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In slow collisions of two bare nuclei with the total charge number larger than the critical value,
Zcr ≈ 173, the initially neutral vacuum can spontaneously decay into the charged vacuum and two
positrons. Detection of the spontaneous emission of positrons would be the direct evidence of this
fundamental phenomenon. However, the spontaneous emission is generally masked by the dynamical
positron emission, which is induced by a strong time-dependent electric field created by the colliding
nuclei. In our recent paper [I. A. Maltsev et al., Phys. Rev. Lett. 123, 113401 (2019)] it has been shown that
the spontaneous pair production can be observed via measurements of the pair-production probabilities for
a given set of nuclear trajectories. In the present paper, we have significantly advanced this study by
exploring additional aspects of the process we are interested in. We calculate the positron energy spectra
and find that these spectra can give a clear signature of the transition from the subcritical to the supercritical
regime. It is found that focusing on a part of the positron spectrum, which accounts for the energy region
where the spontaneously created positrons can contribute, allows us to get a much stronger evidence of the
transition to the supercritical mode, making it very well pronounced in collisions, for example, of two
uranium nuclei. The possibility of extending this study to collisions of bare nuclei with neutral atoms is also
considered. The probability of a vacancy in the lowest-energy state of a quasimolecule which is formed in
collisions of a bare U nucleus with neutral U and Cm atoms has been calculated. The relatively large values
of this probability make such collisions suitable for observing the vacuum decay.

DOI: 10.1103/PhysRevD.102.076005

I. INTRODUCTION

After the foundations of quantum field theory were
formulated in the early 1930s, it was shown that the theory
predicts the spontaneous creation of electron-positron pairs
by a constant uniform electric field if the strength of the
field is comparable to or greater than a critical value,
Ecr ¼ m2

ec3=ðjejℏÞ ≈ 1.3 × 1016 V=cm, [1–3]. While from
the point of view of the theory this phenomenon was
studied in a large number of works (see Refs. [4–16] and
references therein), its experimental detection was not

possible because of practical inaccessibility of the required
field strength. Some hopes for experimental detection of
this fundamental effect were associated with the develop-
ment of novel laser technologies [17,18]. But, apparently,
in the foreseeable future, it is quite unlikely to realize a
possible experiment in the required strong field regime
solely on the basis of high-power laser.
An alternative approach to the study of vacuum proper-

ties in the presence of a supercritical field was proposed in
the works of Soviet and German physicists [19–34]. It is
known that in the case of a pure Coulomb field induced by a
pointlike charge Z the 1s level exists only up to Z ≈ 137
and then disappears. However, for extended nuclei this
level goes continuously down and at Z ¼ Zcr ≈ 173 reaches
the onset of the negative-energy Dirac continuum (see
Fig. 1). If this level was empty, it dives into the negative-
energy continuum as a resonance, the decay of which
should lead to a spontaneous creation of positrons. Namely,
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when switching from the subcritical to the supercritical
mode, the initially neutral vacuum decays into a charged
vacuum and two positrons (due to spin degeneracy). Since
there are no nuclei with such a large charge in nature (the
charge of the heaviest element discovered to date, oga-
nesson, is 118), the only way to create a supercritical
Coulomb field is to collide nuclei with the total charge
number greater than the critical value (Z1 þ Z2 > 173).
The time dependence of the quasimolecular energy levels
in collision of two uranium ions (nuclei) is presented in
Fig. 2. Following Greiner and co-authors [32], in this figure
various pair-creation mechanisms are conventionally
shown by arrows. The arrows a, b, and c denote dynamical
pair-creation processes and the arrow d indicates the
spontaneous pair creation. The dynamical pair creation

takes place in both subcritical and supercritical modes
while the spontaneous pair creation starts to work only in
the supercritical regime. The dynamical mechanisms
(a, b, c) superpose with the spontaneous one (d) and
generally cannot be separated from each other. In addition,
the spontaneous pair creation is strongly suppressed due to
very small period of the supercritical regime time
(∼10−21 s), which is by about two orders of magnitude
smaller than the time required for the vacuum decay. All
this was one of the main reasons why attempts to
experimentally observe the spontaneous creation of posi-
trons, which were undertaken more than 30 years ago in
Darmstadt (see, e.g., Ref. [32] and references therein), were
not successful. Moreover, the Frankfurt group, which
worked on the theory of this phenomenon for more than
20 years, concluded that the vacuum decay can only be
observed experimentally if colliding nuclei stick together
for some time due to nuclear forces [35,36]. However, no
evidence of the nuclear sticking in the collisions of interest
has been found to date, making this scenario not promising
for future experiments.
Despite the aforementioned conclusions by the Frankfurt

group, one could expect, however, that the detailed study of
quantum dynamics of the electron-positron field in low-
energy heavy-ion collisions would allow to find some
signatures which indicate the principal difference between
the subcritical and the supercritical regimes. To carry out
these studies, first of all it was necessary to develop the
theoretical and computational methods beyond the approxi-
mation made by the Frankfurt group. To this end, more than
a decade ago new efforts have been initiated by the St.
Petersburg group [37–44]. These methods allowed the
calculations of the charge-transfer, electron-excitation,
ionization, and pair-production processes. In particular,
in Refs. [42–44] the first calculations of the pair-production
probabilities beyond the monopole approximation, which
was widely used by the Frankfurt group, were performed.
These calculations showed that effects beyond the monop-
ole approximation only slightly change the pair-creation
probabilities in the region of small impact parameters. This
has provided much more flexibility in studying various
scenarios of finding the signatures which can demonstrate
the principal difference between the subcritical and the
supercritical regimes. As a result of these studies, in
Ref. [45] it was found that the vacuum decay can be
observed via impact-sensitive measurements of pair-pro-
duction probabilities. In this paper, we present additional
aspects of this study and find important signatures of the
principal difference between the subcritical and supercriti-
cal regimes, which can be observed in the positron spectra.
In the next sections we will mainly consider quantum

dynamics of electron-positron field in collisions of heavy
bare nuclei. Experiments on low-energy collisions of bare
nuclei will be possible at the future facilities in Germany
(GSI/FAIR) [46–48], China (HIAF) [49], and Russia

FIG. 1. The low-lying energy levels of a H-like ion as functions
of the nuclear charge number Z.

FIG. 2. The low-lying energy levels of a quasimolecule formed
in collision of two uranium ions (nuclei) as functions of time. The
arrows a, b, and c denote different dynamical pair-creation
mechanisms and the arrow d indicates the spontaneous pair
creation. The 1s state dives into the negative-energy continuum
for about 10−21 s.
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(NICA) [50]. After the formulation of the basic theory, we
will present the results of the calculations of the pair-
creation probabilities and positron spectra as functions of
the nuclear charges and the collision energy for the
trajectories with a given minimal internuclear distance.
The dependence of the pair-creation probabilities and the
positron spectra on the value of the minimal internuclear
distance will be also studied. It will be shown that the study
of a partial probability, which accounts for the region of the
positron energy distribution where the spontaneously
created positrons can contribute, allows a significant
increase of the signature of the transition to the supercritical
regime, compared to the analysis of the total probability. At
the end of the paper we will discuss a possibility for
studying the proposed scenarios on the vacuum decay
observation in collisions of bare nuclei with neutral atoms.
The relativistic units (ℏ ¼ c ¼ 1) and the Heaviside

charge unit (α ¼ e2=ð4πÞ, e < 0) are used throughout
the paper.

