
 

Loop spin effects in intense background fields
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Radiative and nonradiative electron spin-flip probabilities are analyzed in both plane wave and focused
laser backgrounds. We provide a simple and physically transparent description of spin dynamics in plane
waves, and demonstrate that there exists a kinematic regime in which the usual leading-order perturbative
hierarchy of quantum electrodynamics is reversed, and nonradiative loop effects dominate over radiative
tree-level spin flips. We show that while this loop dominance becomes suppressed in focused laser pulses
due to a high sensitivity to field geometry, there is nevertheless a regime in which, in principle, loop effects
on spin transitions can be discerned.

DOI: 10.1103/PhysRevD.102.076013

I. INTRODUCTION

Intense laser experiments have begun to probe the
nonlinear quantum regime of light-matter interactions
[1,2]. As such, interest has grown in how to properly
account for quantum spin effects in strong background
fields, in particular within the framework of extended
particle-in-cell (PIC) codes which underlie the analysis
of intense laser experiments [3–5].
Radiative spin flip in photon emission from an electron

in a laser background through nonlinear Compton scatter-
ing [6,7] has been studied in a constant crossed field [8–10]
and in pulses [11–15], for which a comprehensive density
matrix formalism has also been developed [16]. Using the
locally constant field approximation (LCFA) [8], this
radiative spin flip has been included in numerical schemes
[17–19]. However, the spin can also change in a non-
radiative way, through quantum loop effects [20–22]. (See
[23–30], also [31–34], for investigations of higher loop
orders in strong fields, which has recently seen renewed
interest.) It has been suggested to include nonradiative spin
changes in numerical codes, using the Bargmann-Michel-
Telegdi (BMT) equation [35–37]. However, a generalized
BMT equation could in principle include both nonradiative
and radiative processes [38], as it comes from an expect-
ation value. In order to have a consistent approach which
avoids e.g., double-counting, it is important to have a clear

understanding of the role of radiative and nonradiative
processes in spin dynamics, especially given the known
difficulties of closely related topics [39].
In this paper we compare radiative and nonradiative spin-

flip probabilities in strong background fields. In Sec. II we
first make clear that, in the absence of emissions or loop
effects, a plane wave background cannot change the spin
state of an electron. From this we clarify the interpretation
of the leading-order BMT equation in a plane wave back-
ground.We then show in Sec. III that, for plane waves, even
though the nonradiative loop effect due to spin flip isOðα2Þ
and spin flip due to radiative effects OðαÞ, there is a
kinematic regime where the leading-order perturbative
hierarchy is reversed, and the loop effect dominates over
tree-level effects.
Various mechanisms to extend our results to realistic

focused pulses are discussed in Sec. IV. We identify a new
shortcoming of the commonly used locally constant field
approximation, and analyze the extent to which the “full”
BMT equation can be used to model the nonradiative spin
flip. This investigation allows us to consider the spin flip in
focused Gaussian pulses in Sec. V. We find that while the
loop dominance of the plane wave case does not extend to
realistic beams, due to focusing effects breaking the
symmetry of a plane wave and allowing spin-flipping to
occur at theOðα0Þ level, show that despite this, the effect of
the loop can still be accessed, in principle, through tail-on
collisions of electrons with laser pulses, in contrast to the
commonly considered head-on geometry. We conclude
in Sec. VI.

A. Notation and conventions

Initially we model the laser as a plane wave, thus
depending on the lightlike direction n · x where n2 ¼ 0.
We can always choose n · x ¼ t − z≡ x−, which is a
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natural choice of “lightfront” time direction [40–43]. The
remaining directions are xþ ¼ tþ z and x⊥ ¼ ðx1; x2Þ. For
momenta we define p� ¼ ðp0 � p3Þ=2 and p⊥ ¼ ðp1; p2Þ.
The plane wave itself is described by the potential
aμðx−Þ ¼ δ⊥μ a⊥ðx−Þ in which the two components of a⊥
are the x−–integrals, starting from x− ¼ −∞ of the wave’s
two electric field components; this aids the physical
interpretation [44].

II. ELECTRON SPIN IN LASER FIELDS

Spin in intense laser-matter interactions is commonly
considered “classically” [35,36] through the BMT equation
[45] which describes the evolution of the spin vector.
However, spin is a purely quantum effect, and we will see
that the clearest physical understanding of spin in a laser
background ultimately comes from considering the quan-
tum theory. In order to maintain contact with both
approaches, though, we will here develop the classical
and quantum descriptions somewhat in parallel.

