of the system is twice as large as its net
charge. For matter with no net strangeness at zero temper-
ature, the case of YQ ¼ 0 is equivalent to having just
neutrons or two times more d-quarks than u-quarks,
whereas YQ ¼ 0.5 corresponds to having equal amounts

of protons and neutrons or d- and u-quarks. At finite
temperature, there can be hyperons and s-quarks present
when requiring no net strangeness, as long as the difference
between the number of strange particles and strange
antiparticles is zero.
As shown in the bottom panel of Fig. 1, the free energy at

deconfinement increases as a function of YQ. This behavior
is related to the softening of nuclear matter with increased
net charge (e.g., equal numbers of neutrons and protons),
the effect being stronger for hadronic matter. A softening of
the equation of state (pressure vs energy density) of
hadronic matter corresponds to an increase in pressure at
a given free energy (with respect to the quark phase),
therefore, extending the stability of the hadronic phase to
larger free energies.
Although the free energy is the same on both sides of the

deconfinement coexistence region, the baryon chemical
potential is not. This is evident in a comparison of the top
left (hadronic phase) to the top right (quark phase) panel of
Fig. 1. The difference stems from the fact that the baryon
chemical potential is calculated from the free energy using
the charged chemical potential, which is different on either
side of the phase transition (the reason for which will be
discussed in the following). In addition, when comparing
the top left panel with the bottom one, we find a reasonable
difference for all cases corresponding to μB ≠ μ̃ in Eq. (20),
that is, for all YQ other than 0 and 0.5 (when μQ ¼ 0).
The difference is much smaller between the top right

panel of Fig. 1 and the bottom one, as the charged chemical
potential μQ is always small in the quark phase. This has
already been shown in Fig. 3 of Ref. [83] for the particular
case of chemically equilibrated matter (with and without
trapped neutrinos). Here, we extend this discussion to
matter out of chemical equilibrium. A comparison of the
left and right panels of Fig. 2 demonstrates that the
hadronic-phase side reaches much larger absolute values
of μQ than the quark phase for small charge fractions
(corresponding to the more negative μQ’s). This can be
easily understood in the case of zero temperature. In this
case, YQ ¼ 0means having only neutrons, which requires a
very large difference between their chemical potential and
the proton one (that differ only by μQ, as shown in the
equations of Appendix A). In the quark phase at zero
temperature, YQ ¼ 0 implies having twice the amount of
d-quarks than u-quarks, a much more balanced case that
requires a smaller μi difference and, therefore, a smaller μQ
absolute value.
In the case of Fig. 2 (unlike Fig. 1), the bottom panels are

always different from each other. This happens because
the charged chemical potential itself is discontinuous across
the first-order phase transition. Analyzing separately the
hadronic-phase (left) side of the coexistence region in
Fig. 2, it can be seen that the curves in the top and bottom
panels are always different, except on the upper and lower
boundaries of μQ.
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We show phase diagrams as functions of charge fraction
because this is common practice in astrophysics, where the
requirement of charge neutrality implies YQ ¼ Yelectron.
There is no corresponding general equality for the electron
chemical potential: the relation μQ ¼ −μelectron is only valid
in the special case of chemical equilibrium, which is only
established in deleptonized cold neutron stars.
Similar figures to Figs. 1 and 2 are presented in

Appendix B for the equivalent scenario of fixed isospin
fraction. For nonstrange matter, Eq. (10) reduces simply to
YI ¼ YQ − 0.5 and, therefore, the changes in both figures
are trivial. More details are given in Appendix B.

B. Strange matter YS ≠ 0

In this subsection,we compactify the temperature and only
show results for T ¼ 0 MeV and T ¼ 160 MeV (corre-
sponding to the two temperature extremes in our previous

figures) in order to make comparisons. Full 3-dimensional
phase diagrams with net strangeness are available upon
request. In addition to quantities shown in the preceding
subsection (for matter with net strangeness constrained to
zero) using the same colors, we now display strange matter
results in black for comparison. By strange matter, we mean
matter in which there is no constraint on net strangeness and
therefore, no strange chemical potential (μS ¼ 0). ForT ¼ 0,
no significant difference in the position of the deconfinement
phase-transition coexistence line with respect to the baryon
chemical potential or free energy is expected due to allowing
for nonzero strangeness. This is because, in this case, in our
model, only a few Λ’s and Σ−’s are present around the
deconfinement free energy (and no strange quarks) and only
at small charge fractions. This is illustrated in the difference
between the solid brown line and the solid black line in the
upper left panel of Fig. 3. The strange solid black line being at

