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We study a paradigmatic model in field theory where a global Uð1Þ and scale symmetries are jointly and
spontaneously broken. At zero density the model has a noncompact flat direction, which at finite density
needs to be slightly lifted. The resulting low-energy spectrum is composed by a standard gapless Uð1Þ
Nambu-Goldstone mode and a light dilaton whose gap is determined by the chemical potential and
corrected by the couplings. Even though Uð1Þ and scale symmetries commute, there is a mixing between
the Uð1Þ Nambu-Goldstone and the dilaton that is crucial to recover the expected dynamics of a conformal
fluid and leads to a phonon propagating at the speed of sound. The results rely solely on an accurate study
of the Ward-Takahashi identities and are checked against standard fluctuation computations. We extend our
results to a boosted superfluid, and comment the relevance of our findings to condensed matter
applications.
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I. INTRODUCTION

Scale invariance plays a special role in many-body and
high-energy physics. It underlies the emergence of univer-
sality in many instances, such as critical phenomena,
Landau-Fermi liquids or cold atoms at unitarity, to name
a few. Scale transformations are a symmetry either at very
low or very high energies compared to the intrinsic scales.
In most cases they represent only an approximate symmetry
valid in a restricted regime, requiring typically a certain
degree of fine-tuning in the interactions, the thermody-
namic variables, the external parameters, or the support of
additional symmetries. When a scale invariant system is
considered at non-zero particle number or at finite charge
density, scale symmetry is spontaneously broken; such
breaking is directly relevant to characterize the dynamics of
the system mentioned above but it can also be useful to

extract properties of large charge operators of a CFT via the
state-operator correspondence [1–4].
Whenever an internal symmetry is spontaneously broken

in a relativistic system, one expects to encounter gapless
excitations in the form of Nambu-Goldstone (NG) modes
[5–7], one for each broken symmetry. If instead the
breaking involves spacetime symmetries, the counting of
modes becomes more complicated [8–11], yet the presence
of a Nambu-Goldstone mode associated to scale invariance,
commonly known as dilaton, is still a possibility. Similarly,
the counting of NG modes deviates from the standard
Goldstone theorem expectation when the system is not
Lorentz invariant [10,12–15].1
Even in relativistic systems, the presence of a nonzero

charge density breaks the boosts spontaneously, thus the
NG modes may show some features similar to those
emerging in nonrelativistic systems. In the case of several
internal symmetries, there can be additional gapped modes
besides the gapless NG modes [17–22]. More specifically,
in the presence of a chemical potential μ for a conserved
charge Q, gapped modes emerge when the effective
Hamiltonian2 H̃ ¼ H − μQ does not commute with the
broken generators. The gap is fixed by group theory
considerations and is proportional to the chemical potential.
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1For a recent review on NG counting rules we refer to [16].
2We are proceeding in analogy to [19,20,22,23].
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In general, there can also be additional modes whose gap,
although proportional to μ, is not protected by symmetry
[15,21]. Such analysis was generalized in [20] to cases
where μQ in the effective Hamiltonian is replaced by some
other deformation involving a symmetry generator, for
instance the magnetic field times the spin in a ferromagnet
H̃ ¼ H − gBzSz.
The breaking of scale invariance presents some similar-

ities with the story above due to the fact that the generator
of dilatations D does not commute with the Hamiltonian
½D;H� ¼ iH.3 Accordingly, the commutator with the
effective Hamiltonian is

½H̃; D� ¼ −iH: ð1:1Þ

For simplicity let us assume that Q is the generator of an
Abelian Uð1Þ symmetry. If this symmetry is spontaneously
broken, the ground state is not an eigenstate ofQ. However,
it must be by definition an eigenstate of H̃, so time
translations generated by H are spontaneously broken
too. In fact time translations and the Uð1Þ symmetry are
broken to a diagonal subgroup and there is just a single NG
mode associated to both generators.
Equation (1.1) implies that there is a mixing between the

Uð1Þ NG and the dilaton, then—even though Q commutes
with H̃—the state produced by the corresponding charge
density J0 applied to the vacuum at some initial time is not
an eigenstate of time evolution. Borrowing an analogy from
high-energy physics, the “flavor” eigenstates defined by the
symmetry generators are not aligned with the “mass”
eigenstates. If the dilaton were not dynamical, or if it were
integrated out, the mixing implied by (1.1) would be
manifested in the form of an inverse Higgs constraint.
Although interesting, one might wonder whether it is

sensible to discuss the physics of a dilaton in the first place,
since the energy density is in general nonzero at nonzero
charge density. In that case, a scale transformation would
change the vacuum energy density (as determined by the
temporal component of the energy-momentum tensor Tμν)
by an amount proportional to itself

δhT00i ∼ h−i½D; T00�i ¼ ðdþ 1ÞhT00i; ð1:2Þ

where dþ 1 is the number of spacetime dimensions. Both
here and henceforth, we assume a relativistic theory, thus
there cannot be a NG mode associated to the spontaneous
breaking of scale invariance unless hT00i ¼ 0.4 This is quite
restrictive. Since a gapless mode requires a degeneracy of

ground states, the theory needs to have a moduli space of
vacua in addition to scale invariance: these are flat
directions in the potential, supposing we refer to a field
theory with a Lagrangian.5

Maybe contrary to expectations, the situation at finite
density is similar despite the fact that the energy density is
nonvanishing. If the ground state is homogeneous and
isotropic, the expectation value of the components of the
energy-momentum tensor correspond to constant energy
density and pressure

hT00i ¼ ε; hTiji ¼ pδij: ð1:3Þ

Scale invariance implies that the expectation value of the
trace of the energy-momentum tensor will vanish
hTμ

μi ¼ 0, which fixes the equation of state ε ¼ dp, where
d is the number of spatial dimensions. In addition, we have
the usual relation between thermodynamic potentials at
zero temperature, εþ p ¼ μρ, where ρ ¼ hJ0i is the Uð1Þ
charge density. Combining the two, the energy density of
the scale invariant theory is ε ¼ d=ðdþ 1Þμρ. At finite
density the relevant quantity is not the energy density, but
the free energy (density) given by the effective Hamiltonian
T00 − μJ0. A scale transformation changes the expectation
of the effective energy density as follows:

δhT00 − μJ0i ∼ h−i½D; T00�i − μh−i½D; J0�i
¼ ðdþ 1Þε − dμρ ¼ 0: ð1:4Þ

Then, under quite general assumptions, scale transforma-
tions do not shift the free energy of a finite density state in a
scale invariant theory and it is legitimate to discuss the
physics of a dilaton mode, at least at zero temperature.
The observation above does not imply directly the

existence of a gapless (or gapped) mode. In the absence
of a general argument that would allow us to fix the
properties of a dilaton mode, we study a concrete model of
spontaneous breaking of scale invariance at nonzero
density. We restrict the analysis to a relativistic theory in
3þ 1 dimensions, and keep the analysis classical. Such
simple model is informative because it can be interpreted as
an effective action à la Ginzburg-Landau for the order
parameter.
The principal highlights of the present study are two. On

one side is the characterization of the dilaton dispersion
relation and particularly its gap. This concerns mainly the
effects of the chemical potential and its role in defining the
effective low-energy spectrum. On the other side, we
propose and check a method based uniquely on the study
of Ward-Takahashi identities, that in our setup just corre-
spond to classical conservation equations.

3Nevertheless, it is a conserved charge because ∂tD ¼ H, so
its total time derivative in the Heisenberg picture vanishes.

4Note also that the combination of Lorentz invariance (which
fixes the expectation value of the energy-momentum tensor to
hTμνi ¼ Λημν) and the Ward-Takahashi identity for scale invari-
ance, hTμ

μi ¼ 0, fixes hT00i ¼ 0.

5A related discussion about fine-tuning the cosmological
constant to zero in order to have a flat dilatonic direction is
contained in [24–27].
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The paper is structured as follows. Section II introduces
the model at zero density, where we emphasize the need for
flat directions in the potential. This condition is relaxed in
Sec. III, where we study the model at nonzero density.
In Sec. IV the analysis is extended to allow for non-
zero superfluid velocity. Each section has a subsection
dedicated to the analysis of the Ward-Takahashi identities,
together with a check of the latter method against standard
Lagrangian computations for the fluctuations. We conclude
the paper in Sec. V with further comments on the results,
their interpretation, their applications and possible
extensions.

II. THE MODEL

Consider the standard Goldstone model for a global
Uð1Þ symmetry in four spacetime dimensions

S ¼
Z

d4x½∂μψ∂μψ� − λðjψ j2 − v2Þ2�; ð2:1Þ

where ψ is a scalar complex field charged under the Uð1Þ
symmetry, which acts as ψ → eiαψ , while λ and v
represent—respectively—a dimensionless and a dimen-
sionful coupling. Given the presence of a dimensionful
coupling, the model (2.1) does not enjoy scale invariance.
We can nonetheless make it scale invariant if we replace v
with a dynamical real scalar field ξ acting as a compensator:

S ¼
Z

d4x

�
∂μψ∂μψ� þ 1

2
∂μξ∂μξ − λðjψ j2 − ξ2Þ2

�
: ð2:2Þ

The equations of motion are given by

∂2ψ þ 2λðjψ j2 − ξ2Þψ ¼ 0; ∂2ξ − 4λðjψ j2 − ξ2Þξ ¼ 0;

ð2:3Þ

and the generic stationary solution is

ξ ¼ v; jψ j2 ¼ v2: ð2:4Þ

The space of solutions (2.4) has two moduli, ξ itself and the
phase of ψ . Consider the fluctuations around (2.4), para-
metrized as follows

ψ ¼ ei
ϑffiffi
2

p
v

�
ve

τffiffi
3

p
v þ ρffiffiffi

6
p

�
≃ vþ τffiffiffi

3
p þ ρffiffiffi

6
p þ i

ϑffiffiffi
2

p ;

ξ ¼ ve
τffiffi
3

p
v − 2

ρffiffiffi
6

p ≃ vþ τffiffiffi
3

p − 2
ρffiffiffi
6

p ; ð2:5Þ

where τ, ρ and θ are real. The quadratic action for the
fluctuations is given by

Squad¼
Z

d4x

�
1

2
∂μτ∂μτþ1

2
∂μρ∂μρþ1

2
∂μϑ∂μϑ−6λv2ρ2

�
:

ð2:6Þ

We thus see that ρ gets a mass 12λv2 while τ and ϑ are
massless. We identify the latter two with the Goldstone
bosons for broken scale invariance, the dilaton and, for
broken Uð1Þ symmetry, the Uð1Þ NG. The dispersion
relations are trivially relativistic, since Lorentz symmetry
is preserved.
In order to study the low-energy modes about (2.4),

one can alternatively rely entirely on symmetry consid-
erations and, specifically, on the Ward-Takahashi identities.
As we will show in the next subsection, such symmetry-
aware approach permits to obtain the equations of motion
for the low-energy modes in a direct way, which is usually
more transparent than the standard Lagrangian study of the
fluctuations.

A. WARD-TAKAHASHI IDENTITIES
AND LOW-ENERGY MODES

Model (2.2) features a conserved Uð1Þ current given by

Jμ ¼ ið∂μψ
�ψ − ψ�∂μψÞ; ∂μJμ ¼ 0; ð2:7Þ

while the improved energy-momentum tensor is

Tμν ¼ 2∂ðμψ�∂νÞψ þ ∂μξ∂νξ − ημνL

þ 1

3
ðημν∂2 − ∂μ∂νÞ

�
1

2
ξ2 þ jψ j2

�
: ð2:8Þ

This expression satisfies on-shell the following Ward-
Takahashi identities6

T ½μν� ¼ 0; ∂μTμν ¼ 0; Tμ
μ ¼ 0: ð2:9Þ

We expand around the vacuum (2.4) by considering the
fluctuation parametrization (2.5). Up to linear order in the
fields, the Uð1Þ current is given by