A. Lightfront helicity

An electron has, as well as its momentum pμ, a spin,
which can be expressed in terms of a linear combination of
two spin states. For particles at rest, these are eigenstates of
the spin operator in a chosen direction, with eigenvalues�1
(or “spin up” and “spin down”). There are many possible
choices of basis.
The associated covariant spin vector sμ obeys the two

conditions s · p ¼ 0 and s · s ¼ −1. Therefore sμ has two
degrees of freedom, which corresponds to there being two
independent spin states. There are many choices of sμ.
While all choices agree on what, say, “spin up in the
z-direction” is for particles at rest, there are ambiguities for
particles in motion because there are several inequivalent
ways to boost to the same momentum.
It is helpful to choose a particular basis of states and

corresponding sμ which makes calculations simple, and
makes the physics manifest both in vacuum and in a plane
wave background. The following simple argument moti-
vates our choice. The only vectors available from which we
can construct sμ are pμ and the propagation direction of the
plane wave, nμ. Taking a linear combination of these, one
easily finds that

sμ ¼ � 1

m

�
pμ −

m2

n:p
nμ
�

ð1Þ

satisfies the two required conditions s · p ¼ 0 and s2 ¼ −1.
For a particle at rest, these vectors are sμ → �ð0; 0; 0; 1Þ,
which is just spin up or spin down in the z-direction.
Writing p≡ ðp−; p⊥Þ for the three lightfront “spatial”

components of momentum, we observe that s ∝ p, similar
to the usual (Jacob-Wick) definition of helicity [46], where
one would have s ∝ p for the Cartesian vector components.

This choice of sμ is exactly that of “lightfront helicity” used
in lightfront field theory [41,42,47], where nμ arises
through the choice of time direction. Lightfront helicity
states have the special property that the helicity, call it σ, is
equal to the expectation value of the spin in the z-direction,
σ ¼ �1, in all Lorentz frames, so that we may talk of spin
and helicity interchangeably. For a thorough discussion
see [47].
The two spin states of the electron are represented by two

spinors, upσ. Define the Pauli-Lubanski (pseudovector)
operator [48] by

Wμ ≔ −
1

2
ϵμνζρPνMζρ; ð2Þ

where, in the spinor representation,Mζρ ¼ ði=4Þ½γζ; γρ� and
P → p, the momentum of the state. The corresponding
classical spin vectors are just the expectation values of the
Pauli-Lubanski operator in the two spin states:

sμ ¼ −
2

m
hp; σjWμjp; σi
hp; σjp; σi : ð3Þ

We want the states corresponding to lightfront helicity.
These are the eigenstates of Wμ contracted with the spin
vector ([48], Sec. 2.2). Write hμp for the positive sign
solution to (1), where subscript p reminds us that the
electron has momentum pμ. Defining Lp ≡ 2hp ·W=m,
our states obey

Lpupσ ¼
1

m
γ5=hppupσ ¼ σupσ: ð4Þ

Their explicit forms are given in Appendix. In terms of the
u-spinors, (3) becomes

−
1

m2
ūpσWμupσ ¼ �hμp: ð5Þ

The usefulness of the lightfront helicity basis becomes clear
when we turn to the properties of electron spin in an
external plane wave. Here the spin structure of electron
states, as described by the Volkov solutions [49], changes
from upσ to

uπσðx−Þ ≔
�
1þ =n=aðx−Þ

2n:p

�
upσ: ð6Þ

To understand the notation uπσ recall first that the time-
dependent kineticmomentum of a particle in a plane wave is

πμðx−Þ ¼ pμ − aμðx−Þ þ nμ
2aðx−Þ:p − a2ðx−Þ

2n:p
; ð7Þ

and that, by construction,=πuπσ ¼ muπσ in order for theDirac
equation to be obeyed. In other words, uπσ is the u-spinor for
on-shell momentum π. Now consider the helicity. A direct
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calculation shows that the lightfront helicity operator com-
mutes with the additional spin structure in (6):

Lπuπσ ¼
�
1þ =n=aðx−Þ

2n:p

�
Lpupσ ¼ σuπσ: ð8Þ

This means that the helicity eigenstates remain eigenstates in
the background, even though the momentum of the state
changes in time. As this is a basis, we see that the quantum
spin state of an electron cannot be changed by propagation
through a plane wave background alone.

B. The BMT equation

In light of this result, we turn to the leading order (in α)
BMT equation. Observe that even though the state of the
electron remains unchanged in a plane wave, the associated
spin vector does change [50], from hp to hπ. Using (7) we
can express hπ in terms of hp as

hμπ ≡ 1

m
πμ −

m
n:π

nμ

¼ hμp −
n · hp
n · p

aμ þ
�
a · hp
n · p

−
a2n · hp
2n · p2

�
nμ; ð9Þ

in which we have used a · hp ¼ a · p=m and n · hp ¼
n · p=m. Written as in (9), we recognize hπ as nothing
but the solution to the leading-order BMT equation in a
plane wave,

dhμ
dx−

¼ 1

n:p
Fμνhν; ð10Þ

with initial condition hμ ¼ hμp, where Fμν ¼ ∂μaν − ∂νaμ is
the electromagnetic field strength tensor. (We have written
the equation in terms of lightfront time rather than proper
time, as is more common in the literature.) The interpre-
tation of the BMT equation now becomes clear: the
classical spin vector precesses, but only to account for
the fact that the electron momentum is changing, and this is
captured by the leading-order BMT equation. It does not
describe a change in the spin state of the electron, though,
because there is no change. This is shown by the quantum
calculations above, and will be recovered from quantum
electrodynamics (QED) scattering calculations below.

