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The perturbative QCD static potential and ultrasoft contributions, which together give the static
energy, have been calculated to three- and four-loop order respectively, by several authors. Using the
renormalization group, and Padé approximants, we estimate the four-loop corrections to the static energy.
We also employ the optimal renormalization method and resum the logarithms of the perturbative series in
order to reduce sensitivity to the renormalization scale in momentum space. This is the first application of
the method to results at these orders. The convergence behavior of the perturbative series is also improved
in position space using the restricted Fourier transform scheme. Using optimal renormalization, we have
extracted the value of ΛMS

QCD at different scales for two active flavors by matching to the static energy from
lattice QCD simulations.
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I. INTRODUCTION

The static potential energy of quantum chromodynamics
(QCD) is the non-Abelian analogue of the well-known
Coulomb potential energy of quantum electrodynamics.
The short distance part of this quantity is calculated in
the nonrelativistic QCD (NRQCD)[1,2] framework and
involves the evaluation of Feynman diagrams. It has been
studied extensively in recent years and analytical results are
known to three-loop. At four-loop order contributions
involving the ultrasoft gluons that start to contribute from
three-loop order in perturbation series are known. Such
contributions only appear for short distances when system
is weakly coupled. They are calculated using weakly
coupled potential nonrelativistic QCD (pNRQCD) [3,4]
formalism. Hence, we discuss only weakly coupled regime
of pNRQCD in this article. The static potential depends
on the renormalization scale μ, the ultrasoft factorization
scale μus, and magnitude of the three momentum transfer
between the heavy sources pð¼jpjÞ. In this article MS
renormalization scheme is used.
The first attempt to perform the full three-loop (numerical)

calculations was by two independent groups [5,6].

The results were found to be in agreement. Analytical
calculations were presented almost six years later in
Ref. [7]. At three-loop order, ultrasoft gluons also appear
which are capable of changing singlet to octet state of the
system and vice versa. Such contributions were first pointed
in Ref. [8], and were calculated in Ref. [9] in pNRQCD. The
renormalization group (RG) improvement of the ultrasoft
terms at three-loop order was first discussed in Ref. [10]. The
next order calculations for the ultrasoft terms can be found in
Ref. [11] and their resummation is discussed in Ref. [12].
These contributions are confirmed and partly improved for
color-octet states at leading andsubleadingorders inRef. [13].
QCD is known to be nonperturbative at long distance, and

this fact ismanifest in latticeQCD (LQCD) simulations. The
static energy, that includes the static potential and the
ultrasoft contributions, can also be computed in LQCD
simulations, and hence it becomes a topic of great interest to
extract various parameters of the theory. Some recent LQCD
simulation results for the static energy can be found in
Refs. [14–19], and they support the Cornell potential type
behavior for the heavy quark-antiquark system.
The potential energy between a heavy quark and anti-

quark pair, is an important ingredient to describe, among
other things, nonrelativistic bound states like quarkonia
[4,20], quark masses [21–30] and threshold production of
top quarks [31–33], determination of strong coupling con-
stant[14–16,34] and also has been testing ground renorma-
lon motivated studies in Ref. [35–37] etc. In this article, we
have addressed the following issues:

(i) At four-loop order, the constant term contributing to
the perturbative series is as yet unknown. It requires
calculation of four-loop Feynman diagram. In the
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absence of such a calculations we use RGE and Padé
approximants [38] to get the estimate for the four-
loop coefficients.

(ii) The RG improvement of the static energy by
resummation of all RG-accessible running loga-
rithms following the method advocated in
Refs. [39–47], and for the first time applied in this
paper to the ultrasoft logarithms present in the static
energy. All the leading and next-to-leading loga-
rithms at each order in perturbation theory that can be
accessed through the RG equation (RGE) are called
RG-accessible logarithms. We call this renormaliza-
tion group improved perturbative series as RG-
summed or optimal renormalized series. It should
be noted that our resummation scheme discuss about
RG-improvement with respect to renormalization
scale whereas Ref. [10,12] deals with the RG-im-
provement with respect to the ultrasoft scale.

(iii) The convergence of the static energy is improved to the
four-loop order in position space using the restricted
Fourier transform (RFT) proposed in Ref. [48].

(iv) We use the RG-summed and unsummed forms of the
static energy in momentum space to extract ΛMS

QCD to
four-loop from the LQCD inputs from Ref. [18].

(v) In comparison to the unsummed series, the RG-
summed static energy in momentum space gives
better fit to the static energy obtained from LQCD
in Ref. [18].

(vi) The four-loop RG-summed static energy is used
as a trial case to show that these improvements (scale
sensitivity and better fit) also persist at the higher
order.

The scheme of this paper is as follows: In Sec. II, we
discuss the perturbative treatment to the static energy and
various pieces associated with this quantity in the weak
coupling limit. In Sec. III, we calculate some contributions
to the static energy at the four-loop using the RGE. In
Sec. IV, we use Padé approximants to estimate all the four-
loop coefficients even the one that is not accessible with the
RGE. Some of the estimates are found in agreement with
RGE solutions. In Sec. V, we perform all order RG-
summation of certain running logarithms and show that
this RG-improvement will bring down the sensitivity to the
renormalization scale. In Sec. VI, we discuss the improve-
ment of the static energy to the four-loop order in position
space by removing the pathological uncontrolled contri-
butions using RFT. The inputs from the previous sections
are applied in Sec. VII to fit the LQCD inputs for the static
energy to extract the ΛMS

QCD for two active flavors in
momentum space. A discussion is presented in Sec. VIII
and we summarize our results in Sec. IX. Appendix A
contains the QCD beta function coefficients. Appendix B
contains the formula used in for running of the strong
coupling constant with momentum and also in terms of

ΛMS
QCD. Appendix C contains the known contribution to the

static energy. Appendix D contains the useful formula for
calculating the restricted and unrestricted versions of
position space static potential and the static energy.
Appendix E contains the final result of uncontrolled
contribution to the static energy in position space to the
four-loop order.

II. THE PERTURBATIVE
QCD-STATIC ENERGY

A heavy quark and antiquark system, with heavy quark
mass mQ and relative velocity v < 1, is nonrelativistic in
nature and various scales [4,49] present in the system are
hard scale ∼OðmQÞ, soft scale ∼OðmQvÞ, and ultrasoft
scale ∼OðmQv2Þ. If these scales are well separated then we
can integrate them one by one to study only relevant
degrees of freedom. Integrating out the hard scale from
QCD gives the nonrelativistic QCD (NRQCD) in which the
soft and the ultrasoft degrees of freedom are dynamical.
Contributions to the static energy at different orders were
calculated using this framework. The one-loop perturbative
calculations for massless quarks were first performed in the
late 1970s and can be found in Refs. [8,50–52] and in the
massive case in Ref. [53]. Two-loop massless calculations
appeared in Refs. [54–57] while the massive case were
considered in Refs. [30,58–60].
The pNRQCD is obtained from NRQCD by integrating

out the soft scale and this formalism is best suitable for
studying the threshold systems. The heavy quark and anti-
quark systems in this formalism are described by color
singlet fields S and color octet fields O. The gauge fields
are multipole expanded about the interquark separation and
the gauge invariant Lagrangian for pNRQCD [4,20], at
leading order in 1=mQ is given by

LpNRQCD ¼ Llight þ TrðS†ði∂0 − Vsðr; μusÞ þ…ÞSÞ
þ TrðO†ðiD0 − Voðr; μusÞ þ…ÞOÞ
þ gVAðr; μusÞTrðO†r · ESþ S†r ·EOÞ

