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We present a simple and intuitive description of both, Schwinger effect and false vacuum decay through
bubble nucleation, as tunneling problems in one-dimensional relativistic quantum mechanics. Both
problems can be described by an effective potential that depends on a single variable of dimension length,
which measures the separation of the particles in the Schwinger pair, or the radius of a bubble for the
vacuum decay. We show that both problems can be described as tunneling in one-dimensional quantum
mechanics if one interprets this variable as the position of a relativistic particle with a suitably defined
effective mass. The same bounce solution can be used to obtain reliable order of magnitude estimates for
the rates of Schwinger pair production and false vacuum decay.
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I. INTRODUCTION

Schwinger effect [1] and phase transitions through
bubble nucleation [2–5] are both nonperturbative effects
in which a metastable state decays into an energetically
favorable configuration. In the case of Schwinger effect
(see Ref. [6] for a review), the metastable state is a very
strong static electric field that decays through spontaneous
production of electron-positron pairs [1,7,8]. Phase tran-
sitions can be modeled in scalar quantum field theory as the
decay of a metastable state known as “false vacuum,”where
the scalar field represents an order parameter for the
transition.
In both problems, there is potential energy UðxÞ that can

be characterized by a single variable x of dimension length,
which measures the separation of the particles in the
Schwinger pair or the radius of a bubble for the vacuum
decay. The strong electric field in empty space and the false
vacuum can both be identified with local minima in UðxÞ
at x ¼ 0, and in both problems there is a critical distance
xc > 0 with UðxcÞ ¼ Uð0Þ beyond which the potential
energy is smaller than Uð0Þ. For the Schwinger pair, this
occurs because the rest masses of the electron-positron pair
are overcompensated by their potential energy in the
external field for x > xc. False vacuum decay occurs when

the bubble radius is large enough that the volume-dependent
energy difference between the two phases exceeds the
surface-dependent energy needed to form the bubble wall.
The decay of the metastable states can then be viewed as a
quantum-mechanical tunneling from x ¼ 0 to x ¼ xc, and as
usual for tunneling, the decay rate per unit volume is
exponentially suppressed. It is common to express this
rate as

Γ=V ¼ Ae−B; ð1Þ

where the coefficientB is approximately a polynomial in the
coupling constants in the theory, reflecting the nonperturba-
tive nature of the decay. In the present work, we adopt a very
simple picture and show that we can correctly reproduce the
known expression for B and obtain an order of magnitude A
in both problems by mapping them onto the tunneling of a
relativistic particle in one-dimensional quantum mechanics.
Here x is interpreted as the position of the particle, and the
potential energy UðxÞ has to be complemented by a kinetic
energy with a suitably defined effective mass. In this picture,
the same bounce solution can be used to compute B in both
problems. This makes the analogy between these two
phenomena very explicit.
Before deriving our results, we briefly recollect some of

the main results from previous computations that we
compare to in Sec. II A. In Sec. II B, we show that
Schwinger effect can be studied as quantum-mechanical
tunneling for a relativistic particle. In Sec. III, we show that
this picture on Schwinger effect is analogous to false
vacuum decay in the thin-wall regime. Section IV is left
for conclusions and discussions. To be self-contained, a
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brief review of the Callan-Coleman method on quantum
tunneling is given in the Appendix.

II. A SIMPLE MODEL FOR SCHWINGER EFFECT

A. Schwinger effect in other approaches

The original derivation of Schwinger effect was given in
quantum electrodynamics (QED) and based on a calcu-
lation of the vacuum to vacuum transition (or vacuum
persistence) amplitude in the presence of an external static
electric field. This amounts to computing the QED effective
action whose imaginary part can be related to the decay of
the vacuum.1 The widely used tool for this computation is
the Schwinger proper time method [1]. Inspired by string
theory, a similar method to Schwinger proper time, called
the worldline formalism, has been applied to the study of
Schwinger effect in inhomogeneous external fields [9,10].
Schwinger effect can also be studied in the canonical way.
In the time-dependent gauge for the electromagnetic
potential, one studies the Bogolyubov transformation
[11] between the in-modes and out-modes in the presence
of a time-dependent external electromagnetic potential
[12–19]. Setting the in-state to be the vacuum, the neg-
ative-frequency coefficient in the Bogolyubov transforma-
tion gives the number of the produced particles in the out-
state. This method can also be used to study Schwinger
effect in non-Abelian gauge theories [20,21].
The rate of pair production in all approaches is con-

sistently determined to be proportional to expð−πm2=qEÞ.
The nonanalytic dependence on the coupling q indicates
the nonperturbative nature of this effect. For comparison,
the pair production rate was directly computed by Nikishov
[22] and is given as

Γ ¼ ðqEÞ2
4π3

e−πm
2=qE; ð2Þ

where m and q are the positron mass and charge, respec-
tively. E is the magnitude of the static electric field. One
may also consider the simpler 1þ 1-dimensional problem
where the pair production rate is