Jμ ≃
ffiffiffi
2

p
v∂μϑ; ð2:10Þ

so that its conservation equation gives the equation of
motion for the Uð1Þ NG mode

0 ¼ ∂μJμ ≃
ffiffiffi
2

p
v∂2ϑ: ð2:11Þ

The energy-momentum tensor expanded to linear order is

6The trace Ward-Takahashi identity requires the improvement
introduced in (2.8).
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Tμν ≃
vffiffiffi
3

p ðημν∂2 − ∂μ∂νÞτ; ð2:12Þ

and the trace Ward-Takahashi identity yields the equation
of motion for the dilaton

0 ¼ Tμ
μ ≃

ffiffiffi
3

p
v∂2τ: ð2:13Þ

From (2.11) and (2.13) we can observe that we recover the
two massless modes of (2.6). The Ward-Takahashi com-
putation, however, descends directly from symmetry argu-
ments, being therefore more convenient (and easier) to
apply, especially when dealing with models more compli-
cated than (2.2). In particular, this approach allows to
identify immediately and without ambiguities the nature of
each Goldstone boson, simply by associating every (gap-
less) mode to the Ward-Takahashi identity that yields its
equation of motion.
It is important to stress that the model (2.2) is fine-tuned.

Indeed, (classical) scale invariance dictates that the poten-
tial should contain only quartic terms in the scalars, but the
fact that the potential is a perfect square constitutes a fine-
tuning, specifically considered to the purpose of having a
flat direction. The latter is of course a necessary condition
for the presence of a low-energy dilaton mode.
The simple argument is as follows. In such a relativistic

setup, scale invariance implies the absence of any reference
scale in the (effective) Lagrangian. If scale invariance is to
be broken spontaneously by a vacuum expectation value
(VEV), then the latter must be arbitrary. Hence this VEV
parametrizes a noncompact flat direction. Moreover the
absence of any reference scale means that the flat direction
must also correspond to a vanishing vacuum energy. The
particle which corresponds to moving along this flat
direction is the dilaton. We conclude that any effective
theory that aims at describing spontaneous scale symmetry
breaking (among others), must allow for a noncompact flat
direction in its potential.
For instance, if we added a generic term preserving scale

invariance but breaking the exchange symmetry between
jψ j and ξ, namely (without loss of generality)

V ¼ λðjψ j2 − ξ2Þ2 þ λ0ðjψ j2Þ2; ð2:14Þ

the equations extremizing the potential would become

λψðjψ j2 − ξ2Þ ¼ −λ0jψ j2ψ ; ð2:15Þ

λξðjψ j2 − ξ2Þ ¼ 0: ð2:16Þ

Considering λ0 > 0 for V to be bounded from below, the
only solution is ξ ¼ 0 ¼ ψ , i.e., the flat direction is
completely lifted, even though scale invariance is
respected.

III. SPONTANEOUS SYMMETRY BREAKING
AT FINITE DENSITY

In this section we depart from the Lorentz-invariant setup
discussed above, by introducing a nonzero chemical
potential μ for the charge associated to the global Uð1Þ
symmetry. As we will see, we will still be able to identify
the dilaton and the Uð1Þ NG, though their dispersion
relations will be modified in an interesting way.
We start with a scale-invariant theory defined by the

action

S¼
Z

d4x

�
∂μψ

�∂μψþ1

2
∂μξ∂μξ−λðjψ j2−ξ2Þ2−λ0ðjψ j2Þ2

�
;

ð3:1Þ

whose potential corresponds to the extension already
introduced in (2.14). We are going to switch on a chemical
potential μ for the Uð1Þ symmetry. As discussed before, at
finite chemical potential, the ground state is no longer
determined by the Hamiltonian H but by the effective
Hamiltonian H̃ ¼ H − μQ, where Q is the Uð1Þ charge
operator. As we will discuss, this modifies the effective
potential of the theory and allows the fields to acquire a
nonzero value. Notably, one can recover the zero chemical
potential symmetry breaking case described by (2.2) by
means of an appropriate limit for both μ and λ0. The main
result of the present section is to show that the dilatonic
mode acquires a gap, which depends on μ and λ0.
A nonzero chemical potential can be implemented by

extracting a time-dependent phase from the complex field

ψ ¼ eiμtϕ; ψ� ¼ e−iμtϕ�: ð3:2Þ

The equations of motion then read

∂2ϕþ 2iμ∂0ϕ − μ2ϕþ ∂ϕ�Vðjϕj; ξÞ ¼ 0;

∂2ξþ ∂ξVðjϕj; ξÞ ¼ 0; ð3:3Þ

where Vðjϕj; ξÞ≡ Vðjψ j; ξÞ is given by (2.14). Note that
these equations can equivalently be obtained introducing
(3.2) in (3.1), identifying a new effective potential
Vϕðjϕj; ξÞ ¼ Vðjϕj; ξÞ − μ2jϕj2 and taking the variation
with respect to ϕ�, ξ. Although Vϕ is not the true potential
(indeed, the energy density is E ∼ Vðjϕj; ξÞ þ μ2jϕj2), the
extrema of Vϕ correspond to solutions of the equations of
motion of the original action (3.1). We will show in the
following that Vϕ determines the ground state for the
effective Hamiltonian H̃.