II. THEORY

A. General formalism

To study the quantum dynamics of the electron-positron
field in low-energy collisions of heavy nuclei, one can use
the approach, where the relative motion of the colliding
nuclei is treated classically [24,32]. In this approach, to
derive the pair-creation probabilities, one has to consider
first the solutions of the Dirac equation in the external time-
dependent potential induced by the colliding nuclei, whose
motion is described by the Rutherford trajectories. For the
relatively slow collisions of interest the magnetic part of the
potential can be neglected and the time-dependent Dirac
equation (TDDE) takes the form:

i
∂
∂tψðr; tÞ ¼ HðtÞψðr; tÞ ð1Þ

with

HðtÞ ¼ α · pþ βme þ Vðr; tÞ: ð2Þ
Here α, β are the Dirac matrices, me is the electron mass,
and Vðr; tÞ is the total two-center potential induced by the
nuclei:

Vðr; tÞ ¼ VAðjr − RAðtÞjÞ þ VBðjr − RBðtÞjÞ; ð3Þ
where the vectors RA and RB denote the positions of the
colliding nuclei and

VA;BðrÞ ¼
e
4π

Z
dr0

ρA;Bðr0Þ
jr − r0j ð4Þ

are the corresponding nuclear potentials. For the nuclear
charge distribution ρðrÞ we utilize the model of the
uniformly charged sphere.

Considering the quantum dynamics from the initial time
tin to the final time tout, one can define two sets of solutions
of the TDDE, which have the asymptotics:

ψ ðþÞ
i ðr; tinÞ ¼ ϕin

i ðrÞ; ψ ð−Þ
i ðr; toutÞ ¼ ϕout

i ðrÞ; ð5Þ

where ϕin
i ðrÞ and ϕout

i ðrÞ are the eigenfunctions of the Dirac
Hamiltonian at the corresponding time moments,

HðtinÞϕin
i ðrÞ ¼ εini ϕ

in
i ðrÞ; ð6Þ

HðtoutÞϕout
i ðrÞ ¼ εouti ϕout

i ðrÞ: ð7Þ

The most natural way to derive formulas for the pair-
creation probabilities is to use the second quantization
formalism [4]. To this end, we introduce the “in” and “out”
vacuum states, j0; ini and j0; outi, and the related annihi-
lation operators:

b̂ðinÞi j0; ini ¼ 0; b̂ðoutÞi j0; outi ¼ 0 ð8Þ

for particles, which we will denote symbolically by
“i > F”, where F stands for the “Fermi level,” and

d̂ðinÞi j0; ini ¼ 0; d̂ðoutÞi j0; outi ¼ 0 ð9Þ

for antiparticles (“i < F”). These operators obey the
standard anticommutation relations. The electron-positron
field operator Ψ̂ðr; tÞ in the Heisenberg picture is defined as

Ψ̂ðr; tÞ ¼
X
i>F

b̂ðinÞi ψ ðþÞ
i ðr; tÞ þ

X
i<F

d̂ðinÞ†i ψ ðþÞ
i ðr; tÞ; ð10Þ

Ψ̂ðr; tÞ ¼
X
i>F

b̂ðoutÞi ψ ð−Þ
i ðr; tÞ þ

X
i<F

d̂ðoutÞ†i ψ ð−Þ
i ðr; tÞ: ð11Þ

For collisions of bare nuclei, the initial t ¼ tin state of the
system is described by the vacuum vector j0; ini. To find the
number of the electrons in a state “k” at t ¼ tout, one should

evaluate the value nk ¼ h0; injb̂ðoutÞ†k b̂ðoutÞk j0; ini. This can
be done by employing the Eqs. (10)-(11) and the anti-
commutation relations between the creation and annihila-
tion operators. As the result, one obtains [4,32]

nk ¼ h0; injb̂ðoutÞ†k b̂ðoutÞk j0; ini ¼
X
i<F

jakij2; ð12Þ

where

aij ¼
Z

drψ ð−Þ†
i ðr; tÞψ ðþÞ

j ðr; tÞ ð13Þ

is the one-electron transition amplitude. Since the ampli-
tudes aij are time-independent, they can be evaluated at the
time moment tin or tout:
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aij ¼
Z

drψ ð−Þ†
i ðr; tinÞϕin

j ðrÞ

¼
Z

drϕout†
i ðrÞψ ðþÞ

j ðr; toutÞ: ð14Þ

Alternatively, one can calculate the number of created
positrons in a state “p” by formula

n̄p ¼ h0; injd̂ðoutÞ†p d̂ðoutÞp j0; ini ¼
X
i>F

japij2: ð15Þ

The total number of the electron-positron pairs can be
found as

P ¼
X
k>F

nk ¼
X
p<F

n̄p: ð16Þ

Taking into account that for the processes under consid-
eration P ≪ 1, we will refer to this value as the pair-
creation probability.
For the calculations of nk and n̄p it is convenient to use

the finite basis set method [39,40,42–44,51,52]. With this
method, one gets a spectrum consisting of a finite number
of states, including both bound and continuum (positive-
and negative-energy) pseudostates. As a result, all the
related summations in the equations given above run over
a finite number of states.
Finally, it should be emphasized that the formulas

presented in this section account for all pair-creation
channels (a, b, c, and d) shown in Fig. 2.

B. Monopole approximation

Numerical solution of the TDDE with the total two-
center potential (3) is very time consuming. For this reason,
the calculations of the pair-creation probabilities are gen-
erally restricted to the so-called monopole approximation
for Vðr; tÞ. In this approximation, the potential Vðr; tÞ is
expanded in spherical harmonics in the center-of-mass
frame and only the lowest-order spherical-symmetric term
of this expansion is taken into account,

VðmonÞðr; tÞ ¼ 1

4π

Z
dnVðr; tÞ; ð17Þ

where n ¼ r=r. The direct calculations of the pair-creation
probabilities and the positron spectra near their maxima for
the two-center potential [42–44] have demonstrated that the
monopole approximation works rather well, unless the
impact parameter of the nuclear collisions is too large. In
particular, in the case of uranium-uranium collisions at the
projectile energy 6.2 MeV/u (in the rest frame of the target
nucleus before the collision) the difference between the
two-center and the monopole-approximation results for the
total probability varies from about 6% for the head-on
collision (b ¼ 0) to about 10% at b ¼ 10 fm. Since the

impact parameter b ¼ 10 fm corresponds to the scattering
angle θ ¼ 79° in the center-of-mass frame (at the energy
under consideration), this means the validity of the monop-
ole approximation is preserved in a wide range of the
scattering angles around the backward direction.
For the spherically symmetric potential (17), the Dirac

wave functions are represented in the standard form

ψκmðr; tÞ ¼
1

r

�
Gκðr; tÞΩκmðnÞ
iFκðr; tÞΩ−κmðnÞ

�
; ð18Þ

where ΩκmðnÞ is the spherical spinor, Gκðr; tÞ=r and
Fκðr; tÞ=r are the radial Dirac components, and κ ¼
ð−1Þjþlþ1=2ðjþ 1=2Þ is the relativistic quantum number
defined by the angular momentum and parity. Due to the
conservation of the total angular momentum, one has to
deal with the time-dependent radial Dirac equation for a
given value of κ,

i
∂
∂tϕðr; tÞ ¼ HκðtÞϕðr; tÞ; ð19Þ

where

ϕðr; tÞ ¼
�
Gðr; tÞ
Fðr; tÞ

�
ð20Þ

is the radial Dirac wave function and

HκðtÞ ¼
�
me þ VðmonÞðr; tÞ − d

dr þ κ
r

d
dr þ κ

r −me þ VðmonÞðr; tÞ

�
ð21Þ

is the radial Dirac Hamiltonian.
For a given κ, the initial states, including the bound and

continuum pseudostates, are obtained by diagonalization of
the matrix H≡HκðtinÞ in a finite basis set. The basis
functions are constructed from B-splines [53] within the
framework of the dual-kinetic-balance approach [54]. To
solve Eq. (19), we expand ϕðr; tÞ on a basis of the
eigenstates of the matrix H. For a given initial condition
defined by Eq. (5), we have