Γ ¼ qE
2π

e−πm
2=qE: ð3Þ

The tunneling interpretation on the basis of a potential
energy and the analogy between both problems are of
course well known. As was first pointed out by Brezin and
Itzykson [12], the exponential dependence in the pair

production rate is reminiscent of quantum-tunneling sup-
pression. This is usually illustrated with the qualitative
picture of Dirac sea, where a negative-frequency state
tunnels to a positive-frequency state, leading to pair
production. The tunneling analogy has also been used to
estimate thermal corrections to Schwinger effect [23] and in
the context of the Dirac-Born-Infeld brane tunneling
[24,25]. In Refs. [26–28], the authors use Schwinger effect
to study conceptual subtleties appearing in bubble nucle-
ation. A quantitative implementation of the tunneling
picture perhaps comes from the canonical method in the
space-dependent gauge. In this case, because the electro-
magnetic potential is time independent, one instead ends up
with a static Schrödinger-like equation with a potential
barrier from Klein-Gordon equation (in scalar QED) or
Dirac equation. With certain assumptions for the interpre-
tations of the incoming and outgoing waves, one can
recover the pair production rate or the Schwinger formula
for the vacuum decay rate [22,29–33]. Our analysis differs
from this approach because it relies on neither the Klein-
Gordon nor the Dirac equation.

B. Schwinger effect as quantum-mechanical tunneling

From a quantum physics viewpoint, very strong electric
fields represent an unstable state that must decay to the true
ground state. Schwinger pair production is the dominant
process that drives this decay.2 We now derive the pair
production rate in the effective quantum-mechanical-
tunneling picture as described in the Introduction. We start
with the simpler 1þ 1-dimensional Schwinger effect. Let
the positions of the positron and the electron be x1 and x2,
respectively. Then the classical energy for a particle pair is

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x21

p þ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x22

p − qEðx1 − x2Þ; ð4Þ

with _xi ¼ ∂txi, and we have neglected the Coulomb force
between the two particles. Choosing the frame of mass
center with x1 ¼ X þ x and x2 ¼ X − x, we obtain

E ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

p − 2qEx: ð5Þ

To study the tunneling problem, let us first look at the
energy for a particle pair at rest which is ŨeffðxÞ ¼
2m − 2qEx. To take into account the fact that there are
no particles initially, we modify the potential as UeffðxÞ ¼
ŨeffðxÞ − 2mδ̃ðxÞwhere δ̃ðxÞ equals one for x ¼ 0 and zero
otherwise so that Ueffðx ¼ 0Þ ¼ 0. For x ≠ 0, there is

1Here the vacuum denotes the QED vacuum in the presence of
an external classical electric field. If backreaction is taken into
account, this corresponds to the decay of the electric field, which
could, e.g., be described by treating the field as a quantum object.
We shall distinguish this phenomenon from false vacuum decay
where we have multiple vacua in the absence of any external field.

2In many works in the literature, the vacuum decay rate and
pair production rate are identified with each other, while in fact
the latter is simply the leading contribution to the former.
Processes with more particles in the final state give subdominant
contributions [34].
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another point xc ≡m=ðqEÞ at which the potential is zero,
i.e., UeffðxcÞ ¼ 0. For 0 < x < xc, energy conservation
cannot be satisfied. Schwinger effect can be described
by the quantum tunneling of a relativistic particle from x ¼
x0 ¼ 0 to x ¼ xc. Equation (5) can be written as

_x2 ¼ 1 − ðx=xc þ E=ð2mÞÞ−2: ð6Þ

The Hamiltonian corresponding to Eq. (5) can be
obtained from the following action:

S ¼
Z

dt½−2m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

p
þ 2qExþ 2mδ̃ðxÞ�; ð7Þ

where 2mδ̃ðxÞ has been included such that the energy
vanishes for x ¼ 0. This term does not affect the dynamics
whenever x ≠ 0. In principle, tunneling through arbitrarily
shaped barriers in quantum mechanics can be described in
terms of wave mechanics. However, the kinetic term in the
action (7) is not canonical, so that known solutions of
the Schrödinger cannot be used. We therefore resort to the
principle of minimal action to compute the pair production
rate Γ, taking advantage of the fact that the path integral for
quantum mechanical amplitudes is dominated by trajecto-
ries near the classical solution. In the case of tunneling, this
is somewhat problematic because there are no classical
trajectories, which can directly be verified by noticing that
(6) has no real solutions starting at x ¼ 0 for E < 2m; for
the case E ¼ 0 under consideration here, valid (real)
classical solutions only exist for x ≥ xc. This problem
can be circumvented by considering the analytic continu-
ation to Euclidean space t → −iτ and following the
standard Callan-Coleman method [5]. We give a brief
summary of this method in the Appendix. In this approach,
the strong field can be physically interpreted as an unstable
bound state. Its decay rate Γ can be obtained from the
imaginary part of the (approximate) eigenvalue E0 of the
Hamiltonian corresponding to the lowest bound state in the
δ̃ðxÞ-potential, which would be stable for E ¼ 0 or q ¼ 0.
This is in analogy to the “width” of unstable particles in
particle physics, where q takes the role of a coupling
constant that is responsible for the decay. A subtlety arises
due to the fact that we have ignored the center of mass
coordinate X in the action (7). We account for this by first
defining the transition rate Γ̃ for X ¼ 0, which we later
relate to the full rate Γ that takes into account the fact that
the transition can happen anywhere in space. The decay rate
Γ̃ is given as