A. Effective Hamiltonian and ground state

In order to determine the effective Hamiltonian and the
associated ground state we need to find expressions for the
Uð1Þ charge Q and Hamiltonian. We will use the usual
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definitions in terms of the temporal components of the
energy-momentum tensor Tμν and Uð1Þ current Jμ

H ¼
Z

d3xT00; Q ¼
Z

d3xJ0: ð3:4Þ

Then, the effective Hamiltonian at finite chemical potential
is determined by the temporal component of an effective
energy-momentum tensor tμν

H̃ ¼
Z

d3xðT00 − μJ0Þ≡
Z

d3xt00: ð3:5Þ

The Uð1Þ current can be written as follows

J0 ¼ 2μjϕj2 þ j0; Ji ¼ ji; ð3:6Þ

where

jμ ¼ ið∂μϕ
�ϕ − ϕ�∂μϕÞ: ð3:7Þ

Similarly, for the energy-momentum tensor7

T00 ¼ μJ0 þ t00; ð3:8Þ

T0i ¼ Ti0 ¼ μJi þ t0i ¼ μji þ t0i; ð3:9Þ

Tij ¼ tij þ δijðμJ0 − 2μ2jϕj2Þ ¼ tij þ δijμj0; ð3:10Þ

where

tμν ¼ 2∂ðμϕ�∂νÞϕþ ∂μξ∂νξ − ημνLϕ

þ 1

3
ðημν∂2 − ∂μ∂νÞ

�
1

2
ξ2 þ jϕj2

�
; ð3:11Þ

and

Lϕ ¼ ∂μϕ
�∂μϕþ 1

2
∂μξ∂μξ − λðjϕj2 − ξ2Þ2

− λ0ðjϕj2Þ2 þ μ2jϕj2: ð3:12Þ

Notice that from (3.9) we have that T0i ¼ Ti0 implying that
the Ward-Takahashi identities for boost transformations are
satisfied, so that the full Lorentz symmetry is still preserved
in the presence of a nonvanishing chemical potential.
The effective potential forLϕ is the one we had identified

previously in the equations of motion (3.3)

Vϕ ¼ λðjϕj2 − ξ2Þ2 þ λ0ðjϕj2Þ2 − μ2jϕj2; ð3:13Þ

Since t00 determines the effective Hamiltonian (3.5), we see
that the ground state will correspond to the minimum of
the effective potential. The effective potential has three
extrema8

ξ ¼ ϕ ¼ 0; ξ ¼ 0; jϕj2 ¼ v2 ¼ μ2

2ðλþ λ0Þ ;

ξ2 ¼ jϕj2 ¼ v2 ¼ μ2

2λ0
: ð3:14Þ

Out of the three extrema (3.14), the first two are saddle
points and only the last is a minimum, which is the true
ground state of the system. Note that for the true minimum
to exist, and for Vϕ to be bounded from below, we need to
have λ0 > 0. In other words, we need to lift the flat direction
that we had at μ ¼ 0 in order to have a minimum, and
symmetry breaking, when μ ≠ 0.
We now proceed to investigate the low-energy spectrum

around this (degenerate) minimum.

B. Nambu-Goldstone dynamics from
Ward-Takahashi identities

We perturb the fields around the ground state

ξ2 ¼ jϕj2 ¼ v2 ¼ μ2

2λ0. We use the same parametrization
as in (2.5), though adapted to the field ϕ

ϕ ¼ ei
ϑffiffi
2

p
v

�
ve

τffiffi
3

p
v þ 1ffiffiffi

6
p ρ

�
; ξ ¼ ve

τffiffi
3

p
v −

2ffiffiffi
6

p ρ: ð3:15Þ

As before, the kinetic terms are diagonal and canonically
normalized for ϑ, τ and ρ. We still identify ϑ as the
fluctuation of the phase of the condensate and τ as a
fluctuation of its magnitude, while ρ corresponds to an
orthogonal direction of increasing potential energy. For
μ ¼ 0, ϑ and τ are naturally associated to the Uð1Þ NG and
dilaton, while ρ enters as a Higgs fluctuation. This simple
picture is a bit complicated when μ ≠ 0, as the would-be
Goldstones undergo some mixing and also a nonvanishing
gap for one linear combination. We will study this effect in
some approximation here and in more detail in the next
section.
When the perturbation (3.15) is introduced in the

effective potential (3.13) and expanded to quadratic order,
one finds no term for ϑ and the following mass matrix for
ðτ; ρÞ

M ¼ 4v2

3

�
2λ0

ffiffiffi
2

p
λ0ffiffiffi

2
p

λ0 λ0 þ 9λ

�
: ð3:16Þ

In principle both perturbations are massive and mixed, but
in the limit λ0 ≪ λ in which there is an almost flat direction

7The notations are such that the capital letters (T00 etc.) refer to
the dynamics of ðψ ; ξÞ (and by extension, of ϕ) dictated by (3.1).
The lowercase letters refer instead to the dynamics given by
(3.12) which is not the Lagrangian for ðϕ; ξÞ but it shares the
same potential.

8Note that these uniform and static solutions are extrema of the
effective potential (3.13), but not of the energy (3.8).
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in the original potential (2.14), the mixing becomes very
small and there is a large hierarchy between the mass of τ,
m2

τ ∼ λ0v2 ∼ μ2, and the mass of ρ, m2
ρ ∼ λv2. In the

following we will assume that we are in this situation, in
which case the Higgs fluctuation ρ can be set to zero in the
low energy description to a good approximation.
The dynamical equations for the remaining fluctuations

can be derived from the Ward-Takahashi identities. When
evaluated on shell the Uð1Þ current should be conserved
and the trace of the energy momentum tensor should vanish

∂μJμ ¼ 0; Tμ
μ ¼ 0: ð3:17Þ

This gives two equations, which is sufficient to determine
the dynamics of ϑ and τ. The trace of the energy-
momentum tensor, to linear order in the fluctuations, is

Tμ
μ ≃

ffiffiffi
3

p
v

�
∂2τ þ 4

3
μ2τ − 2

ffiffiffi
2

3

r
μ∂0ϑ

�
; ð3:18Þ

whereas the divergence of the current is

∂μJμ ≃
ffiffiffi
2

p
v

�
∂2ϑþ 2

ffiffiffi
2

3

r
μ∂0τ

�
: ð3:19Þ

This translates into the set of coupled equations

∂2τ þ 4

3
μ2τ − 2

ffiffiffi
2

3

r
μ∂0ϑ ≃ 0;

∂2ϑþ 2

ffiffiffi
2

3

r
μ∂0τ ≃ 0: ð3:20Þ

As suggested by the general analysis in the introduction,
the chemical potential introduces a mixing between the
Uð1Þ NG and the dilaton. The equations can be diagon-
alized using expansions in Fourier modes

