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The electrical and Hall conductivities in a uniform magnetic field are evaluated for an interacting pion
gas using the kinetic theory approach within the ambit of relaxation time approximation. The in-medium
cross sections vis-à-vis the relaxation time for ππ scattering are obtained using a one-loop modified thermal
propagator for the exchanged ρ and σ mesons using thermal field theoretic techniques. For higher values of
the magnetic field, a monotonic increase of the electrical conductivity with the temperature is observed.
However, for a given temperature, the conductivity is found to decrease steadily with magnetic field.
The Hall conductivity, at lower values of the magnetic field, is found to decrease with the temperature more
rapidly than the electrical conductivity, whereas at higher values of the magnetic field, a linear increase is
seen. Use of the in-medium scattering cross section is found to produce a significant effect on the
temperature dependence of both electrical and Hall conductivities compared to the case where the vacuum
cross section is used.
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I. INTRODUCTION

The study of strongly interacting matter in the presence
of a background magnetic field has significant applications
in many physical systems (see Ref. [1] for a review). In
noncentral heavy ion collisions (HICs) at the RHIC and
LHC, strong magnetic fields of the order of ∼1018 G [2,3]
or larger may be generated due to the collision geometry.
Note that in natural units, 1018 G ≈m2

π ≈ 0.02 GeV2.
Thus, the fields produced in HICs are comparable to the
QCD scale, i.e., eB ≈m2

π , and hence, it can noticeably
influence the deconfined medium of quarks and gluons
known as quark-gluon plasma (QGP). This has motivated a
large number of investigations on the properties of hot and

dense QCD matter in the presence of a background
magnetic field in recent times involving several novel
and interesting phenomena such as chiral magnetic effect
[2,4–6], magnetic catalysis [7–11], and inverse magnetic
catalysis [12,13] of dynamical chiral symmetry breaking
which may cause significant change in the nature of
electroweak [14–17], chiral, and superconducting phase
transitions [18–21], electromagnetically induced supercon-
ductivity and superfluidity [22,23], and many more. In
addition to heavy ion collisions, such magnetic fields of the
order of ∼1015 G can also be realized on the surface of
certain compact stars calledmagnetars, while in the interior
it is estimated to reach magnitudes of the order of ∼1018 G
[24–26]. Cosmological model calculations, in fact, predict
that during the electroweak phase transition in the early
Universe, extremely strong magnetic field as high as
∼1023 G might have been produced [27,28].
The estimation of transport coefficients of relativistic

systems in the presence of a magnetic field is important
in the context of magnetized neutron stars, cosmology,
and relativistic HICs. In the case of HICs, transport
coefficients such as the shear and the bulk viscosities
and the diffusion coefficients are essential to describe the
hydrodynamical evolution of the matter transiently pro-
duced in such collisions. In the presence of a magnetic
field, this evolution is described by magnetohydrodynamics
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(MHD), which takes into account the coupling of the
magnetic field to the relativistically evolving fluid in a self-
consistent way. A good deal of progress has been made in
recent times in the evaluation of magnetic-field-dependent
transport coefficients such as electrical conductivity
[29–36], shear viscosity [35,37–39], the heavy quark dif-
fusion constant [39,40], and the jet quenchingparameter [41].
One of the most important transport coefficients required

in the formulation of MHD is the electrical conductivity.
Also, from a phenomenological point of view, electrical
conductivity is important in the sense that if it is large, the
created magnetic field in noncentral HICs persists for a
longer time [42]. Electrical conductivity of a QGP in a
strong magnetic field has been evaluated in Ref. [43] where
it was shown that it diverges in the massless limit and is
very sensitive to the value of the current quark mass.
In Ref. [44], the electrical as well as the Hall conductivities
of the QGP have been estimated in a strong magnetic field
using a kinetic theory approach as well as the Kubo
formalism. It is found that the electrical conductivity
decreases in the presence of a magnetic field, especially
at a low temperature. Also in Ref. [45], the electrical
conductivity of a hot and dense quark matter has been
computed in the presence of a magnetic field using kinetic
theory beyond the lowest Landau level approximation. It is
observed that the transverse electrical conductivity is
dominated by the Hall conductivity, and the parallel
conductivity has a nominal dependence on both T and μ.
As it was previously mentioned, the produced magnetic