Γ̃ ¼ −2ImE0 ¼ lim
T →∞

2

T
ImðlnZE½T �Þ; ð8Þ

with

hx0je−HT jx0i ¼
Z
xðτ¼�T Þ¼x0

Dxe−SE ≡ ZE½T �; ð9Þ

where T is the amount of Euclidean time and SE is the
Euclidean action,

SE ¼
Z

dτ

�
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dx
dτ

�
2

s
− 2qEx − 2mδ̃ðxÞ

�
: ð10Þ

jx0i is the state with the particle at x ¼ x0 ¼ 0. The path
integral is to be taken over all trajectories that begin and end
at x ¼ x0 at τ ¼ �T . Formally, this corresponds to the
Euclidean transition amplitude from x ¼ 0 to itself, but the
expression is only needed as an auxiliary tool here.
One can estimate the path integral using the method of

steepest descent. In contrast to the Minkowski space
equation (6), its analytic continuation in Euclidean space
for E ¼ 0,

�
dx
dτ

�
2

¼ −1þ x2c
x2

; ð11Þ

has, besides the trivial solution xFðτÞ≡ 0,3 an instanton
solution xBðτÞ (named as bounce) for the boundary con-
dition xðτ → �T Þ ¼ 0,4

xBðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c − τ2

q
for − xc ≤ τ ≤ xc;

xBðτÞ ¼ 0 for others: ð12Þ

The solution (12) is shown in Fig. 1. Its continuation to
Minkowski space has a simple physical interpretation: the
particle-antiparticle pair is spontaneously created at t ¼ 0
with vanishing velocity, but then accelerated due to the
electric field, and their velocity asymptotically approaches
the speed of light, cf. Fig. 1. In the Appendix, we briefly
summarize how to estimate the path integral in the
expression (8) by expanding the Euclidean path integral
around the trivial solution xFðτÞ and the bounce solution
xBðτÞ. After including the possibility of multiple sub-
sequent bounces in the so-called dilute-gas approximation,
one finally finds that the coefficient B is simply given by
the difference in the actions associated with the classical
trajectories xFðτÞ and xBðτÞ,

B ¼ SE½xB� − SE½xF� ¼ SE½xB�; ð13Þ

3The trivial solution xFðτÞ cannot be derived by Eq. (11) which
is valid only for x ≠ 0 because we have omitted the δ̃ðxÞ-term.
Including the δ̃ðxÞ-potential, we see that xFðτÞ conserves energy.

4We have assumed that, without loss of generality, the center of
the bounce is at τ ¼ 0. Further, we should note that only the real
part of xBðτÞ is physical; we have only done an analytic
continuation in the time variable.
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where we have usedUeffðx ¼ 0Þ ¼ 0. Substituting Eq. (12)
into Eq. (13) with Eq. (10), we obtain

B ¼ πm2

qE
; ð14Þ

in agreement with the results (2) and (3) derived from the
field theory.
While the exponent B in (1) can be computed from the

action along the classical trajectories (13) alone, the
prefactor A depends on quantum fluctuations. For small

(Gaussian) fluctuations, these can be obtained from a
functional Taylor expansion around the classical path,
cf. (A9), which yields the fluctuation operator

Gðτ1; τ2Þ ¼
δ2SE

δxðτ1Þδxðτ2Þ
: ð15Þ

This amounts to computing the functional determinants of
(15) evaluated for the bounce and false vacuum,
cf. Eq. (A12). This is rather involved in practice, and
instead of a rigorous computation, we obtain an estimate
based by exploiting the observation made in the original
paper [5] that there is a zero mode in the eigensystem of G
for each spacetime symmetry. The action (7) is time
translation invariant; the pair production can happen any-
time. The zero mode corresponding to the time-translation
symmetry gives a contribution T

ffiffiffiffiffiffiffiffiffiffiffi
B=2π

p
to A. The fact that

the pair creation can happen anywhere in space is not
captured by the action (7) and has to be fixed by hand by
introducing the analogous factor V

ffiffiffiffiffiffiffiffiffiffiffi
B=2π

p
,

Γ ¼
�
V

ffiffiffiffiffiffi
B
2π

r �
Γ̃: ð16Þ

In total, we have a factor VT ðB=2πÞ in Γ. The factor VT
will be canceled out by the T and V appearing in Eqs. (1)
and (8). The contributions from all other modes (including
the negative mode) are difficult to calculate; see e.g.,
Ref. [35]. By dimensional analysis, we know A has
dimension two in mass. Since the characteristic scale in
the tunneling process is xc, we thus estimate A as