ϕiðr; tÞ ¼
XN
k¼1

ckiðtÞukðrÞe−iεkt; ð22Þ

where N is the number of the states, εk are the eigenvalues
of the H matrix, and cki are the expansion coefficients.
Substitution of the expansion (22) into Eq. (19) leads to the
equations:

i
∂
∂t cjiðtÞ ¼

X
k

VjkðtÞckiðtÞ; subject to cjiðtinÞ ¼ δji;

ð23Þ
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where

VjkðtÞ ¼ hujjðVðmonÞðr; tÞ − VðmonÞðr; tinÞÞjukie−iðεk−εjÞt:
ð24Þ

The equations (23) are solved using the Crank-Nicolson
scheme [55]:

c⃗iðtþ ΔtÞ ≈Mðtþ Δt; tÞc⃗iðtÞ; ð25Þ
where Δt is a small time step, c⃗i ¼ fc1i;…; cNig, and the
M matrix is determined by

Mðtþ Δt; tÞ ¼
�
I þ i

Δt
2
V

�
tþ Δt

2

��
−1

×

�
I − i

Δt
2
V

�
tþ Δt

2

��
: ð26Þ

With this technique we propagate all the bound and
continuum quasistates from tin to tout and calculate the
pair-creation probability for a given κ using the for-
mula (16). The total pair-creation probability is obtained
as a sum of the partial κ contributions. Usually it is
sufficient to account for the κ ¼ �1 contributions only.
This is due to the dominant contribution of the pair-creation
processes in which the created electrons are captured into
bound states [33,43,51].
The calculation of the positron spectrum can be per-

formed according to Eq. (15). However, due to the use of
the finite basis set methods, the direct calculation of the
energy-differential spectrum dP=dε by this formula is not
possible. Therefore, to obtain dP=dεp we use the Stieltjes
method [51,52,56]:

dP
dε

�
εp þ εpþ1

2

�
¼ 1

2

n̄pþ1 þ n̄p
εpþ1 − εp

; ð27Þ

where εp is the eigenvalue of the Hamiltonian in the finite
basis set.

C. Choice of trajectories

In what follows, wewill mainly consider the collisions of
bare nuclei at the energies close to the Coulomb barrier,
which is defined as the collision energy at which the nuclei
touch each other. The nuclear trajectories are defined by
nonrelativisic classical mechanics and, in the case of bare
nuclei, are given by the well-known equations [57].
According to these equations, the minimal distance
between the nuclei, Rmin, is related to the impact parameter
b by

b2 ¼ R2
min −

αZ1Z2

E
Rmin; ð28Þ

where E is the collision energy in the center-of-mass frame.
For a given value of Rmin, the minimal energy, E0,
corresponds to the head-on (b ¼ 0) collision,

E0 ¼
αZ1Z2

Rmin
: ð29Þ

Let us consider only the trajectories which correspond to
the same minimal distance (Rmin) for different impact
parameters (b) and, therefore, for different collision ener-
gies (E). In case of uranium-uranium collisions with
Rmin ¼ 17.5 fm, which corresponds to the projectile energy
E0 ¼ 5.9 MeV=u (in the rest frame of the target nucleus
before the collision), the trajectories of interest are shown in
Fig. 3 in the center-of-mass frame of reference. In addition
to the circle, corresponding to Rmin ¼ 17.5 fm, we display
also the circle with Rcr ¼ 32.7 fm, which determines the
boundary (critical distance) between the subcritical and the
supercritical regimes. Thus, we have the supercritical
regime only during the period of time when the nuclei
move from Rcr to Rmin and back. This period of time
decreases with increasing the collision energy (E) and,
therefore, with increasing the impact parameter b (within
the trajectories under consideration). This fact is clearly
demonstrated in Fig. 4, which shows the supercritical
regime duration as a function of η ¼ E=E0 at fixed Rmin ¼
17.5 fm (for all b and E). For convenience, the figure also
shows the scattering angles, θ, which correspond to the
given values of η. In the same figure, we present also the

FIG. 3. The U92þ − U92þ collision trajectories (in the center-of-
mass frame) which correspond to the same minimal distance
Rmin ¼ 17.5 fm for different impact parameters b and, therefore,
for different collision energies E. The energies E denote the
projectile kinetic energies in the rest frame of the target nucleus
before the collision. The circle Rmin ¼ 32.7 fm defines the
boundary (critical distance) between the subcritical and the
supercritical regimes.
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relative velocity of the nuclei at the distance R ¼ Rcr as a
function of E=E0. Opposite to the supercritical regime
duration, this velocity increases with increasing E=E0. It is
clear that the dynamical pair creation must decrease
monotonously with decreasing velocity (and, therefore,
E=E0) for a given Rmin. As to the spontaneous pair creation,
it must increase monotonously with increasing the super-
critical regime duration and, therefore, with decreasing
E=E0. It follows that any increase in the pair-production
probability at E=E0 → 1 for a given Rmin should indicate
the effect of the spontaneous pair creation, which takes
place in the supercritical regime only.

III. CALCULATIONS AND RESULTS

The methods described in the previous section are
employed for the calculations of the total pair-creation
probabilities and positron spectra. The calculations are
performed within the framework of the monopole approxi-
mation and are restricted to the jκj ¼ 1 contributions. As is
noted above, these contributions almost completely deter-
mine the values of interest and the difference between the
monopole approximation results and the full two-center
results does not exceed 10% in a wide interval of the
scattering angles.
The positron-creation probabilities and positron spectra

in heavy-ion collisions can be measured by requiring a
coincidence between a positron event and scattered pro-
jectiles or recoil target nuclei at given angles [58,59]. If we
neglect the nuclear-polarization effects and the oblate shape
of the nuclei under consideration (e.g., uranium), there is a
simple correspondence between the scattering angle and

the impact parameter. So, we can study the pair-creation
probabilities as functions of the impact parameter.
However, in case of fully symmetric collisions, one should
keep in mind a problem of distinguishing the contributions
for the angles θ and 180° − θ, which correspond to different
impact parameters. The calculations for the uranium-
uranium collisions at the energies near the Coulomb barrier
show that the pair creation from the backward scattering
trajectories dominate over the pair creation from the related
forward scattering trajectories in a rather small region:
θ ¼ 180° − 172°. This can be seen from Fig. 5 which
compares the corresponding pair-creation cross sections as
functions of χ ¼ 180° − θ for the backward (θ > 90°) scatter-
ing trajectories and χ ¼ θ for the forward (θ < 90°) scattering
trajectories. This problem does not appear for nonsymmetric
collisions as well as for collisions of bare nuclei with neutral
atoms, which will be briefly discussed at the end of this
section. However, in what follows, for simplicity we will
mainly consider the symmetric (Z ¼ Z1 ¼ Z2) collisions of
bare nuclei assuming that, if necessary, the backward and
forward trajectories can be distinguished by colliding different
isotope beams. Some results for nonsymmetric collisions will
be presented in Sec. III D.