field persists for a longer time if the value of electrical
conductivity of the medium is large, which is a possibility
for the case of QGP. However, as of now it is a general
belief that the value of the magnetic field is quite small in
hadronic matter (HM) due to the smaller value of the
conductivity. As a result, relevant physical quantities
calculated in HM will have minor modifications as com-
pared to that in quark matter. In order to substantiate this
conjecture, it is necessary to calculate the B-dependent
electrical conductivity of HM as accurately as possible
taking into account finite temperature and/or density and
magnetic field effects. An attempt has been made in
Refs. [46,47] to calculate the electrical conductivity of
hadron resonance gas (HRG), which has been studied using
the relaxation time approximation (RTA) with a constant
cross section, whereas in Ref. [48], electrical conductivity
along with other transport coefficients of HRG have been
computed treating the relaxation time as a free parameter.
However, the hadronic phase in HICs attains sufficiently
high-temperature (100 MeV≲ T ≲ 155 MeV) and/or high
(baryon) density [note that the QGP-hadron phase tran-
sition occurs nearly at the temperature Tc ≃ 155 MeV,
which is the (pseudo) critical temperature for the chiral
phase transition as obtained in the lattice QCD calculations
[49]]. Hence, in order to obtain a more realistic picture, one
should incorporate the thermal effects in the cross sections

required to evaluate the transport coefficients which have
been ignored in Ref. [47].
In the present work, we intend to evaluate the electrical

as well as Hall conductivites of a relativistic pion gas using
the kinetic theory approach within the RTA where we
incorporate the finite temperature effects in the cross
section vis-à-vis the relaxation time. We have chosen to
calculate the electrical conductivity of pions as they are the
most abundant species among the other hadrons produced
in the HICs at the RHIC and LHC [50]. This type of study
is also important, as the magnetic field produced in heavy
ion collisions is of hadronic scale, and hence, the evaluation
of transport coefficients of the QGP and the hadronic
medium will provide better insight into the time evolution
of strongly interacting matter in the presence of a back-
ground magnetic field.
The article is organized in the following manner. In the

next section, we evaluate the conductivity tensor using the
dissipative term obtained from the Boltzmann transport
equation (BTE) in the presence of an external magnetic
field employing RTA. Section III deals with the evaluation
of the relaxation time of pions in thermal medium using an
in-medium pionic cross section. In Sec. IV, the numerical
results are shown followed by summary and conclusions
in Sec. V.

II. ELECTRICAL AND HALL CONDUCTIVITIES
FROM KINETIC THEORY

Let us start with the standard expression of the BTE in
the presence of an external electromagnetic field [51],
which is satisfied by the on-shell single particle phase space
distribution function f� ¼ f�ðt; r⃗; p⃗Þ of the charged pions
(π�) as

∂f�
∂t þ v⃗ ·

∂f�
∂r⃗ � q½E⃗þ ðv⃗ × H⃗Þ� · ∂f�∂p⃗ ¼ C½f��; ð1Þ

where q is the charge of a proton, v⃗ ¼ p⃗=ωp is the velocity,

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
is the energy, E⃗ is the electric field, H⃗ is

the magnetic field, and C½f� denotes the collision kernel.
We note that the equilibrium Bose-Einstein distribution
function f0 ¼ f0ðωpÞ for which C½f0� ¼ 0 is given by

f0ðωpÞ ¼
1

eωp=T − 1
; ð2Þ

where T is the temperature.
A few comments on the use of the classical dispersion

relation ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
for the pions are in order here. It

is well known that in the presence of an external magnetic
field, the momentum states of the charged pions will be
Landau quantized and their classical dispersion relation
ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
with continuous transverse momentum

modifies to
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ωpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð2lþ 1ÞqH þm2

q
; ð3Þ

where l is the Landau level. However, in this work we have
ignored the Landau quantization (LQ) in the calculation of
the conductivity assuming the magnetic field to be weak.
For low values of the external magnetic field, the Landau
levels become closely spaced such that the continuum
approximation of the transverse momentum of pions holds
well. Moreover, we will be using the RTA, where the pion
distribution function is assumed to be slightly away from
equilibrium, which allows the linearization of the BTE. The
use of the RTA implies that the external magnetic field
cannot be too high. Finally, the magnitude of the external
magnetic field in the hadronic phase of the HIC is usually
small, which in turn justifies the use of the weak field
approximation in our calculation. A more quantitative
analysis of the validity of the continuum approximation
will be performed later in Sec. IV.
When the system is out of equilibrium, the dissipative

processes within the system try to bring it back to
equilibrium. Let us consider the system to be slightly away
from equilibrium, which is characterized by the nonequili-
brium distribution function f� ¼ f0 þ δf� with δf� ¼
−ϕ�

∂f0∂ωp
≪ f0. As δf� is small, the BTE can be linearized.