A ≈
B
2π

1

x2c
¼ qE

2
: ð17Þ

Comparing with Eq. (3), we find that this gives a correct
order of magnitude estimate. The somewhat surprising
success of our very simple approach can be better under-
stood by noting that the action (7) is similar to an action that
can be derived by using the so-called Schwinger proper
time representation [36]. However, we emphasize that we
do not need the field theoretical framework on which
applications of this method to Schwinger effect are usually
based [6,9], but we could simply guess (7) from (4) based
on physical intuition.
The analysis in 3þ 1-dimensional spacetime is similar

since only the spatial direction with nonvanishing external
electric field is most relevant. The main difference is
that now we have four translation symmetries which
contribute VT ðB=2πÞ2 in ZE

B½T �, cf. (A11), where V is
now the volume for three-dimensional space. Then, we
estimate A as

xxc

xc
x

t

FIG. 1. On the upper panel displays the instanton solution xBðτÞ
in (12). The lower panel shows its analytic continuation to
Minkowski space. If can be interpreted as the creation of a
Schwinger pair that is created with separation xc at t ¼ 0. For
t > 0, the particles are accelerated by the electric field to
velocities that approach the speed of light, and the separation
x grows rapidly.
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A ≈
�
B
2π

�
2 1

x4c
¼ ðqEÞ2

4π2
: ð18Þ

A more careful comparison for A in our method and other
field-theoretical methods is left for future work.

C. Schwinger effect in spatially inhomogeneous
electric fields

Before ending this section, we note that our method can
also be generalized to cases with inhomogeneous external
fields. For example, in the 1þ 1-dimensional case, this
means that the simple function −2qEx may be replaced
by a more complicated function fðxÞ and the spatial-
translation symmetry may be broken by the external field
already. In that case, we shall study the total production rate
for a specific event instead of the rate per unit volume.
As an example for illustration, we consider a Sauter-type

electric field [7] in 1þ 1-dimensional case,

EðxÞ ¼ Esech2ðkxÞ: ð19Þ

We assume that the particle production is most efficient at
the origin x ¼ 0 because that is where the field is the
strongest. This electric field is symmetric with respect to
the origin and as a result, one expects that the particle pair is
likely nucleated with positions being at x and −x. The
energy of the system for a given separation x is obtained by
simply integrating EðxÞ over x,

E ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

p −
2qE
k

tanhðkxÞ: ð20Þ

From the above equation, one immediately knows that the
critical value of x for the nucleated pair is

tanhðkxcÞ ¼
mk
qE

¼ kxc ≡ γ: ð21Þ

In order to have real finite xc, we must require γ < 1, which
amounts to E > mk=q, i.e., there is a minimal field strength
E that is required for the effect to occur. Recalling that 1=k
in (19) characterizes the spacial extension of the region
where the electric field is present, we can also read this
condition as 1=k > xc, which simply means that there is no
pair production if the region where the field is present is
smaller than the critical distance xc.
The corresponding Euclidean action now is

SE ¼
Z

dτ

�
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dx
dτ

�
2

s
−
2qE
k

tanhðkxÞ − 2mδ̃ðxÞ
�
;

ð22Þ

and the equation of motion is

�
dx
dτ

�
2

¼ −1þ γ2

tanh2ðkxÞ ; ð23Þ

which has the same form as (11) with the replacement
x → tanhðkxÞ. The above equation has an analytic bounce
solution

xBðτÞ ¼
1

k
arcsinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − sin2 ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
kjτjÞ

1 − γ2

s !
ð24Þ

for

jτj ≤ arcsinðγÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
k

ð25Þ

and xBðτÞ ¼ 0 for others. Substituting the bounce solution
into the Euclidean action, one obtains the semiclassical
tunneling rate

B ¼ m2π

qE
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p : ð26Þ

The result (26) is physically intuitive if we interpret 1=γ ∝
1=k as a measure for the extension of the region where the
electric field is present. For γ ≪ 1, this region is much
larger than the critical distance xc, and we recover the result
(14) for a homogeneous field. This makes sense because
the function (19) is approximately constant over distance xc
near the origin. For γ > 1, the region where the field is
present is smaller than the critical distance xc, and no
tunneling happens. Note that in this regime the rate is
strictly zero and not just exponentially suppressed. In other
words, for any value of k, there exists a critical field
strength Ecrit ¼ mk=q that is needed for pair creation to
happen. For E < Ecrit, the pair creation rate vanishes, at
least within the approximations made here. This is very
different from the homogeneous field case where the pair
creation rate is nonzero even for arbitrarily small E, but
simply becomes exponentially suppressed. This difference
can be understood physically. In the homogeneous field
case, the absolute value of the potential energy in (5) is
unbound, it grows linearly with x, and always exceeds the
pairs’ rest energy 2m for sufficiently large separation. In
practice, pair creation does not happen for E ≪ πm2=q
because the distance xc that the system would have to
tunnel becomes too large, but in principle it is possible. In
contrast, for the localized field (19), the absolute value of
the potential energy in Eq. (20) is bounded from above and
cannot exceed 2qE=k. For E < Ecrit, this maximal value is
smaller than 2m.
Our result (26) is in agreement with the result given in

Ref. [9]. This shows that our simple method can be used to
treat inhomogeneous electric fields. It would further be
interesting to see whether our simple method can be further
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generalized to reproduce known results for Schwinger
effect in curved spacetime (see, e.g., [28,37–48]) or non-
Abelian fields (see, e.g., [20]). This, however, clearly goes
beyond the scope of the present paper.