þ g
VBðr; μusÞ

2
TrðO†br ·EOþ O†Or ·EÞ

−
1

4
Fa
μνFμνa; ð1Þ

whereLlight is Lagrangian for light quarks, iD0O≡ i∂0O −
g½A0ðR; tÞ; O� and E are chromoelectric field strength.
Vsðr; μusÞ and Voðr; μusÞ are singlet and octet potential at
leading order in r while VA and VB appear at subleading
order in r. It should be noted that these potential will also
depend on the renormalization scale μ for any finite order
calculation. The potentials appearing at higher order in
1=mQ are hidden in ellipses which disappear in static
limit mQ → ∞. The gauge fields are already multipole
expanded about inter-quark separation (R) in Eq. (1) and
therefore, Fμνa ≡ FμνaðR; tÞ.
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In the weak coupling regime, the system has the
hierarchy of scales:

mQ ≫ mQv ≫ mQv2 ≫ ΛMS
QCD; ð2Þ

and in this limit, the static energy can be written as a
perturbative series in the strong coupling constant αs. The
singlet static energy to known orders can be written as:

E0ðp; μÞ ¼ Vsðp; μ; μusÞ þ δusðp; μ; μusÞ; ð3Þ

where Vsðp; μ; μusÞ is the perturbative static potential and
δusðp; μ; μusÞ are contribution from ultrasoft gluons. The
static potential encodes the interaction of the quarks and
gluons degrees of freedom in the singlet state and is known
to three loop. It takes the following form:

Vsðp;μ;μusÞ

¼−4π2CF

p2

×
Xn
i¼0

Xi

j¼0

xiþ1Lj

�
Ti;j;0þ

Xi−2
k¼1

θði− 3ÞT̃us
i;j;klog

k

�
μ2us
p2

��

þOðxnþ2Þ: ð4Þ

In the above, L≡ logðμ2p2Þ is running logarithm, and CF ¼
4=3 is color factor of the SUð3Þ representation. The
expansion parameter in the above equation is defined as
x≡ ðαsðμÞ=πÞ, and any argument of x indicates the scale at
which it is evaluated. The coefficients Ti;0;0 are the ith-loop
perturbative contributions. The one-loop coefficient T1;0;0

can be found in Refs. [52,53], the two-loop coefficient
T2;0;0 in Refs. [55–57] and the three-loop coefficient T3;0;0

in Refs. [5–7]. All these coefficients are collected in
Appendix C. The coefficients of infrared logarithms,
T̃us
i;j;k, in the static potential and can be found in Refs. [9,11].
In effective field theory language, the static potential is a

matching coefficient which depends upon the factorization
scale μus. The presence of the logarithmic terms in the static
potential at three-loop were first pointed out in the Ref. [8]
and they act as a source of infrared divergences. The
ultrasoft part δus is now known to next to the leading order
(NLO) [9,11] but it contributes to the static energy from
three-loop order (briefly discussed in Sec. VI). They carry
the information of the dynamical ultrasoft gluon degrees of
freedom with the ultraviolet cutoff μus. This scale acts as a
source of ultraviolet divergences for these gluons. Both
divergences, however, cancel with each other for the
static energy which results in nonanalytic dependence
ð∼αns logmðαsÞÞ in terms of the expansion parameter and
the total energy in Eq. (3) takes the form:

E0ðp; μÞ ¼ −
4π2CF

p2

Xn
i¼0

Xði−2Þ×θði−3Þ

k¼0

xðpÞiþ1Ti;0;klogkðxðpÞÞ

þOðxðpÞnþ2Þ

≡ −
4π2CF

p2
WðxðpÞ; L ¼ 0Þ; ð5Þ

where Ti;0;0 ¼i>2 Tpert
i;0;0 þ δTus

i;0;0 and constant terms (δTus
i;0;0)

are the contributions from the ultrasoft gluons and can be
found in Ref. [11].
The ultrasoft contributions to the static energy are now

known to the four-loop order, but the perturbative correc-
tion to static potential are yet to be calculated at this order.
Some of the contributions to the static energy at this order
can be accessed using RGE and they are discussed in the
next Sec. III.

III. RG SOLUTIONS OF THE
FOUR-LOOP CONTRIBUTIONS

We can rewrite Eq. (5) in terms of the coupling at the
renormalization scale μ using Eq. (B1) as:

E0ðp; μÞ ¼ −
ð4π2CFÞ

p2

Xn
i¼0

Xi

j¼0

Xði−j−2Þ×θði−j−3Þ

k¼0

xiþ1LjlogkðxÞTi;j;k

¼ −
4π2CF

p2
Wðx; LÞ: ð6Þ

Despite the explicit dependence, all-orders series should be
independent of the renormalization scale μ. Mathematically,
this implies that any perturbative seriesWðx; LÞmust satisfy
the RGE:

μ2
d2

dμ2
Wðx; LÞ ¼ 0; ð7Þ

where

μ2
d2

dμ2
¼ ∂

∂Lþ βðxÞ ∂
∂x : ð8Þ

The QCD beta function β is defined in terms of x as:

βðxÞ ¼ μ2
d2

dμ2
x ¼ −

X∞
i¼0

βixiþ2; ð9Þ

where the coefficients βi up to five-loop order [61–69] are
given in Appendix A. The RGE can be used to solve
iteratively for the RG-accessible terms in terms of the
QCD βi coefficients and the lower order RG-inaccessible
coefficients Ti;0;k.
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The RGE for the Wðx; LÞ along with known results to three-loop and QCD beta functions allow us to extract
the RG-accessible four-loop coefficients T4;1;0, T4;2;0, T4;3;0; T4;1;1, and T4;4;0. To obtain them, we note that

� ∂
∂Lþ βðxÞ ∂

∂x
�
Wðx; LÞ ¼ ðT1;1;0 − β0Þx2 þ ðT2;1;0 − β1 − 2β0T1;0;0Þx3 þ ð2T2;2;0 − 2β0T1;1;0Þx3L

þ ðT3;1;0 − β2 − 2β1T1;0;0 − 3β0T2;0;0Þx4 þ ð−3β1T2;1;0 − 2β1T1;1;0 þ 2T3;2;0Þx4L
þ ð3T3;3;0 − 3β1T2;2;0Þx4L2 þ ðT4;1;0 − β3 − 2β2T1;0;0 − 3β1T2;0;0 − 4β1T3;0;0 − β0T3;0;1

þ logðxÞT4;1;1 − 4β0 logðxÞT3;0;1Þx5 þ ð2T4;2;0 − 2T1;1;0β2 − 3T2;1;0β1 − 4β0T3;1;0Þx5L
þ ð3T4;3;0 − 3β1T2;2;0 − 4β1T3;2;0Þx5L2 þ ð4T4;4;0 − 4β0T3;3;0Þx5L3 þOðx6Þ ¼ 0: ð10Þ

Coefficients of xiLjlogkðxÞ of the above equation gives the
RG-accessible coefficients

T4;1;0 ¼ 4β0T3;0;0β0þβ0T3;0;1þ3β1T2;0;0þ2β2T1;0;0þβ3;

T4;2;0 ¼ 6β20T2;0;0þ7β1β0T1;0;0þ3β2β0þ
3β21
2

;

T4;3;0 ¼ 4β30T1;0;0þ
13

3
β1β

2
0;

T4;4;0 ¼ β40;

T4;1;1 ¼ 4β0T3;0;1: ð11Þ

The coefficients Ti;0;k cannot be obtained using RGE and
are known as the RG-inaccessible terms. The calculation of
such terms involves the evaluation of all the Feynman
diagrams relevant for that order. Such calculations are yet to
be performed so we use asymptotic Padé approximant
(APAP) to estimate unknown coefficient, T4;0;0, which is
discussed in the next section.