A. Pair-creation probabilities for symmetric collisions

In Fig. 6 we present the results for the pair-creation
probability in symmetric (Z ¼ Z1 ¼ Z2) collisions as a
function of the parameter η ¼ E=E0, which is the ratio of
the collision energy E to the energy of the head-on collision
E0, and the nuclear charge number Z at the same minimal
internuclear distance Rmin (it means that only the trajecto-
ries as presented in Fig. 3 must be considered for each
Rmin). The results are given for the values of Rmin ¼ 17.5,
25, 50 fm, while the critical distance for the largest Z
presented (Z ¼ 96) is about 48 fm. It means that in the
case Rmin ¼ 50 fm for all Z under consideration there is
no contribution from the spontaneous pair creation,
and, therefore, the pair creation is completely due to the

FIG. 4. The supercritical regime duration and the relative
velocity of the nuclei at the R ¼ Rcr in U92þ − U92þ collisions
at Rmin ¼ 17.5 fm (see Fig. 3) as functions of the collision
energy, η ¼ E=E0, where E0 is the head-on collision energy at the
same Rmin. The scattering angles, θ, which correspond to the
given values of η, are also indicated.

FIG. 5. The pair-creation cross sections as functions of χ ¼
180° − θ for the backward (θ > 90°) scattering trajectories and
χ ¼ θ for the forward (θ < 90°) scattering trajectories.
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dynamical (induced) origin. As a result, with Rmin ¼ 50 fm
for all Z ¼ 84–96 the pair-creation probabilities decrease
monotonously when η → 1. This is rather evident, since in
the limit of adiabatically slow collisions the dynamical pair
creation must be zero. The behavior of P changes when the
supercritical regime becomes available. For Rmin¼17.5 fm,
in the subcritical regime (Z < Zcr=2 ≈ 87.5), the pair-
creation probability P remains decreasing monotonously
when η → 1. However, the behavior of P changes when the
nuclear charge number Z becomes sufficiently higher
than the critical value. It can be seen that for such Z the

pair-creation probabilityP increases at η → 1. This is due to
the spontaneous pair-creation mechanism which starts to
work in the supercritical regime, while the dynamical pair
creation decreases at η → 1. To demonstrate this behavior in
more detail, inFig. 7wedisplay the sðκ¼−1Þ andp1=2ðκ¼1Þ
contributions to the probability P as functions of η for Z ¼
85–96 atRmin ¼ 17.5 fm (similar graphs forRmin ¼ 16.5 fm
have been presented in Ref. [45]). As one can see from
this figure, the s contribution starts to increase significantly
at η → 1 already for Z ¼ 92, while the p1=2 contribu-
tion remains decreasing at η → 1 even at Z ¼ 96. In the
case of Z ¼ 92, the increase of the s contribution at η → 1
is fully compensated by the decrease of the p1=2 contribu-
tion, that leads to an almost constant value of their sum at
small η. The different η dependencies of the s and p1=2

contributions are explained by different values of Z at which
the 1s and 2p1=2 states enter the negative-energy continuum.
For Rmin ¼ 17.5 fm, this takes place at Z ¼ Z1s

cr =2≡
Zcr=2 ≈ 87.5 and Z ¼ Z

2p1=2
cr =2 ≈ 95 for 1s and 2p1=2 states,

respectively (cf. Fig. 1).
Figure 8 displays the pair creation probabilities in

symmetric Z1 ¼ Z2 ¼ 96 collisions as a function of Rmin
and η ¼ E=E0, where E0 corresponds to Rmin under
consideration. As one can see, the behavior of P at η→1
changes when the minimal distance Rmin becomes

FIG. 6. The pair-creation probability in symmetric
(Z ¼ Z1 ¼ Z2) collisions as a function of the parameter
η ¼ E=E0, which is the ratio of the collision energy E to the
energy of the head-on collision E0, and the nuclear charge
number Z at different minimal internuclear distance Rmin, which
is the same within each image.

FIG. 7. The sðκ ¼ −1Þ and p1=2ðκ ¼ 1Þ contributions to the
pair-creation probability P as functions of the parameter
η ¼ E=E0, which is the ratio of the collision energy E to the
energy of the head-on collision E0, at the same minimal
internuclear distance Rmin ¼ 17.5 fm. The s and p1=2 contribu-
tions are shown with the dashed (orange) and dotted (green) lines,
respectively, while the total P value is displayed by the solid
(blue) line.
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sufficiently smaller than the critical value, Rcr ≈ 48 fm for
Z ¼ 96. In the subcritical region, Rmin > Rcr, the pair
creation is of pure dynamical origin and, therefore, can
only decrease with decreasing η (at a given value of Rmin).
However, in the supercritical regime, Rmin < Rcr, the
spontaneous pair creation becomes possible and finally
leads to an increase of P when η → 1.
Figure 9 presents the derivative of the pair-creation

probability P with respect to η, dP=dη, as a function of
Z and Rmin at different scattering angles (in the center-of-
mass frame): θ ¼ 60°; 120°; 180°. The black lines in this
figure indicate the boundaries between the subcritical and
the supercritical regimes. According to our discussion
above, the pictures in Fig. 9 clearly demonstrate that the
dP=dη derivative, being strictly positive in the subcritical
region, becomes negative when the parameters Z and Rmin
enter deeply enough into the supercritical domain.
Moreover, Fig. 9 shows that the transition from the
subcritical to the supercritical region changes the behavior
of dP=dη, starting with an increase when approaching the
black line from the subcritical region and ending with a
strong decrease after crossing this line. It can be seen that in
the strong supercritical regime the dP=dη derivative
decreases in the directions which correspond to increasing
Z and decreasing Rmin. The profile Rmin ¼ 16.5 fm, which
demonstrates the change of the behavior of dP=dη from the
original increase at Z < Zcr=2 to the subsequent decrease at
Z > Zcr=2, has been presented for η ¼ 1 (θ ¼ 180°) in
Ref. [45]. In Fig. 10 we present separately the κ ¼ �1
contributions to dP=dη at η ¼ 1 (θ ¼ 180°) for the plane
Rmin ¼ 17.5 fm. It can be seen that, while the κ ¼ −1
contribution has a maximum at Z ≈ 88, the κ ¼ 1 contri-
bution has it at Z ≈ 94.5. This is due to a higher value of the

critical charge for the 2p1=2 state, Z
2p1=2
cr =2 ≈ 95, compared

to the 1s critical charge, Z1s
cr =2 ≈ 87.5, (cf. Fig. 1). As a

result, the maximum of the total contribution is shifted to
Z ≈ 89. The profile Z ¼ 96 at η ¼ 1 (θ ¼ 180°) in Fig. 9,
which is separately presented in Fig. 11, shows a similar
behavior of dP=dη, when Rmin passes the critical values,

R1s
cr ≈ 48 fm and R

2p1=2
cr ≈ 20 fm for Z ¼ 96.