In order to solve Eq. (1), we treat the right-hand side of
Eq. (1) using the RTA and consider only the 2 → 2
scattering process kþ p → k0 þ p0. In the RTA, the test
particle with momentum p is considered to be out of
equilibrium, whereas the remaining three particles with
momenta k, k0, and p0 are in equilibrium. Thus, in the RTA
the collision integral in Eq. (1) reduces to [51]

C½f�� ¼
δf�
τ

¼ −
ϕ�
τ

∂f0
∂ωp

; ð4Þ

where τ is the relaxation time. Substituting Eq. (4) into
Eq. (1) yields

∂f�
∂t þ v⃗ ·

∂f�
∂r⃗ �q½E⃗þðv⃗× H⃗Þ� · ∂f�∂p⃗ ¼−

ϕ�
τ

∂f0
∂ωp

: ð5Þ

Since we are dealing with a uniform and static medium,
both f� and f0 are independent of time and space. Also,
the electric field under consideration is very small. Thus,
Eq. (5) reduces to

�qE⃗ · v⃗
∂f0
∂ωp

�qðv⃗× H⃗Þ ·∂ϕ�
∂p⃗

�∂f0
∂ωp

�
¼−

ϕ�
τ

∂f0
∂ωp

: ð6Þ

In order to solve for the electrical and Hall conductivities,
we take the following ansatz for the functional form of
ϕ� [33] as

ϕ� ¼ p⃗ · Ξ⃗�ðωpÞ; ð7Þ

where the vector Ξ⃗� contains information about the
dissipation produced due to the electric and magnetic fields
and can be expressed most generally as

Ξ⃗� ¼ α�êþ β�ĥþ γ�ðê × ĥÞ; ð8Þ

where ê ¼ E⃗=jE⃗j and ĥ ¼ H⃗=jH⃗j are the unit vectors along
the directions of the electric and magnetic fields, respec-
tively. Substituting Eqs. (7) and (8) into Eq. (6), we get after
some simplification

�qjE⃗j
ωp

ðê · p⃗Þ�α�
qjH⃗j
ωp

ðê× ĥÞ · p⃗� γ�
qjH⃗j
ωp

ðê · p⃗Þ

� γ�
qjH⃗j
ωp

ðĥ · p⃗Þðĥ · êÞ

¼−α�ðê · p⃗Þτ−1 − β�ðĥ · p⃗Þτ−1− γ�ðê× ĥÞ · p⃗τ−1: ð9Þ

Comparing the coefficients of ê · p⃗, ê × ĥ, and ĥ · p⃗ on
both sides of Eq. (9), we obtain

α� ¼ � qjE⃗j
ωp

τ

1þ ω2
cτ

2
; ð10Þ

β�
α�

¼ −ðωcτÞ2ðĥ · êÞ; ð11Þ

γ�
α�

¼ −ωcτ; ð12Þ

where ωc ¼ jqH⃗j=ωp is the cyclotron frequency. Using

Eqs. (10)–(12) in Eq. (8), we can now obtain the vector Ξ⃗�,
which in turn is used to get ϕ� from Eq. (7) as

ϕ� ¼ α�ωpv⃗ · ½1þ ðωcτÞ2ðê · ĥÞĥ − ðωcτÞðê × ĥÞ�
¼ � qτ

1þ ðωcτÞ2
vi½δij − ωcτϵ

ijkhk þ ðωcτÞ2hihj�Ej;

ð13Þ

where the Einstein summation convention has been used.
In order to extract the electrical and Hall conductivities

from ϕ�, we first note that the macroscopic electrical
current density ji is given by

ji ¼ σijEj ¼
Z

d3p
ð2πÞ3 v

iqðϕþ − ϕ−Þ
�∂f0
∂ωp

�
: ð14Þ

In Eq. (14), σij is the conductivity tensor. Now substitution
of Eq. (13) into Eq. (14) yields

σij ¼ δijσ0 − ϵijkhkσ1 þ hihjσ2; ð15Þ

where
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σ0 ¼
gq2

3T

Z
d3p
ð2πÞ3

p⃗2

ω2
p

τ

1þ ðωcτÞ2
f0ðωpÞf1þ f0ðωpÞg;

ð16Þ

σ1 ¼
gq2

3T

Z
d3p
ð2πÞ3

p⃗2

ω2
p

τðωcτÞ
1þ ðωcτÞ2

f0ðωpÞf1þ f0ðωpÞg;

ð17Þ

σ2 ¼
gq2

3T

Z
d3p
ð2πÞ3

p⃗2

ω2
p

τðωcτÞ2
1þ ðωcτÞ2

f0ðωpÞf1þ f0ðωpÞg;

ð18Þ

in which g ¼ 2 is the degeneracy of charged pions in the
gas since only the charged pions πþ and π− participate in
the charge conduction. σ0 is the electrical conductivity in
the presence of the magnetic field, σ1 is the Hall conduc-
tivity, and σ0 þ σ2 is the electrical conductivity in the
absence of the external magnetic field. In compact notation,
Eqs. (16)–(18) can be written as

σn ¼
gq2

3T

Z
d3p
ð2πÞ3

p⃗2

ω2
p

τðωcτÞn
1þ ðωcτÞ2

f0ðωpÞf1þ f0ðωpÞg;

n ¼ 0; 1; 2: ð19Þ

III. THE RELAXATION TIME IN THE MEDIUM

The relaxation time τ which appears in Eq. (19) is
the key dynamical input, and for the 2 → 2 process
½πðkÞ þ πðpÞ → πðk0Þ þ πðp0Þ�, it is given by [52]