C. Summary

The physics of spin in plane wave backgrounds is made
transparent by our calculation: the background changes the
momentum of an electron, but not its spin state. We have
shown this essential result using a natural lightfront helicity
basis, but it can be proven in any basis: for any sμπ obeying
the lowest order BMTequation, there is a corresponding Lπ

obeying (8). Lightfront helicity has the advantages of
allowing simple, explicit calculations, including, note, an
essentially algebraic solution to the leading-order BMT
differential equation, above.
It follows that if one wants to change the spin state of an

electron in a plane wave, then emissions or loop corrections
are required. This is the topic of the next section, in which
we will also see that lightfront helicity states have interest-
ing properties.

III. SPIN-FLIP IN PLANE WAVE BACKGROUNDS

The spin state of an electron can be changed in plane
wave backgrounds via both radiative and nonradiative
processes. Here we describe contributions to each. It is
instructive to organize the presentation in powers of the fine
structure constant α.
Working in the lightfront helicity basis above, the

probability of helicity/spin flip from a state σ to a state
−σ in any given process, using S-matrix methods and
Volkov wavefunctions [49], is well documented [8–10,16,
20,51,52], so we present only final results here.

A. Order α0: Propagation

To zeroth order in α, the only contribution to spin flip can
be nonradiative, see the left hand diagram in Fig. 1. The
corresponding scattering amplitude comes from the double
LSZ amputation of the Volkov propagator and has the
structure [53]

Sfi ∝ ūpσ0=nupσ ∝ δσσ0 ; ð11Þ

so that there can be no spin flip. This confirms the result
encountered above, that a particle’s quantum spin state
cannot be changed by propagation through a plane
wave alone (i.e., propagation in the absence of loops or
emissions). We underline that it is the contribution from
this amplitude which leads to the leading-order BMT

FIG. 1. Diagrams contributing to spin flip of an electron, initial momentum p and spin σ. Left: nonradiative spin flip at zeroth order in
α, from propagation through the field. Middle two diagrams: both radiative and nonradiative spin flip receive contributions at order α.
Right: nonradiative spin flip at order α2, from the one-loop propagator correction. Double lines denote background-dressed propagators;
diagrams should be understood as LSZ-amputated scattering amplitudes.

LOOP SPIN EFFECTS IN INTENSE BACKGROUND FIELDS PHYS. REV. D 102, 076013 (2020)

076013-3



equation (10), which can then only describe the precession
of the classical spin vector, not a change in spin state.

B. Order α: Radiative spin flip

The lowest order contribution to radiative spin flip comes
at order α, from nonlinear Compton scattering (NLC) at tree
level. To present the probability, we define for convenience
φ and ϑ as two lightfront times scaled by some typical
(central) frequency scale ω of the plane wave background.
The parameter η ≔ ωn · p=m2 then characterizes the invari-
ant energy of the interaction. Define the floating average
hfi ¼ 1

ϑ

R φþϑ=2
φ−ϑ=2 dϕfðϕÞ for any f, and in terms of this the

normalized Kibble massΛ ¼ 1 − ha2i=m2 þ hai2=m2. The
probability of (radiative) spin flip in NLC may then be
written

PNLC ¼ α

2πη

Z
dφ

Z
∞

0

dϑ
∂ lnΛ
∂ϑ C

�
ϑΛ
2η

�
; ð12Þ

in which the function C arises as an integral over the
lightfront momentum fraction s of the emitted photon,
s ≔ n · l=n · p for photon momentum l:

CðμÞ ¼
Z

1

0

ds s2

1 − s
sin

�
μs

1 − s

�
: ð13Þ

Note that PNLC is independent of the sign of σ.

C. Order α: Interference

In general, nonradiative spin flip has an order α con-
tribution. This is a quantum interference term, coming from
the product of the tree-level propagation diagram and the
one-loop propagation diagram, see the third diagram in
Fig. 1. However, since the order α0 amplitude is diagonal in
spin, in a plane wave, the order α contribution is forced to
vanish. This result has several important consequences,
see below.