IV. PADÉ ESTIMATE OF THE
FOUR-LOOP CONTRIBUTION

Padé approximants are rational functions that can be
used to estimate the higher order terms of a series from its
lower order coefficients. Both the original series and the
Padé approximants have the same Taylor expansion to a
given order, the next term is taken as its prediction. They
are used in Refs. [43,70–77] in the past to improve the
higher order perturbative results for QCD. It is worth it to
mention that they were first used for the static potential in
Ref. [38] and we are extending the results using the same
method for static energy to the four-loop order. The
procedure used is explained in this section.
Note that the ultrasoft corrections to the static energy are

already known to the four-loop order, so we do not need to
predict them using Padé approximants. They can be added
to the predicted values at the end of calculations. We rewrite
the perturbative series in Eq. (6), without the ultrasoft
corrections as W̃ðx; LÞ, in the following form:

W̃ðx; LÞ ¼ 1þ R1xþ R2x2 þ R3x3 þ R4x4 þ � � �
þ RNxN þ � � � ; ð12Þ

where

Ri ≡
Xi

j¼0

LjTi;j;0: ð13Þ

In general, if the series coefficients fR1; R2; R3;…; RNg are
known then the Padé approximant for this series is denoted
by W̃½N−MjM�, and given as:

W̃½N−MjM� ¼ 1þ A1xþ A2x2 þ � � � þ AN−MxN−M

1þ B1xþ � � � þ BMxM
; ð14Þ

can be used to estimate RNþ1. For example, if only the
NLO term of Eq. (12), R1, is known then the next
coefficient, R2, is estimated from W̃½0j1� by Taylor expand-
ing it for small x as

W̃½0j1� ¼ 1

1 − R1x
¼ 1þ R1xþ R2

1x
2 þOðx3Þ; ð15Þ

i.e., R2
1 is the Padé approximant prediction for R2.

For the static energy, the coefficients R1, R2, R3 are
known and can be read off by comparing the xith terms in
Eq. (6) with Eq. (12). To predict the unknown four-loop
coefficient R4 in Eq. (12), we use the approximant W̃½2j1�

and its series expansion, for small x, is given by:

W̃½2j1� ¼ 1þ A1xþ A2x2

1 − B1x
;

¼ 1þ xðA1 þ B1Þ þ x2ðA1B1 þ A2 þ B2
1Þ

þ x3ðA1B2
1 þ A2B1 þ B3

1Þ
þ x4ðA1B3

1 þ A2B2
1 þ B4

1Þ þOðx5Þ: ð16Þ

Now, first we solve for A1, A2, and B1 in terms of known
R1, R2, and R3 of Eq. (12) and the solutions are
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A1 ¼
R1R2 − R3

R2

; ð17Þ

A2 ¼
R2
2 − R1R3

R2

; ð18Þ

B1 ¼
R3

R2

: ð19Þ

In the next step, the coefficient of x4 in Eq. (16) is taken as
the prediction for R4 which, in terms of the lower order
Ri’s, can be written as:

Rpred
4 ¼ R2

3

R2

: ð20Þ

In large L limit, we get the following form for Rpred
4

compatible with Eq. (13) as:

Rpred
4 ¼ TPadé

4;0;0 þ TPadé
4;1;0Lþ TPadé

4;2;0L
2 þ TPadé

4;3;0L
3

þ TPadé
4;4;0L

4: ð21Þ

These predictions can be further improved by knowing
the asymptotic behavior of the series, and this extra piece
of information is taken as input to get a more precise
approximation. This improvement is termed as APAP and
can be found in Ref. [74].
The error associated with such approximation in asymp-

totic limit [38,74] is given by:

δ½N=M� ≈ −
NMAM

DM ; ð22Þ

where D ¼ N þMð1þ apÞ þ bp and A; ap; bp are fitting
parameters. We get APAP results in terms of Rpred

4 by:

RAPAP
4 ¼ Rpred

4

ð1þ δ½N=M�Þ
: ð23Þ

Repeating the procedure for known lower order R0
is, we can

fix the constants A; ap and bp for a fixed M. It is worth to
mention that among different choice of Padé approximant
for APAP, for a given order, M ¼ 1 and ap ¼ 0, bp ¼ 0

gives best results compatible with RG for the static energy
and hence this particular choice is used in this article.
Following the procedure explained above, we get the

four-loop Padé prediction in the large L limit as:

TPadé
4;0;0¼

13β1T3
1;0;0

β0
þ169

9

β21T
2
1;0;0

β20
−
62

9

β1β2T1;0;0

β20

þ43

9

β1β2
β0

þ313

27

β31T1;0;0

β30
−
160

9

β1T2;0;0T1;0;0

β0

−
62

9

β2T2
1;0;0

β0
þ43

9

β1T3;0;0

β0
þ62

9

β2T2;0;0

β0
−
55

9

β21β2
β30

−
571

36

β21T2;0;0

β20
þ52

9
T4
1;0;0−

113

9
T2;0;0T2

1;0;0

þ46

9
T2
2;0;0þ

1429

324

β41
β40

þ19

9

β22
β20

þ8

3
T3;0;0T1;0;0; ð24Þ

TPadé
4;1;0 ¼

8

3
β0T3;0;0 þ

61

9
β1T2;0;0 − 2β0T3

1;0;0 þ
8

3
β2T1;0;0

−
461

108

β31
β20

−
34

9
β1T2

1;0;0 þ
10

3
β0T2;0;0T1;0;0 þ

43

9

β1β2
β0

−
43

18

β21T1;0;0

β0
; ð25Þ

TPadé
4;2;0 ¼

17

3
β20T2;0;0 þ

22

3
β1β0T1;0;0 þ

8

3
β2β0 þ

79

36
β21

þ 1

3
β20T

2
1;0;0; ð26Þ

TPadé
4;3;0 ¼ 4T1;0;0β

3
0 þ

13

3
β20β1; TPadé

4;4;0 ¼ β40: ð27Þ

We can see that for T4;4;0 and T4;4;3 the predictions from
Padé and the renormalization group are in perfect agree-
ment. For the other RG-accessible coefficient T4;1;0 and
T4;2;0, the predictions are different. However, numerical
difference for T4;2;0 is not more than 2.2% for active quark
flavors nf ≤ 6. However, T4;1;0 has larger deviations ≥2%
for nf > 2 from RGE prediction. For this reason, we will
restrict our discussion in next sections only to two active
flavors for the four-loop. The Padé prediction for the
unknown constant term at the four-loop order for the
static potential can be obtained by setting Ti;j;k ⟶

k>0 0

and δTus
i;0;0 → 0.

Interestingly in the large nf limits both the Padé
approximant and solutions of RGE for RG-accessible
coefficients T4;i;0 give the same values

TPadé
4;1;0 ⟶

nf→∞ 125

8748
n4f; TRG

4;1;0 ⟶
nf→∞ 125

8748
n4f;

TPadé
4;2;0 ⟶

nf→∞ 25

1944
n4f; TRG

4;2;0 ⟶
nf→∞ 25

1944
n4f;

TPadé
4;3;0 ⟶

nf→∞ 5

972
n4f; TRG

4;3;0 ⟶
nf→∞ 5

972
n4f;

TPadé
4;4;0 ⟶

nf→∞ 1

1296
n4f; TRG

4;4;0 ⟶
nf→∞ 1

1296
n4f:
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For RG-inaccessible coefficient

TPadé
4;0;0 ⟶

nf→∞
�
−5Tfnf

9

�
4

:

In fact, similar pattern has been observed for known lower
orders:

TPadé
i;0;0 ⟶

nf→∞
�
−5Tfnf

9

�
i
:

Now we have an estimate for T4;0;0 but the truncated
perturbation series also suffers from scale dependence. The
scale sensitivity of the perturbative series can be minimized
using RG-summation of running logarithms and the pro-
cedure is discussed in the next section.