½τðpÞ�−1 ¼ g0

4ωp

ZZZ
d3k

ð2πÞ32ωk

d3k0

ð2πÞ32ωk0

d3p0

ð2πÞ32ωp0

× ð2πÞ4δ4ðkþ p − k0 − p0ÞjMj2

×
f0ðωkÞf1þ f0ðωk0 Þgf1þ f0ðωp0 Þg

f1þ f0ðωpÞg
; ð20Þ

where the total pion degeneracy g0 ¼ 3 on account of the
fact that both the charged and neutral pions (π� and π0)
participate in the scattering processes via effective strong
interaction. Considering f0ðωp0 Þ ≃ f0ðωpÞ and f0ðωk0 Þ ≃
f0ðωkÞ [52], we can integrate over the momenta of the final
state particles k0 and p0, respectively, obtaining

½τðpÞ�−1 ¼ g0

2

Z
d3k
ð2πÞ3 ðσvrelÞf0ðωkÞf1þ f0ðωkÞg; ð21Þ

where σ is the total cross section for the 2 → 2 scattering
process, and vrel ¼ 1

2ωkωp
λ
1
2ððωk þ ωpÞ2; m2; m2Þ is the

relative velocity of the initial state particles in which
λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx is the Källén
function.
Let us now proceed to calculate the ππ cross section σ in

a thermal medium. The effective interaction of pions with
the vector meson ρ and scalar meson σ is given by the
following Lagrangian (density) [53]

Lint ¼ gρππρ⃗μ · π⃗ × ∂μπ⃗ þ 1

2
gσππmσπ⃗ · π⃗σ; ð22Þ

where the coupling constants gρππ ¼ 6.05 and gσππ ¼ 2.5
have been obtained from the experimental decay widths of
ρ and σ mesons [53,54]. It is now convenient to use the
isospin basis so that the invariant amplitudes MI for the
particular isospin channel with total isospin I are given
by [55]

M2 ¼ g2ρππ

�
−
�
s − u
t −m2

ρ

�
−
�

s − t
u −m2

ρ

��

þ 4g2σππ

�
1

t −m2
σ
þ 1

u −m2
σ

�
; ð23Þ

M1 ¼ g2ρππ

�
2

�
t − u

s −m2
ρ − Πρ

�
þ
�
s − u
t −m2

ρ

�
−
�

s − t
u −m2

ρ

��

þ 4g2σππ

�
1

t −m2
σ
−

1

u −m2
σ

�
; ð24Þ

M0 ¼ g2ρππ

�
2

�
s − u
t −m2

ρ

�
þ 2

�
s − t
u −m2

ρ

��

þ 4g2σππ

�
3

s −m2
σ − Πσ

þ 1

t −m2
σ
þ 1

u −m2
σ

�
; ð25Þ

where s ¼ ðkþ pÞ2, t ¼ ðk − k0Þ2, and u ¼ ðk − p0Þ2 are
the Mandelstam variables, and the vacuum propagators for
the ρ and σ in their respective s channels have been replaced
by the complete interacting (dressed) propagators obtained
from a Dyson-Schwinger sum involving the one-loop in-
medium self-energies of ρ and σ denoted by Πρ and Πσ ,
respectively.
The one-loop self-energies ΠhðqÞ of h ∈ fρ; σg at finite

temperature can be calculated using the standard techniques
of real time formalism of finite temperature field theory
[54,56]. Contributions to Πh come from different loop
graphs containing other mesons (i, j). The ρ self-energy
consists of fi; jg ¼ fπ; πg, fπ;ωg, fπ; h1g, and fπ; a1g
loops, whereas the σ self-energy has a contribution from
only fi; jg ¼ fπ; πg loop. In a general notation, the real
part of the self-energy reads
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ReΠhðqÞ ¼
X

