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The perturbative QCD static potential and ultrasoft contributions, which together give the static
energy, have been calculated to three- and four-loop order respectively, by several authors. Using the
renormalization group, and Padé approximants, we estimate the four-loop corrections to the static energy.
We also employ the optimal renormalization method and resum the logarithms of the perturbative series in
order to reduce sensitivity to the renormalization scale in momentum space. This is the first application of
the method to results at these orders. The convergence behavior of the perturbative series is also improved
in position space using the restricted Fourier transform scheme. Using optimal renormalization, we have
extracted the value of AgCSD at different scales for two active flavors by matching to the static energy from

lattice QCD simulations.
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I. INTRODUCTION

The static potential energy of quantum chromodynamics
(QCD) is the non-Abelian analogue of the well-known
Coulomb potential energy of quantum electrodynamics.
The short distance part of this quantity is calculated in
the nonrelativistic QCD (NRQCD)[1,2] framework and
involves the evaluation of Feynman diagrams. It has been
studied extensively in recent years and analytical results are
known to three-loop. At four-loop order contributions
involving the ultrasoft gluons that start to contribute from
three-loop order in perturbation series are known. Such
contributions only appear for short distances when system
is weakly coupled. They are calculated using weakly
coupled potential nonrelativistic QCD (pNRQCD) [3,4]
formalism. Hence, we discuss only weakly coupled regime
of pNRQCD in this article. The static potential depends
on the renormalization scale u, the ultrasoft factorization
scale p,, and magnitude of the three momentum transfer
between the heavy sources p(=|p|). In this article MS
renormalization scheme is used.

The first attempt to perform the full three-loop (numerical)
calculations was by two independent groups [5,6].
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The results were found to be in agreement. Analytical
calculations were presented almost six years later in
Ref. [7]. At three-loop order, ultrasoft gluons also appear
which are capable of changing singlet to octet state of the
system and vice versa. Such contributions were first pointed
in Ref. [8], and were calculated in Ref. [9] in pNRQCD. The
renormalization group (RG) improvement of the ultrasoft
terms at three-loop order was first discussed in Ref. [10]. The
next order calculations for the ultrasoft terms can be found in
Ref. [11] and their resummation is discussed in Ref. [12].
These contributions are confirmed and partly improved for
color-octet states at leading and subleading orders in Ref. [13].

QCD is known to be nonperturbative at long distance, and
this fact is manifest in lattice QCD (LQCD) simulations. The
static energy, that includes the static potential and the
ultrasoft contributions, can also be computed in LQCD
simulations, and hence it becomes a topic of great interest to
extract various parameters of the theory. Some recent LQCD
simulation results for the static energy can be found in
Refs. [14-19], and they support the Cornell potential type
behavior for the heavy quark-antiquark system.

The potential energy between a heavy quark and anti-
quark pair, is an important ingredient to describe, among
other things, nonrelativistic bound states like quarkonia
[4,20], quark masses [21-30] and threshold production of
top quarks [31-33], determination of strong coupling con-
stant[14—16,34] and also has been testing ground renorma-
lon motivated studies in Ref. [35-37] etc. In this article, we
have addressed the following issues:

(i) At four-loop order, the constant term contributing to

the perturbative series is as yet unknown. It requires
calculation of four-loop Feynman diagram. In the
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absence of such a calculations we use RGE and Padé
approximants [38] to get the estimate for the four-
loop coefficients.

(i)) The RG improvement of the static energy by
resummation of all RG-accessible running loga-
rithms following the method advocated in
Refs. [39—-47], and for the first time applied in this
paper to the ultrasoft logarithms present in the static
energy. All the leading and next-to-leading loga-
rithms at each order in perturbation theory that can be
accessed through the RG equation (RGE) are called
RG-accessible logarithms. We call this renormaliza-
tion group improved perturbative series as RG-
summed or optimal renormalized series. It should
be noted that our resummation scheme discuss about
RG-improvement with respect to renormalization
scale whereas Ref. [10,12] deals with the RG-im-
provement with respect to the ultrasoft scale.

(iii) The convergence of the static energy is improved to the
four-loop order in position space using the restricted
Fourier transform (RFT) proposed in Ref. [48].

(iv) We use the RG-summed and unsummed forms of the
static energy in momentum space to extract AggD to
four-loop from the LQCD inputs from Ref. [18].

(v) In comparison to the unsummed series, the RG-
summed static energy in momentum space gives
better fit to the static energy obtained from LQCD
in Ref. [18].

(vi) The four-loop RG-summed static energy is used
as a trial case to show that these improvements (scale
sensitivity and better fit) also persist at the higher
order.

The scheme of this paper is as follows: In Sec. II, we
discuss the perturbative treatment to the static energy and
various pieces associated with this quantity in the weak
coupling limit. In Sec. III, we calculate some contributions
to the static energy at the four-loop using the RGE. In
Sec. IV, we use Padé approximants to estimate all the four-
loop coefficients even the one that is not accessible with the
RGE. Some of the estimates are found in agreement with
RGE solutions. In Sec. V, we perform all order RG-
summation of certain running logarithms and show that
this RG-improvement will bring down the sensitivity to the
renormalization scale. In Sec. VI, we discuss the improve-
ment of the static energy to the four-loop order in position
space by removing the pathological uncontrolled contri-
butions using RFT. The inputs from the previous sections
are applied in Sec. VII to fit the LQCD inputs for the static
energy to extract the A{e, for two active flavors in
momentum space. A discussion is presented in Sec. VIII
and we summarize our results in Sec. IX. Appendix A
contains the QCD beta function coefficients. Appendix B
contains the formula used in for running of the strong
coupling constant with momentum and also in terms of

A@D. Appendix C contains the known contribution to the

static energy. Appendix D contains the useful formula for
calculating the restricted and unrestricted versions of
position space static potential and the static energy.
Appendix E contains the final result of uncontrolled
contribution to the static energy in position space to the
four-loop order.

II. THE PERTURBATIVE
QCD-STATIC ENERGY

A heavy quark and antiquark system, with heavy quark
mass mg and relative velocity » < 1, is nonrelativistic in
nature and various scales [4,49] present in the system are
hard scale ~O(m,), soft scale ~O(myv), and ultrasoft
scale ~O(mgv?). If these scales are well separated then we
can integrate them one by one to study only relevant
degrees of freedom. Integrating out the hard scale from
QCD gives the nonrelativistic QCD (NRQCD) in which the
soft and the ultrasoft degrees of freedom are dynamical.
Contributions to the static energy at different orders were
calculated using this framework. The one-loop perturbative
calculations for massless quarks were first performed in the
late 1970s and can be found in Refs. [8,50-52] and in the
massive case in Ref. [53]. Two-loop massless calculations
appeared in Refs. [54-57] while the massive case were
considered in Refs. [30,58-60].