τðx0;xÞ ¼
Z

dωd3q
ð2πÞ4 e−iωx

0þiq·xτ̃ðω;qÞ;

ϑðx0;xÞ ¼
Z

dωd3q
ð2πÞ4 e−iωx

0þiq·xϑ̃ðω;qÞ: ð3:21Þ

Expanding at low momentum q2=μ2 ≪ 1, the equations
have solutions when the modes satisfy the dispersion
relations

ω2 ≃
q2

3
; ω2 ≃ 4μ2 þ 5

3
q2: ð3:22Þ

Therefore, there is a gapless mode π and a gapped mode σ,
which at low momentum correspond respectively to the
combinations

π̃ ≃ ϑ̃ − isignðω=qÞ qffiffiffi
2

p
μ
τ̃;

σ̃ ≃ τ̃ − i

ffiffiffi
2

3

r
signðω=μÞ

�
1þ q2

24μ2

�
ϑ̃: ð3:23Þ

A few comments are in order. In the first place, the
dispersion relation of π in (3.22) is such that it moves at
the speed of sound as fixed by conformal invariance
c2s ¼ 1=3, i.e., it can be identified as a conformal superfluid
phonon, while σ is the gapped dilaton. This identification is
consistent with an effective field theory approach, see e.g.,
[4]. Note that the mixing is necessary for this to happen,
otherwise the phonon would move at the speed of light due
to relativistic invariance of the rest of the terms. The second
observation is that the gap of σ is fixed by the chemical
potential mσ ¼ 2μ, and independent of the couplings λ and
λ0 in this approximation. This is very reminiscent of the
massive Goldstone bosons appearing when internal sym-
metries are spontaneously broken in the presence of a
chemical potential. A last observation is that because of the
mixing, it is no longer true that each Ward-Takahashi
identity is tied to one specific mode. Indeed reexpressing τ
and ϑ in terms of π and σ, one can easily see that both fields
appear in both equations (3.20).

C. Exact dispersion relations

The results obtained from the Ward-Takahashi identities
are easy to interpret physically but we had to introduce
several approximations to derive them, in particular we
used the hierarchy between the masses of the Higgs
fluctuation and the dilaton to freeze out the first. In order
to go beyond this approximation we need to include the
Higgs mode in the analysis, whose dynamics is not
captured by the Ward-Takahashi identities. This can be
more simply done using the effective Lagrangian.

Consider again the vacuum ξ2 ¼ jϕj2 ¼ v2 ¼ μ2

2λ0 and the
fluctuations (3.15) around it. The quadratic Lagrangian for
the fluctuations is

Lquad ¼
1

2
∂μρ∂μρþ 1

2
∂μϑ∂μϑþ 1

2
∂μτ∂μτ

þ 2

ffiffiffi
2

3

r
μτ∂tθ þ

2ffiffiffi
3

p μρ∂tθ −
2

3

ffiffiffi
2

p
μ2τρ

−
2

3
μ2τ2 − μ2

9λþ λ0

3λ0
ρ2: ð3:24Þ

By going to Fourier space we get

Lquad¼
1

2
yTð−ω;−qÞ ·Mðω;qÞ ·yðω;qÞ; y¼ðϑ;ρ;τÞ;

ð3:25Þ

where
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M¼

0
BBB@

ω2−q2 i 2ffiffi
3

p μω i2
ffiffi
2

pffiffi
3

p μω

−i 2ffiffi
3

p μω ω2−q2− 2ð9λþλ0Þ
3λ0 μ2 −2

ffiffi
2

p
3
μ2

−i2
ffiffi
2

pffiffi
3

p μω −2
ffiffi
2

p
3
μ2 ω2−q2− 4

3
μ2

1
CCCA:

ð3:26Þ

Studying the zeros of the determinant of M, one finds one
massless mode, the Uð1Þ NG boson, and two gapped
modes:

ω2
1jq¼0 ¼ 0;

ω2
2;3jq¼0 ¼

3μ2

λ0

�
λþ λ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 −

2

3
λλ0 þ λ02

r �
: ð3:27Þ

Expanding for low momentum q and for λ0 ≪ λ, we get

ω2
1 ≃

1

3
q2; ð3:28Þ

ω2
2 ≃ 6μ2

λ

λ0

�
1þ λ0

3λ

�
þ
�
1þ 2λ0

9λ

�
q2; ð3:29Þ

ω2
3 ≃ 4μ2

�
1 −

λ0

3λ

�
þ
�
5

3
−
2λ0

9λ

�
q2: ð3:30Þ

Comparing with the dispersion relations in (3.22), we
observe that the speed of the phonon is not modified by
corrections depending on λ0, while the mass of the gapped
dilaton is corrected, though mildly. Indeed, contrary to
massive NG bosons associated to internal symmetries, the
mass of the gapped dilaton is not protected by the
symmetry.
For λ0 ≪ λ, ω2

1 and ω2
3 reduce to the dispersion relations

obtained in (3.22) from the study of the Ward-Takahashi
identities, and we have a hierarchy between the two
massive modes. Furthermore, in the limit

μ → 0; λ0 → 0 with
μ2

2λ0
→ v2; ð3:31Þ

we recover the masses (2.6) of the relativistic model (2.2)

ω2
1jq¼0 ¼ 0;

ω2
2jq¼0 ¼ 12v2λ;

ω2
3jq¼0 ¼ 0; ð3:32Þ

and ω3 describes the massless dilaton. This suggests a
connection between the corrections to the mass of the
gapped dilaton at finite chemical potential and the lack of a
flat direction in the potential at zero chemical potential. The
masses of gapped NGs might be protected only if there are

flat directions associated to them, of course this will always
be the case for internal symmetries.