V. RG IMPROVEMENT IN THE
MOMENTUM SPACE

The issue with the perturbative series in the QCD is to
account for the RG running of all the parameters. The
optimal renormalization method advocated in Refs. [44,45]
accounts for the RG running by summation of all the RG-
accessible logarithms. The RG-accessible logarithms at
each order in the perturbation theory are defined as the
leading and the next-to-leading logarithms that can be
accessed through the processes-dependent the RGE.
Resummation becomes interesting from the three-loop
order due to presence of the ultrasoft terms and this
issue is discussed for static energy for the first time in
this article.
The perturbative series in question is

Wðx; LÞ ¼
Xn
i¼0

Xi

j¼0

Xði−j−2Þ×θði−j−3Þ

k¼0

xiþ1LjlogkðxÞTi;j;k; ð28Þ

where the series coefficients areTi;j;k. To obtainRG-summed

perturbation series which we call WðnÞ
RGΣ, we rewrite

Wðx; LÞ as

WðnÞ
RGΣ ¼

Xn
i¼0

Xði−2Þθði−3Þ

k¼0

xiþ1logkðxÞSi;kðxLÞ; ð29Þ

where intermediate quantities Si;kðxLÞ are the resummed
series obtained by summing terms:

X∞
n¼i

ðxLÞn−iTn;n−i;k: ð30Þ

We substitute Eq. (28) in Eq. (7) which leads to a recursion
relation between the series coefficients. We multiply the
recursion relation with ðxLÞk−1 with appropriate k and sum it

from n ¼ k to infinity, which following Eq. (30), give
differential equations for Si;kðxLÞ. The solution to these
differential equation results into the closed form expression
for Si;kðxLÞ.
The RG-summed solutions Si;0ðxLÞ are calculated to the

two-loop order in Ref. [44] and are given below:

S0 ¼
1

w
; S1 ¼ w−2ðT1;0;0 − B̃1LwÞ; ð31Þ

S2 ¼ w−2ðB̃2
1 − B̃2Þ þ w−3½T2;0;0 − B̃2

1 þ B̃2

− B̃1LwðB̃1 þ 2T1;0;0Þ þ B̃2
1L

2
w�; ð32Þ

where w ¼ ð1 − β0uÞ and B̃i ¼ βi=β0 and Lw ≡ logðwÞ.
The RG-summation for eþe− process to three-loop order is
also discussed in Ref. [45] which is a special case of the
results of this article in the limit where ultrasoft coefficients
are taken zero.
The static energy requires a new series representation,

compatible with the RGE, to incorporate the ultrasoft
logarithms. These logarithms form a separate recurrence
relation among the coefficients. The RG-summation of
ultrasoft terms at the three-loop order is obtained by
collecting the coefficients of xnLn−4 logðxÞ in Eq. (10)
which results in the following recurrence relation among
the coefficients:

ðn − 3ÞTn;n−3;1 − nβ0Tn−1;n−3;1 ¼ 0: ð33Þ

Collecting xnLn−4 terms, we get the following recurrence
relation:

ðn − 3ÞTn;n−3;0 − nβ0Tn−1;n−4;0 − β0Tn−1;n−4;1

− ðn − 1Þβ1Tn−2;n−4;0 − ðn − 2Þβ2Tn−3;n−4;0

− ðn − 3Þβ3Tn−4;n−4;0 ¼ 0: ð34Þ

Notice that presence of the β0Tn−1;n−4;1 terms in the
above equation is new and differs from eþe− case in
Ref. [45].
For the four-loop order, coefficients of xnLn−5 log2ðxÞ

terms give the following recurrence relation for ultrasoft
terms:

ðn − 4ÞTn;n−4;2 − nβ0Tn−1;n−5;2 ¼ 0: ð35Þ

Collecting xnLn−5 logðxÞ terms, we get the following
recurrence relation:

ðn − 4ÞTn;n−4;1 − ðn − 1Þβ1Tn−2;n−5;1

− nβ0Tn−1;n−5;1 − 2β0Tn−1;n−5;2 ¼ 0: ð36Þ
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Collecting xnLn−5 terms we get the following recurrence
relation:

ðn − 4ÞTn;n−4;0 − ðn − 4Þβ4Tn−5;n−5;0 − ðn − 3Þ
× β3Tn−4;n−5;0 − ðn − 2Þβ2Tn−3;n−5;0 − ðn − 1Þ
× β1Tn−2;n−5;0 − β1Tn−2;n−5;1 − nβ0Tn−1;n−5;0

− β0Tn−1;n−5;1 ¼ 0; ð37Þ

multiplying uk−1, where k ¼ n − 3 for three-loop and k ¼
n − 4 for the four-loop, to the recurrence relations and then
summing n from k to ∞ gives separate differential
equations for the above recurrence relations. All these
recursion relations can be written in a general-differential
equation for the static energy as:

Xn
i¼0

ðθði− k;−kÞ− θði− k− 2; k− 1ÞÞ

×

�
ðδi;n − uβðn− iÞÞ d

du
Si;kðuÞ − ðiþ 1Þβðn− iÞSi;kðuÞ

− ðkþ 1Þθði− k− 3Þβðn− iÞSi;kþ1ðuÞ
�
¼ 0: ð38Þ

Solution to different RG-summed series to the order we are
interested in are given by:

S3;1ðwÞ ¼
T3;0;1

w4
; S4;2ðwÞ ¼

T4;0;2

w5
; ð39Þ

S4;1ðwÞ ¼
1

w5
ð−4B̃1T3;0;1Lw − 2T4;0;2Lw þ T4;0;1Þ: ð40Þ

Similarly, other solutions are

S3;0ðwÞ ¼
1

w4

�
T3;0;0 − 2B̃2

1T1;0;0 þ 2B̃2T1;0;0 −
B̃3
1

2
þ B̃3

2

�
þ Lw

w4
ð−2B̃2

1T1;0;0 − 3B̃1T2;0;0 þ 2B̃3
1 − 3B̃2B̃1 − T3;0;1Þ

þ L2
w

w4

�
3B̃2

1T1;0;0 þ
5B̃3

1

2

�
−
B̃3
1L

3
w

w4
þ 1

w3
ð2B̃2

1T1;0;0 − 2B̃2T1;0;0 þ B̃3
1 − B̃2B̃1Þ þ

Lw

w3
ð2B̃1B̃2 − 2B̃3

1Þ

þ 1

w2

�
−
B̃3
1

2
þ B̃2B̃1 −

B̃3

2

�
; ð41Þ

S4;0ðwÞ ¼
1

w5

�
T4;0;0 − B̃3

1T1;0;0 − 3B̃2
1T2;0;0 þ B̃3T1;0;0 þ 3B̃2T2;0;0 þ

7B̃4
1

6
− 3B̃2B̃2

1 −
1

6
B̃3B̃1 þ

5B̃2
2

3
þ B̃4

3

�

þ Lw

w5
ð6B̃3

1T1;0;0 − 3B̃2
1T2;0;0 − 8B̃2B̃1T1;0;0 − 4B̃1T3;0;0 − B̃1T3;0;1 þ 4B̃4

1 − 3B̃2B̃2
1 − 2B̃3B̃1 − T4;0;1Þ

þ L2
w

w5

�
7B̃3

1T1;0;0 þ 6B̃2
1T2;0;0 þ 4B̃1T3;0;1 −

1

2
3B̃4

1 þ 6B̃2B̃2
1 þ T4;0;2

�
þ L3

w

w5

�
−4B̃3

1T1;0;0 −
1

3
13B̃4

1

�
þ B̃4

1L
4
w

w5

þ 1

w4
ð2B̃3

1T1;0;0 þ 3B̃2
1T2;0;0 − 2B̃2B̃1T1;0;0 − 3B̃2T2;0;0 − 2B̃4

1 þ 5B̃2B̃2
1 − 3B̃2

2Þ þ
L2
w

w4
ð3B̃4

1 − 3B̃2
1B̃2Þ

þ Lw

w4
ð−6B̃3

1T1;0;0 þ 6B̃2B̃1T1;0;0 − 5B̃4
1 þ 5B̃2B̃2

1Þ þ
1

w2

�
B̃4
1

3
− B̃2B̃2

1 þ
2

3
B̃3B̃1 þ

B̃2
2

3
−
B̃4

3

�

þ 1

w3

�
−B̃3

1T1;0;0 þ 2B̃2B̃1T1;0;0 − B̃3T1;0;0 þ
B̃4
1

2
− B̃2B̃2

1 −
1

2
B̃3B̃1 þ B̃2

2

�
þ Lw

w3
ðB̃4

1 − 2B̃2B̃2
1 þ B̃3B̃1Þ: ð42Þ

The importance of resummation of all accessible loga-
rithms can be seen in the Fig. 1. The scale dependence
of the RG-summed series Eq. (29) around momentum

p ¼ mMS
b ¼ 4.17 GeV is almost negligible in the range

mMS
b =2 ≤ μ ≤ 2mMS

b while the unsummed series in
Eq. (6) has significant μ dependence. Scale sensitivity of
unsummed series decreases order by order but the advan-
tage of RG-summed series provides results less sensitive to
scale with the same available information. This theoretical

improvement provide us an opportunity to extract various
parameters from available experimental data with less scale
sensitivity.