The pNRQCD is obtained from NRQCD by integrating
out the soft scale and this formalism is best suitable for
studying the threshold systems. The heavy quark and anti-
quark systems in this formalism are described by color
singlet fields S and color octet fields O. The gauge fields
are multipole expanded about the interquark separation and
the gauge invariant Lagrangian for pNRQCD [4,20], at
leading order in 1/m,, is given by

Lonroep = Liight + Tr(ST(i0y — V(7. pus) + ...)S)
+ Tr(O(iDy — V (7, pys) + -..)0O)
+ gVa(r, pts) Tr(Or - ES + S'r - EO)

VB(r’ )uus)
2

1
~ s Flpre, (1)

+g Tr(O'br - EO + O'Or - E)

where Lj;g is Lagrangian for light quarks, iD,O = i9,0 —
9[Ao(R.1),0] and E are chromoelectric field strength.
V(r,u,s) and V,(r, p,,) are singlet and octet potential at
leading order in r while V, and Vp appear at subleading
order in r. It should be noted that these potential will also
depend on the renormalization scale ¢ for any finite order
calculation. The potentials appearing at higher order in
1/mg are hidden in ellipses which disappear in static
limit my — co. The gauge fields are already multipole
expanded about inter-quark separation (R) in Eq. (1) and
therefore, F** = F**(R,1).
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In the weak coupling regime,
hierarchy of scales:

the system has the

Mo > mov > mov® > AN, (2)

and in this limit, the static energy can be written as a
perturbative series in the strong coupling constant «,. The
singlet static energy to known orders can be written as:

Eo(p.p) = V(P s phus) + 8% (P, p phug) 3)

where V(p, i, uys) is the perturbative static potential and
8" (p, u, pys) are contribution from ultrasoft gluons. The
static potential encodes the interaction of the quarks and
gluons degrees of freedom in the singlet state and is known
to three loop. It takes the following form:

Vi(potts pus)

- —47T2CF

p2

- i-2 ,
; leHLJ < ijo+ ;G(i — Tlllj kIng </%>>

O(x"*2). 4)

In the above, L = log(ﬁ—z) is running logarithm, and Cp =

4/3 is color factor of the SU(3) representation. The
expansion parameter in the above equation is defined as
x = (ay(u)/7), and any argument of x indicates the scale at
which it is evaluated. The coefficients T'; o are the ith-loop
perturbative contributions. The one-loop coefficient T ¢
can be found in Refs. [52,53], the two-loop coefficient
T30 in Refs. [55-57] and the three-loop coefficient 75
in Refs. [5-7]. All these coefficients are collected in
Appendix C. The coefficients of infrared logarithms,
T‘}Sj &> in the static potential and can be found in Refs. [9,11].

In effective field theory language, the static potential is a
matching coefficient which depends upon the factorization
scale p,,. The presence of the logarithmic terms in the static
potential at three-loop were first pointed out in the Ref. [8]
and they act as a source of infrared divergences. The
ultrasoft part 6" is now known to next to the leading order
(NLO) [9,11] but it contributes to the static energy from
three-loop order (briefly discussed in Sec. VI). They carry
the information of the dynamical ultrasoft gluon degrees of
freedom with the ultraviolet cutoff .. This scale acts as a
source of ultraviolet divergences for these gluons. Both
divergences, however, cancel with each other for the
static energy which results in nonanalytic dependence
(~aog™(a,)) in terms of the expansion parameter and
the total energy in Eq. (3) takes the form:

)

471' c
Eo(p.p) FZ Z P) T log" (x(p))
P
4-67(X(P)”+2)
4>C
= - W)L =), (5
where T ¢'= Tff)“o + 8T, and constant terms (5T%%

are the contributions from the ultrasoft gluons and can be
found in Ref. [11].

The ultrasoft contributions to the static energy are now
known to the four-loop order, but the perturbative correc-
tion to static potential are yet to be calculated at this order.
Some of the contributions to the static energy at this order
can be accessed using RGE and they are discussed in the
next Sec. IIL

III. RG SOLUTIONS OF THE
FOUR-LOOP CONTRIBUTIONS

We can rewrite Eq. (5) in terms of the coupling at the
renormalization scale ¢ using Eq. (B1) as:

(i-j-2)

4” CF s wl 17 ook
Ey(p.pu) = Z Z x L 1og" (x) T
i=0 j=0
47TZCF
= - e W(x,L). (6)

Despite the explicit dependence, all-orders series should be
independent of the renormalization scale y. Mathematically,
this implies that any perturbative series W (x, L) must satisfy
the RGE:

d
2 L) =
ﬂMWL)Q (7)
where
d? 0 0
2—:— o

The QCD beta function S is defined in terms of x as:
d’ = .
PO = —mx == pa't?, 9)
dp i=0

where the coefficients f; up to five-loop order [61-69] are
given in Appendix A. The RGE can be used to solve
iteratively for the RG-accessible terms in terms of the
QCD p; coefficients and the lower order RG-inaccessible
coefficients 7'; ¢ .
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The RGE for the W(x, L) along with known results to three-loop and QCD beta functions allow us to extract
the RG-accessible four-loop coefficients 7410, 7420, 1430, 1411, and T4 4. To obtain them, we note that

oL

0 0
<— + B(x) a) W(x,L) = (T1.10—Bo)x* + (Tr10—B1 —2BoT100)x° + (2T220 = 2BoT1.10)x°L

+ (T3.10 = B2 =281 T100 = 3PoT200)x* + (=341 T210 = 281 T110 + 2T320)x'L

+ (37330 = 361T220)X*L* + (T4 10 = 3 = 2P2T100 = 341200 — 41 T300 = PoT30.1
+10g(x)Ty 11 = 4Po10g(x)T3,0.1)%° + (2T420 = 2T1,1.082 = 3T2.1.081 = 4PoT3.1.0)%°L

+ (37430 =31 T200 = 451 T320)X° L% + (4T 440 — 4B T330)° L + O(x°) = 0. (10)

Coefficients of x'L/log*(x) of the above equation gives the
RG-accessible coefficients

Ts10=4P0T300P0+PoT301+31Tr00+2P2T100+P3,

T420=6p5T200+ 1T 100+ 3P2P0 + 37'3%
T430=4B3T100+ 13—3/7’1/3(2),

T4a0="P5

T411=4PoT30.1- (11)

The coefficients T';; cannot be obtained using RGE and
are known as the RG-inaccessible terms. The calculation of
such terms involves the evaluation of all the Feynman
diagrams relevant for that order. Such calculations are yet to
be performed so we use asymptotic Padé approximant
(APAP) to estimate unknown coefficient, 74, which is
discussed in the next section.