FIG. 1. Top panels: the temperature T vs baryon chemical potential μB vs charge fraction YQ phase diagram for nonstrange matter
YS ¼ 0 on the hadronic-phase side of the deconfinement phase transition coexistence region (left panel) and on the quark-phase side
(right panel). Bottom panel: the temperature T vs free energy μ̃ vs charge fraction YQ phase diagram for nonstrange matter either on the
hadronic or quark-phase side of the deconfinement phase transition coexistence region. All curves were calculated varying the charge
fraction between YQ ¼ 0 and YQ ¼ 0.5.
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a larger μ̃ than the nonstrange brown dashed line is a
consequence of the hyperons softening hadronic matter
when they appear (for low charge fraction) and pushing
the phase transition coexistence line to larger values of μ̃.
The difference due to strangeness in the position of the

coexistence linewith respect to the baryon chemical potential
is related to the presence of strange particles, which modify
the charged chemical potential relative to the zero-strange-
ness case (Eq. (13) reduces oncemore toEq. (20) forμS ¼ 0).
As a consequence, as shown in the greenvs black stars still in
the upper left panel of Fig. 3, μB on the hadronic-phase side is
lower around intermediate charge fractions for the strange
case. This is a combination of μQ being lower in absolute
value for low and intermediate values of YQ for strange
matter (see different color stars in the bottom left panel of
Fig. 3) and the fact that μQ ismultiplied byYQ in Eq. (20). As
for the quark-phase side of the phase transition coexistence
line, μQ is always small in absolute value (different color
dotted-dashed lines in bottom left panel of Fig. 3), so μB
behaves very similarly to μ̃ in strange (as well as in

nonstrange matter), as seen when comparing black and
red dot-dashed and solid lines in the top left panel of Fig. 3.
For large temperatures, strangeness generates much

larger effects and the first-order phase transition itself is
very weak (particularly for the case without net strange-
ness), becoming very similar to a crossover. The large
effects translate into a significant difference in the position
of the black vs colored lines in the top right panel of Fig. 3:
the strange black solid line for μ̃ resides about 40 MeV
higher than the nonstrange dashed pink one. For T ¼ 0, this
difference is ≲5 MeV. This large shift is a consequence of
the fact that, at large temperatures, the presence of
strangeness-carrying particles is enhanced at all charge
fractions, but now softening more the quark equation of
state (relative to the hadronic one) around deconfinement.
As a consequence, strangeness pushes the free energy to
larger values.
To discuss the baryon chemical potential, we first note

that at this large temperature, which is very close to the
critical point, the hadronic-phase and quark-phase sides
of the deconfinement phase transition are nearly identical.

FIG. 2. Same as Fig. 1 but showing the charged chemical potential μQ. The separate bottom panels show the hadronic phase (left
panel) and quark phase (right panel) sides of the deconfinement phase transition coexistence region.
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FIG. 3. Equivalent to Fig. 1 (top panels) and Fig. 2 (bottom panels) but only showing results along the deconfinement coexistence line
for 0 (left panels) and 160 MeV (right panels) temperatures. Green, red and brown lines (all grey in black and white print) show results
already discussed for nonstrange matter, while black lines show new results for strange matter.

FIG. 4. Same as the top panels of Fig. 3 but showing the isospin fraction YI . Equivalent isospin chemical potential panels would be
exactly like the charged chemical potential bottom panels of Fig. 3.
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The difference in the position of μB with respect to μ̃ has to
do with the fact that, once again, the charged chemical
potential difference also needs to be accounted for. When
looking at the black stars and dot-dashed line still in the
upper right panel of Fig. 3, we find that they are lower in
comparison to the solid line for μ̃ (than in the colored
nonstrange case). This has to do with the fact that μQ is
lower in absolute value and even positive for some large
charge fractions when strangeness is included (see all black
lines in the right bottom panel of Fig. 3).
Figure 4 shows the effects of strangeness on the baryon

chemical potential and free energy as a function of the
isospin fraction YI. Now, when net strangeness is nonzero
(black curves), the left panel in this figure is not simply a
constant horizontal shift from the YQ axis shown in the top
left panel of the previous figure, but a shift that, according
to Eq. (10), depends on the strangeness fraction and,
therefore, is different for every point. The horizontal shift
is always positive and larger for low YI=YQ at zero
temperature, where there is more net strangeness. At
T ¼ 160 MeV, the black lines in the right panel of
Fig. 4 show that the horizontal shift (with respect to the
upper-right panel of the previous figure) is always positive
and substantial for all YI=YQ, as, in this case, net strange-
ness is always present.
Note that in Fig. 4 we do not show bottom panels for

isospin chemical potential, as they would be identical to the
charged chemical potential bottom panels of Fig. 3. In
addition, if instead of using Eq. (10) to calculate YI , we
had rewritten our numerical code to run for fixed isospin
fraction from −0.5 to 0, we would have obtained the same
results as shown in Fig. 4 but with an extra piece on the left
and amissing piece on the right side of our finite temperature
panel, a consequence again of the nontrivial YQ to YI shift.