IV. BOOSTED SUPERFLUID

Since the chemical potential breaks Lorentz invariance, it
is interesting to study the effect on the NG modes when the
superfluid is set on motion relative to the frame determined
by the effective Hamiltonian induced by the chemical
potential, that one can identify as the “laboratory” frame.
We consider again (2.2) and introduce both a chemical
potential and a superfluid velocity

ψ ¼ eiμ0uμx
μ
ϕ; ψ� ¼ e−iμ0uμx

μ
ϕ�: ð4:1Þ

Where uμ ¼ γð1;−β⃗Þ, γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jβj2

p
is a timelike four-

velocity uμuμ ¼ þ1. The chemical potential is μ ¼ γμ0,
and the time direction in the laboratory frame is x0. The
background plane wave (4.1) is the same as (3.2) seen by a
boosted observer, compared to the laboratory frame. Since
(2.2) is Lorentz invariant, the dispersion relations for the
gapless low-energy modes can be obtained by boosting
those obtained from (3.1) (i.e., the case with just a chemical
potential). For the sake of providing an explicit check, we
repeat the exercise of computing them directly through the
Ward-Takahashi identities and through the perturbative
Lagrangian approach.

A. Effective Hamiltonian and ground state

We proceed in a similar fashion to the case of zero
velocity. The Hamiltonian and the charge are still deter-
mined by the energy-momentum tensor and the current as
in (3.4), and the effective Hamiltonian at nonzero chemical
potential by (3.5). Because of the boost, the expressions for
the current and the energy-momentum tensor are slightly
modified.

Jμ¼2μ0jϕj2uμþjμ;

Tμν¼2μ20uμuνjϕj2þμ0ðuμjνþuνjμÞ−ημνμ0uαjαþ tμνðμ0Þ:
ð4:2Þ

Where jμ and tμν take the same form as before (3.7) and
(3.11), replacing μ by μ0. Recalling that the chemical
potential is μ ¼ μ0u0 ¼ μ0γ, the effective Hamiltonian is

H − μQ ¼
Z

d3xðT00 − μJ0Þ ¼
Z

d3xðt00ðμ0Þ − μβ⃗ · j⃗Þ:

ð4:3Þ

Since ji vanishes for constant ϕ, the extrema of the effective
potential are the same as before (3.14) replacing μ by the
effective chemical potential in the rest frame of the fluid μ0.

The ground state is thus ξ2 ¼ jϕj2 ¼ v20 ¼ μ2
0

2λ0.
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B. Nambu-Goldstone dynamics from
Ward-Takahashi identities

We can use the same parametrization for perturbations of
the ground state as in (3.15), replacing v by v0. The same
considerations about the mass hierarchy of τ and ρ apply, so
in this analysis we will assume λ0 ≪ λ and freeze ρ. The
dynamics of the low energy modes are determined by the
conservation equations for the current and the energy-
momentum tensor. For the boosted superfluid they take the
form

∂μJμ ¼ 2μð∂0 þ β⃗ · ∇⃗Þjϕj2 þ ∂μjμ;

Tμ
μ ¼ 2μ20jϕj2 − 2μ0uμjμ þ tμμðμ0Þ
¼ 2μ20jϕj2 − 2μðj0 þ β⃗ · j⃗Þ þ tμμðμ0Þ: ð4:4Þ

Therefore, we should just replace the terms with a single

time derivative by the material derivative μ∂0 → μD0 ¼
μð∂0 þ β⃗ · ∇⃗Þ and otherwise change μ by the effective μ0:

∂μJμ ≃
ffiffiffi
2

p
v0

�
∂2ϑþ 2

ffiffiffi
2

3

r
μD0τ

�
;

Tμ
μ ≃

ffiffiffi
3

p
v0

�
∂2τ þ 4

3
μ20τ − 2

ffiffiffi
2

3

r
μD0ϑ

�
: ð4:5Þ

From this, we obtain the equations

∂2τ þ 4

3
μ20τ − 2

ffiffiffi
2

3

r
μD0ϑ ≃ 0;

∂2ϑþ 2

ffiffiffi
2

3

r
μD0τ ≃ 0: ð4:6Þ

The dispersion relation for the gapless mode can be more
easily found by noting that μ ¼ γμ0 and using comoving
coordinates. Taking β⃗ parallel to the x3 direction, we
introduce

x0 ¼ γðx0β þ βx3βÞ; x3 ¼ γðx3β þ βx0βÞ;
x1 ¼ x1β; x2 ¼ x2β: ð4:7Þ

Then

∂
∂x0β ¼ γð∂0 þ β∂3Þ;

∂
∂x3β ¼ γð∂3 þ β∂0Þ; ∂2 ¼ ∂2

β:

ð4:8Þ

The equations become

∂2
βτ þ

4

3
μ20τ − 2

ffiffiffi
2

3

r
μ0∂x0β

ϑ ≃ 0;

∂2
βϑþ 2

ffiffiffi
2

3

r
μ0∂x0β

τ ≃ 0: ð4:9Þ

These are the same as before (3.20), replacing μ by μ0. We
introduce an expansion of the modes in the rest frame in
plane waves

τðx0β;xβÞ ¼
Z

dωβd3qβ
ð2πÞ4 e−iωβx0βþiqβ ·xβ τ̃ðωβ;qβÞ;

ϑðx0β;xβÞ ¼
Z

dωβd3qβ
ð2πÞ4 e−iωβx0βþiqβ ·xβ ϑ̃ðωβ;qβÞ: ð4:10Þ

We recover the expected low momentum dispersion rela-
tions in the rest frame

ω2
β ≃ c2sq2β; ω2

β ≃ 4μ20 þ
5

3
q2β; ð4:11Þ

where c2s ¼ 1=3 is the speed of sound of the scale invariant
theory. These expressions can be translated to frequency
and momentum in the laboratory frame using that

ω ¼ γðωβ þ βqβ3Þ; q3 ¼ γðqβ3 þ βωβÞ;
q1 ¼ qβ1; q2 ¼ qβ1: ð4:12Þ

Note that the dispersion relations (4.11) are valid for low
momentum in the rest frame of the fluid jqβj ≪ jμ0j. For the
gapless modes they can be matched with a low momentum
expansion in the laboratory frame jqj ≪ jμj, however for
the gapped modes this is not possible, as for generic β,
q3 ∼ ωβ ∼ μ. Therefore, finding the dispersion relations of
the gapped modes at low momentum in the laboratory
frame requires solving (4.6) directly.
We classify the dispersion relations of the gapless modes

taking as reference the direction of the superfluid velocity
in the laboratory frame. The dispersion relations for the
longitudinal modes is