D. Order α2: Nonradiative spin flip

Due to the vanishing of the propagation (order α0) and
interference (order α) terms above, nonradiative spin flip
receives its leading-order contribution at order α2. This
comes from the one-loop correction to the propagator
[20,21,27,28], mod squared, see the right hand diagram
in Fig. 1. With the same notation as used above for
nonlinear Compton scattering, the leading-order nonradia-
tive spin-flip probability may be written

Ploop ¼
α2

ð2πηÞ2 jMj2; ð14Þ

where, for Δaμ ¼ aμðφþ ϑ=2Þ − aμðφ − ϑ=2Þ,

M ¼
Z

dφ
Z

∞

0

dϑ
ϑ

�
Δa2
2m

þ iσ
Δa1
2m

�
S

�
ϑΛ
2η

�
; ð15Þ

in which1 SðμÞ arises as an integral over the lightfront
momentum fraction of the intermediate virtual photon,

SðμÞ ¼
Z

1

0

ds s e−iμ
s

1−s: ð16Þ

With expressions (12) and (14) in hand we can begin to
discuss the physics of the spin-flip probabilities. We first
note that the radiative flip probability (12) is independent of
the sign of aμ. The nonradiative flip probability, though, is
strongly dependent on the sign of aμ: because the real/
imaginary parts of S do not change sign (see Fig. 2), the
sign of the integrand in (15) is determined by the sign of aμ.
It follows that there can be no nonradiative spin flip if the
potential is an even function, because then the integral
over φ in (15) gives zero.
This difference in dependence on the driving laser field

appears because we look at flips between lightfront helicity
states. For electron spins polarized in other directions, the
radiative probability can show the same sign dependence as
the nonradiative probability, see [16].

E. Order α2: Radiative

Radiative spin flip has two order α2 contributions. The
first comes from double nonlinear Compton scattering (two
photon emission) at tree level, mod squared. The second is
an interference contribution from the cross term of (single)
nonlinear Compton at tree level and at one loop. However,
the probability for one spin flip to occur in double nonlinear
Compton scattering scales as α2η2Φ, where Φ is the pulse
phase duration. We will see that the most interesting region
for the loop is when η < Φ−1 and when the pulse is short,

1 2 3 4 5
0

0.5

1

1.5

FIG. 2. Plots of CðμÞ in (13) and SðμÞ in (16) showing that
these functions do not give significant contributions for large
arguments.

1We comment that, in the loop calculation, φ and ϑ arise as the
average and difference of the lightfront times corresponding to
“emission” and “absorption” of the virtual photon, ϑ ¼ ϕ2 − ϕ1

and φ ¼ ðϕ2 þ ϕ1Þ=2 referring to Fig. 1. In the calculation of
the NLC probability, if the real photon is emitted at time ϕ1 in the
scattering amplitude, then ϕ2 would be the emission time in the
conjugate amplitude.
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hence we can ignore order α2 radiative contributions in the
regime of interest.

F. Comparison

The different field dependencies of the spin-flip prob-
abilities found above prompts us to ask when one of the
processes, radiative or nonradiative, can dominate over the
other. To this end, consider the behavior of the probabilities
for small η, beginning with the nonradiative result (14),
which is exact to order α2. The main contribution to the
integrand in (15) originates in the region where the argu-
ment of S is small, see Fig. 2. Thus, if η → 0, the main
contribution comes from ϑ ≪ 1. This allows us to approxi-
mate the integral, in the small-η limit, using a small-ϑ
expansion, setting Λ ≈ 1 − ϑ2a02=12 ≈ 1, ϑΛ=2η ≈ ϑ=2η,
and Δa ≈mϑð0; εÞ, where ε ¼ εðφÞ ≔ a0ðφÞ=m is the
normalized electric field. Equation (15) can then be
integrated analytically to give

M ≈ η

Z
dφ

Z
∞

0

dμSðμÞðε2 þ iσε1Þ

¼ −
iη
2m

½a2ð∞Þ þ iσa1ð∞Þ�: ð17Þ

Inserting into (14), the nonradiative spin-flip probability
behaves in the limit η → 0 as

Ploop ≈
α2

ð2πÞ2
���� a⊥ð∞Þ

2m

����2; ð18Þ

which is independent of η. This behavior holds for pulses
with a unipolar structure [44,50], a⊥ð∞Þ ≠ 0 which
essentially means that although the fields oscillate, they
are “more” positive than negative (or vice versa). Such
pulses exhibit the electromagnetic memory effect [44,54].
For “whole-cycle” pulses, a⊥ð∞Þ ¼ 0 there is no memory
effect, and the leading-order contribution at small η is
suppressed as a positive power of η.
The corresponding low-η behavior of the NLC proba-

bility is found similarly; it scales quadratically with η as

PNLC ≈
35α

48
ffiffiffi
3

p η2
Z

dφjεðφÞj3: ð19Þ

Comparing (18) and (19) suggests that at small η there can be
a reversal of the usual hierarchy of QED perturbation theory,
with the one-loop, order α2 nonradiative probability domi-
nating over the tree-level, order α, radiative probability.
To demonstrate this result, we consider a head-on