III. ANALOGY WITH FALSE VACUUM DECAY

The above quantum-mechanical-tunneling picture on
Schwinger effect can be used to draw a close analogy to
false vacuum decay in quantum field theory, which can
be mapped onto a simple tunneling problem in one-
dimensional quantum mechanics in the same way. To
see it, we recall the most important aspects of false vacuum
decay in the thin-wall regime.

A. Brief review of false vacuum decay in field theory

We consider a scalar field theory with the Euclidean
action

SE ¼
Z

d4x

�
1

2
ð∂μΦÞ2 þ UðΦÞ

�
: ð27Þ

The quantum-mechanical picture thatwedevelop inSec. III B
holds for a wide class of potentials. For the sake of definite-
ness, we choose the same potential as in thework byColeman
to make connection to the known results in quantum field
theory,UðΦÞ¼−1

2
μ2Φ2þ 1

3!
gΦ3þ 1

4!
λΦ4þU0,withμ2; g; λ are

positive real parameters. UðΦÞ exhibits a metastable mini-
mum, as sketched in Fig. 2. The false and true vacua can be
understood as local minima in the energy functional asso-
ciated with different configurations of the background field
φ≡ hΦi. For simplicity, we choose the constantU0 such that
UðφþÞ ¼ 0 at the false vacuum configuration φþ. The
equation of motion for φ then reads

−ð∂2
t −∇2Þφþ U0ðφÞ ¼ 0: ð28Þ

The two configurations φþ and φ− must be spatially
homogeneous and isotropic to avoid gradient energies.
There are no classically allowed trajectories in field space

that connect them,but tunneling through thebarrier inFig. 2 is
possible at the quantum level. Using the Coleman-Callan
method, the transition can again be described by performing a
continuation to Euclidean space. The decay rate per unit
volume has the form as in Eq. (1), and the semiclassical
suppression factor is again given by

B ¼ SE½φB�; ð29Þ

where φB is the bounce. The bounce satisfies the equation of
motion (28) in Euclidean time τ and the radial coordinate r
with the boundary conditions φjτ→�∞ ¼ φþ and _φjτ¼0 ¼ 0,
where 0 and the dot denote the derivatives with respect to the
field φ and τ, respectively. For the theory we consider, it can
be shown that the bounce has Oð4Þ symmetry [4]. The
physical reason is that the false vacuum decay happens via
bubble nucleation, and spherical bubbles are for energetic
reasons themost likely configuration. Therefore, the equation
of motion can be written as

−
d2φ
dρ2

−
3

ρ

dφ
dρ

þ U0ðφÞ ¼ 0; ð30Þ

where ρ2 ¼ r2 þ τ2, with the boundary conditions φjρ→∞ ¼
φþ and dφ=dρjρ¼0 ¼ 0. As did for Schwinger effect, we will
only concern about B. For the calculations of A in false
vacuum decay, see, e.g., Refs. [5,49–56] and especially
Ref. [35] for a comparison of different methods. In the
thin-wall approximation, the damping term in Eq. (30) can be
neglected, and the solution is given by a “kink.” For case
g2=μ2 ≪ λ and φ− ≃ −φþ, one can find an analytic solution
of the form

φ ¼ φþ tanhðγðρ − RcÞÞ: ð31Þ

The kink connects the false vacuum outside of the bubble
with the true vacuum inside. γ and Rc are parameters that
depend on the details of the model and can be expressed in
terms of the parameters in the potential; see, e.g.,
Refs. [51,55]. In physical terms, Rc is the radius of a critical
bubble and 1=γ is a measure for the thickness of the
bubble wall.
We denote the energy difference between the false

vacuum and true vacuum as ϵ, i.e., ϵ ¼ UðφþÞ. Outside
the wall, the Euclidean action Boutside ¼ 0. Inside the wall,