VI. RESTRICTED FOURIER TRANSFORM

Let us begin by noting that the ultrasoft part of the static
energy is calculated in position space, whereas the pertur-
bative part is carried out in momentum space. To make any
phenomenological study, it is necessary to bring all the
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contributions of the static energy into the same space.
Bringing the momentum space results in position space via
a Fourier transform may seem natural, but such a trans-
formation induces pathological contributions to the static
energy. These undesirable contributions originate from the
nonperturbative, small momentum modes, which must be
removed explicitly. After removing such contributions, the
convergence behavior of the static energy improves dras-
tically. This scheme was first addressed in Ref. [48] and
was termed as the restricted Fourier transform (RFT). This
scheme has been already discussed in detail for the static

energy to the three-loop. Here we discuss it very briefly and
provide corresponding results for the four-loop order.
Note that the ultrasoft terms are already known to the

four-loop order. Therefore, what we are providing is the
complete calculation of the static energy in the position and
momentum space to the four-loop order. The final result for
the uncontrolled contribution to the position space static
energy in RFT scheme is given in Appendix E but an
overview of the calculation is given here.
The position space version of the static potential,

Vðr; μ; μusÞ, from momentum space potential, say
Ṽðp; μ; μusÞ to distinguish between the two basis, in
RFT scheme is defined by:

Vðr; μ; μus; μfÞ ¼
Z
½pj>μf

d3p
ð2πÞ3 e

ip·rṼðp; μ; μusÞ;

¼ Vðr; μ; μusÞ − δVðr; μus; μfÞ;

where μf is a perturbative scale chosen such that μ > μf ≫
ΛMS
QCD and uncontrolled terms, δVðr; μ; μus; μfÞ, in the

potential is

δVðr;μ;μus;μfÞ ¼
Z
½pj<μf

d3p
ð2πÞ3 e

ip·rṼðp;μ;μus;μfÞ: ð43Þ

The static energy, given by Eq. (3), in RFT scheme is

E0ðr; μ; μfÞ ¼ Vsðr; μ; μus; μfÞ þ δusðr; μ; μus; μfÞ: ð44Þ

The ultrasoft gluonic contribution to the static energy, at
order r2 in multipole expansion, is given by:

δusðr; μ; μusÞ ¼ −i
g2

Nc
TFV2

A
r2

d − 1

×
Z

∞

0

dte−itðVo−VsÞ

× h0jEaðtÞϕðt; 0Þadjab Ebð0Þj0i; ð45Þ

where TF ¼ 1=2, Nc is number of colors, ϕðt; 0Þadjab is
Wilson line in the adjoint representation connecting two
points at temporal separation t, Ea=b is chromoelectric field
strength, and VA is matching coefficient which appear at
order r2 in multipole expansion. This quantity has been
calculated to NLO in Refs. [9,11] and final result, sub-
leading in r, is given by:

δusðr; μusÞ ¼ −CF
αsðμusÞ

π

r2

3
V2
AðVoðrÞ − VsðrÞÞ3

×

�
δus3-loop þ

αsðμusÞ
π

δus4-loop

�
; ð46Þ

where

FIG. 1. Renormalization scale dependence of the resummed
and the unsummed static energy at different loops.
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δus3-loop ¼ 2 log

�
VoðrÞ − VsðrÞ

μus

�
−
5

3
þ 2 log 2; ð47Þ

and

δus4-loop ¼ C1log2
�
VoðrÞ − VsðrÞ

μus

�

þ C2 log

�
VoðrÞ − VsðrÞ

μus

�
þD: ð48Þ

Coefficients C1, C2 and D are given in Ref. [11] and we
have presented them in Appendix C. Next to the leading
order expression for VoðrÞ − VsðrÞ is given by:

ðVo−VsÞðrÞ¼
CAαsðμÞ

2r

×

�
1þαsðμÞ

π
ðT1;0;0þð2γEþ logðμ2r2ÞÞβ0Þ

�

þOðα3sðμÞÞ; ð49Þ

and we can see that if we substitute Eq. (49) to Eq. (46) then
ultrasoft contributions to the three- and four-loop order can
be obtained from NLO results.
Due to the presence of the extra scale in the problem μus,

it is desirable to expand all the quantities in terms of αsðμÞ.
This expansion induces mixed logarithms at the four-loop
of form 1

r logðμ2usr2Þ logðμ2r2Þ in the ultrasoft contributions.
To simplify the calculation we can write:

αsðμusÞ ¼ αsðμÞ
�
1þ αsðμÞ

π
β0 log

�
μ2

μ2us

��
þOðα3sðμÞÞ;

and

log ðr2μ2usÞ ¼ log ðμ2r2Þ− log

�
μ2

μ2us

�
; ð50Þ

so that the ultrasoft scale will appear only in running
logarithms.
The uncontrolled term for ðVo − VsÞðrÞ in RFT scheme,

in next to the leading order is given by:

δðVo−VsÞðr;μfÞ¼CAμfx½H1þxðH1T1;0;0

þβ0ð2H2þH1LμfÞÞ�þOðx3Þ; ð51Þ

where Lμf ¼ logðμ2
μ2f
Þ andH0

is functions defined by Eq. (D7)

and are proportional to generalized hypergeometric function.
The only matching coefficient left is VA and it is taken as

VA ¼ CAαs
2r

1

Vo − Vs
þOðαsÞ;

same as calculated inRef. [48]. These contributionswill enter
in Eq. (46) and the final expression is given in Appendix E.

Padé estimates and the ultrasoft contributions give us
numerical estimate for T4;0;0 ¼ TPadé

4;0;0 þ δTus
4;0;0. Now, the

restricted version for the static potential, the ultrasoft
contributions and the static energy in position space can
be constructed using Eqs. (D1) and (D2).
Using ΛMS

QCD ¼ 315 MeV, we can see in Fig. 2 that the
four-loop corrections to the static energy in RFT scheme
makes a very small contribution but, without removing
pathological contributions, behavior of the same quantity in
unrestricted scheme has very bad for r > 0.05 fm at the
four-loop.
In the next section, we have performed the extraction

of ΛMS
QCD in momentum space using LQCD inputs from

Ref. [18].