IV. PADE ESTIMATE OF THE
FOUR-LOOP CONTRIBUTION

Padé approximants are rational functions that can be
used to estimate the higher order terms of a series from its
lower order coefficients. Both the original series and the
Padé approximants have the same Taylor expansion to a
given order, the next term is taken as its prediction. They
are used in Refs. [43,70-77] in the past to improve the
higher order perturbative results for QCD. It is worth it to
mention that they were first used for the static potential in
Ref. [38] and we are extending the results using the same
method for static energy to the four-loop order. The
procedure used is explained in this section.

Note that the ultrasoft corrections to the static energy are
already known to the four-loop order, so we do not need to
predict them using Padé approximants. They can be added
to the predicted values at the end of calculations. We rewrite
the perturbative series in Eq. (6), without the ultrasoft
corrections as W(x, L), in the following form:

W(x,L) =1+ Ryx+ Rox*> + R3x® + Ryx* + - --
+ RyxN 4 -, (12)

where

Ri = LjTi!j!(). (13)
=0

In general, if the series coefficients {R;, R,, Rs, ..., Ry } are
known then the Padé approximant for this series is denoted
by WIN-MM]and given as:

v _ 1 +Ax + Apx® + - Ay yxV M (14)

1+ Bix+--+ ByxM '

can be used to estimate Ry, ;. For example, if only the
NLO term of Eq. (12), R, is known then the next
coefficient, R,, is estimated from W'l by Taylor expand-
ing it for small x as

Wil — TR = TRt R+ 0(x%),  (15)

—Rlx

i.e., R? is the Padé approximant prediction for R,.

For the static energy, the coefficients R, R,, R; are
known and can be read off by comparing the x'th terms in
Eq. (6) with Eq. (12). To predict the unknown four-loop
coefficient R, in Eq. (12), we use the approximant W2l
and its series expansion, for small x, is given by:

1 +Ax+ Ayx?
1 -Bx

= 1+x(A; +By) + x*(A; B, + A, + BY})

+x3(A|B} + A3B, + B})

+ x*(A|B3 + AyB3 + B}) + O(X°). (16)

Win —

’

Now, first we solve for A;, A,, and B; in terms of known
R|, R,, and R;5 of Eq. (12) and the solutions are
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R\R,—R
Ay=—r— (17)
2
R2—RR
Ay =22 Rzl 2 (18)
R
BlzR—3. (19)
2

In the next step, the coefficient of x* in Eq. (16) is taken as
the prediction for R, which, in terms of the lower order
R;’s, can be written as:

&

pred
R =3
R,

(20)

In large L limit, we get the following form for RY™
compatible with Eq. (13) as:

pred _ 7Padé | gPadé Padé 12 | 7Padé 1 3
Ry ™ =Tyo0 + T4l + Tu50L" + Ty5,L

+ TR, (21)

These predictions can be further improved by knowing
the asymptotic behavior of the series, and this extra piece
of information is taken as input to get a more precise
approximation. This improvement is termed as APAP and
can be found in Ref. [74].

The error associated with such approximation in asymp-
totic limit [38,74] is given by:

NYMAM

i (22)

Oin/m) R =

where D = N+ M(1+a,) + b, and A, a,, b, are fitting
parameters. We get APAP results in terms of R by:

pred
R 4

RAPAP — ‘
(14 Sn/a)

(23)

Repeating the procedure for known lower order R’s, we can
fix the constants A, a » and b » for a fixed M. It is worth to
mention that among different choice of Padé approximant
for APAP, for a given order, M =1 and a, =0, b, =0
gives best results compatible with RG for the static energy
and hence this particular choice is used in this article.
Following the procedure explained above, we get the
four-loop Padé prediction in the large L limit as:

136171 0 n 16951100 625182T 100

N
4318, 3134T 00 16051 T200T 100
9 B 271 B 9 Po
625 T100 431300 |, 62P2T200 55P1Pn
9 bo 9 bo 9 B 9K
571200 | 52 113
36 1 7 gT‘f,o,o —TTz,o,oT%.o,o
46 142951 1943 8
9 300 30 g gﬂ—%‘i‘gT&o,oTl,o,o, (24)
. 8 61 8
TH = gﬂoTs,o.o + gﬂ 1T200 —2B0T7 00+ gﬁle,o,o
46157 34 10 43,5,
— =BT 00 T 5 PoT200 100+ o5
logﬂ% 9 141,00 3 04£2,0,041,0,0 9 ﬁ()
43:6%]'1,00’ (25)
18  pfy

. 17 22 8 79
Tif‘zd,% = ?ﬂ%Tz,o,o + ?ﬁlﬁoTl.o,o + gﬁzﬂo + %ﬂ%

1
+ gﬂg TS 00 (26)

THYG = 4T 0083 + 13*35(2),317 TE = B, (27)

We can see that for T 4 and T, 45 the predictions from
Padé and the renormalization group are in perfect agree-
ment. For the other RG-accessible coefficient T, and
T4,,, the predictions are different. However, numerical
difference for 7', ; () is not more than 2.2% for active quark
flavors ny < 6. However, T, ( has larger deviations >2%
for ny > 2 from RGE prediction. For this reason, we will
restrict our discussion in next sections only to two active
flavors for the four-loop. The Padé prediction for the
unknown constant term at the four-loop order for the
static potential can be obtained by setting T ; k0,0
and 6T} 5 — 0.

Interestingly in the large n, limits both the Padé
approximant and solutions of RGE for RG-accessible
coefficients 74, give the same values

B g T gt
T B T
L
P e T et
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For RG-inaccessible coefficient

oo (ST \ 4
Ths <9f e ) .

In fact, similar pattern has been observed for known lower
orders:

oo (=5T enp\i
e (.
Now we have an estimate for 74, but the truncated
perturbation series also suffers from scale dependence. The
scale sensitivity of the perturbative series can be minimized
using RG-summation of running logarithms and the pro-
cedure is discussed in the next section.