Binside ¼ −
π2

2
R4
cϵ: ð32Þ

The region near the wall contributes

Bwall ¼ 2π2R3
c

Z
Rcþδ

Rc−δ
dρ
�
1

2

�
dφ
dρ

�
2

þUðφÞ
�

≡ 2π2R3
cσ; ð33ÞFIG. 2. The classical potential UðΦÞ for a theory with a false

vacuum.
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where δ is a large enough number compared with the
characteristic scale of the bubble-wall width and we have
defined the surface tension σ of the bubble wall.
The radius of the critical bubble Rc is given by the

stationary point of B, dB=dRc ¼ 0. We thus have Rc ¼
3σ=ϵ and the decay suppression B ¼ 27π2σ4=2ϵ3. Due to
the Oð4Þ symmetry, the bounce has the profile shown in
Fig. 1 with the replacement ðx; xcÞ → ðρ; RcÞ, where the
solid circle represents the bubble wall separating the false
vacuum and the true vacuum defined by ρ ¼ Rc. The
analytic continuation τ → it of this condition into
Minkowski space reads r2 − t2 ¼ R2

c. Solving for r yields
an expression for the radius RðtÞ of an expanding bubble
that nucleates at time t ¼ 0 with radius Rc and then
expands, RðtÞ ¼ ðR2

c þ t2Þ1=2. It can be seen in Fig. 1 with
the replacement ðx; xcÞ → ðR;RcÞ.

B. Quantum-mechanical model for false vacuum decay
and analogy to Schwinger effect

In the thin-wall regime, we can practically characterize
the energy of the kink by the bubble radius R and surface
tension σ. We approximate σ as constant and use RðtÞ as
the dynamic variable. For a static thin-wall bubble, the
energy is

UeffðRÞ ¼ 4πR2σ −
4π

3
R3ϵ; ð34Þ

where the first term comes from the surface tension and the
second term comes from the negative energy density inside
the bubble. One can view UeffðRÞ as the effective potential
for the bubble, shown in Fig. 3. If we interpret R as the
position of a particle, the transition from the false to the true
vacuum can be viewed as a quantum-mechanical-tunneling
problem in analogy to Schwinger effect in the previous
section. Bubble nucleation occurs when the volume-
dependent gain in energy due to ϵ exceeds the surface-
dependent energy due to the tension σ, i.e., for sufficiently
large bubbles. The minimal radius Rc for which this can
happen is analogous to the critical distance xc for which
pair creation becomes energetically favorable.

We model the bubble as a particle with effective mass
mðRÞ ¼ 4πR2σ in the potential (34) that initially stays at
the origin R ¼ 0 with vanishing total energy. Classically, it
is stable. However, quantum mechanically, it can tunnel to
the exit point marked as Rc in Fig. 3, followed by a motion
away from the critical radius (bubble expansion). Rc is
determined by UeffðRÞ ¼ 0, giving us Rc ¼ 3σ=ϵ, in agree-
ment with the result from the field theory. For a general
moving bubble wall, energy conservation implies

E ¼ mðRÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p −
4π

3
R3ϵ ¼ 0: ð35Þ

Note that when RðtÞ≡ 0, this equation is trivially satisfied.
When R varies from 0 to a number smaller than Rc, the lhs
of Eq. (35) is always positive and hence the conservation
law cannot be satisfied. Thus, classically, the only solution
is RðtÞ≡ 0.
For R ≠ 0, Eq. (35) reduces to

_R2 − 1þ R2
c=R2 ¼ 0; ð36Þ

taking the same form as Eq. (11). As did for Schwinger
effect, we move to the Euclidean time τ ¼ it and have

�
dR
dτ

�
2

¼ −1þ R2
c

R2
ð37Þ

with the initial conditions Rðτ¼ 0Þ¼Rc and _Rðτ¼ 0Þ¼ 0.
We then obtain the same solution as (12)

RðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
c − τ2

q
for − Rc ≤ τ ≤ Rc;

RðτÞ ¼ 0 for others; ð38Þ

which is in agreement with the result derived from the field
theory.
To obtain the decay rate, we note that Eq. (34) can be

derived from the following Minkowskian action:

S ¼
Z

dt

�
−mðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ 4π

3
R3ϵ

�
: ð39Þ

Taking t → −iτ and iS → −SE, we obtain the Euclidean
action

SE ¼
Z

dτ

�
mðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dτ

�
2

s
−
4π

3
R3ϵ

�
: ð40Þ

Substituting the Euclidean motion (38) into the above
action, one gets B ¼ 27π2σ4=ð2ϵ3Þ. One may also estimate
the prefactor A by including the contribution from the zero
modes corresponding to spacetime-translation symmetries
and dimensional analysis as we did for Schwinger effect,
obtaining

Rc
R

Ueff(R)

FIG. 3. The effective potential UeffðRÞ for the bubble wall.
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A ≈
�
B
2π

�
2 1

R4
c
: ð41Þ

Extending the model (39) beyond the thin-wall approxi-
mation may be carried out by using the functional
Schrödinger equation and reducing the infinite field
degrees of freedom to one or multiple degrees of freedom
in a proper way [57–62].