VII. FITTING PERTURBATIVE RESULTS
TO LATTICE DATA

In this section, we fit the perturbative static energy to the
lattice data and extract the value of the ΛMS

QCD from RG-
summed and unsummed case. Due to absence of all order

results, the extracted quantity ΛMS
QCD depends on the choice

of renormalization scale. To reduce the scale dependence,
we exploit the optimal renormalized perturbative static

energy to extract ΛMS
QCD. The parametrization of lattice data

to the Cornell potential is given in position space in
Ref. [18] for two-flavor QCD

ElatðrÞ ¼ V0 −
α

r
þ σr; ð52Þ

where α ¼ 0.326� 0.005 and σ ¼ 7.52� 0.55 fm−2 are
constants for nf ¼ 2 flavor. The parameter V0 is a potential
offset needed to match to the perturbative static energy.
However, V0 is not needed in case of momentum space
analysis [18]. It is important to note that these parameters

FIG. 2. Restricted and unrestricted static energy to a given order
(in superscript). ΛMS

QCD ¼ 315 MeV is used as input.
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are correlated and have corðα; σÞ ¼ −0.17 which has to be
taken account in sampling from normal distribution.
The Fourier transform of lattice static energy, in Eq. (52),

to momentum space is given by:

ElatðpÞ ¼ −
4πα

p2
−
8πσ

p4
: ð53Þ

To extract ΛMS
QCD, we minimize the square-deviation [18]:

ΔðΛMS
QCDÞ ¼

Z
pmax

pmin

dpðE0ðp; μÞ − ElatðpÞÞ2: ð54Þ

It should be noted that the strategy for sampling is
analogous to the one discussed in Ref. [18]. The match-
ing region is chosen 1500 MeV ≤ p ≤ 3000 MeV and
momentum values are randomly sampled from a uniform
distribution with pmin ⊂ ½1500; 2250� MeV and pmax ⊂
½2250; 3000� MeV such that pmax − pmin ≥ 375 MeV. It
is important to note that five-loop running of αs is used to

extract ΛMS
QCD.

Following the procedure explained above, the scale
dependence of the extracted (for 500 samples for

fp; α; σg) ΛMS
QCD can be seen from Fig. 3 at different loop

order and at different renormalization scales.
In Table I, we present our determinations of ΛMS

QCD for
different orders of the perturbative static energy and for
different choices of the renormalization scale. In addition to
reduction in the errors, the central values are closer to each
other for different choices of μ at higher order in the
perturbation series.
At the four-loop order (for 2000 samples of α, σ, p),

we make the following three choices for the unknown
coefficient T4;0;0:

T4;0;0¼
�
TPadé
4;0;0þδTus

4;0;0;
TPadé
4;0;0

2
þδTus

4;0;0;
TPadé
4;0;0

4
þδTus

4;0;0

�
;

ð55Þ

and the corresponding results are presented in Table II.
The RG-summed and unsummed series give very similar

values of ΛMS
QCD in case of renormalization scale is chosen in

the middle of the matching region. However, the RG-
summed static energy provides better fit to the lattice static
energy than the unsummed one which can be seen in
Table III below.
The RG-summed static energy gives better fit and this

improvement persist even at next higher order. For exam-
ple, at the four-loop order, we have found that the RG-
summed static energy produces significantly better fit to
lattice static energy compared to unsummed perturbative
static energy for different cases when we choose T4;0;0
according to Eq. (55).

FIG. 3. Renormalization scale dependence of ΛMS
QCD at different

loop order with error bars. The full Padé estimated value for T4;0;0

is used from Eq. (55).

TABLE I. ΛMS
QCD at different loop-orders.

ΛMS
QCD (in MeV)

Unsummed RG-Summed

Loop μ ¼ p μ ¼ 2.25 GeV μ ¼ 4.17 GeV μ ¼ 6.5 GeV

1 398.0� 14.2 401.9� 14.0 422.2� 15.4 434.4� 16.2
2 328.6� 11.6 330.6� 11.3 341.0� 12.0 347.1� 12.4
3 307.3� 10.9 308.4� 10.6 313.7� 10.9 317.0� 11.1

TABLE II. ΛMS
QCD at different loop-order for choices of T4;0;0

according to Eq. (55).

ΛMS
QCD (in MeV)

Unsummed RG-Summed

T4;0;0 μ ¼ p μ ¼ 2.25 GeV μ ¼ 4.17 GeV μ ¼ 6.5 GeV

I 284.6� 10.0 285.6� 9.6 290.1� 9.7 292.7� 9.8
II 296.3� 10.3 297.0� 10.0 300.0� 10.1 302.0� 10.2
III 302.9� 10.4 303.4� 10.3 305.5� 10.3 307.0� 10.4

TABLE III. Percentage of cases where the RG-summed series
gives small square-deviation compared to the unsummed one at
different loop order.ΔSðμÞ andΔU are the square deviation for the

summed and unsummed cases for each extracted value of ΛMS
QCD.

Percent of cases (in %) with ðΔSðμÞ − ΔUÞ < 0

Loop μ ¼ 2.25 GeV μ ¼ 4.17 GeV μ ¼ 6.5 GeV

1 85.59 83.35 81.50
2 97.43 95.98 95.14
3 99.94 99.92 99.84
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VIII. DISCUSSIONS

The static energy between a heavy quark and antiquark is
an important quantity in QCD as it can be calculated in both
perturbation theory and in LQCD simulations. Existence of a
matching region, where both perturbation theory and lattice
agree, provides an opportunity to extract the parameters of
the theory. If we assume the light quarks aremassless and the
heavier one decouples then the only parameter left in the
theory is strong coupling constant. Precise calculation of the
static energy thus becomes very important goal for precision
physics involving the strong interactions.
The perturbative static energy involves the computation

of all the Feynman diagrams at that order and the computer
codes were used in Refs. [5,6] for the three-loop numerical
calculation. At this order, virtual emission of the ultrasoft
gluons, with energy and momentum smaller than 1=r,
capable for changing singlet state to octet state and vice
versa also appear. Such emissions induce infrared diver-
gence in the static potential.
The gluon fields are multipole expanded about interquark

separation and hence their energy and momentum are
restricted to ultrasoft scale. This scale acts as source of
ultraviolet divergence for gluonic contributions.However the
static energy, which is the sum of perturbative potential and
contribution of ultrasoft gluons, is divergence free quantity as
two divergences get canceled with each other. This cancel-
lation induces nonanalytic terms(∼αns ð1=rÞlogmðαsð1=rÞÞ)
[8] in the static energy. The ultrasoft terms [9] and their
resummation is known to NLO [10,12] which contributes at
the three- and four-loop order but the perturbative singlet
potential is known only to the three-loop [5–7].

A. Padé estimate

In this article, we have extended the results for static
energy to the four-loop order using the renormalization
group and Padé approximant. Among the seven coefficients
at the four-loop, the estimates for T4;3;0 and T4;4;0, using
APAP, are in exact agreement with solutions of renorm-
alization group. Deviation for coefficient T4;2;0 is within
2.2% for nf ≤ 6 but T4;1;0 deviates more than 2% for
nf > 2. Since, the deviation is less than 2% for RG-
accessible coefficient for light flavor, we have used

APAP estimate for T4;0;0 to extract the ΛMS
QCD to the four-

loop order with different choices given in Eq. (55). The
large-nf limits for RG-accessible terms from both methods
are in perfect agreement. There are also some contributions
to T4;0;0 from ultrasoft terms which demands this quantity
must be Fourier transformed in order to get complete the
RG-inaccessible terms in momentum space.

B. Position space improvement

The static energy from LQCD simulations are mostly
parametrized in position space and hence the perturbative

static energy is Fourier transformed to the position space.
This quantity in position space suffers from pathological
contributions stemming from the nonperturbative regions
and has to be removed explicitly. This is achieved using the
restricted Fourier transform advocated in Ref. [48] which
improves the convergence behavior for r ∼ 0.12 fm. The
ultrasoft and the static potential has explicit dependence on
another scale μus which is absent in total energy. This scale-
dependence should also be cancelled for the static energy in
the RFT scheme. Final expression for uncontrolled con-
tributions to the static energy is provided in Appendix E.
The four-loop contribution to static energy in RFT scheme
has very little effect and can be seen in Fig. 2. The static
energy in RFT scheme provided in Sec. VI for the four-loop
order and can be used in future studies.

