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The chiral magnetic effect (CME) has been investigated as a new transport phenomenon in condensed
matter. Such an effect appears in systems with chiral fermions and involves an electric current generated by
a magnetic field by means of an “exotic” magnetic conductivity. This effect can also be connected with
extensions of the usual Ohm’s law either in magnetohydrodynamics or in Lorentz-violating scenarios. In
this work, we study the classical propagation of electromagnetic waves in isotropic dispersive matter
subject to a generalized Ohm’s law. The latter involves currents linear in the magnetic field and implies
scenarios inducing parity violation. We pay special attention to the case of a vanishing electric conductivity.
For a diagonal magnetic conductivity, which includes the CME, the refractive index is modified such that it
leads to birefringence. For a nondiagonal magnetic conductivity, modified refractive indices exhibiting
imaginary parts occur ascribing a conducting behavior to a usual dielectric medium. Our findings provide
new insights into typical material properties associated with a magnetic conductivity.
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I. INTRODUCTION

The chiral magnetic effect (CME) is the macroscopic
generation of an electric current in the presence of a
magnetic field as the result of an asymmetry between
the number density of left- and right-handed chiral fer-
mions. It leads to a current that is linear in the magnetic
field [1]. This quantum effect has been the subject of
extensive research in particle and field theory as well as
nuclear and condensed matter physics. It was investigated
in quark-gluon plasmas with a chiral chemical potential
under the influence of an external magnetic field [2,3] and
was also derived in the context of high-energy physics by
Vilenkin (in the 1980s) [4,5] who supposed an imbalance of
fermion chirality in the presence of cosmic magnetic fields
in the early Universe. The CME was studied in cosmology
[6], as well, where it was applied to explain the origin of the

very high magnetic field strengths (up to 1015 G) observed
in neutron stars [7,8]. An interesting question concerns the
possible impact of the external axial-vector field Vμ

5 on the
magnitude of the anomalous current in the CME [9], which
was also examined for the polarization tensor of a photon in
a fermion plasma under the influence of Vμ

5 [10].
Connections between the CME and matter subject to the
electroweak interaction were established, too [11,12].
In condensed matter systems, the CME plays a most

important role. It appears as a relevant effect in Weyl
semimetals, where it is usually connected to the chiral
anomaly associated with Weyl nodal points [13]. In such
materials, massless fermions acquire a drift velocity along
the magnetic field, whose direction is given by their
chirality. Opposite chirality implies opposite velocities,
creating a chiral-fermion imbalance that is proportional
to the chiral magnetic current. The first experimental
observation of the CME was reported in 2014 [14].
Several investigations have been carried out on the proper-
ties of this phenomenon, including the CME in the absence
of Weyl nodes [15], anisotropic effects stemming from
tilted Weyl cones [16], the CME and anomalous transport
in Weyl semimetals [17], quantum oscillations arising from
the CME [18], computation of the electromagnetic fields
produced by an electric charge near a topological Weyl
semimetal with two Weyl nodes [19], and chiral super-
conductivity [20].
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An interesting relation between the CME and Maxwell-
Carroll-Field-Jackiw electrodynamics has been established
in the literature [21] by examining the connection between
the CME and Lorentz-violating theories including axion
electrodynamics. The possibility of Lorentz invariance
violation was proposed in the context of physics at the
Planck scale such as strings [22]. Presently, the Standard
Model extension [23], where fixed background tensor
fields are coupled to the dynamical fields, is usually
employed to parametrize it. A violation in the photon
sector can occur by means of a CPT-odd [24] or CPT-even
term [25]. A Lorentz-violating extension for the current
density that resembles the macroscopic description of the
CME can be found in Ref. [26], where some preliminary
studies of aspects of Lorentz-violating electrodynamics in
continuous matter were performed.
Additional motivation for getting more insight into

conduction currents driven by magnetic fields comes from
magnetohydrodynamics. After making some simplifying
assumptions for plasmas of colliding particles, the resistive
Ohm’s law for the one-fluid model is written as [27]

ðEþ V ×BÞi ¼ ηijJj: ð1Þ

Here V is the average velocity of the electrons and ions,
while J is the total current density. The expression ηijJj

corresponds to an effective collision term for electrons and
ions and the resistivity ηij can, in general, be a tensor. Even
if Eq. (1) is not a rigorous model, it is widely used, because
it captures the most important deviations from the ideal
magnetohydrodynamic model. Inverting Eq. (1) yields
Ji ¼ σijEj þ σBijB

j, with σij being the inverse of ηij and
σBij ¼ σipVqϵpqj (where ϵijk is the three-dimensional Levi-
Civita symbol) defining a magnetic conductivity. In the
following, we will generalize this motivation by consider-
ing the magnetic conductivity tensor σBij to be completely
independent of the electric conductivity tensor σij.
The main purpose of this work is to analyze the possible

phenomena of a magnetic conductivity in a usual dielectric
medium. In particular, we are interested in investigating the
effects originating from a magnetic conductivity on the
propagation of electromagnetic waves in a dispersive
dielectric continuous medium characterized by the param-
eters ϵ (electric permittivity), μ (magnetic permeability),
and σ (Ohmic conductivity). In this sense, we propose some
particular configurations for the magnetic conductivity to
be explored.
We start from the Maxwell equations in a continuous

medium, supplementedby the constitutive relationsD ¼ ϵE,
B ¼ μH, and the magnetic current, JiCME ¼ σBijB

j, arising
from an extension of Ohm’s law. We obtain the correspond-
ing refractive indices and electric fields for the propagating
modes in some scenarios. First, we address an isotropic and
an anisotropic diagonal conductivity tensor, configurations

which describe the chiral magnetic current observed inWeyl
semimetals. After doing so, we examine more exotic
configurations of antisymmetric and symmetric nondiagonal
conductivity tensors. In what follows, we will take
ϵ; μ; σ ∈ R.
On the one hand, the isotropic or anisotropic diagonal

magnetic conductivity tensors generate scenarios of bire-
fringent dielectric crystals, described by two different
refractive indices for each wave vector. On the other hand,
the nondiagonal anisotropic magnetic conductivity (sym-
metric or antisymmetric) creates the remarkable behavior of
a conducting phase in the dielectric substrate.
This work is outlined as follows. In Sec. II we briefly

review some basic aspects of electrodynamics in matter,
focusing on the refractive index, constitutive relations, the
generalized form of Ohm’s law, and the magnetic current.
In Sec. III we discuss the general effect of a magnetic
conductivity on wave propagation in continuous dielectric
matter. We analyze diagonal conductivity tensors and some
special cases of an exotic conductivity. Section IV is
dedicated to deriving the contributions to the charge and
current density that result from the magnetic conductivity
and are needed to guarantee the consistency of Maxwell’s
equations. Furthermore, in Sec. V we study what impact a
magnetic conductivity has on certain phenomena such as
the skin effect and reflection. Finally, we summarize our
results in Sec. VI.