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we established an intuitive picture in which
both, pair nucleation through Schwinger effect and false
vacuum decay, can be mapped onto a quantum-mechanical
tunneling problem for a relativistic particle in one dimen-
sion. This analogy is based on the well-known facts that the
potential energy in both problems is related to a single
distance variable (the separation x between the members of
the Schwinger pair or the radius R of a nucleating bubble),
and that there exists a critical distance xc, Rc beyond which
the potential energy is lower than that of the zero distance
configuration. For Schwinger pair, xc corresponds to the
critical distance where the potential energy of the particles
in the external field exceeds their rest mass. In the case of
bubble nucleation, Rc marks the critical radius for which
the volume-dependent gain in energy exceeds the surface-
dependent cost to make a bubble. The novelty of our
approach lies in the observation that the transition rate in
both cases can be described rather accurately by interpret-
ing x or R as the position of a relativistic particle that
tunnels from x; R ¼ 0 to x; R ¼ xc; Rc if the kinetic energy
is described with a suitably defined effective mass. For the
Schwinger pair, the effective mass is simply 2m, i.e., the
actual physical mass of the pair. For the vacuum decay,
the mass of the effective particle is 4πR2σ where σ is the
surface tension of the bubble wall. This simple picture
makes the analogy between Schwinger effect and false
vacuum decay in the thin wall regime very clear. We expect
that our approach can be generalized to more complicated
situations, such as pair production in curved spacetime, or
when considering non-Abelian fields.
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APPENDIX: CALLAN-COLEMAN METHOD ON
QUANTUM TUNNELING

In this Appendix, we briefly recall the Callan-Coleman
formalism on quantum tunneling, closely following the
original work [5]. Suppose a particle initially occupies the
ground state around the local minimum at xþ shown in
Fig. 4. While being stable classically, the particle can tunnel

from local minimum xþ through the barrier to the region
around the global minimum x−. In the figure, we also
indicate the escape point p beyond which the motion of the
particle can be described by a classically allowed trajectory.
The tunneling rate can in principle be obtained by

squaring the transition amplitude

hxpje−iHT jxþi ¼
Z

DxeiS: ðA1Þ

Here H is the Hamiltonian, T is the amount of time during
the transition (typically taken to be infinity), and S is the
Minkowskian action. The path integral Dx is performed
over all trajectories that start at xþ and end at xp. A direct
calculation of the tunneling transition amplitude is difficult
because, for the boundary conditions of interest, there is no
classical solution, i.e., no stationary point in the action that
dominants the tunneling amplitude. So one cannot find a
suitable way to perform perturbative expansion for the
Minkowskian path integral.5 Fortunately, one can solve the
problem in Euclidean space, using the Callan-Coleman
method [5].
Following Callan and Coleman, we instead consider the

following Euclidean transition amplitude:

hxþje−HT jxþi ¼
Z

Dxe−SE½x� ≡ ZE½T �: ðA2Þ

Inserting in the Euclidean transition amplitude a complete
set of energy eigenstates, i.e.,

hxþje−HT jxþi ¼
X
n

e−EnT hxþjnihnjxþi; ðA3Þ

and taking the large T limit, we thus obtain

x+x
x

U(x)

p

FIG. 4. The classical potential UðxÞ in a theory with a
metastable minimum.

5It has been shown recently that one can still apply the method
of steepest descent to the Minkowskian path integral for the
quantum-tunneling problem by generalizing the contour integral
in complex analysis to path integral [35]. See Ref. [63] for a
related discussion for Schwinger effect.
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E0 ¼ − lim
T →∞

1

T
ln
�

ZE½T �
jhxþj0ij2

�
: ðA4Þ

Here j0i denotes the quantum-mechanical ground state in
the potential minimum around xþ, to be distinguished from
the position eigenstate jx0i at x ¼ 0 in Sec. II B.6 E0 has an
imaginary part which gives the decay rate as7

Γ ¼ −2ImE0 ¼ lim
T →∞

2

T
ImðlnZE½T �Þ: ðA5Þ

Here we have used the fact that the amplitude squared does
not contribute to the imaginary part. One can evaluate
Eq. (A2) through the method of steepest descent. We first
need to identify all the stationary points in the path integral,
i.e., the classical trajectories. In the Euclidean equation of
motion, the potential is flipped upside down, cf. Fig. 5. This
allows for, besides the trivial solution xFðτÞ≡ xþ ¼ const.
(which is called the false-vacuum solution in field theory),
an instanton solution, named as bounce which starts at xþ
in the infinite past τ → −∞, reaching the turning point p at
a time τ ¼ τc known as collective coordinate of the bounce
and eventually bounces back to xþ for τ → ∞, as shown in
Fig. 5. We denote the bounce solution as xBðτÞ. In addition,
there can be multiple bounce solutions that also form
stationary points. In the so-called dilute-gas approximation,
their impact on the path integral is approximated by a
combination of n subsequent bounces that are separated by
time intervals much larger than the duration of each single
bounce.
Expanding the Euclidean path integral around all the

stationary points gives

ZE½T � ¼ ZE
F½T � þ

X∞
n¼1

ZE
Bn
½T �; ðA6Þ

where the subscripts “F” and “Bn” indicate that the integral is
evaluated by expanding xðτÞ around the “false-vacuum” and
n-bounce stationary points, i.e., xðτÞ≡ xF;BðτÞ þ δxðτÞ. In
the dilute-gas approximation, the partition function ZBn

factorizes as

ZE
Bn
½T � ¼ ZE

F½T � 1
n!