V. RG IMPROVEMENT IN THE
MOMENTUM SPACE

The issue with the perturbative series in the QCD is to
account for the RG running of all the parameters. The
optimal renormalization method advocated in Refs. [44,45]
accounts for the RG running by summation of all the RG-
accessible logarithms. The RG-accessible logarithms at
each order in the perturbation theory are defined as the
leading and the next-to-leading logarithms that can be
accessed through the processes-dependent the RGE.
Resummation becomes interesting from the three-loop
order due to presence of the ultrasoft terms and this
issue is discussed for static energy for the first time in
this article.

The perturbative series in question is

. (i-j=2)
i x0(i-j-3)

W(x,L) = z”: Z X Logh(x)T; 4, (28)

i=0 j=0 k=0

where the series coefficients are 7' ; ;.. To obtain RG-summed

perturbation series which we call Wl({lc);z’ we rewrite

W(x,L) as

n (i=2)0(i-3)
Weos =3 Y xlogh(x)Sik(xL),  (29)
i=0 k=0

where intermediate quantities S;;(xL) are the resummed
series obtained by summing terms:

o]

Z(XL)n_iTn,n—i,k' (30)

n=i

We substitute Eq. (28) in Eq. (7) which leads to a recursion
relation between the series coefficients. We multiply the
recursion relation with (xL)*~! with appropriate k and sum it

from n = k to infinity, which following Eq. (30), give
differential equations for S;;(xL). The solution to these
differential equation results into the closed form expression
for S; x(xL).

The RG-summed solutions S; o(xL) are calculated to the
two-loop order in Ref. [44] and are given below:

, Sy =w2(T190—-BiL,), (31)

1
S():—
w

Sy =w (B} = By) + w3 (Th00— Bl + B,
—B\L,(B, +2T, ) + B3L2), (32)

where w = (1 — fou) and B; = B/, and L,, = log(w).
The RG-summation for e™e™ process to three-loop order is
also discussed in Ref. [45] which is a special case of the
results of this article in the limit where ultrasoft coefficients
are taken zero.

The static energy requires a new series representation,
compatible with the RGE, to incorporate the ultrasoft
logarithms. These logarithms form a separate recurrence
relation among the coefficients. The RG-summation of
ultrasoft terms at the three-loop order is obtained by
collecting the coefficients of x"L"*log(x) in Eq. (10)
which results in the following recurrence relation among
the coefficients:

(n=3)Tyn-31 = nPoT -1 031 = 0. (33)

Collecting x"L"* terms, we get the following recurrence
relation:

(n=3)Ty 30 = 1PoT 1120 = PoTn-1n-41
—(n=DATppa0— (n=2)prT 3,40
—(n=3)B5T 4 p—40 = 0. (34)

Notice that presence of the ByT,_;,_4; terms in the
above equation is new and differs from eTe~ case in
Ref. [45].

For the four-loop order, coefficients of x"L"~> log?(x)
terms give the following recurrence relation for ultrasoft
terms:

(Vl - 4)Tn,n—4-.2 - nﬁOTn—l,n—5,2 =0. (35)

Collecting x"L">log(x) terms, we get the following
recurrence relation:

(n— 4)Tn.n—4,1 —-(n- 1)ﬂ1Tn—2,n—5,1
—nfoT 1 yos1 — 2ﬂoTn—1,n—5,2 =0. (36)
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Collecting x"L"=> terms we get the following recurrence
relation:

(=T, 90— (n=4)BsT 5450 — (n = 3)
X 3T —4p-50 — (n— 2)ﬂ2Tn—3,n—5,0 - (n—=1)
X P1Ty2n-50—P1Tn-21-51 =BT n_11-50

_ﬁOTn—l,n—S.l = O’ (37)

multiplying u*~!, where k = n — 3 for three-loop and k =
n — 4 for the four-loop, to the recurrence relations and then
summing n from k to oo gives separate differential
equations for the above recurrence relations. All these
recursion relations can be written in a general-differential
equation for the static energy as:

53,0(W) ) 7

BLy 1

L2 3BT +@ +
W 1,0,0 ) 4

1 ( B B,

1

Sao(w) = <T400—B T100—3BiT200+ B3T1 00 +3ByT200 + — ;

%

+ —vsv (6BiT 00 —3B3T100

L2

g,

—(ZB T100+3B Tr00—

+

B4

E\‘:|H %A‘g‘ é‘:

1
+ 2

The importance of resummation of all accessible loga-
rithms can be seen in the Fig. 1. The scale dependence
of the RG-summed series Eq. (29) around momentum

p=m)S =417 GeV is almost negligible in the range

m¥S/2 < <2mM while the unsummed series in
Eq. (6) has significant x4 dependence. Scale sensitivity of
unsummed series decreases order by order but the advan-
tage of RG-summed series provides results less sensitive to
scale with the same available information. This theoretical

(2B%T1,0.0 —2B,T, o0+ B} — ByB)) +

—8B,B\T) o9 —4B,T500— B T30, + 4B}

- - - 1 - U L3,
+— <7B?T1.0,0 +6B7T00 + 4B T30, — 533? +6B,BT + T4,0,2> +—= < —4BiT 0 — 3 1334)

BT - - 1. . -
( ~BiT100+2B2B1T100 = B3T1,0,0+—_BZB%_§B3BI +B%> +

n

> (06— k. ~k) —0(i —k=2.k— 1))

i=0

¢ (5= Bl = 0) 5 Sia) = -4 DB = 83400

=+ 0= k== D)) =0 G8)

Solution to different RG-summed series to the order we are
interested in are given by:

Tyop

T3,
S42( ) WS s

S31( ) W4 ’

(39)

1 N
Sa1(w) = s (=4B1T50,L, —2T40sL,, +T4p1). (40)

Similarly, other solutions are

1 B} B\ L,, .- . 8 .
> <T300—2B T100+232T100——+ )+F(—23%T1,0,0—331T2,0,0+23?—33231 —T301)

%(23 B, - 2B3)
(41)

7B} 35,57 - L BB +SB2+B4
201 6 301 3 3

—3B,B} —2B3B, — T4p,)

3 B;*Lj,
WS

. - - - - L2 .
2B,B\T, oo —3B,T00— 2B} +5B,B7 —3B3) + e (3B} — 3B3B,)

5 o 1 (B} N
(=6B3T 0+ 6B,B T 0 — 5131+519232)+—<?l B,B? +ZB3B, + 2 -2

2 B3 B4>

3 3 3

§w| =

(B} —2B,B? + B3B)). (42)

improvement provide us an opportunity to extract various
parameters from available experimental data with less scale
sensitivity.