II. BASIC ASPECTS OF ELECTRODYNAMICS
IN MATTER

The electrodynamic properties of a continuous medium
are characterized by its electric permittivity ϵ, magnetic
permeability μ, and Ohmic conductivity σ. The static and
dynamic behavior is described by the standard Maxwell
equations,

∇ · D ¼ ρ; ∇ ×H − ∂0D ¼ J; ð2aÞ

∇ · B ¼ 0; ∇ ×Eþ ∂0B ¼ 0: ð2bÞ

The response of the medium to applied electromagnetic
fields is measured in terms of the polarization vector P and
magnetization vector M, defined by linear constitutive
relations: P ¼ ϵ0χEE and M ¼ χMH, where χE and χM
are the electric and magnetic susceptibility, respectively, of
an isotropic ponderable medium. Such relations allow us to
define the electric displacement field D and the magnetic
flux density B:

D ¼ ϵ0Eþ P ¼ ϵ0ð1þ χEÞE ¼ ϵE; ð3aÞ

B ¼ μ0Hþ μ0M ¼ μ0ð1þ χMÞH ¼ μH: ð3bÞ

We then rewrite Eqs. (3a) and (3b) as

SILVA, FERREIRA, SCHRECK, and URRUTIA PHYS. REV. D 102, 076001 (2020)

076001-2



�
D

H

�
¼

�
ϵ1 0

0 μ−11

��
E

B

�
; ð4Þ

with the identity matrix 1 in three spatial dimensions. By
using a plane-wave ansatz for the electromagnetic fields,
E ¼ E0eiðk·r−ωtÞ and B ¼ B0eiðk·r−ωtÞ, the Maxwell equa-
tions and J ¼ σE yield

k × k × Eþ ω2μϵ̄ðωÞE ¼ 0; ð5Þ

with k2 ¼ ω2μϵ̄ðωÞ, where

ϵ̄ðωÞ ¼ ϵþ i
σ

ω
; ð6Þ

is the frequency-dependent electric permittivity of the
medium. This complex permittivity leads to a complex
refractive index:1

n̄ ¼ þ
ffiffiffiffiffiffi
k2

p

ω
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵþ i

μσ

ω

r
¼ n0 þ in00; ð7aÞ

where

n0;00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2

0 þ
�
μσ

2ω

�
2

s
�ϒ0

vuut ; ϒ0 ¼
μϵ

2
: ð7bÞ

The imaginary part of the refractive index implies a real
exponential factor, e−ωn

00ðk̂·rÞ with k̂≡ k=
ffiffiffiffiffiffi
k2

p
, in the

plane-wave solutions for the electromagnetic fields. This
term damps the amplitude of the wave along its propagation
through matter and is related to the absorption coefficient
α ¼ 2ωn00, whose inverse value determines the penetration
depth. Such a scenario is typical for a conducting medium.
In a linear, continuous, ponderable medium, general

constitutive relations can be envisaged as a theoretical
possibility [28], which gained great attention with the
advent of topological insulators [29,30]. In systems of this
kind, it holds that

�
D

H

�
¼

�
ϵ1 α1

β1 μ−11

��
E

B

�
; ð8Þ

with additional material parameters α, β that are not
independent and whose sum provides what is known as
the “activity constant” of a medium. Such an extension also

occurs in a Lorentz-violating anisotropic electrodynamics
[26] where

�
D

H

�
¼

�
ϵ1þ κDE κDB

κHE μ−11þ κHB

��
E

B

�
; ð9Þ

with dimensionless ð3 × 3Þ matrices κDE, κDB, κHE, and
κHB that are composed of a vacuum part and a matter part.
In component form, the latter relations read

Di ¼ ½ϵδij þ ðκDEÞij�Ej þ ðκDBÞijBj; ð10aÞ

Hi ¼ ½μ−1δij þ ðκHBÞij�Bj þ ðκHEÞijEj: ð10bÞ

These generalized scenarios lead to an unusual electrody-
namics where the electric displacement field receives a
contribution from the magnetic flux density and the
magnetic field gets a contribution from the electric field.
Such modified constitutive relations, D ¼ DðE;BÞ and
H ¼ HðE;BÞ are observed, for example, for topological
insulators [29].
At this point, we introduce a generalized Ohm’s law for

the current density J, considering the contribution of the
magnetic current, JCME ¼ σB ·B, that is,

Ji ¼ σijEj þ σBijB
j; ð11Þ

composed of the usual Ohmic term involving the conduc-
tivity tensor σij as well as an exotic term with the magnetic
conductivity tensor σBij, which has found realization in some
condensed matter systems. The second term can also be
proposed as an extension of Ohm’s law in magnetohydro-
dynamics [27] (see also Sec. I) as well as in Lorentz-
violating scenarios [26].
The magnetic conductivity tensor, σBij, is even under time

reversal (T) and charge conjugation (C), but odd under
parity transformations (P); see Table I. Most notably, this
tensor is even under time reversal, since J and B are T odd,
which is highly unusual for a conductivity.
This behavior is analog to that of the phenomenological
parameter μ (not to be confused with the magnetic
permeability) observed in London’s superconductivity
model (J ¼ −μ2A) [20]. The T-even character of σBij is
typical of nondissipative and reversible processes [1,20].
This property is what distinguishes the magnetic conduc-
tivity from the usual Ohmic conductivity, which is T odd

TABLE I. Behavior of the Ohmic and exotic conductivity,
respectively, under C, P, and T transformations.