B. Positron spectra for symmetric collisions

We have also calculated the positron energy distri-
butions (in the center-of-mass frame) for the trajectories
under consideration (Fig. 3). In Fig. 12 we present
the total positron spectra for the symmetric collisions

FIG. 8. The pair-creation probability in symmetric Z1 ¼ Z2 ¼
96 collisions as a function of the minimal internuclear distance
Rmin and the parameter η ¼ E=E0, which is the ratio of the
collision energy E to the energy of the head-on collision at the
same Rmin.

FIG. 9. The derivative of the pair-creation probability with
respect to η, dP=dη, as a function of Z ¼ Z1 ¼ Z2 and Rmin. The
black line indicates the boundary between the subcritical and the
supercritical regimes.
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with Z ¼ Z1 ¼ Z2 ¼ 83–96 at Rmin ¼ 17.5 fm and
η ¼ E=E0 ¼ 1.0, 1.1, 1.2. In Figs. 13 and 14 we display
separately the contributions to the positron spectra from the
sðκ ¼ −1Þ and p1=2ðκ ¼ 1Þ channels, respectively. As
mentioned above, these two channels almost completely
determine the total probability. The presented positron
spectra demonstrate the well-known fact (see, e.g.,
Refs. [29,31]) that the emission of low-energy positrons
is strongly suppressed by the repulsive interaction with the
nuclei while at high energy the spectra fall off exponen-
tially. In the case of Rmin ¼ 17.5 fm, the supercritical

regime starts at Z ≈ 87.5 and Z ≈ 95 for the 1s and
2p1=2 states, respectively. As one can see from Figs. 12,
13, and 14, in all cases the behavior of the positron spectra
manifests a clear signature of the transition to the super-
critical regime. Indeed, in the subcritical regime the
positron spectrum curves at the energies near the maximum
and higher are strictly ordered according to the η values: the
curve with a larger η is strictly higher than the curve with a
smaller η. This is due to the fact that the dynamical
(induced) creation of positrons in general should increase
with increasing the collision energy. In the supercritical
regime, however, in the region near the maximum of the
positron spectrum, the curves corresponding to smaller
values of η become higher than the ones with larger η, while
at sufficiently large values of the positron energy the order
of the curves remains the same as in the subcritical regime.
This might be explained as follows. The spontaneous pair
creation, which starts to work in the supercritical regime, is
greater at lower values of η, which correspond to larger
values of the supercritical time duration (Fig. 4). In
addition, the spontaneous positrons are restricted to the
lower part of the energy spectrum. For instance, in the case
of the U92þ − U92þ collision, the spontaneous positrons
should be mainly limited to the energy range 0 to 600 keV.
Indeed, let us consider first hypothetical collisions where
the nuclei move adiabatically slowly along the actual
trajectories [45,51]. In such collisions all created positrons
are of pure spontaneous origin and, therefore, the energies
of the emitted positrons are completely determined by the
positions of the supercritical resonances. Table I presents
these resonance energies, εres, and the related kinetic
positron energies, ε ¼ jεresj −mec2, for the U92þ − U92þ

and Cm96þ − Cm96þ systems at different internuclear
distances. These energies have been obtained within the
framework of the monopole approximation employing the
complex rotation method [60–64]. The application of this
method for the case of point nuclei leads to the results
which are in good agreement with the values obtained by
the use of related formulas from Ref. [65]. We note also
that the corresponding calculations beyond the mono-
pole approximation [63,66] yield the resonance energies
which are very close to the monopole-approximation ones.
According to Table I, for the U92þ − U92þ system the
positron kinetic energies do not exceed 300 keV, while the
related natural resonance widths do not exceed a few keV
[63,66]. But in the real (nonadiabatic) collision the finite
collision time yields a dynamical width, which is much
larger than the natural resonance one. The dynamical
width can be roughly estimated by the uncertainty
principle Γdyn ∼ ℏ=τcol, where τcol is determined as the
supercritical time duration. With τcol ∼ 2 × 10−21 s (see
Fig. 4) one obtains Γdyn ∼ 300 keV, which restricts the
energy of spontaneous positrons to the interval 0 to
600 keV. The large value of Γdyn prevents the existence
of resonance structure in the positron spectra and smears

FIG. 10. The derivative of the pair-creation probability dP=dη
at η ¼ 1 (θ ¼ 180°) as a function of Z ¼ Z1 ¼ Z2 for
Rmin ¼ 17.5 fm. The dashed vertical lines at Z ≈ 87.5 and Z ≈
95 indicate the boundaries between the subcritical and the
supercritical regimes for the 1s (κ ¼ −1) and 2p1=2 (κ ¼ 1)
states, respectively.

FIG. 11. The derivative of the pair-creation probability dP=dη
at η ¼ 1 (θ ¼ 180°) as a function of Rmin for Z1 ¼ Z2 ¼ 96. The

dashed vertical lines at Rmin ¼ R1s
cr ≈ 48 fm and Rmin ¼ R

2p1=2
cr ≈

20 fm indicate the boundaries between the subcritical and the
supercritical regimes for the 1s (κ ¼ −1) and 2p1=2 (κ ¼ 1) states,
respectively.

HOW TO ACCESS QED AT A SUPERCRITICAL COULOMB … PHYS. REV. D 102, 076005 (2020)

076005-9



the area, where the reverse order of the η ¼ 1.0, 1.1, 1.2
curves takes place, compared to the subcritical case. In
addition, the strong superposition of the dynamical and
spontaneous pair-creation mechanisms in the real colli-
sions makes the transition from the subcritical to the
supercritical mode quite smooth. However, the qualita-
tive changes in the positron spectra, which become
especially convincing when comparing the subcritical
Bi83þ − Bi83þ and supercritical Cm96þ − Cm96þ colli-
sions, must be considered as a conclusive proof of the
access to the supercritical mode. This statement is also
confirmed by Fig. 15, where the positron spectra for the
U92þ − U92þ collision at different Rmin are presented.
Again, the transition from the subcritical to the super-
critical mode (Rcr ¼ 32.7 fm) changes the order of the
curves near the maximum.
As one can see from Figs. 12, 13, 14, and 15, the changes

in the positron spectra caused by the transition to the
supercritical mode are mainly concentrated at the energies
around the spectrum maximum and lower, where the
spontaneous pair creation takes place. This fact can be

used to quantify the signature of the transition to the
supercritical mode in terms an integral characteristic of the
positron spectrum which accounts only for a part of it
instead of the total probability. It is natural to restrict this
part to the region, where the changes of interest take place.
To this end, we introduce a partial probability Px, which is
defined as shown in Fig. 16. This means that the probability
Px accounts only for the positrons with the energies not
exceeding the abscissa value corresponding to the point
dP=dε ¼ ð1 − xÞðdP=dεÞmax on the right-hand side from
the positron-spectrum maximum at η ¼ 1 (θ ¼ 180°). The
parameter x should be chosen to cover the area which
includes the positrons with the energies within the range
Γdyn from the resonance energy. As discussed above, in the
case of the U92þ − U92þ collision the energies of the
spontaneous positrons are mainly limited by about
600 keV. It follows that the parameter x should be chosen
not less than x ≈ 0.1, which corresponds to the inclusion of
about 50% of the total probability.
In Fig. 17 we display the derivative d logPx=dη ¼