IV. DISCUSSION AND CONCLUSIONS

We present, for the first time, a comprehensive study of
the effects of fixing and varying either the (hadronic and
quark) charge fraction or isospin fraction on the position of
the deconfinement to quark matter coexistence line. To do
so, we assume the deconfinement phase transition to be of
first order and make use of the Chiral Mean Field (CMF)
model to produce our equations of state. We start by
obtaining model-independent relations among charge and
isospin fractions including how they are affected by the
presence of net strangeness. We also show the relation
between the isospin and charge chemical potentials and free
energies. We then use these relations to draw 3-dimensional
high-energy phase diagrams showing phase-transition
coexistence regions for the CMF model. This discussion
is extremely timely as, historically, the heavy-ion collision
community has modeled their systems in terms of fixed
isospin fraction, while the astrophysical community has
modeled it in terms of charge fraction (equal to the electron

fraction when muons are not included), whereas now these
communities are working together to understand the hot
and dense matter generated in neutron star mergers and in
low energy heavy-ion collisions and need to have their
findings compared. We provided here this tool.
Our goal in this work has been to obtain a qualitative

description of how a given fixed charge fraction or isospin
fraction changes the position of the deconfinement coex-
istence line (for a given temperature) to larger or lower
baryon chemical potential or Gibbs free energy per baryon.
To that end, we have built 3-dimensional phase diagrams
for matter that possesses no net strangeness, the kind of
matter created in particle colliders like RHIC and LHC. We
have also determined the ranges that can be probed (given
specific initial conditions of temperature and strangeness)
for charge and isospin chemical potentials during decon-
finement along the phase-transition coexistence line.
Unlike quark matter produced in the lab, quark matter
created inside stars can be strange, as the time frame for its
creation is much longer than the time frame for weak decay.
To discuss the effects of net strangeness on deconfinement to
quark matter, we have constructed 2-dimensional phase
diagrams at two chosen temperatures of T ¼ 0 and
T ¼ 160 MeV. In the former case, very little strangeness
is created and, therefore, its effects are minimal. In the latter,
the consequences of nonzero strangeness are significant.
For example, when the charge fraction changes from

YQ ¼ 0 → 0.5, the baryon chemical potential at the decon-
finement coexistence line can change by up to 130 MeV (at
zero temperature on the hadronic side), the free energy by
up to 50 MeV (at zero temperature), and the charge/isospin
chemical potential by up to 330 MeV (at zero temperature
on the hadronic side). At zero temperature, we have found
that, for nonstrange matter (YS ¼ 0), the charged and
isospin chemical potentials μQ and μI cover a range from
−420 to 0 MeV following the deconfinement coexistence
line, reaching more negative values on the hadronic-phase
side of the phase transition. For the strange case YS ≠ 0, the
corresponding range is−320 to 0 MeV, once again reaching
more negative values on the hadronic-phase side of the
phase transition. On the quark-phase side of the phase
transition, μQ and μI lie between −75 and 0 MeV. At large
temperatures close to the critical point, μQ and μI become
practically the same on the hadronic and the quark sides
and have intermediate values for YS ¼ 0 ranging from
−110 to 0 MeV. Finally, when strangeness is allowed, μQ
and μI at large temperature become less negative and even
positive, reaching ∼50 MeV (all values calculated follow-
ing the deconfinement coexistence line).
Our results show that comparisons among results from

heavy-ion collision and hot astrophysical scenarios con-
cerning the position of the deconfinement phase transition
have to be interpreted carefully. Their different character-
istics i.e., in charge fraction going from YQ ∼ 0.4–0.5 to
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YQ ∼ 0.1–0.15 can change considerably (by hundreds of
MeV in chemical potentials for a given temperature) the
position of the deconfinement phase-transition coexistence
line. Also, when strangeness is included, the commonly
discussed equivalence between YQ ¼ 0.5 and YI ¼ 0 is
broken and in reality correspond to very different systems.
Note that the formulas presented in Sec. II B, concerning

the relation between charge and isospin fractions and
respective chemical potentials are independent of any
chosen microscopic model to describe different phases.
Concerning our quantitative results extracted from phase
diagrams, they are model dependent, as the equation of
state in each phase depends on the particle population
included and particle couplings, both of which are hard to
quantify. Nevertheless, at zero temperature, the amount of
hyperons and strange quarks allowed in models used to
describe neutron stars, as well as how isospin/charge
fractions modify the equation of state are to some extent
constrained by several laboratory and astrophysical obser-
vations, among which we list the symmetry energy, its
slope, and the hyperon optical potentials.
More specifically, on one hand, hyperons cannot appear