E B J σ σB

C − − − þ þ
P − þ − þ −
T þ − − − þ

1Note that the refractive index can be a complex function, in
general. Thus, instead of employing the norm jkj in the definition
of the refractive index, which is a non-negative, real number, we
useþ

ffiffiffiffiffiffi
k2

p
. Furthermore, we only consider refractive indices with

a non-negative real part, which is indicated explicitly by the plus
sign in front of the square root.
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and compatible with dissipative and nonreversible phe-
nomena. Table I shows a comparative analysis between the
magnetic and Ohmic conductivity tensors under discrete
symmetry transformations, revealing crucial differences
when the former is subject to T, P, CP, and CT
transformations.
Using the generalized Ohm’s law of Eq. (11) and

conventional isotropic constitutive relations, Di ¼ ϵδijEj,
Hi ¼ μ−1δijBj, in the Maxwell equations, Eq. (5) keeps its
general form:

½k × k × E�i þ ω2μϵ̄ijðωÞEj ¼ 0; ð12aÞ

where

ϵ̄ijðωÞ ¼
�
ϵþ i

σ

ω

�
δij þ

i
ω2

ðσBÞiaϵabjkb; ð12bÞ

defines the frequency-dependent extended permittivity
tensor (EPT). Equation (12a) implies

½k2δij − kikj − ω2μϵ̄ij�Ej ¼ 0: ð13Þ

Notice that the latter equation yields kiϵ̄ijEj ¼ 0, where we
can interpret D̄i ¼ ϵ̄ijEj as an extended displacement
vector.
For a general anisotropic continuous scenario, we write

k ¼ ωn where n is a vector pointing along the direction
of the wave vector and yielding the refractive index:2

n ¼ þ
ffiffiffiffiffi
n2

p
. Hence, Eq. (13) becomes

½n2δij − ninj − μϵ̄ij�Ej ¼ 0: ð14Þ

The latter can also be cast into the form

MijEj ¼ 0; ð15aÞ

where the tensor Mij reads

Mij ¼ n2δij − ninj − μϵ̄ij; ð15bÞ

and ϵ̄ij is given by Eq. (12b). The set of equations given
above has nontrivial solutions for the electric field if the
determinant of the coefficient matrix Mij vanishes. This
condition on the determinant provides the dispersion
relations associated with wave propagation in the medium.
In the following, we will discard refractive indices with

negative real parts associated with frequencies that have the
same property. Sophisticated composites of different mate-
rials can be designed that have negative permittivity and

permeability. These are called metamaterials [31] and the
real parts of their refractive indices must be endowed
with � signs according to the materials at the interface:
material-material (þ), material-metamaterial (−), or meta-
material-metamaterial (þ). On the contrary, negative refrac-
tive indices are not known to occur in crystals found in
nature, which is our focus in this paper.

III. PROPAGATION BEHAVIOR UNDER CHIRAL
AND EXOTIC MAGNETIC CONDUCTIVITY

In this section, we will investigate the effects stemming
from chiral as well as exotic magnetic conductivities,
incorporated into the formalism used for describing the
propagation of electromagnetic waves in anisotropic dis-
persive media. In order to examine the magnetic current
JiCME ¼ σBijB

j classically, we consider the conductivity
tensor σBij in Eqs. (12b) and (15) originating from the
emergence of a magnetic field. Studies of the CME
[1,2,20,21] have reported the generation of an electric
current induced by a magnetic field,

JiCME ¼ e2

4π2
ðΔμÞBi ≡ ΣBi; ð16Þ

where e is the fermion charge, B the applied magnetic flux
density, Δμ≡ μR − μL is also known as the chiral chemical
potential, and Σ is the chiral magnetic conductivity [6–13].
As written in Eq. (16), this effect is clearly represented by
an isotropic diagonal magnetic conductivity, that is,

σBij ¼ Σδij; ð17aÞ
in which

Σ ¼ e2

4π2
Δμ: ð17bÞ

We can write down the magnetic conductivity σBij in the
following form:

σBij ¼ Σδij þ Σij; ð18Þ

where Σ is 1=3 of the trace of the σBij matrix and represents
the isotropic part of this conductivity, while Σij stands for
all off-diagonal components of σBij. Hence, the diagonal
piece of the conductivity tensor is related to the CME and
constitutes the first case to be analyzed. We further examine
the generalization of the magnetic conductivity to exotic
scenarios,

Ji ¼ ΣijBj; ð19Þ
where Σij comprises off-diagonal or anisotropic conduc-
tivity components. It is worthwhile to note that the
anisotropic chiral magnetic effect [16] represents an

2Here we again take into account that the norm jnj is non-
negative. To permit complex refractive indices, we consider
þ

ffiffiffiffiffi
n2

p
instead of jnj. The plus sign indicates that we discard

refractive indices with negative real parts.
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interesting theoretical possibility to be proposed and
investigated. At first, it can be induced by a diagonal
anisotropic conductivity tensor, as will be examined in
Sec. III B.

A. Isotropic diagonal chiral conductivity

First of all, we discuss the behavior of an isotropic
magnetic conductivity, which is represented by a diagonal
matrix; cf. Eq. (17a). By inserting the latter into Eq. (12b),
one obtains

ϵ̄ijðωÞ ¼
�
ϵþ i

σ

ω

�
δij −

iΣ
ω2

ϵijbkb; ð20Þ

where the last term of Eq. (20) represents the contribution
from the chiral conductivity. Note that we are starting from
an isotropic permittivity tensor, ϵδij, where all effects that
are usually related to anisotropies in media manifest
themselves via the way the magnetic conductivity is
coupled to the fields. In this case, the tensor Mij given
by Eq. (15b), has the form