fπ;jg∈floopsg

Z
d3k
ð2πÞ3

1

2ωkωpj

P
��

f0ðωkÞωpj
N h

πjðk0 ¼ ωkÞ
ðq0 − ωkÞ2 − ω2

pj

�
þ
�
f0ðωkÞωpj

N h
πjðk0 ¼ −ωkÞ

ðq0 þ ωkÞ2 − ω2
pj

�

þ
�
f0ðωpj

ÞωkN h
πjðk0 ¼ q0 − ωpj

Þ
ðq0 − ωpj

Þ2 − ω2
k

�
þ
�
f0ðωpj

ÞωkN h
πjðk0 ¼ q0 þ ωpj

Þ
ðq0 þ ωpj

Þ2 − ω2
k

��
; ð26Þ

whereas the imaginary part is

ImΠhðqÞ ¼ −πsignðq0Þ
X

fπ;jg∈floopsg

Z
d3k
ð2πÞ3

1

4ωkωpj

× ½f1þ f0ðωkÞ þ f0ðωpj
ÞgfN h

πjðk0 ¼ ωkÞδðq0 − ωk − ωpj
Þ −N h

πjðk0 ¼ −ωkÞδðq0 þ ωk þ ωpj
Þg

− ff0ðωkÞ − f0ðωpj
ÞgfN h

πjðk0 ¼ ωkÞδðq0 − ωk þ ωpj
Þ −N h

πjðk0 ¼ −ωkÞδðq0 þ ωk − ωpj
Þg�; ð27Þ

where ωpj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
j þm2

j

q
with pj ¼ ðq − kÞ. Although the

self-energy of ρ contains additional Lorentz indices, in this
work we have used the polarization-averaged self-energy of
ρ in the expression of the invariant amplitude. It is also to be
noted that, corresponding to the loop graphs fπ; h1g and
fπ; a1g contributing to the self-energy of ρ, Πρ has been
convoluted with the vacuum spectral functions of the
unstable mesons h1 and a1 due to their mass uncertainties
[57] due to large width. The detailed expressions of N ρ

ij

and N σ
ij can be found in Ref. [55]. In the expression of the

imaginary part of the self-energy, the four terms containing
the Dirac delta functions correspond to different physical
processes like decay and scattering leading to the absorp-
tion of the meson h in the thermal medium.
The isospin-averaged invariant amplitude

jMj2 ¼
X
I

ð2I þ 1ÞjMIj2
.X

I

ð2I þ 1Þ ð28Þ

is used to obtain the total ππ → ππ cross section from

σðsÞ ¼ 1

64π2s

Z
dΩjMj2: ð29Þ

IV. RESULTS AND DISCUSSION

We begin this section by showing the in-medium ππ →
ππ total cross section as a function of the center-of-mass
energy in Fig. 1(a) for different temperatures. At T ¼ 0, the
cross section obtained using the vacuum self-energies of the
ρ and σ mesons is seen to agree with the experimental data
[52] shown with red triangles. With the increase in the
temperature, the imaginary part of the self-energy increases
owing to the in-medium broadening of the resonance
spectral functions. Physically, it corresponds to the increase
in annihilation probabilities (due to decay and scattering) of
ρ and σ in the thermal bath. This in-medium spectral
broadening of ρ and σ in turn makes substantial suppression

in the cross section at a high temperature as can be noticed
from the figure.
Next, in Fig. 1(b) we have shown the variation of the

average relaxation time hτi of pions with the temperature
evaluated using vacuum and in-medium cross sections.
Note that the momentum-averaged relaxation time hτi is
obtained from the relation

hτi ¼
Z

d3pτðpÞfðωpÞ=
Z

d3pfðωpÞ: ð30Þ

It is seen that the relaxation time obtained using the in-
medium cross section is always greater than the same
calculated using the vacuum cross section which is also
obvious from Eq. (21). Since, the in-medium cross section
is suppressed with respect to the vacuum cross section,
hτiVacuum comes out to be less than hτiMedium. In order to
extract the leading behavior of hτi as a function of the
temperature, we fit the in-medium relaxation time hτiMedium

with a polynomial function of the form
P

3
i¼0 aiðmTÞi 1

T3. This
is shown in Fig. 1(c) where we have plotted the fitted
function along with ða0T3Þ and

P
3
i¼1 aiðmTÞi 1

T3 separately to
understand the leading behavior. It is easy to check from
Eqs. (21) and (30) that the ai’s are dimensionful quantities
and have the dimensions of the inverse of the cross section,
½σ−1�. It is clearly seen that the leading behavior is well
represented by the first term in the fitting function. This can
be explained by considering hτi ∼ 1=ðnσÞ, where n is the
pion density which goes as n ∼ T3 in the massless limit and
σ is the (T-independent) cross section. The observed
deviation from the 1=T3 behavior of hτi at lower and
higher temperatures is quite understandable and may be
attributed to several factors. Most important among these is
the contribution coming from the phase space integrals due
to the nonzero pion mass which contain higher inverse
powers of T. The T dependence of the cross section can
also make a contribution. However, for purposes of dis-
cussion, hτimay well be taken to go as 1=T3 in the relevant
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temperature range, and the deviations therefrom will not
affect the conclusions significantly.
The variation of σ0=T as a function of the temperature is

shown in Figs. 2(a) and 2(b) for different values of the
magnetic field using both the vacuum and in-medium cross
sections. To understand the behavior of σ0=T with the
temperature, we first note from Eq. (16) that the temperature
dependence of σ0=T roughly comes from σ0=T ∼ τT