collision between an electron and a simple model of a
unipolar pulse, being a single half-cycle with electric field
E ¼ E0ðcosωx−; 0; 0Þ, with jωx−j < π=2, meaning nor-
malized potential aðx−Þ ¼ mξð0; 1þ sinωx−; 0; 0Þ, where
ξ ≔ eE0=ðmωÞ is the dimensionless peak value of a. We set
ω ¼ 1.18 eV (λ ¼ 1054 nm), for an optical laser and vary

the electron energy from 55 MeV to 110 GeV, correspond-
ing to η-parameters from 10−3.3 up to 1. We plot the exact
probabilities (12) and (14) in Fig. 3.
We see that for smaller η, the one-loop nonradiative spin-

flip probability is indeed independent of η, and orders of
magnitude larger than the tree-level radiative probability.
The latter increases quickly with η, confirming the behavior
in (19). The crossover point below which the loop begins to
dominate lies around η ≈ 0.21

ffiffiffiffiffiffiffiffi
α=ξ

p
, in which the param-

eter dependence follows directly from comparing (18) and
(19). This corresponds to an approximate electron energy
of 0.11ðm2=ωÞ ffiffiffiffiffiffiffiffi

α=ξ
p

for head-on collisions. The limits (18)
and (19) together with the results in Fig. 3 confirm that loop
effects can in principle dominate over tree level in electron
spin dynamics, when the pulse has a unipolar structure.

IV. THE LCFA AND THE BMT EQUATION

The question we would like to address is whether the
loop dominance found above can in principle be observed
in realistic electron-laser collisions. The difficulty is that
the radiative and nonradiative spin-flip probabilities for
realistic, strong fields are not known. The usual approach to
sidestepping this problem is to use a “locally constant field
approximation” (LCFA) which, applied to the plane wave
probabilities, yields approximate expressions which can be
extended to more general fields [8] and implemented in
numerical simulations [5]. Regarding spin flip, we will
identify here some problems with this method, but also
present a resolution.

A. Benchmarking

The standard method to deriving the LCFA from a given
plane wave expression is to perform the same small-ϑ
expansion introduced above (17), but now for arbitrary η
[55,56]. This again allows us to integrate over ϑ. The spin-
flip probabilities become

-3 -2 -1
-7

-6

-5

-3 -2 -1
-5

-4

-3

(a) (b)

FIG. 3. Radiative and nonradiative spin-flip probabilities (12)
and (14), respectively, in the head-on collision of an electron with
the half-cycle pulse in the text, as a function of varying electron
energy from 55 MeV (η ¼ 10−3.3) to 11 GeV (η ¼ 0.1). Inten-
sities ξ ¼ 1 (a) and ξ ¼ 10 (b). The sum of the two probabilities is
also shown. The low η behaviors (18) and (19) are clearly seen.
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PNLC¼ α

2η

Z
dφ

Z
1

0

ds
s2

1− s
Ai1ðzÞ;

Ploop¼
���� α2η

Z
dφ

Z
1

0

sdsffiffiffi
z

p ½AiðzÞ− iGiðzÞ�ε2þ iσε1
jεj

����2; ð20Þ

in which Ai and Gi are the Airy and Scorer functions [57]
with argument z ¼ ½s=χpð1 − sÞ�2=3, χp ¼ ηjεðφÞj, and
Ai1ðzÞ ¼

R∞
z dxAiðxÞ.

The first thing to check is that these approximations are
capable of accurately reproducing general plane wave
results in the regime of interest. Hence we benchmark
the LCFA (20) against exact results in Fig. 4: they match
very well, in particular at small η (which justifies the
approximation used to find the small η limits). In panels (c)
and (d) we plot the relative error between the LCFA and
exact results; as η increases, the relative error becomes
larger, and as the intensity ξ increases, the relative error
becomes smaller, as expected of the LCFA.We note that the
LCFA provides a good approximation even at ξ ¼ 1.

B. Spin-flip beyond plane waves and BMT

In general backgrounds, we expect both order α0

(propagation) and order α1 (interference) contributions to
nonradiative spin flip. If these contributions are to be
approximated using the LCFA applied to plane wave results
(or inferred from the constant crossed field result) then they
are automatically set to zero. This is another shortcoming of
the LCFA, see also [27,28,58–60]. As such, we need
another method to investigate nonradiative spin flip beyond
plane waves. One option is to use the full BMTequation for

the spin vector sμ, but there are subtleties to be confronted
in doing so, which we address here.
Let jψi be a superposition of single electron lightfront

helicity states

jψi ¼ cþjπ;þi þ c−jπ;−i; ð21Þ

in which jcþj2 þ jc−j2 ¼ 1 and π is the instantaneous (time-
dependent) momentum of the state. Using the definition (3)
we write the corresponding classical spin vector as

sμ ¼ −2
m

hψ jWμjψi ¼
X
σ0;σ

c�σcσ0S
μ
σσ0 ; ð22Þ

in which the “basis elements” Sμσσ0 are given by
Sμσσ0 ≔ −2=mhπ; σjWμjπ; σ0i: for explicit expressions see
Appendix. They obey the relations