C. RG-improvement of the static energy
and ΛMS

QCD extraction

The RG-summed static energy in momentum space is
used in this article to extract ΛMS

QCD by fitting the static
energy from perturbative to the static energy from LQCD
from Ref. [18] for two active flavor. Its value for the three-
loop from the RG-summed static energy is found to be
308.4�10.6ð2.25GeVÞMeV, 313.7�10.9ð4.17GeVÞMeV,
and 317.0� 11.1ð6.5 GeVÞMeV where quantity in
the parenthesis is the renormalization scale. For the
unsummed static energy, this parameter is found to be
307.3� 10.9 MeV. The RG-summed version of static
energy has been observed to provide not only the better
fit to the lattice energy but also giving less standard
deviation if the renormalization scale is chosen in the
middle of matching region. Similar trend also persist for
next order but we have used less sample size since the exact

calculations are not available. Our finding of ΛMS
QCD from

RG-summed and unsummed series agrees within error bars
to the findings of Ref. [18].

IX. SUMMARY

To summarize, the QCD static potential is known to
three-loop order, and the ultrasoft terms which first appear
at the three-loop order are known to four-loop order. In
Sec. II, we describe the perturbative and the ultrasoft part of
the static static energy. The main results of this paper are the
following

(i) In Sec. III, using the RGE we determine the RG-
accessible coefficients at four-loop order which is
shown in Eq. (11).

(ii) The constant term of the four-loop coefficient cannot
be determined using RGE. In Sec. IV, we use the
Padé approximant method to obtain this term and is
given in Eq. (24).

(iii) In Sec. V, we apply for the first time the method of
optimal renormalization to QCD static energy be-
yond two-loop order to sum up the RG-accessible
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running logarithms to all order in perturbation
theory. The RG-summed series is defined in
Eq. (29) and the subsequent quantities are given
in Eqs. (31)–(32), Eqs. (39)–(42). The RG-summed
series ensures the expected reduction in sensitivity to
the renormalization scale as shown in Fig. 1.

(iv) In Sec. VI, we use the restricted Fourier transform
scheme to improve the convergence behavior of the
static energy in the position space to four-loop order.

(v) Using the RG-summed series Eq. (29) [see defini-
tion in Eq. (6)] and the lattice QCD parametriza-
tion Eq. (53), we fit the QCD scale ΛMS

QCD to the
lattice data. Our fit results at different loop orders
can be found Table I–II and scale dependence at
these orders in Fig. 3.

(vi) The uncertainties associated with our extraction of
the ΛMS

QCD is discussed in Sec. VIII.
In summary, we have used a variety of techniques,

theoretical and numerical, and have rendered the picture of
the QCD static energy as a very useful tool to obtain a clear
handle on ΛMS

QCD which is one of the fundamental param-
eters of the QCD, there by confirming the results in a large
number of other studies. We have also studied the con-
sistency of the picture by invoking Padé approximants as
well as renormalization group summation in order to
achieve these ends. We also provide improvement in

position space using the RFT-scheme. Our findings in this
article provide better control over variation of renormali-
zation scale for finite order results available for the static
energy. It also discusses scale dependence of the extracted

ΛMS
QCD at different orders of perturbation theory for the first

time in this article as an application of the method.
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APPENDIX A: THE QCD β-FUNCTIONS

The QCD beta function is given by

βðxÞ≡ −
X∞
i¼0

βixiþ2

and βi are the coefficients beta-function at (iþ 1)-loop. The βi coefficients for nf active quark flavors up to five-loop order
are [61–69]

β0 ¼
11

4
−
1

6
nf; β1 ¼

51

8
−
19

24
nf; β2 ¼

2857

128
−
5033

1152
nf þ

325

3456
n2f; ðA1Þ

β3 ¼
149753

1536
−
1078361

41472
nf þ

50065

41472
n2f þ

1093

186624
n3f þ

891

64
ζð3Þ − 1627

1728
nfζð3Þ þ

809

2592
n2fζð3Þ; ðA2Þ

β4 ¼
621885ζð3Þ

2048
−
144045ζð5Þ

512
þ 8157455

16384
−
9801π4

20480
þ nf

�
−
1202791ζð3Þ

20736
þ 1358995ζð5Þ

27648
þ 6787π4

110592
−
336460813

1990656

�

þ n2f

�
698531ζð3Þ

82944
−
5965ζð5Þ
1296

−
5263π4

414720
þ 25960913

1990656

�
þ n3f

�
−
24361ζð3Þ
124416

þ 115ζð5Þ
2304

þ 809π4

1244160
−

630559

5971968

�

þ n4f

�
1205

2985984
−
19ζð3Þ
10368

�
: ðA3Þ
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APPENDIX B: RUNNING OF THE PERTURBATIVE QCD COUPLING CONSTANT

The running of the strong coupling constant in terms of known β functions and the strong coupling at renormalization
scale μ [78], is given by:

xðpÞ≡ αsðpÞ
π

¼ x

�
1þ xβ0Lþ x2ðβ1Lþ β20L

2Þ þ x3
�
β2Lþ 5

2
β1β0L2 þ β30L

3

�

þ x4
�
β3Lþ

�
3β21
2

þ 3β0β2

�
L2 þ 13

3
β1β

2
0L

3 þ β40L
4

�

þ x5
�
β4Lþ

�
7β1β2
2

þ 7β0β3
2

�
L2 þ

�
6β2β

2
0 þ

35

6
β21β0

�
L3 þ 77

12
β1β

3
0L

4 þ β50L
5

��
þOðx6Þ ðB1Þ

where L ¼ logðμ2=p2Þ.
The couplant used to extract the ΛMS

QCD at scale μ is given by:

xðμÞ ¼ y
b1

�
1 − lyþ y2

�
b2
b21

þ l2 − l − 1

�
− y3

�
−
�
2 −

3b2
b21

�
lþ 1

2

�
1 −

b3
b31

�
þ l3 −

5l2

2

�

þ y4
�
−
�
3

2
−
6b2
b21

�
l2 þ

�
−
3b2
b21

−
2b3
b31

þ 4

�
lþ b4

3b41
−
b2ð3 − 5b2

3b2
1

Þ
b21

−
b3
6b31

þ l4 −
13l3

3
þ 7

6

��
þOðy6Þ ðB2Þ

where bi ≡ βi
β0
, l≡ logðlogðμ2=ðΛMS

QCDÞ2ÞÞ and y≡ b1
β0 logðμ2=ðΛMS

QCDÞ2Þ
.

APPENDIX C: THE QCD-STATIC COEFFICIENTS AT DIFFERENT LOOP ORDER

The known results for the static energy is presented here. The coefficients of the perturbative part Vpert at different loop
orders are listed below:

Theone-loop terms∶ T1;0;0 ¼
31

12
−
5nf
18

; T1;1;0 ¼ β0; ðC1Þ

The two-loop terms∶ T2;0;0 ¼ 28.5468 − 4.14714nf þ
25n2f
324

; T2;1;0 ¼ 2T1;0;0β0 þ β1; T2;2;0 ¼ β20; ðC2Þ

The three-loop terms∶ T3;0;0 ¼ 209.884 − 51.4048nf þ 2.90609n2f − 0.0214335n3f; T3;3;0 ¼ β30;

T3;1;0 ¼ 2T1;0;0β1 þ 3T2;0;0β0 þ β2; T3;2;0 ¼ 3T1;0;0β
2
0 þ

5β1β0
2

: ðC3Þ

The ultrasoft contribution to the three-loop RG-inaccessible coefficient is given by:

δT̃us
3;0;0 ¼

1

72
π2C3

Að6l1 − 5Þ; ðC4Þ

and contribution to the four-loop is given by:

δT̃us
4;0;0 ¼

C4
Aπ

2

2592
ð18π2γE þ 141γE − 6L2ð66l1 þ 6π2 þ 47Þ þ 198L2

2 − 3ð47þ 6π2ÞLπ þ 72π2l1 þ 894l1

þ 432ζð3Þ − 81π2 − 1241Þ þ C3
Aπ

2

1728
ð432l1T1;0;0 − 216T1;0;0 þ 60π2β0 þ 60γβ0 − 536β0 þ ð165 − 60β0ÞLπ

þ 6L2ð−20β0 þ 132l1 þ 55Þ − 396L2
2 − 144β0l2

1 þ 480β0l1 − 1320l1 þ 66π2 − 165γ þ 1474Þ ðC5Þ

QCD STATIC ENERGY USING OPTIMAL RENORMALIZATION … PHYS. REV. D 102, 076008 (2020)