ωk ¼ � cs � β

1� βcs
q3; q1 ¼ q2 ¼ 0; ð4:13Þ

while the dispersion relation for the transverse modes is

ω2⊥ ¼ c2s
q21 þ q22

γ2ð1 − β2c2sÞ
; q3 ¼ 0: ð4:14Þ

These expressions agree with the ones obtained by rela-
tivistic addition of velocities. Note that for jβj > cs both
(positive frequency) longitudinal modes (4.13) propagate in
the same direction as the superfluid velocity. This is the
reason why we expressed linearly the dispersion relations.
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For the gapped modes the low momentum dispersion
relations are

ωk ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2c2s

q
μ−

2

3

βq3
1−β2c2s

þ 5þβ2c2s
12γ2ð1−β2c2sÞ5=2

q23
μ
;

q1¼q2¼0;

ω2⊥¼4ð1−β2c2sÞ2μ2þ
5−β2

3ð1−β2c2sÞ
ðq21þq22Þ; q3¼0;

ð4:15Þ

where again the longitudinal dispersion relation is
expressed linearly. The gap is reduced by the superfluid
velocity, but in this approximation remains finite even in
the limit β → 1, where the condensate vanishes (i.e., at
fixed μ). Note also that, at leading order for momenta in the
same direction of the flow, the frequency is reduced.

C. Exact dispersion relations

We now study the effects of including the Higgs
fluctuation ρ, and the corrections for finite λ0=λ. We thus
resort to expanding the full Lagrangian. According to (4.1),
we switch on a chemical potential μ ¼ μ0γ and a back-
ground wave vector k3 ¼ μ0γβ. The effective potential is
now:

V ¼ λðjϕj2 − ξ2Þ2 þ λ0jϕj4 − ðμ2 − k23Þjϕj2; ð4:16Þ

For stationary solutions, the situation is not very different
from the case with just μ, in fact one just needs to replace μ2

by ðμ2 − k23Þ ¼ μ20 in (3.13). Therefore, we consider the
solution

ξ2 ¼ jϕj2; jϕj2 ¼ μ20
2λ0

: ð4:17Þ

The fluctuation around (4.17) are still given by (3.15)
where however v ¼ v0 ¼ μ0ffiffiffiffiffi

2λ0
p . Writing k3 ¼ βμ, the quad-

ratic Lagrangian for the fluctuations is

Lquad ¼
1

2
∂μρ∂μρþ 1

2
∂μϑ∂μϑþ 1

2
∂μτ∂μτ

þ 2

ffiffiffi
2

3

r
μτð∂t þ β∂3Þθ þ

2ffiffiffi
3

p μρð∂t þ β∂3Þθ

−
2

3

ffiffiffi
2

p
μ20ρτ −

2

3
μ20τ

2 − μ20
9λþ λ0

3λ0
ρ2: ð4:18Þ

In analogy to (3.25) and (3.26), by going to Fourier space
we get the kinetic matrix:

0
BBB@

ω2 − q2 i 2ffiffi
3

p μðω − βq3Þ i 2
ffiffi
2

pffiffi
3

p μðω − βq3Þ
−i 2ffiffi

3
p μðω − βq3Þ ω2 − q2 − 2ð9λþλ0Þ

3λ0 μ20 − 2
ffiffi
2

p
3
μ20

−i 2
ffiffi
2

pffiffi
3

p μðω − βq3Þ − 2
ffiffi
2

p
3
μ20 ω2 − q2 − 4

3
μ20

1
CCCA: ð4:19Þ

From the determinant of (4.19), one can find the exact dispersion relations. First of all, setting the momenta q ¼ 0 one finds
that there is a massless mode corresponding to the Uð1Þ NG boson and two gapped modes:

ω2
1jq¼0 ¼ 0; ω2

2;3jq¼0 ¼
3

λ0

�
λμ20 þ λ0μ2ð1 − c2sβ2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2μ40 −

2

3
λμ20λ

0μ2ð1 − c2sβ2Þ þ λ02μ4ð1 − c2sβ2Þ2
r �

; ð4:20Þ

where cs ¼ 1=3 as before.
Now, expanding at low frequencies and momenta, one can extract analytically the dispersion relation for the Uð1Þ NG

mode:

ω1 ¼
cs

1 − c2sβ2
ð2csβq3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − β2Þ2q23 þ ð1 − β2Þð1 − c2sβ2Þðq21 þ q22Þ

q
Þ: ð4:21Þ

Notice that the above expression is independent of the ratio λ0=λ. Indeed one can check that in the longitudinal and
transverse case, it reproduces correctly the expressions (4.13) and (4.14), respectively.
For the massive modes, one has to expand the frequencies around the respective gaps. To first order in momenta and in

λ0=λ, the dispersion relations for the gapped dilaton are:
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ωðgappedÞ
k ¼ 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sβ2

q �
1 −

λ0

6λ

1 − c2sβ2

1 − β2

�
−

2β

3ð1 − c2sβ2Þ
�
1 −

λ0

3λ

1 − c2sβ2

1 − β2

�
q3 þ…

ωðgappedÞ
⊥ ¼ 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sβ2

q �
1 −

λ0

6λ

1 − c2sβ2

1 − β2

�
þ 1

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sβ2

p
�
5 − β2

1 − c2sβ2
þ λ0

6λ

�
q21 þ q22

μ
þ… ð4:22Þ

For λ0=λ ¼ 0 they agree with the dispersion relations obtained from theWard-Takahashi identities (4.15). Again, we observe
that the gap receives corrections in λ0=λ, so it is not protected by the symmetry.
Finally, we present the dispersion relations of the Higgs mode, to the same order:

ωðheavyÞ
k ¼

ffiffiffiffiffi
6λ

λ0

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
μ

�
1þ λ0

6λ

1 − c2sβ2

1 − β2

�
−
2λ0

9λ

β

1 − β2
q3 þ…

ωðheavyÞ
⊥ ¼

ffiffiffiffiffi
6λ

λ0

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
μ

�
1þ λ0

6λ

1 − c2sβ2

1 − β2

�
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
ffiffiffiffiffi
λ0

6λ

r
q21 þ q22

μ
þ… ð4:23Þ

Note that the β → 1 limit at fixed μ seems to be ill defined.
However this is an artifact of the expansion. For instance,
inspecting (4.20) and noticing that in this limit μ0 → 0, we
find that the gap of the dilaton actually goes to zero, while
the gap of the Higgs mode stays finite, but scales with μ,
which might be slightly nonintuitive (recall that in this limit
there is no condensate).