VI. RESTRICTED FOURIER TRANSFORM

Let us begin by noting that the ultrasoft part of the static
energy is calculated in position space, whereas the pertur-
bative part is carried out in momentum space. To make any
phenomenological study, it is necessary to bring all the
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Scale Dependence at 3-Loop
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FIG. 1. Renormalization scale dependence of the resummed

and the unsummed static energy at different loops.

contributions of the static energy into the same space.
Bringing the momentum space results in position space via
a Fourier transform may seem natural, but such a trans-
formation induces pathological contributions to the static
energy. These undesirable contributions originate from the
nonperturbative, small momentum modes, which must be
removed explicitly. After removing such contributions, the
convergence behavior of the static energy improves dras-
tically. This scheme was first addressed in Ref. [48] and
was termed as the restricted Fourier transform (RFT). This
scheme has been already discussed in detail for the static

energy to the three-loop. Here we discuss it very briefly and
provide corresponding results for the four-loop order.

Note that the ultrasoft terms are already known to the
four-loop order. Therefore, what we are providing is the
complete calculation of the static energy in the position and
momentum space to the four-loop order. The final result for
the uncontrolled contribution to the position space static
energy in RFT scheme is given in Appendix E but an
overview of the calculation is given here.

The position space version of the static potential,
V(r,p, 1ys), from momentum space potential, say
V(p.u.p,) to distinguish between the two basis, in
RFT scheme is defined by:

3

p o~
V(r, b fuss fy) = / ePTV(p, i, pus)
7 Jipfon, 27 ‘

= V(l",/l, ﬂus) - 5V(rv /’tusv,uf)7

where y; is a perturbative scale chosen such that y > pp >

AI\Q/IgD and uncontrolled terms, 8V/(r, . p,gpys), in the
potential is

3

d&dp -
SV (7o s ) _/ eV (p.ppusipy).  (43)
[P|<M_/' (2ﬂ)3

The static energy, given by Eq. (3), in RFT scheme is

Eo(ropspy) = Vo(rop, pygi pip) + 8 (r po pygipir).  (44)

The ultrasoft gluonic contribution to the static energy, at
order r? in multipole expansion, is given by:

2

g r
S8 (ry s pys) = =i ETFV% a-1

X /oo dte="Vo=Vs)
0

x (O[E“ () (1,0)5/E*(0)]0),  (45)
where Tp = 1/2, N, is number of colors, ¢(z, O)sz is
Wilson line in the adjoint representation connecting two
points at temporal separation ¢, E¢/? is chromoelectric field
strength, and V, is matching coefficient which appear at
order 7* in multipole expansion. This quantity has been
calculated to NLO in Refs. [9,11] and final result, sub-
leading in r, is given by:

2
us As\Hys) T
(1. ) = ~Cr BV 2 (v () v ()

us aS (ﬂus) us
X (53—loop + T 54—loop> ’ (46)

where
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Vo(r) = Vs(r)\ _5
loop = 210g <f —37 2log2,  (47)
and

us
54—loop

= C,log? (_V(,(r)ﬂ— VS(r))
Vo(r) B Vs<r)

+GC, log< > +D. (48)

:uus

Coefficients C;, C, and D are given in Ref. [11] and we
have presented them in Appendix C. Next to the leading
order expression for V,(r) — V(r) is given by:

(V=) = 28 8)
X (1 +asj(rﬂ) (T100+ (27’E+10g('u2r2))ﬂ0)>
+O(a3 (u)), (49)

and we can see that if we substitute Eq. (49) to Eq. (46) then
ultrasoft contributions to the three- and four-loop order can
be obtained from NLO results.

Due to the presence of the extra scale in the problem g,
it is desirable to expand all the quantities in terms of a(u).
This expansion induces mixed logarithms at the four-loop
of form log(p2,r*) log(u*r?) in the ultrasoft contributions.
To simplify the calculation we can write:

2

s tus) = (1) (1 + 5 4 t0g (ﬂ”—)) + 0@ ().

T us
and

2
u
log (242,) = log (4r*) — log Q—) (50)

us

so that the ultrasoft scale will appear only in running
logarithms.

The uncontrolled term for (V, — V)(r) in RFT scheme,
in next to the leading order is given by:

(Vo =V )(rius) = Capyx[Hy +x(H, Ty o0
+po(2Hy +H\ L)) +O(x%),  (51)

where L, = log(fzv) and H's functions defined by Eq. (D7)

2
¥
and are proportional to generalized hypergeometric function.
The only matching coefficient left is V4 and it is taken as

VA _ CAaS 1
2r V, =V,

+ O(ay),

same as calculated in Ref. [48]. These contributions will enter
in Eq. (46) and the final expression is given in Appendix E.

A¥S = 315 MeV

0
-1F
X -2}
2
© ~°f
I 4f
= ~ — ~ E®()
w =5t
’ ——— EVrup=30P)
-6 [ :
------- E)(r,pp= 3AIP)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
r(fm)-

FIG.2. Restricted and unrestricted static energy to a given order
(in superscript). AQSp = 315 MeV is used as input.

Padé estimates and the ultrasoft contributions give us
numerical estimate for Ty = The + 6T . Now, the
restricted version for the static potential, the ultrasoft
contributions and the static energy in position space can
be constructed using Egs. (D1) and (D2).

Using Ajp = 315 MeV, we can see in Fig. 2 that the
four-loop corrections to the static energy in RFT scheme
makes a very small contribution but, without removing
pathological contributions, behavior of the same quantity in
unrestricted scheme has very bad for r > 0.05 fm at the
four-loop.

In the next section, we have performed the extraction
of AQep in momentum space using LQCD inputs from
Ref. [18].

VII. FITTING PERTURBATIVE RESULTS
TO LATTICE DATA

In this section, we fit the perturbative static energy to the
lattice data and extract the value of the AE, from RG-
summed and unsummed case. Due to absence of all order
results, the extracted quantity AI(\)’[SD depends on the choice
of renormalization scale. To reduce the scale dependence,
we exploit the optimal renormalized perturbative static
energy to extract AggD. The parametrization of lattice data

to the Cornell potential is given in position space in
Ref. [18] for two-flavor QCD

E(r) = Vo=~ +or. (52)

where @ = 0.326 & 0.005 and ¢ = 7.52 £ 0.55 fm~? are
constants for n, = 2 flavor. The parameter V|, is a potential
offset needed to match to the perturbative static energy.
However, V|, is not needed in case of momentum space
analysis [18]. It is important to note that these parameters
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are correlated and have cor(a, ) = —0.17 which has to be
taken account in sampling from normal distribution.