ð1=PxÞdPx=dη at η ¼ 1 (θ ¼ 180°) for x ¼ 0.1, 0.25,

FIG. 12. The positron spectra for the symmetric collisions with Z ¼ Z1 ¼ Z2 ¼ 83–96 at Rmin ¼ 17.5 fm and η ¼ E=E0 ¼ 1.0, 1.1,
1.2, which is the ratio of the collision energy E to the energy of the head-on collision at the same Rmin.
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0.5, 1.0 in the symmetric (Z ¼ Z1 ¼ Z2) collisions in the
range Z ¼ 84–92. As one can see from the figure, the use of
d logPx=dηjη¼1 at x ¼ 0.1, 0.25, and even at x ¼ 0.5
(instead of x ¼ 1 corresponding to the total probability)
leads to a strong increase of the effect we are interested in.
Indeed, in the case of the U92þ − U92þ collision, the
derivative d logPx=dηjη¼1 amounts to about −0.6 at
x ¼ 0.1, −0.5 at x ¼ 0.25, and −0.4 at x ¼ 0.5, while
for the total probability (d logPx¼1=dηjη¼1) it is almost
zero. This means taking into account only a part of the
positron spectrum, as defined above, allows to get a much
stronger evidence of the transition to the supercritical
mode. This statement is supported by Fig. 18, where we
present the ratio of Px evaluated at different η to its value at
η ¼ 1 (θ ¼ 180°) as a function of Z ¼ Z1 ¼ Z2. The
transition from the region PxðηÞ=Pxð1Þ > 1 to the region
PxðηÞ=Pxð1Þ < 1 indicates the transition from the subcriti-
cal to the supercritical mode. It can be seen that for x ¼ 0.1,
0.25, 0.5 this transition takes place at lower Z values than
for x ¼ 1 (total probability). In Fig. 19, we present the same

ratio, PxðηÞ=Pxð1Þ, for the U92þ − U92þ collision as a
function of Rmin. Again, this figure clearly confirms the
advantage of studying a part of the spectrum compared to
the total one and makes the uranium-uranium collisions
very promising for observing the vacuum decay.

C. Pair-creation probabilities and positron spectra
for nonsymmetric collisions

All the above studies can be directly extended to non-
symmetric collisions. In Fig. 20 we present the pair-
creation probability in non-symmetric U92þ − Cm96þ col-
lisions as a function of the minimal internuclear distance
Rmin and the parameter η ¼ E=E0. As in the case of the
symmetric Cm96þ − Cm96þ collisions (see Fig. 8), the pair-
creation probability P starts to increase with decreasing η
when the system enters deeply enough into the supercritical
regime, which means that Rmin becomes significantly
smaller than the critical value, Rcr ≈ 40 fm. In contrast,
in the subcritical region P decreases with decreasing η (at a

FIG. 13. The s-wave (κ ¼ −1) contribution to the positron spectra for the symmetric collisions with Z ¼ Z1 ¼ Z2 ¼ 83–96 at
Rmin ¼ 17.5 fm and η ¼ E=E0 ¼ 1.0, 1.1, 1.2, which is the ratio of the collision energy E to the energy of the head-on collision at the
same Rmin.
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given value of Rmin). In Fig. 21 we present the positron
spectra for nonsymmetric Po84þ − Ra88þ, Ra88þ − U92þ,
and U92þ − Cm96þ collisions. As in the case of the
symmetric collisions, the behavior of the positron spectra
indicates a clear signature of the transition to the super-
critical regime.

D. Pair creation in collisions of bare nuclei
with neutral atoms

In the previous sections, we studied the pair creation in
collisions of bare nuclei only. In this section, we will
consider whether it is possible in principle to extend these
studies to collisions of bare nuclei with neutral atoms.
While the direct calculation of the pair production in such
collisions requires development of special methods that
are beyond the scope of this work, some rough estimates
can be made by calculating the probability of a vacancy
in the 1σ state of a quasimolecule formed in such a
collision. This is due to the fact that, in accordance

with the results for collisions of bare nuclei, the main
contribution to the pair creation is given by the process
with the electron captured into the lowest-energy bound
state [33,42–44]. Therefore, the pair-creation probability
is mainly defined by availability of a vacancy in the
1σ level when the nuclei approach each other. In this
section, we evaluate the probability of a vacancy in the 1σ
state at the critical distance for the U − U92þ and Cm −
U92þ collisions using the two-center method developed
in Ref. [38].
The quantum dynamics of electrons in the collision of

the neutral U and Cm atoms with the bare U nucleus is
described by the time-dependent Dirac equation with the
two-center potential given by a sum of the potential of the
neutral atom and the Coulomb potential of the bare
nucleus. The potential of the neutral atom is defined by
the density functional theory (DFT) in the local density
approximation (LDA) using the Perdew-Zunger (PZ)
parametrization [67] (see Ref. [38] for details). The basis
is formed by the Dirac-Fock (DF) orbitals for the occupied

FIG. 14. The p1=2-wave (κ ¼ 1) contribution to the positron spectra for the symmetric collisions with Z ¼ Z1 ¼ Z2 ¼ 83–96 at
Rmin ¼ 17.5 fm and η ¼ E=E0 ¼ 1.0, 1.1, 1.2, which is the ratio of the collision energy E to the energy of the head-on collision at the
same Rmin.
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states and by the Dirac-Fock-Sturm (DFS) orbitals for the
vacant (virtual) states, localized at each of the two centers
(see Refs. [37,38] and references therein). The DF and
DFS orbitals are obtained in the central field approxima-
tion by numerical solution of the related integro-
differential DF and DFS equations. The radial DF and
DFS Hamiltonians describe the atom (ion) in the external
field induced by the other ion (atom). This external field is
defined by the DFT method in the LDA approximation
with the PZ parametrization. To the leading order, the
external potential effect can be taken into account by
including the external potential within the monopole
approximation, when only the spherically-symmetric part
of the reexpansion of the potential of the other atom (ion) is

taken into account. It should be noted that the basis
constructed in this way changes as the internuclear dis-
tance changes. In other words, this basis depends on the
time and the corresponding time derivatives must be added

FIG. 15. The positron spectra in the U92þ − U92þ collision at different Rmin and η ¼ E=E0, which is the ratio of the collision energy E
to the energy of the head-on collision at the same Rmin.

TABLE I. Supercritical resonance energies εres and related
kinetic positron energies ε ¼ jεresj −mec2 for the U92þ − U92þ

and Cm96þ − Cm96þ systems at different internuclear distances R
calculated within the framework of the monopole approximation.