½Mij� ¼

0
BB@

n22 þ n23 − μϵ − iμ σ
ω −n1n2 þ iμ n3Σ

ω −n1n3 − iμ n2Σ
ω

−n1n2 − iμ n3Σ
ω n21 þ n23 − μϵ − iμ σ

ω −n2n3 þ iμ n1Σ
ω

−n1n3 þ iμ n2Σ
ω −n2n3 − iμ n1Σ

ω n21 þ n22 − μϵ − iμ σ
ω

1
CCA: ð21Þ

Requiring det½Mij� ¼ 0, we get

n2� ¼ 4ϒΣ þ μ

�
−ϵþ i

σ

ω

�
� μΣ

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϒΣ þ iμ

σ

ω

r
; ð22aÞ

2ϒΣ ¼ μϵþ
�

μ

2ω
Σ
�

2

; ð22bÞ

which can be split into real and imaginary parts as follows:

n2� ¼ μϵþ μΣ
ω

�
μΣ
2ω

� Nþ

�
þ i

μ

ω
ðσ � ΣN−Þ; ð23aÞ

where

N� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2

Σ þ
�
μσ

2ω

�
2

s
�ϒΣ

vuut : ð23bÞ

Equation (23a) yields two distinct refractive indices for
each frequency ω, which is compatible with the physics of a
conducting dielectric medium endowed with birefringence.
This behavior already occurs for the isotropic conductivity
tensor of Eq. (17a), revealing that birefringence comes from
the way the chiral conductivity is coupled to the fields.
Thus, when considered within a medium of Ohmic con-
ductivity (σ ≠ 0Þ, a chiral conductivity modifies the refrac-
tive index of the conducting medium. It alters the phase
velocity associated with its real part and the absorption (or
attenuation) coefficient related to its imaginary part.

1. Dielectric nonconducting medium

In the case where we start from a dielectric medium with
zero Ohmic conductivity, σ ¼ 0, Eq. (22a) provides two
distinct real values for the refractive index,

n2� ¼ 4ϒΣ − μϵ� μΣ
ω

ffiffiffiffiffiffiffiffiffi
2ϒΣ

p
; ð24Þ

which characterizes a dispersive nonconducting behavior
typical of a uniaxial crystal, where the propagation occurs
with different velocities along the principal dielectric
directions [32]. Therefore, the system will behave like a
birefringent dispersive dielectric medium where electro-
magnetic waves propagate without undergoing attenuation
(nonconducting or absorbing behavior). The corresponding
refractive indices are given by

n� ¼
ffiffiffiffiffiffiffiffiffi
2ϒΣ

p
� μΣ
2ω

; ð25Þ

with ϒΣ of Eq. (22b). The square of the latter leads back to
Eq. (24). In the present configuration, it is important to
point out that the chiral conductivity implies a typical
conducting behavior for the medium only when it is
defined simultaneously with the Ohmic conductivity
ðσ ≠ 0; σB ≠ 0Þ, as shown in the complex refractive index
of Eq. (23a). When it is defined for a nonconducting
dielectric ðσ ¼ 0; σB ≠ 0Þ, the behavior remains that of a
dispersive nonabsorbing medium, as indicated by the
complex refractive index in Eq. (24). This is because
N− ¼ 0 when σ ¼ 0.
Alternatively, a refractive index can be determined from

the frequency as a function of the wave vector, ω ¼ ωðkÞ,
via the definition n≡þ

ffiffiffiffiffiffi
k2

p
=ωðkÞ [see Eq. (7a)]. The

possible frequencies ω also follow from the requirement
that det½Mij� ¼ 0 and are associated with particular modes
of the electric field. In order to better examine the features
of propagation, we implement n ¼

ffiffiffiffiffiffi
k2

p
=ω in Eq. (24) and

obtain the dispersion equation
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ω4 − 2ω2
k2

μϵ
þ
�
k2

μϵ
−
μΣ2

2ϵ

�
2

−
μ2Σ4

4ϵ2
¼ 0; ð26Þ

with k≡ ffiffiffiffiffiffi
k2

p
. Solving for ω, one gets

ω2
� ¼ k2

μϵ

�
1� μΣ

k

�
: ð27Þ

Equation (27) represents two distinct modes, ωþ and ω−.
While the frequency ωþ is real for any value of k, the
frequency ω− of the second mode can be imaginary if
k < Σμ. To ensure that ω− represents the frequency of a
physical propagating mode, we should require that k > Σμ.
Birefringence occurs when distinct polarization modes
propagate with different phase velocities. In this medium
of zero Ohmic conductivity, the phase velocities are

vphð�Þ ¼
ω�
k

¼ 1ffiffiffiffiffi
μϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μΣ

k

r
; ð28Þ

yielding the following phase velocity difference:

Δvph ¼
1ffiffiffiffiffi
μϵ

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μΣ
k

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μΣ
k

r �

≃
1ffiffiffiffiffi
μϵ

p μΣ
k
; ð29Þ

showing that the trace Σ of the isotropic chiral conductivity
is really responsible for birefringence. Thus, a diagonal
isotropic σBij generates a birefringent dispersive noncon-
ducting behavior.
We can also analyze the effect that such a term has on the

group velocity,

vgð�Þ ¼
���� ∂ω�
∂k

���� ¼ 1ffiffiffiffiffi
μϵ

p 1� μΣ=ð2kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μΣ=k

p ; ð30Þ

which has a singularity for small momenta indicating
problems with classical causality due to vgð�Þ > 1.
Causality is preserved for wave propagation in the large-
momentum regime.
One can also obtain the refractive indices for this

medium (σ ¼ 0Þ by diagonalizing the permittivity tensor
of Eq. (20) and setting each eigenvalue equal to n2=μ. In
general, this procedure provides the refractive indices only
for the propagation along the directions of the principal
axes of ϵ̄ij.
The eigenvalues ϵa (a ¼ 1, 2, 3), where ϵ̄ije

j
a ¼ ϵaeia

(with eigenvectors ea), are given by

ϵ1 ¼ ϵ; ð31aÞ

ϵ2;3 ≡ ϵ� ¼ ϵ� Σ
ω
n; ð31bÞ

which can be associated with the following refractive
indices:

n2 ¼ μϵ; ð32aÞ

n2� ¼ μϵ� μΣ
ω

n�: ð32bÞ

Surprisingly, the latter result reproduces Eq. (25), stem-
ming from det½Mij� ¼ 0 and valid for an arbitrary direction,
which means that the eigenvalues ϵ2 and ϵ3 correspond
to the refractive indices of the medium nþ and n−,
respectively.
In the following, we explain this behavior. The proposed