1þðωcτÞ2.
At lower values of the magnetic field, ωcτ ≪ 1 so that the
temperature dependence of τT would dictate the temperature
dependence of σ0=T. We discussed the T dependence of the
average relaxation time earlier by fitting a simple function
and argued that hτi ∝ 1=T3 is a good approximation in the
relevant temperature range. Thus, at lower values of the
magnetic field, we expect σ0=T ∼ 1=T2, which is quite
compatible with Fig. 2(a). The situation is reversed at higher
values of the external magnetic field for which ωcτ ≫ 1,
and consequently, the temperature dependence of σ0=T
approximately comes from σ0=T ∼ T

τ ∼ T4. We thus
expect a monotonically increasing trend of σ0=T with the

temperature at higher values of the magnetic field as can be
noticed in Fig. 2(b). At intermediate values of the magnetic
field, we observe a nonmonotonic behavior of σ0=T with the
temperature. In Fig. 2(c), σ0=T has been plotted as a function
of the external magnetic field for different temperatures.
Unlike the temperature dependence, σ0=T has a trivial
magnetic field dependence as σ0=T ∼ 1

1þðωcτÞ2. With the

increase in the magnetic field values, the cyclotron fre-
quency ωc increases linearly so that a monotonically
decreasing trend of σ0=T with external magnetic field is
visible in Fig. 2(c). The effect of the in-mediumcross section
on σ0=T can be understood similarly from the τ dependence
of σ0=T. As already argued, at a given temperature, for lower
values of the magnetic field σ0=T ∼ τ, whereas for higher
values of themagnetic field σ0=T ∼ 1=τ. Since the relaxation
time is larger for the in-medium cross section, it is obvious
that the use of the in-medium cross section instead of the
vacuum cross section will increase (decrease) σ0=T for
lower (higher) values of the external magnetic field. This is
clearly observed in Figs. 2(a) and 2(b). This argument also
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explains the crossing of the dashed curves with the respec-
tive solid curves in Fig. 2(c).
Next, in Figs. 3(a) and 3(b), the Hall conductivity scaled

with the inverse temperature (σ1=T) has been depicted as a
function of the temperature for different values of the
external magnetic field using both the vacuum and in-
medium cross sections. The behavior of σ1=T with the
temperature can be understood by a similar analysis as done
in the last paragraph. We notice from Eq. (17), the
temperature dependence of σ1=T approximately comes
from σ1=T ∼ τ2T

1þðωcτÞ2. Therefore, at lower values of the

magnetic field, ωcτ ≪ 1 so that σ1=T ∼ τ2T ∼ 1=T5. On
the other hand, at higher values of the external magnetic
field (ωcτ ≫ 1), the leading temperature dependence of
σ1=T goes as σ1=T ∼ T. Thus, at lower values of the
magnetic field, σ1=T decreases with the temperature more
rapidly than σ0=T, whereas at higher values of the magnetic
field, we notice a linear increase of σ1=T with the temper-
ature. This also makes σ1=T to vary nonmonotonically at
intermediate values of the external magnetic field as can be
noticed in Figs. 3(a) and 3(b). In Fig. 3(c), we have shown
σ1=T as a function of the external magnetic field for
different temperatures. The dependence of σ1=T on the
magnetic field goes as σ1=T ∼ ωc

1þðωcτÞ2, which is basically a

Breit-Wigner function of the magnetic field with peak
position ∼1=τ ∼ T3 and width ∼τ ∼ 1=T3. The Breit-
Wigner-like behavior of σ1=T can be observed in
Fig. 3(c) in which the peak position of σ1=T moves toward
higher magnetic field values and the width increases with
the temperature. As before, the effect of the in-medium
cross section on σ1=T can be understood from the τ

dependence of σ1=T, i.e., from σ1=T ∼ τ2ωc
1þðωcτÞ2, which is

a monotonically increasing and saturating function of τ.
The saturation occurs in the low-temperature (where τ is
large) and low magnetic field region in which the overall τ
dependence of σ1=T becomes weaker. Since the in-medium
cross section yields a larger relaxation time, the use of the
in-medium cross section over the vacuum cross section
always increases σ1=T for any value of the external
magnetic field as can be noticed in Figs. 3(a)–3(c).
However, in the high magnetic field and low-temperature
region, due to the weakening of the τ dependence in σ1=T,
the medium effect in the cross section becomes negligible
as one can notice by comparing the separations between the
dashed and solid curves of Fig. 3(b) (low-temperature
region) and Fig. 3(c) (high magnetic field region).
We now proceed to show the behavior of the quantity

σ2=T as a function of the temperature for different values of
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the external magnetic field with both the vacuum and in-
medium cross sections in Figs. 4(a) and 4(b). The behavior
of σ2=T with the temperature can be analogously under-
stood from Eq. (18) in which the temperature dependence
of σ2=T approximately goes as σ2=T ∼ τ3T