The Fourier transform of lattice static energy, in Eq. (52),
to momentum space is given by:

dro  8rmo
Ey(p) = T (53)

To extract A@D, we minimize the square-deviation [18]:

ANE,) = / "™ dp(Eo(pos) — Ew(p))2. (54)

'min

It should be noted that the strategy for sampling is
analogous to the one discussed in Ref. [18]. The match-
ing region is chosen 1500 MeV < p <3000 MeV and
momentum values are randomly sampled from a uniform
distribution with p;, € [1500,2250] MeV and p. C
[2250,3000] MeV such that p. — Pmin = 375 MeV. It
is important to note that five-loop running of «, is used to

MS
extract Agcp-

Following the procedure explained above, the scale
dependence of the extracted (for 500 samples for
{p. @ 0}) AR can be seen from Fig. 3 at different loop
order and at different renormalization scales. o

In Table I, we present our determinations of Al(\)/[gn for
different orders of the perturbative static energy and for
different choices of the renormalization scale. In addition to
reduction in the errors, the central values are closer to each
other for different choices of u at higher order in the
perturbation series.

At the four-loop order (for 2000 samples of a, o, p),
we make the following three choices for the unknown
coefficient T4 :

Variation of A@D with scale u

1dloop T
450° o g - mi
2-loop - | Pt
. 3-1 : : . ]
< 400 3-loop ¢~ . N
> , , , . :
= Fe 4j|90p*: S SRR I
|,,,3 350" : : , — —
=0 ) B ) L » :
< R r 3 S G G D
E/Pﬁ§ y T
300 ESRIE: I I 11
) e LR
250

0 2000 4000 6000 8000 10000 12000
M (MeV)->

FIG. 3. Renormalization scale dependence of Agn at different
loop order with error bars. The full Padé estimated value for T4 ¢ o
is used from Eq. (55).

TABLE 1. A§g;, at different loop-orders.
AYS, (in MeV)
Unsummed RG-Summed
Loop pu=p u=225GeV u=4.17 GeV u =6.5 GeV

1 398.0+14.2 4019+ 140 4222+£154 4344+£162
2 328.6 £ 11.6 330.6+11.3 341.0£12.0 347.1 124
3 307.3+£10.9 308.4+10.6 313.7£10.9 317.0+£11.1

e T T
Tyhoo= { T35+ 0T 0.0: T +6T5%,0- T +6T5%,0 } ;

(55)

and the corresponding results are presented in Table II.

The RG-summed and unsummed series give very similar
values of Ag"CSD in case of renormalization scale is chosen in
the middle of the matching region. However, the RG-
summed static energy provides better fit to the lattice static
energy than the unsummed one which can be seen in
Table III below.

The RG-summed static energy gives better fit and this
improvement persist even at next higher order. For exam-
ple, at the four-loop order, we have found that the RG-
summed static energy produces significantly better fit to
lattice static energy compared to unsummed perturbative
static energy for different cases when we choose T,
according to Eq. (55).

TABLE 11 A@D at different loop-order for choices of T4
according to Eq. (55).

AME, (in MeV)
Unsummed RG-Summed
Tyoo H=p u=225GeV u=417GeV u=06.5 GeV

I 284.6 £10.0 285.6+9.6 290.1 £9.7 292.7+9.8
II 296.3+£10.3 297.0+10.0 300.0£10.1 302.0+10.2
nr 3029 +104 303.4+£103 30554103 307.0+ 104

TABLE III. Percentage of cases where the RG-summed series
gives small square-deviation compared to the unsummed one at
different loop order. Ag(u) and A are the square deviation for the

summed and unsummed cases for each extracted value of A§ep,.

Percent of cases (in %) with (Ag(u) — Ay) <0

Loop u =225 GeV u=4.17 GeV u =065 GeV
1 85.59 83.35 81.50
2 97.43 95.98 95.14
3 99.94 99.92 99.84
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VIII. DISCUSSIONS

The static energy between a heavy quark and antiquark is
an important quantity in QCD as it can be calculated in both
perturbation theory and in LQCD simulations. Existence of a
matching region, where both perturbation theory and lattice
agree, provides an opportunity to extract the parameters of
the theory. If we assume the light quarks are massless and the
heavier one decouples then the only parameter left in the
theory is strong coupling constant. Precise calculation of the
static energy thus becomes very important goal for precision
physics involving the strong interactions.

The perturbative static energy involves the computation
of all the Feynman diagrams at that order and the computer
codes were used in Refs. [5,6] for the three-loop numerical
calculation. At this order, virtual emission of the ultrasoft
gluons, with energy and momentum smaller than 1/r,
capable for changing singlet state to octet state and vice
versa also appear. Such emissions induce infrared diver-
gence in the static potential.

The gluon fields are multipole expanded about interquark
separation and hence their energy and momentum are
restricted to ultrasoft scale. This scale acts as source of
ultraviolet divergence for gluonic contributions. However the
static energy, which is the sum of perturbative potential and
contribution of ultrasoft gluons, is divergence free quantity as
two divergences get canceled with each other. This cancel-
lation induces nonanalytic terms(~a”(1/r)log™(a,(1/r)))
[8] in the static energy. The ultrasoft terms [9] and their
resummation is known to NLO [10,12] which contributes at
the three- and four-loop order but the perturbative singlet
potential is known only to the three-loop [5-7].

A. Padé estimate

In this article, we have extended the results for static
energy to the four-loop order using the renormalization
group and Padé approximant. Among the seven coefficients
at the four-loop, the estimates for 743 and 744, using
APAP, are in exact agreement with solutions of renorm-
alization group. Deviation for coefficient 74, is within
2.2% for ny <6 but T,;, deviates more than 2% for
ny > 2. Since, the deviation is less than 2% for RG-
accessible coefficient for light flavor, we have used

APAP estimate for T4 to extract the AI‘Q/ISD to the four-
loop order with different choices given in Eq. (55). The
large-n; limits for RG-accessible terms from both methods
are in perfect agreement. There are also some contributions
to Ty, from ultrasoft terms which demands this quantity
must be Fourier transformed in order to get complete the
RG-inaccessible terms in momentum space.