S2σσ0 ¼ −δσσ0 ; S−þ · Sþ− ¼ −2;

Sþþ · Sþ− ¼ 0; Sþþ · S−þ ¼ 0;

using which it is easily checked that the probability of
observing spin up or spin down in the state (21) can be
extracted from the classical spin vector by projecting onto
Sþþ:

jc�j2 ¼ ð1 ∓ s · SþþÞ=2: ð23Þ
Observe that this result holds in anarbitrarybackground ifwe
take π to be the instantaneousmomentum in that background,
because the lightfront helicity basis is background-indepen-
dent. As such [noting that the ansatz (21) explicitly neglects
emissions] we have a method for extracting the nonradiative
spin flip probability, in general fields, from the classical spin
vector sμ. This can in turn be calculated using the BMT
equation.
Given, then, that we want to use the BMT equation to

consider spin beyond plane wave backgrounds, it is worth
briefly emphasizing what physics the BMT equation does
and does not describe. We will continue to focus on plane
waves to explore this.
The BMT equation as usually used to describe the

(nonradiative) evolution of the spin vector is [20,38,45]

dsμ

dτ
¼ μb þ 1

m
Fμνsν þ

μb
m3

πμðsαFαβπβÞ; ð24Þ

in which the anomalous magnetic moment μb is taken to be
[20,35,36,38]

μb ¼
g − 2

2
¼ α

χp

Z
1

0

sdsffiffiffi
z

p GiðzÞ; ð25Þ

where g is the electron’s gyromagnetic ratio or “g factor”.
Compare this to the exact evolution equation for (22),
which is

FIG. 4. Benchmarking the LCFA of the radiative and non-
radiative spin-flip probabilities against their exact results (12) and
(14). The same parameters as in Fig. 3 are used. Left column:
ξ ¼ 1; right column: ξ ¼ 10. The upper panels (a) and (b) show
the LCFA predictions (20) along with the exact results (12) and
(14). The lower panels (c) and (d) show the relative error between
the LCFA and exact results, ðPlcfa − PexactÞ=Pexact.
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dsμ

dx−
¼

X
σ0;σ

c�σcσ0
dSμσσ0
dx−

þ
X
σ0;σ

Sμσσ0
dc�σcσ0
dx−

¼ 1

n · p
Fμνsν þ

X
σ0;σ

Sμσσ0
dc�σcσ0
dx−

; ð26Þ

where, in the first term, we have used the result (9). Using
that dx−=dτ ¼ p−=m in plane waves, we equate (24) and
(26), then project onto Sμþþ or Sμþ− in order to obtain the
evolution equations

djc−j2
dφ

¼ −
μb
2
½c−c�þðεx þ iεyÞ þ cþc�−ðεx − iεyÞ�;

dc−c�þ
dφ

¼ −
μb
2
ð1 − 2jc−j2Þðεx − iεyÞ; ð27Þ

where φ ¼ ωx−. For an initial helicity state jþi at φ ¼ −∞
we have cþ ¼ 1 and c− ¼ 0. Assuming in the subsequent
evolution that cþ ∼ 1 and c− ∼ α allows us to approximate
the evolution equations as

dc−
dφ

¼ −
μb
2
ðεx − iεyÞ; ð28Þ

and so the spin-flip probability as inferred from BMT
becomes

jc−j2 ¼
���� 12

Z
dφðεx − iεyÞμb

����2: ð29Þ

Wewould expect this to match be the nonradiative spin-flip
probability in a plane wave, which we have already seen is
well approximated by Eq. (20). We see that this matches
(29) exactly, provided that the Airy function contribution
from the loop is neglected. This is negligible, compared to
the Scorer function, at small χp. Hence, the BMT equation
as applied in the literature uses only part of the full loop
expression (inferred from the LCFA); it holds only at low χ,
which at fixed intensity corresponds to low energy—this is
where the BMT equation can be applied, and this is
sufficient for our purposes. Note that in the same limit
radiative spin transitions (from photon emission) are sup-
pressed, which is why they can also be dropped from BMT.

V. LOOP DOMINANCE IN FOCUSED PULSES

In the above plane wave calculations, a unipolar pulse
structure is required to counter the cancellation of opposite-
sign contributions in (15), coming from oscillations of the
field. What we will now show is that it is possible to realize
an effective unipolar structure in the collision of electrons
with focused laser fields, which in principle allows exper-
imental access to the loop; we will however see that loop
effects are more subtle in focused pulses than in plane
waves.