1þðωcτÞ2. Therefore,
at lower values of the magnetic field (ωcτ ≪ 1),
σ2=T ∼ τ3T ∼ 1=T8. On the other hand, at higher values
of the external magnetic field (ωcτ ≫ 1), the leading
temperature dependence of σ2=T is approximately given
by σ2=T ∼ τ ∼ 1=T3. Thus, σ2=T always decreases mono-
tonically with the increase in the temperature even more
rapidly than σ1=T in all values of the magnetic field
considered here [see Figs. 4(a) and 4(b)]. Next, in
Fig. 4(c), the magnetic field dependence of σ2=T has been
depicted for different temperatures. σ2=T depends on the

magnetic field as σ2=T ∼ ðωcτÞ2
1þðωcτÞ2, which is a monotonically

increasing and saturating function of the magnetic field,
thus explaining the analogous behavior of the curves in the
figure. To understand the effect of the in-medium cross
section on σ2=T, we first note that the τ dependence of

σ2=T is given by σ2=T ∼ τ3ω2
c

1þðωcτÞ2 which is a monotonically

increasing function of τ for a particular value of the
magnetic field. The rate of increase is more for higher
magnetic field values. Thus, we notice from Figs. 4(a)–4(c)

that the use of the in-medium cross section over the vacuum
cross section always increases σ2=T for the values of the
magnetic field considered here. Moreover, at higher values
of the external magnetic field, due to the increase of τ
dependence in σ2=T, the medium effects become more
significant, as can be observed by comparing the separations
between the dashed and solid curves of Figs. 4(a)–4(c).
Finally, we note that the normalized ratio σ0

σ0þσ2
could be a

measure of the anisotropy brought in by the external
magnetic field since the quantity σ0 þ σ2 is the electrical
conductivity in the absence of the magnetic field. We
therefore plot σ0

σ0þσ2
as a function of the temperature and

magnetic field in Figs. 5(a)–5(c). With the increase in the
temperature, the ratio increases toward its asymptotic
value 1, whereas with the increase in the magnetic field,
the ratio rapidly decreases from 1. Physically, it corre-
sponds to the fact that the magnetic field tries to bring
anisotropy in the medium, whereas the thermal fluctuation
tries to diminish it. Moreover, comparing the solid and
dashed curves in Figs. 5(a)–5(c), we find that the use of
medium effects in the cross section makes the system more
anisotropic in the presence of the external magnetic field.
We have already mentioned in Sec. II that we are

neglecting the LQ of the charged pion dispersion relation
[see Eq. (3)] while calculating the conductivities. However,
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to check the validity of this continuum approximation, let
us now calculate the conductivities incorporating the LQ of
the pion transverse momentum. To a first approximation,
the LQ can be incorporated in the final expression of the
conductivities in Eq. (19) by the following replacements:

ωp → ωpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð2lþ 1ÞqH þm2

q
; ð31Þ

jp⃗j →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð2lþ 1ÞqH

q
; ð32Þ

Z
d3p
ð2πÞ3 →

qH
2π

X∞
l¼0

Z
∞

−∞

dpz

2π
; ð33Þ

so that the conductivities with LQ become

σLQn ¼ gq2

3T
qH
2π

X∞
l¼0

Z
∞

−∞

dpz

2π

p2
z þ ð2lþ 1ÞqH

ω2
pl

τðωc;lτÞn
1þ ðωc;lτÞ2

× f0ðωplÞf1þ f0ðωplÞg; n ¼ 0; 1; 2; ð34Þ

where ωc;l ¼ qH=ωpl. In Fig. 6, we have shown the ratio
σLQn =σn as a function of the external magnetic field at
T ¼ 130 MeV. From the figure, we can see that in the low
magnetic field region (qH ≲m2), the ratios are almost

unity, which implies that the use of the continuum
approximation is well justified in the weak field region.
However, for higher magnetic field values, the continuum
approximation breaks down and the LQ becomes impor-
tant. For example, at qH ¼ 0.10 GeV2, LQ modifies the
values of σ0 and σ1 by less than 5%, whereas the change in
σ2 is about 30%. Therefore, even if we have shown
numerical results for a wider range of magnetic field values
(0 ≤ qH ≤ 0.1 GeV2) neglecting the LQ, our results are
strictly valid for the weak magnetic field (0 ≤ qH < m2)
likely to be realized in the hadronic phase of a HIC.
In Fig. 7(a), we have made a comparison of the electrical

conductivity obtained in this work with the other available
estimations in the literature. We see that our estimation of
electrical conductivity at zero magnetic field agrees well
with the earlier estimations by Grief et al. [58] and
Fernandez-Fraile and Nicola [59], whereas it does not
agree well with the lattice QCD estimation [60]. Also, our
result at qH ¼ 0.02 GeV2 is lower than the values obtained
by Feng [44] for a system of relativistic quark-gluon gas.
This is expected, as the conductivity of QGP is much larger
than that of hadron gas. Finally, our result at qH ¼
0.05 GeV2 is in good qualitative and quantitative agree-
ment with the result of Das et al. [47] calculated for hadron
resonance gas.
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MEDIUM EFFECTS ON THE ELECTRICAL AND HALL … PHYS. REV. D 102, 076007 (2020)