method of finding the refractive indices n through the
equation n2 ¼ μϵaðnÞ, where ϵa are the eigenvalues of the
EPT ϵ̄ij, only works under the requirement described below.
For a general vector n, the related electric field Ea, which
satisfies the condition MijE

j
a ¼ 0 according to Eq. (14),

must be such that n ·Ea ¼ 0. In this case, diagonalizingM
is equivalent to diagonalizing ϵ̄ and the result Ea ∼ ea
follows. Notice that we must also have n · ea ¼ 0. This
situation is clearly illustrated in the present case, where
Eqs. (14) and (20) yield the general condition n · E ¼ 0.
Here, the three eigenvectors of the generalized permittiv-
ity are

e1 ¼
n
n
≡m; ð33aÞ

e2;3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
1 þm2

3Þ
p

0
B@

m3 ∓ im1m2

�iðm2
1 þm2

3Þ
∓im2m3 −m1

1
CA; ð33bÞ

with the unit vectorm defining the planes of constant phase
of the wave. Let us observe that the eigenvectors in
Eqs. (33a) and (33b) are independent of the corresponding
refractive indices n�, being just functions of the direction
given by m. We note that e1 · e�2 ¼ e1 · e�3 ¼ e2 · e�3 ¼ 0,
whereupon these three eigenvectors are linearly indepen-
dent. In particular, e2 and e3 are orthogonal to e1 ¼ m, thus
yielding the correct refractive indices n� of Eq. (24),
according to the proposed method. In this case, the
propagating modes of the electric field are correctly
described by the eigenvectors e2 and e3 and the eigenvalue
ϵ1 ¼ ϵ has to be rejected, because m · e1 is nonzero.
To decide which refractive indices are physical, we can

also look at the modes of the electric field. The latter are
obtained from solving the homogeneous system of equa-
tions MijEj ¼ 0 for E with ω replaced by the dispersion
relations ωðkÞ determined from the coefficient determi-
nant. In the dielectric nonconducting medium under con-
sideration, a particular frequency does not correspond to a
physical mode when the electric field is longitudinal. In
other words, a mode is unphysical when its electric field
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points along the direction of the wave vector, i.e., E · k ¼
jEjjkj or k ×E ¼ 0. As ½M; ϵ̄� ¼ 0 for the particular
isotropic configuration of Eq. (17a), the eigenvector of
Eq. (33a) also corresponds to a mode of the electric field.
As it is longitudinal, the associated solution for the permit-
tivity ϵ1 ¼ ϵ cannot be physical and must be discarded.
Since the configuration studied is isotropic, we can

choose m ¼ ð0; 0; mÞ without loss of generality.
Equation (33b) then results in

e2;3 ¼
1ffiffiffi
2

p

0
B@

1

�i

0

1
CA: ð34Þ

The vectors e2 and e3, respectively, can be interpreted
as the polarization vectors of left-handed (L) and right-
handed (R) polarized electromagnetic waves.3 Hence, we
identify nL;R ≡ n�.
These polarizations are transverse, i.e., perpendicular to

m. According to Table I, the magnetic conductivity σBij is
odd under parity transformations. While parity violation
does not show up in a single refractive index of Eq. (25) on
its own, it becomes manifest in the distinct propagation
properties of left- and right-handed polarized electromag-
netic waves. This is the physical reason for birefringence.
The behavior found for this configuration is highly

interesting. Parity violation could be expected to imply
refractive indices that are angular dependent. In other
words, birefringence in a material is usually caused by
the presence of at least a single optical axis. An optical axis
indicates a preferred direction in the crystal, whereupon its
refractive index cannot be isotropic, anymore. Hence, under
usual circumstances, an occurrence of parity violation and
birefringence seems to contradict isotropy of a crystal. If a
magnetic conductivity is present, we found that birefrin-
gence can also emerge in an isotropic crystal.
If birefringence occurs in a medium with a single optical

axis, a light ray can split into an ordinary and an
extraordinary ray. The ordinary one behaves according
to Snell’s law whereas the extraordinary one does not do so.
The electric field associated with the extraordinary ray is no
longer orthogonal to its wave vector. However, the polar-
izations of the electric field stated in Eq. (34) are orthogonal
to the wave vector, which is why an extraordinary ray
cannot be identified in this setting. The two polarizations
only split due to their distinct propagation velocities,
cf. Eq. (30). Therefore, the polarization plane of a linearly
polarized wave will rotate indicating an optically active
material. This phenomena is quantified by defining the
specific rotatory power Δ, measuring the rotation of the
plane of linearly polarized light per unit traversed length in

the medium. It is given by Δ≡ −ðΔnÞω=2 where Δn≡
nþ − n− is the difference of refractive indices for the two
polarization directions. In our case, the latter definition
yields

Δ ¼ −
μΣ
2
; ð35Þ

thus providing a frequency-independent specific rotatory
power due to the chiral magnetic conductivity Σ.
As we know, there is no clear connection between the

CME and measurements of birefringence, and so we discuss
a possible way to observe this effect. Before more elaborate
methods were developed, birefringence was detected with a
set of crossed polarizers that does not permit any light to pass.
If a birefringent material is put in between these two
polarizers, it rotates the polarization plane of the light that
passed the first polarizer such that light of a nonvanishing
intensity can be measured behind the second polarizer.
However, this method is not precise enough to measure
small values of birefringence. Furthermore, it is challenging
to measure birefringence of an inhomogeneous medium.
Therefore, a more sophisticated technique was devel-

oped in Ref. [34]. The system to be used is based on a
rotating polarizer, a quarter-wave plate, and an analyzer.
The passing light is captured by a CCD camera whereupon
the measured data are evaluated by a computer. This system
was commercially distributed under the name Metripol.
The intensity I of the light detected at any point is

expressed in terms of angles ξ and ψ describing the
orientation of the rotating polarizer:

I ¼ I0
2
½1 − sinð2ξ − 2ψÞ sin δ�; ð36Þ

where I0=2 is a suitably normalized intensity and δ is the
phase shift between the two physical polarizations of the
light. The latter is

δ ¼ 2π

λ
dðΔnÞ; ð37Þ

where d is the sample thickness and λ is the vacuum
wavelength of the incoming light.
Thus, to measure birefringence of a material endowed

with a magnetic conductivity, a sample of thickness d can
be placed into a Metripol system to determine the factor
sin δ. This factor provides the difference between the
refractive indices via Δn ¼ δλ=ð2πdÞ. The latter experi-
mental result in combination with Eq. (25) leads to the
magnetic-conductivity parameter:

Σ ¼ ωðΔnÞ
μ

: ð38Þ

A similar technique for birefringence measurements was
also reported in Ref. [35].