B. Position space improvement

The static energy from LQCD simulations are mostly
parametrized in position space and hence the perturbative

static energy is Fourier transformed to the position space.
This quantity in position space suffers from pathological
contributions stemming from the nonperturbative regions
and has to be removed explicitly. This is achieved using the
restricted Fourier transform advocated in Ref. [48] which
improves the convergence behavior for r ~0.12 fm. The
ultrasoft and the static potential has explicit dependence on
another scale y,, which is absent in total energy. This scale-
dependence should also be cancelled for the static energy in
the RFT scheme. Final expression for uncontrolled con-
tributions to the static energy is provided in Appendix E.
The four-loop contribution to static energy in RFT scheme
has very little effect and can be seen in Fig. 2. The static
energy in RFT scheme provided in Sec. VI for the four-loop
order and can be used in future studies.

C. RG-improvement of the static energy
and AY?;, extraction

The RG-summed static energy in momentum space is
used in this article to extract Aje, by fitting the static
energy from perturbative to the static energy from LQCD
from Ref. [18] for two active flavor. Its value for the three-
loop from the RG-summed static energy is found to be
308.4+£10.6(2.25GeV)MeV, 313.7£10.9(4.17GeV)MeV,
and 317.0 £ 11.1(6.5 GeV)MeV where quantity in
the parenthesis is the renormalization scale. For the
unsummed static energy, this parameter is found to be
307.3 £10.9 MeV. The RG-summed version of static
energy has been observed to provide not only the better
fit to the lattice energy but also giving less standard
deviation if the renormalization scale is chosen in the
middle of matching region. Similar trend also persist for
next order but we have used less sample size since the exact

calculations are not available. Our finding of ABTSD from

RG-summed and unsummed series agrees within error bars
to the findings of Ref. [18].

IX. SUMMARY

To summarize, the QCD static potential is known to
three-loop order, and the ultrasoft terms which first appear
at the three-loop order are known to four-loop order. In
Sec. II, we describe the perturbative and the ultrasoft part of
the static static energy. The main results of this paper are the
following
(1) In Sec. III, using the RGE we determine the RG-
accessible coefficients at four-loop order which is
shown in Eq. (11).

(i) The constant term of the four-loop coefficient cannot
be determined using RGE. In Sec. IV, we use the
Padé approximant method to obtain this term and is
given in Eq. (24).

(iii) In Sec. V, we apply for the first time the method of
optimal renormalization to QCD static energy be-
yond two-loop order to sum up the RG-accessible
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running logarithms to all order in perturbation
theory. The RG-summed series is defined in
Eqg. (29) and the subsequent quantities are given
in Egs. (31)—(32), Egs. (39)—(42). The RG-summed
series ensures the expected reduction in sensitivity to
the renormalization scale as shown in Fig. 1.

(iv) In Sec. VI, we use the restricted Fourier transform
scheme to improve the convergence behavior of the
static energy in the position space to four-loop order.

(v) Using the RG-summed series Eq. (29) [see defini-
tion in Eq. (6)] and the lattice QCD parametriza-
tion Eq. (53), we fit the QCD scale Ajep, to the
lattice data. Our fit results at different loop orders
can be found Table I-II and scale dependence at
these orders in Fig. 3.

(vi) The uncertainties associated with our extraction of
the AfSy, is discussed in Sec. VIIL

In summary, we have used a variety of techniques,

theoretical and numerical, and have rendered the picture of
the QCD static energy as a very useful tool to obtain a clear
handle on AgCSD which is one of the fundamental param-
eters of the QCD, there by confirming the results in a large
number of other studies. We have also studied the con-
sistency of the picture by invoking Padé approximants as
well as renormalization group summation in order to
achieve these ends. We also provide improvement in

position space using the RFT-scheme. Our findings in this
article provide better control over variation of renormali-
zation scale for finite order results available for the static
energy. It also discusses scale dependence of the extracted

AggD at different orders of perturbation theory for the first
time in this article as an application of the method.
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APPENDIX A: THE QCD g-FUNCTIONS

The QCD beta function is given by

pl) == pa't?
i=0

and f3; are the coefficients beta-function at (i + 1)-loop. The p; coefficients for n, active quark flavors up to five-loop order

are [61-69]
11 51 19 2857 5033 325
_1l _o1 1o _ _ Al
bo=73 =g P=g " 2728 T 1152 T 3456 (A1)
149753 1078361 50065 , 1093 , 891 1627 809
- _ 34020 r(3) = 220 2 (3) + 2 n2¢(3), A2
Ps="536 ~ a1am2 " T 4142”7 T igeea’™ T ea ©) T g 3) 595 1¢0) (A2)
621885((3) _ 144045(5) , 8157455 _9801a* | 1202791¢(3)  1358995((5)  6787x% 336460813
p— — — n — —
4 2048 512 16384 20480 '/ 20736 27648 110592 1990656
2 (6985314(3) _S965((5) _ 5263 | 25960913\ | . ( 24361((3) | 115((S) ~ 809x' _ 630559
\ 82944 1296 414720 ' 1990656 A\T 124416 T 2304 ' 1244160 5971968
1205 19¢(3)
4
_ , A
Ty (2985984 10368> (A3)
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APPENDIX B: RUNNING OF THE PERTURBATIVE QCD COUPLING CONSTANT

The running of the strong coupling constant in terms of known S functions and the strong coupling at renormalization
scale u [78], is given by:

=x (1 + xfoL + x* (B L + BGL?) 4 x° (ﬂzL + gﬂlﬁoLZ + ﬁ3L3>

2
+x* <ﬂ3L + <% + 3ﬂ0ﬂ2> L? + %3 BIBEL? + ﬁ3L4>

(o (T T (o 03 ) PR 4 L) ) £ O (B

where L = log(u?/ p?). o
The couplant used to extract the AggD at scale u is given by:

_y 2(b2 g 3 3b, 1 by , 5
== (1-¢ i) =y -(2-F) e+ (1-2 )+ -=
=g (e (Grene) - (Sp-R)ens (-5) -5

b,
3 6b 3b, 2b b, bG-33) 1343 7
s(o(2o002) oy (L3223 gy e U TEY By BETVY o6 (B2
+y< <2 b?) +< bt b?+> T3 b7 667 3 tg))TOLY (BY
where b; = g—o = log(log(yz/(AngD)z)) and y = b

folog(u?/(ANS,)?)’