The key is to consider, in contrast to the de-facto setup of
intense laser-matter interactions, an almost tail-on collision
between the electron and laser. In this geometry a high-
energy electron can almost “keep up” with the pulse such
that it sees, as it traverses the field, an effectively unipolar,
or even same-sign, pulse. We make this concrete in Fig. 5,
which shows the effective fields seen by a high-energy
electron on a ballistic trajectory crossing a tightly focused
Gaussian pulse. The pulse has focal radius w, is linearly
polarized in the x-direction, propagates in the z-direction,
and has Gaussian temporal profile expð−t2=τ2Þ where τ ¼
5T for laser period T. (See [61] for explicit expressions for
the fields.)
Furthermore, in near tail-on collisions η is naturally

small, η ¼ ð1 − β cos θÞγω=m where θ is the small angular
deviation from fully tail-on.2 Therefore this interaction
setup is that which could allow the dominance of non-
radiative loop effects to be seen.
In Fig. 6, we plot the radiative and nonradiative spin-flip

probabilities in near tail-on collisions between a high-
energy electron and the Gaussian pulse. The radiative
probability is calculated using the LCFA for nonlinear
Compton scattering, evaluated along the trajectory of the
electron as it traverses the field; this in turn is found by
numerically solving the Lorentz force equation. The non-
radiative flip probability is calculated by numerically
solving the BMT equation (24)–(25), and extracting from
the solution the spin flip probability as in (23). We present
also the nonradiative probability obtained from entirely
neglecting the loop, and setting g ¼ 2 in the BMTequation.

FIG. 5. (a) A near tail-on collision between a high-energy
electron, momentum p, and a focused laser pulse propagating in
the z-direction, linearly polarized in the x-direction. λ is the laser
wavelength. θ is the incident angle of the electron in the x–z
plane. The electron goes through the pulse center (0,0,0) at t ¼ 0.
The nonzero components of the electromagnetic fields along the
electron trajectory are shown in (b) Ex, (c) By, and (d) Ez, in ratio
to the peak field amplitude ξ: laser focal radius w ¼ 2λ and
electron incident angle θ ¼ 10°.

2This is provided the electron energy is not too large: this is not
a strong constraint as the laser frequency is so low.

LOOP SPIN EFFECTS IN INTENSE BACKGROUND FIELDS PHYS. REV. D 102, 076013 (2020)

076013-7



The results do not show the same loop dominance as
found in plane waves and as shown in Figs. 3 and 4. While
nonradiative spin flip continues to dominate at low ener-
gies, this comes from the leading-order BMT equation in
which loop effects are turned off. Our results do show,
though, that loop effects are in principle detectable: there is
an energy regime, below the region where radiative spin
flip contributes, in which the nonradiative spin flip prob-
ability is enhanced by the loop by roughly an order of
magnitude.
The reason for the difference in behavior of the spin-flip

probabilities in Gaussian beams and plane waves is due to
their different field structures, in particular focusing effects.
The symmetry of the plane wave background means that
the helicity of the electron cannot be changed at the
propagator level, and leading-order spin-flip terms are
Oðα2Þ. As soon as this symmetry is broken by focusing,
terms of Oðα0Þ and Oðα1Þ can contribute to the spin flip.
This breaking of the plane-wave symmetry can be quanti-
fied in a focused Gaussian pulse by the focal expansion
parameter ϵ ≔ λ=πw [61]. In the small-η regime, the
leading-order hierarchy of effects contributing to a spin
change in a focused Gaussian pulse is then:

OðϵnÞ|fflffl{zfflffl}
propagator

; OðϵnαÞ|fflfflffl{zfflfflffl}
propagator-loop

; Oðα2Þ|fflffl{zfflffl}
loop

; Oðη2αÞ|fflfflffl{zfflfflffl}
NLC

:

For our parameters, as used in Fig. 6, we have ϵ5≈10−4>α2

(while higher orders in ϵ are smaller than α2), so to be
consistent in our modeling of the Gaussian pulse, we must
use expressions for the field which are correct up to fifth
order in the focal expansion parameter. Indeed, in the
parameter regime presented in Fig. 6, numerical analysis
using the lower-order beam model suggest that the loop
dominance of the plane-wave case persists, but this is
misleading, as large differences appear when order ϵ3 terms

are added to the beam, and the loop dominance is mostly
lost. However we found that very little change occurred
when ϵ5 terms were added. This is consistent with the
order-of-magnitude estimates above. If we had instead used
the LCFA approximation (20) and neglected the contribu-
tion of lower-order effects from focusing, as is the usual
way of applying the LCFA, then only the order α2 spin-flip
contribution would have been included. This would have
suggested that also in a focused background, the loop
dominance survives, but this would have been incorrect.
Thus interference between focusing effects and plane-wave
loop effects is crucial to spin flip at low energy in a laser
pulse. We conclude from this that spin-effects described by
the BMT equation, in a nonplane-wave background, are
very sensitive to the structure of that background. The
sensitivity is much higher than can currently be controlled
in experiment.3

One could also consider electron spin dynamics in two
counter-propagating pulses. In this setup, however, the
electron would itself typically be counter-propagating with
one of the pulses, which would lead to a large η and hence
dominance of radiative spin flip. One might instead
consider a traverse collision where an electron propagates
perpendicular to the wave vectors in the standing wave at a
magnetic node. However, at small η, the magnetic node
solution is quite different from a plane wave, and the
leading-order BMT contribution will not be zero, and for
this setup, the plane-wave limit is only reached at large η
[62], which means that again, radiative spin flip would
dominate.