076007-9



We have already mentioned in Sec. I that a sufficiently
high value of electrical conductivity of the medium can
sustain the rapidly decaying magnetic field in a HIC
[3,38,42,61]. To see how our estimated electrical conduc-
tivity (for a system of pion gas) modifies the decay of the
magnetic field in HIC, we have calculated the time (t)
dependence of the maximum value of the magnetic field

for a peripheral Auþ Au collision at the RHIC energy
(

ffiffiffi
s

p ¼ 200 GeV) using the simplified expression used by
Tuchin [38] for a static medium. In Fig. 7(b), we have
plotted the decay of the maximum magnetic field value in
the peripheral Auþ Au collision at the RHIC for different
values of electrical conductivities. In our calculation, we
have obtained a maximum value of σ0 as 3 MeV, whereas
in a QGP medium it has typical value of ≃15 MeV [42,
61–63]. From the figure, it can be noticed that for a constant
σ0 ¼ 15 MeV throughout the evolution, a magnetic field
value of the order of 10−4 GeV2 is sustained even at
t ¼ 10 fm. But if we consider the constant σ0 ¼ 1–3 MeV
(as obtained in the current work for a pion gas) throughout
the evolution, the sustained value of the magnetic field at
t ¼ 10 fm is of the order of 10−5 GeV2. In reality, electrical
conductivity is not expected to be constant throughout the
evolution. In the early stage (QGP phase), σ0 will be large
(∼15 MeV), and in the later stages (hadronic phase), σ0
will be small (∼5 MeV). Therefore, the time evolution of
the actual magnetic field value is expected to lie in between
the violet and green curves in the figure. Moreover, in
Fig. 7(b), we have considered a medium with no hydro-
dynamic expansion for the estimation of the decay of
magnetic field. For an expanding medium (which is the
more realistic scenario for HIC), the magnetic field will
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sustain for a longer period as shown in Ref. [38]. Thus, we
can conclude that a weak magnetic field can be present in
the later stages of HIC and could be phenomenologically
relevant.

V. SUMMARY AND CONCLUSIONS

We have evaluated the conductivity tensor using the
Boltzmann transport equation in a magnetic field and hence
evaluated the electrical conductivity, Hall conductivity, and
σ2 for a system consisting of a pion gas. The information
pertaining to the pion gas enters through the relaxation time
into the expression of the three conductivities. The ππ cross
section has been calculated in a thermal medium using the
real time formalism of finite temperature field theory. We
have shown the variation of these three conductivities with
the temperature for different values of the magnetic field. It
has been observed that electrical conductivity and Hall
conductivity are very sensitive to the magnetic field
strength and the in-medium cross sections. Moreover, as
we have not considered the LQ in the dispersion relation of
charged pions, our results are more accurate in the low
magnetic field values (qH ≲m2), which is the realistic
scenario for the later stages of HICs.
Both the electrical and Hall conductivities have been

found to increase with temperature for a given value of the
magnetic field when the in-medium cross section is used.
For a given temperature, there is no appreciable change
(except at lower B) in the electrical conductivity with the
magnetic field when the medium-dependent cross section is
used. A more detailed observation shows a monotonically
increasing trend of electrical conductivity with the increase
in the temperature at higher values of the magnetic field.
However, for a given temperature, the conductivity has
been found to decrease monotonically as a function of the

magnetic field. In the case of Hall conductivity, it has been
found that at lower values of the magnetic field, it decreases
with the increase in the temperature more rapidly than the
electrical conductivity, whereas at higher values of the
magnetic field, a linear increase of the Hall conductivity
with the temperature has been observed. For a given
temperature, as long as it is low we have seen a Breit-
Wigner-type structure in the Hall conductivity as a function
of the magnetic field. This structure disappears and tends to
saturate at a higher temperature. This behavior can be
attributed to the substantial spectral broadening of the
exchanged particle at a high temperature.
The electrical conductivity obtained in this work has

been shown to have both qualitative and quantitative
agreement with earlier estimates available in the literature.
Moreover, the calculated electrical conductivity has been
shown to be sufficient for causing a significant delay in the
decay of the external magnetic field in a HIC. This leads to
the conclusion that, a weak magnetic field can be present in
the later stage of a HIC (in hadronic phase) and could be
phenomenologically relevant.
Finally, we should mention that we have included only

pions in our calculations as they are more abundantly
produced in the temperature range achievable in HICs.
Hadrons heavier than the pion can, in principle, be
included, as is done in Ref. [47] using a constant cross
section. However, in the present formalism it will be
extremely nontrivial to solve the coupled transport equa-
tions as well as to calculate a plethora of cross sections due
to the inclusion of multiple species.
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