U92þ − U92þ Cm96þ − Cm96þ

s resonance s resonance p1=2 resonance

R (fm) εres=mec2 ε (keV) εres=mec2 ε (keV) εres=mec2 ε (keV)

16 −1.582 298 −2.154 589 −1.228 116
18 −1.482 246 −2.011 517 −1.092 47
20 −1.392 200 −1.885 452
22 −1.311 159 −1.773 395
24 −1.239 122 −1.673 344
26 −1.174 89 −1.584 298

FIG. 16. The definition of the partial probability Px for x ¼
0.25 in the case of the U92þ − U92þ collision. Px accounts only
for the positrons with the energies not exceeding the abscissa
value corresponding to the point dP=dε ¼ ð1 − xÞðdP=dεÞmax on
the right-hand side from the positron-spectrum maximum at
η ¼ 1 (θ ¼ 180°). The area shaded yellow corresponds to
Pxðη ¼ 1.2Þ, while Pxðη ¼ 1Þ incorporates the areas shaded
yellow and blue.
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to the Hamiltonian matrix [37]. The basis expansion
coefficients of a set of one electron time-dependent wave
functions ψ iðtÞ are defined using the direct evolution
(exponential) operator Û method [37]. These coefficients
are represented by the columns of the U evolution matrix
(the matrix of the operator Û).
The probability of pair creation with electron captured

into a vacancy at the quasimolecular 1σ level can be
roughly estimated as

PðCÞ ¼ 2PðC=ĀBÞ · Kvac; ð30Þ

where PðC=ĀBÞ is the conditional probability of a pair
being created and the vacancy being filled, provided that

there is exactly one 1σ1=2 vacancy (event Ā) and the state
1σ−1=2 is occupied (event B). The coefficientKvac takes into
account the probability of filling one or two vacancies and
the factor 2 accounts for two values of the angular
momentum projection μ ¼ �1=2 (see the Appendix for
details).
To calculate the probability of a vacancy in the 1σ level

of the Hamiltonian of a quasimolecule at a given time we
use the approach which is described in the Appendix. This
approach is equivalent to a method which was previously
used for the evaluation of inclusive probabilities (see
Refs. [68,69] and references therein).

FIG. 17. The derivative d logPx=dη ¼ ð1=PxÞdPx=dη at η ¼ 1
(θ ¼ 180°) for different x in the symmetric (Z ¼ Z1 ¼ Z2)
collisions. The dashed vertical line at Z ≈ 87.5 indicates the
boundary between the subcritical and the supercritical regime.

FIG. 18. The ratio of Px evaluated at different η to its value at
η ¼ 1 (θ ¼ 180°) as a function of Z ¼ Z1 ¼ Z2. The transition
from the region PxðηÞ=Pxð1Þ > 1 to the region PxðηÞ=Pxð1Þ < 1
indicates the transition from the subcritical to the supercritical
mode.

FIG. 19. The ratio of Px evaluated at different η to its value at
η ¼ 1 (θ ¼ 180°) as a function of Rmin for the U92þ − U92þ
collision. The transition from the region PxðηÞ=Pxð1Þ > 1 to the
region PxðηÞ=Pxð1Þ < 1 indicates the transition from the sub-
critical to the supercritical mode (Rcr ¼ 32.7 fm).

FIG. 20. The pair-creation probability in nonsymmetric U92þ −
Cm96þ collisions as a function of the minimal internuclear
distance Rmin and the parameter η ¼ E=E0, which is the ratio
of the collision energy E to the energy of the head-on collision at
the same Rmin.
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We define the time-dependent one-particle density oper-
ator ρ̂ðtÞ and one-hole density operator ˆ̄ρðtÞ

ρ̂ðtÞ ¼
X
i

qijψ iðtÞihψ iðtÞj; ˆ̄ρðtÞ ¼ Î − ρ̂ðtÞ; ð31Þ

where qi ¼ 0, 1 is the number of electrons on a spin-orbital
ψ i, which is defined by the initial condition. The inclusive
probability Pn of finding n states occupied in an N-
electron system while the remaining N − n electrons are
not detected is given by the determinant of an n × n matrix
γ constructed from the one-electron density matrix [68]

Pn ¼ det γ; γkj ¼ hφkjρ̂jφji; ð32Þ

where φk are the stationary wave functions of the
Hamiltonian at a given time, and k; j ¼ 1;…; n.
Similarly, the probability P̄n of finding n states unoccupied
is determined by

P̄n ¼ det γ̄; γ̄kj ¼ δkj − γkj: ð33Þ

In this paper, we investigated the probability P̄n of finding
two vacancies (n ¼ 2). As a result, the coefficient Kvac has

been calculated using the following expression (see the
Appendix)

Kvac ¼ 1 − γ11: ð34Þ

As the occupied qi ¼ 1 spin orbitals ψ iðtÞ, we consider all
single-electron states of the ground-state configuration of
the neutral atom U or Cm and all states of the negative-
energy Dirac continuum. All the positive-energy states of
the bare uranium nucleus are considered as unoccupied.
The occupation of single-electron states of the negative-
energy spectrum corresponds to the Dirac picture and takes
into account the Pauli exclusion principle and pair pro-
duction processes. By means of the Eq. (34) we calculated
the 1σ vacancy probabilities for the Rutherford trajectories
presented in Fig. 3 (Rmin ¼ 17.5 fm). In Fig. 22 we present
the coefficient Kvac at the critical internuclear distance,
which equals to 27.0 fm and 34.8 fm for the U − U92þ and
Cm − U92þ collisions, respectively, as a function of the
collision energy, η ¼ E=E0, where E0 is the head-on
collision energy. Assuming Kvac remains of the same order
of magnitude throughout the supercritical region as at its
boundary (see Fig. 22), we believe that the pair-creation
probability should be only a few times less, compared to the
collisions of bare nuclei. Therefore, due to relatively large
values of Kvac, all scenarios considered above for the
collisions of bare nuclei can be applied to the collisions of
bare nuclei with neutral atoms, provided the corresponding
calculations of quantum dynamics of electrons are per-
formed. In particular, the very convincing contrast in the
transition from the subcritical to the supercritical Cm-U
system, which was observed for the positron spectra in
collisions of bare nuclei (see Fig. 21), makes the Cm −
U92þ collision very promising for further studies.

FIG. 21. The positron spectra for nonsymmetric Po84þ − Ra88þ

Ra88þ − U92þ, and U92þ − Cm96þ collisions at Rmin ¼ 17.5 fm
and η ¼ E=E0 ¼ 1.0, 1.1, 1.2.

FIG. 22. The coefficient Kvac evaluated by Eq. (34) for the 1σ
level at the critical internuclear distances, 27.0 fm and 34.8 fm for
the U − U92þ and Cm − U92þ collisions, respectively, as a
function of the collision energy, η ¼ E=E0, where E0 is the
head-on collision energy. The calculations are performed for the
Rutherford trajectories with Rmin ¼ 17.5 fm.
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IV. CONCLUSION

We have studied possible scenarios to access QED in the
supercritical Coulomb field which can be created by
heavy nuclei in low-energy collisions near the Coulomb
barrier. This has been done by the calculations of pair
production in the collisions along the trajectories, which
correspond to a given minimum internuclear distance.
The clear signatures indicating the transition from the
subcritical to the supercritical regime have been found in
both pair-creation probabilities and positron spectra. The
evidence of such a transition becomes even more convinc-
ing if one considers only a part of the positron spectrum
around its maximum. For instance, it is very well pro-
nounced in collisions of two uranium nuclei. In contrast to
the previous studies by other authors, the scenarios con-
sidered do not require any sticking of colliding nuclei.
Low-energy collisions of a bare uranium nucleus with
neutral uranium and curium atoms have been also studied
and the probability of a vacancy in the lowest energy level
of a quasimolecule formed in such collisions has been
evaluated. These calculations showed that the same sce-
nario can be applied to access QED at the supercritical field
in collisions of bare nuclei with neutral atoms. In particular,
examinations of the changes in the positron spectra when
switching from subcritical to supercritical Cm − U92þ
collisions are very promising for this purpose. The exper-
imental study of the proposed scenarios, which seems
feasible with the future facilities at GSI/FAIR [46–48],
HIAF [49], and NICA [50], would either prove the vacuum
decay in the supercritical Coulomb field or lead to
discovery of a new physics, which is beyond the presently
used QED formalism.