VI. CONCLUSIONS

We have analyzed radiative and nonradiative electron
spin flip in intense fields. In the case of plane wave
backgrounds, commonly used as a prototype model of
intense laser fields, we have found that there exists a
kinematic regime in which the usual leading-order pertur-
bative hierarchy of QED is reversed, and where the
one-loop nonradiative process dominates over the radiative
tree-level process.
This is possible due to two conspiring effects: first, the

suppression at low energy (invariant η) of spin flip due to
radiative emissions; second, the exact vanishing of the
a priori dominant amplitude for spin flip through propa-
gation (without emission of loop effects) at tree level.
While this loop dominance does not extend to more

realistic (e.g., Gaussian beam) models of focused laser
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-3

-2
-5 -4.5 -4 -3.5 -5 -4.5 -4 -3.5

FIG. 6. Spin-flip probabilities in tail-on collisions with focused
laser pulses, as a function of initial electron energy, w ¼ 2λ and
θ ¼ 10°. Laser intensity (a) ξ ¼ 10 and (b) ξ ¼ 50. The electron
energy changes from 100 MeV to 10 GeV. The corresponding
change in η, from 10−5.2 to 10−3.2, is shown on the top axis.

3We briefly mention higher-order nonradiative effects. These
can be considered using e.g., the Schwinger-Dyson equations
[21]. In plane waves, this introduces an additional spin structure,
with which the helicity operator does not commute—this is
consistent with our results, since loops can change the spin. Such
results are still tied to plane waves and hence miss the leading and
next-to-leading-order terms that are nonzero in a focused pulse.
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pulses, the influence of the loop on nonradiative spin flip
can in principle be accessed experimentally through (near)
tail-on collisions between high-energy electrons and tightly
focused laser pulses. This geometry, in contrast to the usual
setup of (near) head-on collisions, suppresses the radiative
process, while the Doppler-shifted (effectively unipolar)
fields seen by the electron on its trajectory enhance the
nonradiative processes. Our results thus motivate the study
of (near) tail-on collisions of electrons with intense laser
pulses, in order to study purely quantum spin effects in
intense laser fields.
Our investigation has also underlined several results

which have a bearing on other investigations of electron
spin in strong fields. First, in plane waves, there can be no
spin flip without loops or emissions. As such the leading-
order BMT equation commonly studied in the literature
describes only the precession of the classical spin vector
needed to account for the acceleration of the electron by the
field; it does not describe any change in the spin state of the
electron. Second, because of this result, there is also no
order α1 nonradiative spin flip in a plane wave, and so any
attempt to infer from plane wave results (e.g., via the
LCFA) for more general, focused beams, fail outright. (This
is in contrast to radiative spin flip through nonlinear
Compton.) As we saw above, predictions which neglect
the order α interference terms are incorrect.
Third, in focused laser pulses, focusing effects dramati-

cally alter the dynamics of nonradiative spin flip compared to
the plane wave case. The sensitivity of spin flip to focusing
effects in the background can be greater than that to loop
effects, meaning that focused fields must be modeled to very
high precision in order to correctly report spin-flip effects
where nonradiative processes play a significant role. (This is
at low energy, since NLC dominates spin flips at higher
energies.) This would suggest that extreme care is needed, in
simulations and experimental modeling, in parameter
regions where BMT contributes an appreciable amount to
the overall probability for flip of the electron spin.
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APPENDIX: SPIN BASIS

Let σi be the 2 × 2 Pauli matrices. In the Kogut-Soper
basis for the γ-matrices [41],

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 −σ1
σ1 0

�
;

γ2 ¼
�
0 −σ2
σ2 0

�
; γ3 ¼

�
0 −σ3
σ3 0

�
;

and γ5 ¼ iγ0γ1γ2γ3, the explicit form of the lightfront
helicity spinors upσ in our discussion is

upþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2mp−p

2
6664
p1 − ip2

p−

0

m

3
7775;

up− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2mp−p

2
6664

m

0

p−

−p1 − ip2

3
7775:

In Cartesian components, the basis elements used in the
BMT calculation, as defined in and below (22), obey

Sμþþ ¼ −Sμ−− ¼ hμπ; ðA1aÞ

Sμþ− ¼
�
π1 þ iπ2

π−
; 1; i;

π1 þ iπ2

π−

�
; ðA1bÞ

Sμ−þ ¼ Sμ�þ−: ðA1cÞ

where n · Sþþ ¼ π−=m and n · Sþ− ¼ 0. Note that πμ here
stands for the in-principle time-dependent momentum of
the state.
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