V. SUMMARY AND DISCUSSION

The two main highlights of the present paper are these:
(1) The analysis of the low-energy mode associated to

spontaneously broken scale symmetry and the char-
acterization of how its zero-temperature gap depends
on the finite density.

(2) The description of a generic method based on Ward-
Takahashi identities alone to study the low-energy
modes of an effective field theory.

The analysis pursued in the present paper indicates
that the spontaneous breaking of the scale symmetry at
zero temperature gives rise to a light dilatonic mode
whose gap is directly proportional to the chemical
potential. This generic expectation can be relevant for
the low-energy content of zero-temperature systems
where the chemical potential, too, is small with respect
to the UV cutoff of the effective description (related to
some other physical scale such as an external magnetic
field [28]).
Ward-Takahashi identities in quantum field theory are

known to be a key tool for the study of symmetries, either
when these are preserved or broken, and even when the
breaking is explicit [29,30]. The present paper stresses that
Ward-Takahashi identities alone provide a sufficient frame-
work to study the dispersion relations of the low-energy
modes of an effective field theory, providing an alternative
—generally simpler—approach than the direct fluctuation
analysis at the level of the Lagrangian. The method is
generic, but we applied it to the specific study of scale

symmetry breaking to the purpose of elucidating the
characteristics of the resulting low-energy dynamics. It
would be interesting to look for a gapped dilaton in a
strongly coupled theory, by means of the holographic
duality. This might be achieved by combining holographic
models with a gapless dilaton in Poincaré invariant vacua
[31,32] (see also [33]) and models with type II and gapped
NG modes [34,35].
We first examined a relativistic field-theory model (2.2)

in four spacetime dimensions where scale symmetry and a
global Uð1Þ symmetry are concomitantly and spontane-
ously broken. The scale-invariant potential must have two
flat directions which translate into two gapless NG modes,
the dilaton and the Uð1Þ NG both relativistic and both
propagating at the speed of light, (2.11) and (2.13).
In order to realize the same symmetry-breaking pattern at

finite density, the model must be stabilized by means of an
extra scale-invariant term (3.1) which lifts the dilatonic flat
direction without affecting the spontaneous nature of the
breaking. The resulting low-energy modes are nonetheless
altered: the Uð1Þ NG remains gapless but propagates at the
conformal speed of sound, like a superfluid phonon; the
dilaton acquires a gap of the order of the chemical potential
μ whose value is however not protected by symmetry
(3.22). The dilaton is light compared to other gapped modes
only when the coefficient of the term that lifts the flat
direction (3.1) is tuned to be very small, in that case we
observe that the dilaton gap becomes independent of the
couplings.
Our results at nonzero density belong to the line of

research on gapped NG modes [15,19–21,36]. In this
context, a natural future perspective is to embed the present
analysis into a systematic Maurer-Cartan effective frame-
work, thus assessing its universality and possible
generalizations.
One interesting field of applications is provided by

condensed matter. The presence of a wide critical
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region in the phase diagram is a characteristic shared by
many—generally strongly correlated—systems, among
which the cuprates. The critical phase is associated to
interesting phenomena like bad and strange metallicity and
non-Fermi liquid behavior [37]. It is also often conjectured
to lie at the basis of the mechanism for high-temperature
superconductivity, see for instance [38].
The defining property of such critical region is the

validity of simple scaling rules whose origin, however,
can involve complicated and often elusive dynamics related
to the presence of a quantum critical point [39–41] or, more
generally, to the presence of a scaling sector [38,42]. This is
sometimes referred to as generic scale invariance [43] and
can be assumed among the defining symmetries of an
effective description.
Another paradigmatic example is provided by cold atoms

at unitarity, where there is an emergent nonrelativistic
conformal symmetry [44], known as Schroedinger sym-
metry. Gapped NG modes are known to appear when the
Hamiltonian is deformed by some of the symmetry gen-
erators of the Schroedinger algebra [45]. An extension of our
analysis, along the lines of [23], to systems with Galilean
rather than Lorentz invariance would be quite interesting.
As another remark, still related to condensed matter but

in the context of standard metals, it is relevant to mention
that the low-energy modes of our analysis would not
destabilize a Landau-Fermi liquid coexisting with them.
This can be appreciated by means of an extension of the
results of [46] to dilatations, a symmetry which does not
commute with either spatial or temporal translations: one
can show that the linear interaction term between the
fermionic quasiparticles and, respectively, the Uð1Þ NG
and the dilaton are both vanishing.
The model adopted here allows for generalizations in

which theUð1Þ symmetry is coupled to translations and the
symmetry-breaking preserves only a linear combination of
the two [47]. This would realize a spatial version of the
pattern described above when μ ≠ 0 and only a diagonal
component of the product of internal Uð1Þ and time
translations was preserved. Such breakings are referred

to as homogeneous because they do not yield any spacetime
modulation of the energy density,9 they however provide
acoustic phonon modes. It is an interesting open question to
study whether and how these phonons would coexist with a
dilatonic mode [49]. The relevance of the question is
threefold: it relates to the counting problem of NG modes
for spacetime symmetries [9,16]; it concerns condensed
matter systems where a critical scaling and the breaking of
translations are intertwined10; it provides insight regarding
holographic models where scaling and translation sym-
metries are broken together [51–54].11
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