APPENDIX C: THE QCD-STATIC COEFFICIENTS AT DIFFERENT LOOP ORDER

The known results for the static energy is presented here. The coefficients of the perturbative part VP at different loop
orders are listed below:

3135y

The one-loop terms: T, = VTR T110 = Pos (C1)

2

25n
The two-loop terms: T, = 28.5468 — 4.14714n, + 3T4f Th10=2T100P0 + 1, Trro=p5 (C2)

The three-loop terms: T3, = 209.884 — 51.4048n +2.90609n% — 0.0214335n7, T330 =/,

Spip

T310=2T 10081+ 3T200P0 + P2 T300 = 3T1 0005 + é 2 (C3)

The ultrasoft contribution to the three-loop RG-inaccessible coefficient is given by:
Fus 1 273
5T3;0’0 = ﬁﬂ: CA(6fl - 5), (C4)
and contribution to the four-loop is given by:
5 Can’ 2 2 2 2 2
oT5%0 = ﬁ(l&r ve + 141lyp — 6L,(66¢ + 67* + 47) + 198L5 — 3(47 + 67°)L,, + T2n*¢ | + 89474,
C3 2
+432¢(3) — 81x% — 1241) + 1174;8 (432¢,T 0 — 216T oo + 607° By + 60y — 536 + (165 — 608,)L,

+ 6L, (=208, + 132£, + 55) — 396L2 — 1448,¢2 + 4808,¢) — 1320¢, + 667 — 165y + 1474) (C5)
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where ¢ = log(Cyz) + yg, L, = log(x) and L, = log(2). The constant terms appearing in Eq. (48) can be found in the
Ref. [11] and are given by:

2
Cr=3h C= L (Ca(=1272 = 149 + 66 10g(2)) + 4n,T (10 — 61og(2))),

54

L Cu[(9mF 1241 1Mog(2) yp ([, 47 , 1, 47
D_?<<T+ T —7<75 +€) —12£(3) = (= +17)10g(2)+5n log(x) + Elog( ))
5 267
+nfT (E (ye +log (64/x)) — % i 210g2(2)> ) (C6)

APPENDIX D: POSITION SPACE POTENTIAL

The unrestricted Fourier integrals of logarithms to position space is given by:

d3p —ij 4r m /’tz 1 S m i m—j
[ e gtoe (f) =725 (7 gt e o1)

Jj=0

and the RFT of these logarithms are given by:

/ é“; z—ﬂlg (ﬁ‘z)@(w—mw =—’%f<?>l°gj (Z‘) (=20 f )l (D)

J=0 f

Here y() and f(n, ) are given by:

V) = eCreore ot T =2m)
L(1=nC(n+1)

['(n) = T(n.ip)
(ip)'+n

and c.c. stands for complex conjugate. Writing L, = 2y — log(ur?), the unrestricted Fourier transforms for static potential
without the ultrasoft terms can be written as:

f(n,p)= +c.c. (D3)

4
Z ’+1V(r+(’)() (D4)
i=0 j
”2
V) =1, Vil =L, vm-é(mg), Vi) = (L ) 1 003) (Do)
L, 197

Vy(r) =—=(L} +27°L, + 64((3)) + (D6)

r 15r

Restricted Fourier transform contains hypergeometric functions with array of % in first argument and % in the second
argument and if we define:

, 11 333 |
Si(rpug) = (ugr) x Hy, 4 Fup <— AL RCEEREE _Zr”f> H, (D7)

then the uncontrolled contribution to static potential without the ultrasoft term is given by:

8V (ropy) = Zzl:xl“csv (roup) + O(x0) (D8)

i—0 j=0
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where,

1
8Vo(r.up) = Hy, 8V (r.pp) =2H, — H\L,, 8Vy(r,pp) = —4H,L, + §H1(3Lﬁf — %) + 8H;4

8V3(r,uy) = =24HsL, + H,(6L;, —27°) + H,(~L;, + 7L, —16{(3)) + 48H,
1 1
SVy(rops) = SH (SL,, = 102°L;, +320£(3)L,,, — 37*) + gHz(—40L;f +407°L,, — 640£(3))

1
+ 5 H3(240L], — 80x?) — 192H,L,, + 384H, (D9)

APPENDIX E: RESTRICTED VERSION OF THE STATIC ENERGY IN POSITION SPACE

Uncontrolled contribution to the static energy in RFT scheme is given by:

SE(r.p,pp) = —(2CeH ppx)(1 4+ x(2H, T 1 o + TiaoLy, +Tio0)
+ X2 (4H,Ton 0Ly, +2HyT2 0 +8H3Ta 50 + Tapo + Tonoly, + Tanoly,)

+ X <T3.0,0 +2H,T3 10 + 8H3Ts,50 + 48H,T3530 + L} (6H T330 + T320) + T330L;,

+ L, (4H,T350 + 24H3T330 + T310) + ﬁ;ﬂcg(lzﬁlz +12log(H;) + 12L s — 12y — 10 + 24L2))
+ x4 <T4,0,0 +2H,Ty 10+ 8H3Ty 00+ 48H, Ty 30 + 384Hs Ty s + Ly, (6H, Ty 50 + 48H3 Ty 40 + Tang)
+ Tyaoly, + Ly, <ﬁ 7 CL (4860 Hy + 12T 1 o — 48y £y — 4080 + 96f0 Ly + 486 log(H ) + 48f0L.)

+ Typ0+24H3Ty 30 + 1920, Ty 40 + 4H2T4,2,0> + L (8H,Ty 40 + Ta30)

“C -
+ ”144A (12Hy = 9py + 121og(H;) + 12L,; — 9y — 8 + 18L, — 3L,)
7C3 . - _ ~ 5 ) i
+ 144A (36H2T1,o,0 +24H,T 1o — 96y pfoH, — 40P0H, + 16860H; + 1443,L,H, + 7254 H, log(H )

+ 39, + 72 L Hy + 36T g9 log(H ) + 36L, Ty 00 — 367T 100 — 18T 00 + 72L,T 1 o0 — 84
1344
+ 127380 — 1575 — ——

+ 40:60 log(Hl) - 24ﬂ0Lus log(Hl) +39 log(Hl) - lzﬁO(Lus)z + 40ﬁ0Lu5 - 48ﬁ0LuSL2 + 39Lus

117y, 117L, 39L,
+72¢(3) - 4“”+ 22— 4 ))) (E1)

- 4850L% +70BoL, — 5PoL, — 12,5010%2(1'11) —48p,L, log(H,)

Cpx

where L, = log(=), L, = log(/’j—i), L, = log(n), L, =log(2) and H; = H,;/H . Note that H's are defined by Eq. (D7) in
h
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