ACKNOWLEDGMENTS

We thank I. B. Khriplovich and Yu. Ts. Oganessian for
stimulating discussions. This work was supported by
RFBR-Rosatom (Grant No. 20-21-00098), by RFBR
(Grants No. 18-03-01220, No. 20-02-00199, and No. 18-
32-20063), and by the President of the Russian Federation
(Grant No. MK-1626.2020.2). The work of R. V. P., V. M.
S., and I. A. M. was also supported by the Foundation for
the advancement of theoretical physics and mathematics
“BASIS”. V. M. S. also acknowledges the support of the
CAS President International Fellowship Initiative (PIFI)
and of SPbSU (COLLAB 2019: No. 37722582). Y. S. K.
acknowledges the support from the CAS PIFI under Grant
No. 2018VMC0010. The work of R. V. P., N. V. K., and
D. A. T. was also supported by TU Dresden via the DAAD
Programm Ostpartnerschaften. A. I. B. acknowledges the
support from the Ministry of Science and Higher Education
of the Russian Federation (Grant No. 0784-2020-0025).
The research was carried out using computational resources
provided by the Resource Center “Computer Center
of SPbSU.”

APPENDIX: PROBABILITY OF FINDING
CORE HOLES

1. Reduced density matrix approach to a system
of N-independent electrons

The reduced density matrix (RDM) of nth order for an
N-electron system is defined by [70,71]

ρnðx1;…; xn; x01;…; x0nÞ ¼
�
N
n

�Z
dxnþ1;…; dxNΨðx1;…; xn; xnþ1;…; xNÞ

×Ψ�ðx01;…; x0n; xnþ1;…; xNÞ; ðA1Þ

where x stands for both position (r) and bispinor (τ ¼ 1;…; 4) variables, the integration over x implies the integration over r
and the summation over τ, and Ψðx1;…; xNÞ is the wave function of the system. We can also consider the density operator
ρ̂n as a linear integral operator with the density matrix ρn being its kernel. Then, the probability Pn of finding n-electron
system in a state Φn is given by [71]

Pn ¼ n!hΦnjρ̂njΦni: ðA2Þ
Consider a system of independent N electrons, described by a set of one-electron wave functions ψ i ði ¼ 1;…; NÞ. The nth
order RDM in this system is given by [70,71]

ρnðx1;…xn; x01;…; x0nÞ ¼
1

n!

���������

ρ1ðx1; x01Þ ρ1ðx1; x02Þ … ρ1ðx1; x0nÞ
ρ1ðx2; x01Þ ρ1ðx2; x02Þ … ρ1ðx2; x0nÞ

… … … …

ρ1ðxn; x01Þ ρ1ðxn; x02Þ … ρ1ðxn; x0nÞ

���������
; ðA3Þ

where ρ1ðx; x0Þ is the one-particle density matrix defined by
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ρ1ðx; x0Þ ¼
XN
i¼1

ψ iðxÞψ�
i ðx0Þ: ðA4Þ

The wave function Φn of an n-electron state is given by the
Slater determinant constructed from one-electron functions
φk. In this case it is easy to show that the probability Pn
defined by Eq. (A2) is equal to the determinant of an n × n
matrix γ constructed from the one-electron density matrix,

Pn ¼ det γ; γkj ¼ hφkjρ̂1jφji; ðA5Þ

where ρ̂1 is the one-particle density operator defined by

ρ̂1 ¼
X

i∈occupied
jψ iihψ ij: ðA6Þ

Thus, Pn is the probability of finding n states occupied in
the N-electron system while the remaining N − n electrons
are not detected. Equation (A5) coincides with that ob-
tained by the method of inclusive probabilities (see
Refs. [68,69] and references therein).
We can also introduce the probability P̄m of finding m

holes in an N-electron system by defining the one-hole
density matrix ρ̄1. Due to completeness of the set of
functions ψ iðxÞ the hole density operator can be written
in the form

ˆ̄ρ1 ¼
X

i∈vacant
jψ iihψ ij ¼ Î − ρ̂1: ðA7Þ

Then, we get

P̄m ¼ det γ̄; γ̄kj ¼ hφkj ˆ̄ρ1jφji ¼ δkj − γkj: ðA8Þ

2. Probability of finding one or two core holes (m= 2)

Consider an N-electron system and two one-electron
wave functions φ1ðxÞ and φ2ðxÞ which correspond to 1σ
states with the angular momentum projection μ ¼ 1=2 and
μ ¼ −1=2, respectively. We denote by A the event when
1σ1=2 is occupied by electron and by Ā the event when this
state is vacant. Similarly, the event B means that the state
1σ−1=2 is occupied and the event B̄ means that 1σ−1=2 is
vacant.
Thus, four incompatible events can occur: AB, AB̄, ĀB

and Ā B̄, which correspond to the cases: both states are
occupied, the first state is occupied and the second state is

vacant, the first state is vacant and the second state is
occupied, and both states are vacant. Using Eqs. (A5) and
(A8), we obtain for the corresponding probabilities

PðABÞ ¼ γ11γ22 − jγ12j2;
PðĀ B̄Þ ¼ ð1 − γ11Þð1 − γ22Þ − jγ12j2: ðA9Þ

Using PðĀBÞ ¼ PðĀÞ − PðĀ B̄Þ, we obtain

PðAB̄Þ ¼ γ11ð1 − γ22Þ þ jγ12j2;
PðĀBÞ ¼ ð1 − γ11Þγ22 þ jγ12j2: ðA10Þ

With the help of the total probability rule, for the proba-
bility of pair creation with the occupation of at least one 1σ
vacancy, PðCÞ, we obtain

PðCÞ ¼ PðC=ABÞ · PðABÞ þ PðC=ĀBÞ · PðĀBÞ
þ PðC=AB̄Þ · PðAB̄Þ þ PðC=Ā B̄Þ · PðĀ B̄Þ:

ðA11Þ

Here PðC=DÞ is the conditional probability, i.e., the
probability of occurring the event C, given the event D
has occurred. Assuming the pair-creation probability is
small enough, we obtain

PðC=Ā B̄Þ ≃ PðC=ĀBÞ þ PðC=AB̄Þ: ðA12Þ

Then, taking into account that PðC=ABÞ ¼ 0, we get

PðCÞ ≃ PðC=ĀBÞ½1 − γ11� þ PðC=AB̄Þ½1 − γ22�: ðA13Þ

Assuming the states with μ ¼ �1=2 are equivalent, which
means

γ11 ¼ γ22; PðC=ĀBÞ ¼ PðC=AB̄Þ;

we have

PðCÞ ≃ 2PðC=ĀBÞKvac; ðA14Þ

where

Kvac ¼ PðĀÞ ¼ 1 − γ11: ðA15Þ
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