3We define a polarization as right-handed (left-handed) if the
polarization vector of a plane wave rotates along a circle in the
clockwise (counterclockwise) direction when the observer is
facing into the incoming wave [30,33].
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B. Diagonal anisotropic chiral conductivity

As a next step, we will consider another particular case
for the chiral conductivity, σBij, which is represented by a
diagonal tensor that describes an anisotropic system [15]:

½σBij� ¼

0
B@

Σx 0 0

0 Σy 0

0 0 Σz

1
CA; ð39Þ

with a set fΣg ¼ fΣx;Σy;Σzg of distinct elements in the
diagonal, Σx ≠ Σy ≠ Σz. The general permittivity tensor is
given by Eq. (12b), with the components shown as follows:

½ϵ̄ij� ¼

0
BBBBBBBB@

ϵþ i σω − i
ω2 Σxk3 i

ω2 Σxk2

i
ω2 Σyk3 ϵþ i σω − i

ω2 Σyk1

− i
ω2 Σzk2 i

ω2 Σzk1 ϵþ i σω

1
CCCCCCCCA
: ð40Þ

The dispersion relations are obtained from det½Mij� ¼ 0

where the tensorMij is defined in Eq. (15b), with ϵ̄ij given
by Eq. (40). Evaluating this condition leads to the
dispersion equation

½ωn2 − μðiσ þ ϵωÞ�2 ¼ Ω; ð41aÞ

with the function

Ω ¼ ΩðnÞ ¼ μ2ðΣxΣyn23 þ ΣxΣzn22 þ ΣyΣzn21Þ: ð41bÞ

The latter is an involved expression, since it explicitly
contains the components of the vector n ¼ ðn1; n2; n3Þ
instead of its modulus n as in the isotropic case investigated
previously. To avoid problems with separating real and
imaginary parts of refractive indices, we will assume that
Ω ≥ 0. The following parametrization [30] for n permits a
convenient examination of the physical content of
Eq. (41a):

n ¼ nðsin θ cosϕ; sin θ sinϕ; cos θÞ≡ nm; ð42Þ

with angles θ ∈ ½0; π� and ϕ ∈ ½0; 2πÞ. With the latter,
Eq. (41a) is rewritten as

ω2n4 −Dn2 −G ¼ 0; ð43aÞ

where

D ¼ 2μωðϵωþ iσÞ þ Ω̃; ð43bÞ

G ¼ μ2ðσ2 − 2iϵωσ − ϵ2ω2Þ; ð43cÞ

Ω̃ ¼ μ2½cos2 θΣxΣy þ sin2 θ sin2 ϕΣxΣz

þ sin2 θ cos2 ϕΣyΣz� ¼ Ω=n2: ð43dÞ

The dispersion equation (43) yields two solutions for n,

n2� ¼ D
2ω2

� 1

2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 4ω2G

p
; ð44Þ

revealing two values for any frequency.

1. Dielectric nonconducting medium

In the special limit of zero Ohmic conductivity, σ ¼ 0,
all the complex pieces of Eq. (41a) or Eq. (43) vanish and
the refractive indices of Eq. (44) are real. Some complex
term could occur in Eq. (44) if the discriminant is
negative: Δ0 ¼ D2

0 þ 4ω2G0 < 0, where G0 ¼ −ϵ2μ2ω2

and D0 ¼ 2ϵμω2 þ Ω̃. But Δ0 ¼ Ω̃2 þ 4Ω̃ϵμω2 > 0 and
therefore, this possibility is not realized. In fact, for σ ¼ 0,
Eq. (41a) gives rise to

ω2ðn2 − μϵÞ2 ¼ Ω; ð45Þ
whereupon

n2� ¼ μϵ� 1

ω

ffiffiffiffi
Ω

p
: ð46Þ

If we apply the prescription stated in Eq. (42) to Eq. (44),
the refractive indices are given by

n2� ¼ μϵþ Ω̃
2ω2

� 1

2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μϵω2Ω̃þ Ω̃2

q
: ð47Þ

It is interesting to observe that by using the parametrization
of Eq. (42) in each refractive index of Eq. (46) one obtains
an explicit solution for n�. Each equation is of second order
and the refractive indices are

n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ϒfΣg

q
�

ffiffiffiffi
Ω̃

p

2ω
; ð48aÞ

2ϒfΣg ¼ μϵþ Ω̃
4ω2

; ð48bÞ

where one easily verifies that their squares reproduce the
results in Eq. (47). Hence, for σ ¼ 0, σBij ≠ 0, we have a
dielectric nonconducting and dispersive medium. One can
verify that Eq. (45) provides three different expressions for
the following three situations: n ¼ ð0; n2; n3Þ, n ¼
ðn1; 0; n3Þ, and n ¼ ðn1; n2; 0Þ. For each of these three
choices, Eq. (46) yields two values for n, resulting in
birefringence.
Diagonalizing the EPT of Eq. (40) for zero Ohmic

conductivity (σ ¼ 0Þ and dropping the parametrization
given by Eq. (42), one obtains ϵ1 ¼ ϵ and
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ϵ2;3 ¼ ϵ� γ