�
ZE
B½T �

ZE
F½T �

�
n

; ðA7Þ

where the appearance of ZE
F½T � is due to the contribution

from the trivial configurations between any two neighboring
bounces. The factor n! is due to the symmetry when
exchanging the positions of the bounces in the n-bounce
configuration. All the terms can be recollected into an
exponential function, which eliminates the ln in (A5). One
therefore finally finds the tunneling rate

Γ ¼ lim
T →∞

2

T

����Im
�
ZE
B½T �

ZE
F½T �

�����: ðA8Þ

ZE
B is imaginary because the bounce is not a stable stationary

point but a saddle point such that there is a negative mode in
the fluctuations about the bounce. Taking the absolute value
is due to a sign ambiguitywhen extracting the imaginary part.
Expansion to second order in δxðτÞ gives the Gaussian
approximation

ZE
F;B½T � ≈

Z
Dδxe−SE½xF;B�−

1
2

R
dτ1dτ2δxðτ1ÞG½xF;B�δxðτ2Þ

≡ AF;Be−SE½xF;B�; ðA9Þ

where the quadratic fluctuation operator (15) has to be
evaluated at the false vacuum and the bounce, G½xF;B�≡
Gðτ1; τ2ÞjxF;B . From Eqs. (A8) and (A9), one can read off the
semiclassical suppression factor B ¼ SE½xB� − SE½xF� in the
rate (1).
The prefactor A in the decay rate Γ is determined by AF;B

which can be expressed as the functional determinants of
the operator (15) evaluated for fluctuations about the
bounce and false vacuum, i.e., G½xF;B�. For the “false
vacuum,” the valuation is straightforward and yields

AF ¼ ðdetG½xF�Þ−1=2: ðA10Þ

For the bounce, however, there are several subtle points.
First, the quadratic fluctuation operator evaluated at the

x+x
x

–U(x)

p

FIG. 5. The potential is upside down in Euclidean space.

6A few comments on the intuitive prescription on extracting Γ
from the imaginary part of the “energy” for the metastable state
are in place. First, the false vacuum state j0i is not an eigenstate of
the Hamiltonian and should not appear in the spectral resolution
of the identity. Second, the path integral in Eq. (A2) is apparently
real and cannot give rise to a complex E0 through Eq. (A4). The
reason why the Callan-Coleman method works out is subtle and
has been carefully explained recently in Ref. [35].

7As noted in Ref. [35], this formula describes the tunneling
from the false ground state around xþ to all possible final states so
that the exit point of the tunneling is not necessarily xp. However,
the tunneling from xþ to xp is the dominated process and this
subtle difference is usually neglected.
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bounce has a negative mode that originates from an
unstable direction in (A9). The physical origin is the fact
that the state j0i in Eq. (A3) is metastable, and this negative
eigenvalue is the very reason why the imaginary part of E0

in (A8) is nonzero. Practically, this implies that the integral
in (A9) has to be solved by analytic continuation and the
method of steepest descent to obtain a finite result.
Second, except for the negative mode, the quadratic

fluctuation operator evaluated at the bounce also has zero
modes. These can be related to symmetries in the action
that are spontaneously broken by the bounce solution. For
example, the theories under consideration here are time-
translation invariant. This invariance is broken by the
bounce solution that occurs at a specific time τc, which
we took to be zero before. An infinitesimal shift of τc in
xBðτ − τcÞ gives a different solution xBðτ − τc − δτcÞ. On
the other hand, δxðτÞ≡ xBðτ − τc − δτcÞ − xBðτ − τcÞ can
be viewed as an infinitesimal fluctuation about the par-
ticular bounce xBðτ − τcÞ. Since the action has time-
translation symmetry, both solutions give the same classical
action; δxðτÞ therefore generates a flat direction in the
fluctuations about xBðτ − τcÞ and incurs a zero mode for
the corresponding fluctuation operator. The integral over
the zero modes can be traded for that over the collective

coordinates with a Jacobian factor
ffiffiffiffiffiffiffiffiffiffiffi
B=2π

p
for each zero

mode. For instance, in the example at hand, the zero mode
corresponding to the time-translation symmetry gives a
contribution T

ffiffiffiffiffiffiffiffiffiffiffi
B=2π

p
. Each spatial dimension yields a

similar factor, where T is replaced by the extension of
spatial dimension. In a dþ 1-dimensional spacetime, this
yields the overall factor8

VT ð
ffiffiffiffiffiffiffiffiffiffiffi
B=2π

p
Þdþ1; ðA11Þ

where V represents the volume of d-dimensional space. Γ is
then given by

Γ ¼
ffiffiffiffiffiffi
B
2π

r ���� det0G½xB�detG½xF�
����−1=2e−B; ðA12Þ

where a prime on det indicates that the zero modes should
be excluded when evaluating the functional determinant.
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