076008-13



where l1 ¼ logðCAπÞ þ γE, Lπ ¼ logðπÞ and L2 ¼ logð2Þ. The constant terms appearing in Eq. (48) can be found in the
Ref. [11] and are given by:

C1 ¼
2

3
β0; C2 ¼

1

54
ðCAð−12π2 − 149þ 66 logð2ÞÞ þ 4nfTfð10 − 6 logð2ÞÞÞ;

D ¼ CA

9

��
9π2

4
þ 1241

36
þ 11log2ð2Þ

2
−
γE
2

�
π2 þ 47

6

�
− 12ζð3Þ − ðπ2 þ 17Þ logð2Þ þ 1

2
π2 logðπÞ þ 47

12
logðπÞ

�

þ nfTf

�
5

6
ðγE þ log ð64=πÞÞ − π2

3
−
67

9
− 2log2ð2Þ

��
: ðC6Þ

APPENDIX D: POSITION SPACE POTENTIAL

The unrestricted Fourier integrals of logarithms to position space is given by:

Z
d3p
ð2πÞ3 e

−ip:r 4π

q2
logm

�
μ2

q2

�
¼ 1

r

Xm
j¼0

�
m

j

�
logjðμ2r2Þ∂m−j

η yðηÞjη¼0 ðD1Þ

and the RFT of these logarithms are given by:

Z
d3p
ð2πÞ3 e

−ipr 4π

q2
logm

�
μ2

q2

�
Θðμf − jpjÞ ¼ −

μf
π

Xm
j¼0

�
m

j

�
logj

�
μ2

μ2f

�
ð−2Þm−j½∂m−j

η fðη; rμfÞ�η¼0
ðD2Þ

Here yðηÞ and fðη; βÞ are given by:

yðηÞ≡ eð2γEηþ
P

∞
l¼2

ηlð2
l−1−ð−1ÞlÞζðlÞ

l Þ ¼ Γð1 − 2ηÞ
Γð1 − ηÞΓðηþ 1Þ ;

fðη; βÞ≡ ΓðηÞ − Γðη; iβÞ
ðiβÞ1þη þ c:c: ðD3Þ

and c.c. stands for complex conjugate. Writing Lγ ¼ 2γE − logðμ2r2Þ, the unrestricted Fourier transforms for static potential
without the ultrasoft terms can be written as:

VðrÞ ¼
X4
i¼0

Xi

j¼0

xiþ1VjðrÞ þOðx6Þ ðD4Þ

V0ðrÞ ¼
1

r
; V1ðrÞ ¼

Lγ

r
; V2ðrÞ ¼

1

r

�
L2
γ þ

π2

3

�
; V3ðrÞ ¼

Lγ

r
ðLγ þ π2Þ þ 16

r
ζð3Þ ðD5Þ

V4ðrÞ ¼
Lγ

r
ðL3

γ þ 2π2Lγ þ 64ζð3ÞÞ þ 19π4

15r
: ðD6Þ

Restricted Fourier transform contains hypergeometric functions with array of 1
2
in first argument and 3

2
in the second

argument and if we define:

SiðrμfÞ≡ ðμfrÞ ×H1; nFnþ1

�
1

2
;
1

2
;…;

3

2
;
3

2
;
3

2
;…;−

1

4
r2μ2f

�
≡Hn ðD7Þ

then the uncontrolled contribution to static potential without the ultrasoft term is given by:

δVðr; μfÞ ¼
2μf
π

X4
i¼0

Xi

j¼0

xiþ1δVjðr; μfÞ þOðx6Þ ðD8Þ
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where,

δV0ðr; μfÞ ¼ H1; δV1ðr; μfÞ ¼ 2H2 −H1Lμf δV2ðr; μfÞ ¼ −4H2Lμf þ
1

3
H1ð3L2

μf − π2Þ þ 8H3

δV3ðr; μfÞ ¼ −24H3Lμf þH2ð6L2
μf − 2π2Þ þH1ð−L3

μf þ π2Lμf − 16ζð3ÞÞ þ 48H4

δV4ðr; μfÞ ¼
1

5
H1ð5L4

μf − 10π2L2
μf þ 320ζð3ÞLμf − 3π4Þ þ 1

5
H2ð−40L3

μf þ 40π2Lμf − 640ζð3ÞÞ

þ 1

5
H3ð240L2

μf − 80π2Þ − 192H4Lμf þ 384H5 ðD9Þ

APPENDIX E: RESTRICTED VERSION OF THE STATIC ENERGY IN POSITION SPACE

Uncontrolled contribution to the static energy in RFT scheme is given by:

δEðr; μ; μfÞ ¼ −ð2CFH1μfxÞð1þ xð2H̃2T1;1;0 þ T1;1;0Lμf þ T1;0;0Þ
þ x2ð4H̃2T2;2;0Lμf þ 2H̃2T2;1;0 þ 8H̃3T2;2;0 þ T2;0;0 þ T2;2;0L2

μf þ T2;1;0LμfÞ

þ x3
�
T3;0;0 þ 2H̃2T3;1;0 þ 8H̃3T3;2;0 þ 48H̃4T3;3;0 þ L2

μfð6H̃2T3;3;0 þ T3;2;0Þ þ T3;3;0L3
μf

þ Lμfð4H̃2T3;2;0 þ 24H̃3T3;3;0 þ T3;1;0Þ þ
1

144
π2C3

Að12H̃2 þ 12 logðH1Þ þ 12Lus − 12γE − 10þ 24L2Þ
�

þ x4
�
T4;0;0 þ 2H̃2T4;1;0 þ 8H̃3T4;2;0 þ 48H̃4T4;3;0 þ 384H̃5T4;4;0 þ L2

μfð6H̃2T4;3;0 þ 48H̃3T4;4;0 þ T4;2;0Þ

þ T4;4;0L4
μf þ Lμf

�
1

144
π2C3

Að48β0H̃2 þ 12T1;1;0 − 48γEβ0 − 40β0 þ 96β0L2 þ 48β0 logðH1Þ þ 48β0LusÞ

þ T4;1;0 þ 24H̃3T4;3;0 þ 192H̃4T4;4;0 þ 4H̃2T4;2;0

�
þ L3

μfð8H̃2T4;4;0 þ T4;3;0Þ

þ π4C3
A

144
ð12H̃2 − 9β0 þ 12 logðH1Þ þ 12Lus − 9γE − 8þ 18L2 − 3LπÞ

þ π2C3
A

144

�
36H̃2T1;0;0 þ 24H̃2T1;1;0 − 96γEβ0H̃2 − 40β0H̃2 þ 168β0H̃3 þ 144β0L2H̃2 þ 72β0H̃2 logðH1Þ

þ 39H̃2 þ 72β0LusH̃2 þ 36T1;0;0 logðH1Þ þ 36LusT1;0;0 − 36γET1;0;0 − 18T1;0;0 þ 72L2T1;0;0 − 84

þ 12γ2Eβ0 − 15γEβ0 −
134β0
3

− 48β0L2
2 þ 70β0L2 − 5β0Lπ − 12β0log2ðH1Þ − 48β0L2 logðH1Þ

þ 40β0 logðH1Þ − 24β0Lus logðH1Þ þ 39 logðH1Þ − 12β0ðLusÞ2 þ 40β0Lus − 48β0LusL2 þ 39Lus

þ 72ζð3Þ − 117γE
4

þ 117L2

2
−
39Lπ

4

���
ðE1Þ

where Lus ¼ logðCAx
2
Þ, Lμf ¼ logðμ2

μ2f
Þ, Lπ ¼ logðπÞ, L2 ¼ logð2Þ and H̃i ≡Hi=H1. Note thatH0

is are defined by Eq. (D7) in
Appendix D.
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