ω2
; ð49aÞ

with

γðkÞ≡ ω

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðk=ωÞ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣyΣzk21 þ ΣxΣzk22 þ ΣxΣyk23

q
: ð49bÞ

In this case, when the two eigenvalues of the EPT, given in
Eq. (49a), are multiplied by μ, we obtain μϵ2;3 ¼ μϵ�, being
equal to the values for n2� in Eq. (46) calculated from the
condition det½Mij� ¼ 0. This numerical coincidence pro-
vides a nice example of the fact that even though we satisfy
the condition n2� ¼ μϵ�, this equality does not imply that
the associated eigenvectors of the EPT would necessarily
correspond to the propagation modes of the electric field.
The corresponding eigenvectors are

e1 ¼

0
B@

k1=k3
k2=k3
1

1
CA; ð50aÞ

e2 ¼
1

ϰ

0
B@

iΣxk2γ − ΣxΣyk1k3
−iΣyk1γ − ΣxΣyk2k3

ϰ

1
CA; ð50bÞ

e3 ¼
1

ϰ

0
B@

−iΣxk2γ − ΣxΣyk1k3
iΣyk1γ − ΣxΣyk2k3

ϰ

1
CA; ð50cÞ

where

ϰ ¼ ΣzðΣyk21 þ Σxk22Þ
¼ ω2n2ΣzðΣym2

1 þ Σxm2
2Þ; ð51Þ

with m defined in Eq. (42). Note that

e1 · e�2 ¼ 1 −
ðk21 þ k22ÞΣxΣy

ϰ

− i
γk1k2ðΣx − ΣyÞ

ϰk3
; ð52aÞ

e1 · e�3 ¼ e�1 · e2; ð52bÞ

e2 · e�3 ¼ 1 −
Σ2
xðγk2 þ ik1k3ΣyÞ2

ϰ2

þ Σ2
yðk2k3Σx þ iγk1Þ2

ϰ2
: ð52cÞ

The above calculation shows that k · ea ≠ 0 for all a ¼ 1,
2, 3 in such a way that these eigenvectors cannot describe

the propagation modes E� of the electric field. In order to
clearly illustrate this point, we calculate such propagation
modes for the particular case where k ¼ ðk1; k2; 0Þ ¼
ωnðm1; m2; 0Þ and compare those with the corresponding
eigenvectors of the EPT. The results for the propagation
modes are

E� ¼

0
B@

−ωn�m2=u�
ωn�m1=v�
�iω2Σz=

ffiffiffiffiffiffi
ϰ�

p

1
CA; ð53aÞ

with

u� ¼ μϵ

1 ∓ μΣxΣz=
ffiffiffiffiffiffi
ϰ�

p ; ð53bÞ

v� ¼ μϵ

1 ∓ μΣyΣz=
ffiffiffiffiffiffi
ϰ�

p ; ð53cÞ

ϰ� ¼ ω2n2�ΣzðΣym2
1 þ Σxm2

2Þ: ð53dÞ

The refractive indices satisfy the quadratic equation

n2� ¼ μ

�
ϵ� n�

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣzðΣxm2

2 þ Σym2
1Þ

q �
; ð54Þ

which is written in terms of the unit vector m defining the
planes of constant phase of the wave. The dispersion
relations ω� ¼ ω�ðkÞ are

ω� ¼ 1ffiffiffiffiffi
μϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 ∓ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣzðΣxk22 þ Σyk21Þ

qr
: ð55Þ

The functions u� and v� satisfy the useful relations

n2�

�
m2

1

v�
þm2

2

u�

�
¼ 1; ð56Þ

which are just a consequence of Eq. (54). We observe that

m ·E� ¼ �ϵ−1m1m2

ðΣx − ΣyÞ
ffiffiffiffiffi
Σz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σym2

1 þ Σxm2
2

q : ð57Þ

Due to γjk3¼0 ¼
ffiffiffi
ϰ

p
, from Eqs. (50b) and (50c) we read that

in this case the eigenvectors of the EPT are

e� ≡�i
ffiffiffi
ϰ

p
e2;3 ¼

0
B@

−Σxk2
Σyk1

�i
ffiffiffi
ϰ

p

1
CA; ð58aÞ

ϵ� ¼ ϵ�
ffiffiffi
ϰ

p
ω2

; ð58bÞ
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with ϰ of Eq. (51). The latter e� do not coincide withE� of
Eq. (53). The propagating modes of Eq. (53) are not
orthogonal to the wave vector k. This is a characteristic
of wave propagation in anisotropic media, which never-
theless must always fulfill k ·D ¼ 0 in the absence of
sources.
To have a direct physical interpretation of the propagat-

ing modes in Eq. (53), we perform another simplification
and consider the case of propagation along the y axis,
i.e., we take m ¼ ð0; 1; 0Þ. Now we have n2� ¼ u� andffiffiffiffiffiffi
ϰ�

p ¼ ωn�
ffiffiffiffiffiffiffiffiffiffi
ΣxΣz

p
. After substituting in Eq. (53), we

obtain the normalized electric fields

Ê�jm1¼m3¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σx

Σx þ Σz

s 0
B@

1

0

∓i
ffiffiffiffiffiffiffiffiffiffiffiffi
Σz=Σx

p
1
CA; ð59Þ

which describe elliptically polarized modes with distinct
refractive indices

n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵþ μ2

4ω2
ΣxΣz

s
� μ

2ω

ffiffiffiffiffiffiffiffiffiffi
ΣxΣz

p
: ð60Þ

The latter correspond to specific cases of Eq. (48). The
modes associated with Ê� in Eq. (59) represent the left-
handed and right-handed polarization states via the same
definition used at the end of Sec. III A. It is relevant to point
out that the propagation of the wave associated with
Eq. (59) occurs along the y axis, while the wave connected
to Eq. (34) propagates along the z axis. This explains the
opposite signs that appear in the polarization modes of
Eq. (59) in comparison with those of Eq. (34).
Making cyclic changes among fx; y; zg, we identify

n� ¼ nL;R, thus characterizing an optically active medium.
Note that in this particular case we have k · Ê� ¼ 0, so we
expect Ê� to be proportional to the eigenvectors e� in
Eq. (58a), as can be readily verified.
It is also easy to notice that Eq. (48) together with

Eq. (60) include the isotropic case. Indeed, assuming that
Σx ¼ Σy ¼ Σz ¼ Σ, we have Ω̃ ¼ μ2Σ2 and Eq. (48)
exactly reproduces Eq. (25). Also, we recover the circularly

polarized modes of Eq. (34), though with respect to a
different axis. Both the isotropic and anisotropic non-
conducting diagonal cases exhibit birefringence.
Still, a main difference arises: in the former case, the two

refractive indices are independent of the direction defined
by the wave vector k [see Eq. (24)], while in the latter case
a direction dependence emerges due to the appearance of Ω̃
in Eq. (47). Nevertheless, Ω̃ is a quadratic function of the
components of the wave vector k, which yields a parity-
invariant individual refractive index. As in the isotropic
case, parity violation manifests itself in the different
refractive indices of the left- and right-handed modes.
Another remarkable feature of the diagonal anisotropic
case, which will also appear in the instances discussed
below, is the presence of a non-Hermitian EPT. Although
the latter opens up interesting new possibilities, we defer
related analyses to future work.
Finally, it is intriguing to notice that a diagonal chiral

conductivity tensor inserted into the Maxwell equations is
not enough to establish a conducting behavior for a
dielectric medium although this is the chiral conductivity
configuration most used and cited in the literature.