at very low densities due to their massive character and
(together with protons) cannot appear in a very large
number, while keeping matter from being too soft (and
unable to generate massive stars) and preventing stars from
cooling too fast [96]. On the other hand, there are no
indications that quarks appear close to saturation for isospin
symmetric matter, but they also cannot appear too late,
beyond densities in which hadrons are expected to overlap.
Finally, the strange quarks usually appear at larger densities
than the light ones. The uncertainty included in our
calculations at finite temperature is larger, as it becomes
harder to find observables to fit effective models at large
densities. In this case, we rely on comparisons with
perturbative QCD to test our model [83]. That being said,
our results concerning the dependence of the position of the
deconfinement phase transition on charge/isospin fraction
is only due to the stiffening/softening of the hadronic/quark
equations of state when different particles appear and Fermi
levels are occupied by a different amount, which strongly
depends on the particles’ quantum numbers. As a result of
the fractional nature of the quark quantum numbers, quark
matter is not as sensitive to (small) YQ as hadronic matter.
As a consequence, quark matter does not respond as much
for a given change in YQ. In this sense, the effective model
used to produce our results is only a tool fitted to reproduce
a reasonable particle population at each density/temper-
ature/charge or isospin fraction.
As a final note, it is known that systems that undergo a

first-order phase transition between phases in which more
than one charge is globally conserved are noncongruent
and present extended mixtures of phases. These cases show
no discontinuities in the first derivatives of the potential
[97]. An example is the case we discuss in this work, where

charge or isospin is conserved in addition to baryon
number. An exception takes place when the charge or
isospin fractions are YQ ¼ 0.5 or YI ¼ 0, implying that the
respective chemical potentials are zero (for an extended
discussion on this azeotropic behavior, see Sec. II of
Ref. [92]). Another exception takes place when the surface
tension between the phases is too large and electric charge
is conserved locally instead of globally. For this work, we
assume the latter and, therefore, avoid the discussion of a
mixture of phases. But, even if that had not been the case,
and we had chosen to describe a mixture of phases, its
position would had varied with respect to the free-energy or
baryon chemical potential when changing the charge or
isospin fraction, as the region with the mixture of phases
always encompasses the forced-congruent (no-mixture)
coexistence line.
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APPENDIX A: CHEMICAL POTENTIALS

The chemical potentials of the various baryon and quark
species are obtained using the appropriate values from
Table I in conjunction with Eq. (5):

TABLE I. Baryon number QB, electric charge Q, strangeness
QS, and isospinQI quantum numbers for the baryon octet and the
three light quarks. Antiparticles carry opposite signs.

Particle QB Q QS QI

p 1 1 0 1=2
n 1 0 0 −1=2
Λ 1 0 1 0
Σþ 1 1 1 1
Σ0 1 0 1 0
Σ− 1 −1 1 −1
Ξ0 1 0 2 −3=2
Ξ− 1 −1 2 −1=2
u 1=3 2=3 0 1=2
d 1=3 −1=3 0 −1=2
s 1=3 −1=3 1 0
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μp ¼ μB þ μQ;

μn ¼ μB;

μΛ ¼ μB þ μS;

μþΣ ¼ μB þ μQ þ μS;

μ0Σ ¼ μB þ μS;

μ−Σ ¼ μB − μQ þ μS;

μ0Ξ ¼ μB þ 2μS;

μ−Ξ ¼ μB − μQ þ 2μS; ðA1Þ

μu ¼
1

3
μB þ 2

3
μQ;

μd ¼
1

3
μB −

1

3
μQ;

μs ¼
1

3
μB −

1

3
μQ þ μS: ðA2Þ

Once more, we remind the reader that we consider the
strangeness of particles to be positive in our notation.
Otherwise, all QS;i, nS, and YS would have to be multiplied

by −1. This would also reverse the sign of μS in all
equations. In the equivalent isospin formalism discussed in
Sec. II B, the chemical potentials for the different species
look the same, except for μQ being replaced by μI. This can
be obtained by replacing the values of QB;i, QI;i and QS;i

for each baryonic or quark species in Eq. (11).

APPENDIX B: FIXED ISOSPIN FRACTION

To extend the discussion of Sec. III A to the equivalent
isospin formalism, we present Figs. 5 and 6, where we plot
phase diagrams in terms of the isospin fraction YI and
isospin chemical potential μI (as opposed to the earlier YQ

and μQ). Since for nonstrange matter Eq. (10) reduces
simply to YI ¼ YQ − 0.5, Fig. 5 is very similar to Fig. 1,
only differing by the 0.5 shift in the YI axis.
Fig. 6 is exactly like Fig. 2, which is a consequence of

the middle term being the same in Eq. (13) and Eq. (16) in
order to reproduce the same particle chemical potential
expressions of Appendix A. All of the statements made in
this Appendix and at the end of Sec. III B were verified
numerically by rewriting our numerical code to run for
fixed isospin fractions.

FIG. 5. Same as Fig. 1 but showing the isospin charge fraction YI .
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