C. Nondiagonal antisymmetric conductivity

Now we analyze the case where the magnetic conduc-
tivity is described by an exotic configuration given by an
antisymmetric tensor, σBij, parametrized in terms of a three-
vector, b ¼ ðb1; b2; b3Þ, as

σBij ¼ ϵijkbk; ð61Þ

with the Levi-Civita symbol ϵijk in three dimensions.
Notice that this case corresponds to the situation in
magnetohydrodynamics of an isotropic resistivity in
Eq. (1) and the vector b is proportional to the plasma
velocity. Inserting Eq. (61) into Eq. (12b), leads to the EPT

ϵ̄ijðωÞ ¼
�
ϵþ i

σ

ω
þ i

k · b
ω2

�
δij −

i
ω2

kibj: ð62Þ

By employing Eq. (62) in Eq. (15b), one obtains

½Mij� ¼

0
B@

n22 þ n23 − μϵ −n1n2 −n1n3
−n1n2 n21 þ n23 − μϵ −n2n3
−n1n3 −n2n3 n21 þ n22 − μϵ

1
CA

þ i
μ

ω

0
B@

−ðσ þ n2b2 þ n3b3Þ n1b2 n1b3
n2b1 −ðσ þ n1b1 þ n3b3Þ n2b3
n3b1 n3b2 −ðσ þ n1b1 þ n2b2Þ

1
CA; ð63Þ
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for which det½Mij� ¼ 0 implies

�
n2 − i

μ

ω
ðb · nÞ − μ

�
ϵþ i

σ

ω

��
2

¼ 0: ð64Þ

Contrary to Eqs. (43) and (45), the latter dispersion
equation involves the square of a quadratic polynomial
in the components of n. Hence, the solution for the
refractive index is doubly degenerate and there is only a
single refractive index with a non-negative real part.
Implementing b · n ¼ bn cos θ with b ¼ jbj, Eq. (64) pro-
vides the following refractive index:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϒb þ iμ

σ

ω

r
þ iΞb; ð65aÞ

2ϒb ¼ μϵ − Ξ2
b; Ξb ¼

μ

2ω
b cos θ: ð65bÞ

Note the presence of the minus sign between the two
contributions in ϒb in contrast to ϒΣ of Eq. (22b) and ϒfΣg
in Eq. (48b). Thus, we assume that μϵ ≥ Ξ2

b. Decomposing
the latter refractive index into its real and imaginary parts
implies

n ¼ α0þ þ iðΞb þ α0−Þ; ð66aÞ

where

α0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2

b þ
�
μσ

2ω

�
2

s
�ϒb

vuut : ð66bÞ

In this case, we obtain an anisotropic complex refractive
index that captures the effects of the exotic conductivity, as
shown in Eq. (66a), which is compatible with a conducting
medium. The imaginary part takes the role of the absorption
coefficient for the electromagnetic wave, which undergoes
attenuation while it propagates. Therefore, an electromag-
netic wave cannot propagate through such a medium, since
absorption damps its intensity. When considered in a
dielectric conducting medium, ðϵ; σ; σBÞ, the magnetic
conductivity modifies the real and imaginary parts of the
refractive index. This causes a modification of the absorp-
tion coefficient given by α̃ ¼ ωα0− þ μb cos θ, where α0− is
stated in Eq. (66b).
Note that for a diagonal magnetic conductivity there

were two distinct refractive indices with a positive real part;
see Eqs. (25) and (48). Thus, the occurrence of a single
refractive index in Eq. (65) is quite unexpected in the
context of a parity-violating theory. In contrast to the cases
studied before, a magnetic conductivity given by Eq. (61)
does not imply birefringence. These results suggest that an
antisymmetric magnetic conductivity leads to an EPT ϵ̄ij of
a form that permits only a single refractive index with a

positive real part. In the following section, we will calculate
the propagation modes to get a definite prediction.
A parity transformation in three spatial dimensions

implies cos θ ↦ cosðπ − θÞ ¼ − cos θ for the polar angle
(and ϕ ↦ π þ ϕ for the azimuthal angle, which does not
occur in the refractive index). As the real part of the
refractive index in Eq. (65) only contains squares of cos θ, it
is invariant under parity transformations. However, at least
the imaginary part of n exhibits parity-violating properties.
We note in passing that there is a direct connection

between the configuration under consideration and the
material studied in Ref. [36]. We call attention to Eq. (2)
in the latter paper that describes a magnetic conductivity for
the material TaAs. This means that the authors of Ref. [36]
have found a microscopic realization of a crystal that leads
to a macroscopic, effective magnetic conductivity of the
form of our Eq. (61) (with the identification σBĉi ¼ −bi
with their σB and ĉ).
Our understanding of their result is as follows. They

employed a sample-based coordinate system ða; b; cÞ and
the crystal lattice of TaAs has symmetries with respect to
certain axes and planes of this coordinate system. There is a
second-rank tensor σP that links components of the current
J and angular momentum L: Ji ¼ ðσPÞikLk.4 The nonzero
components of σP are determined from the symmetry
properties of the crystal. The current J transforms like a
vector under parity transformations and reflections at single
planes, whereas the angular momentumL transforms like a
pseudovector.
Let us consider the b-c plane. The above relation links

components of the current and angular momentum in this
plane: Jb ¼ ðσPÞbcLc. If there is a reflection symmetry
with respect to the b-c plane, the vectors transform
according to the set of (un-numbered) transformation rules
given under Eq. (1) in Ref. [36]. If Jb is then linked to Lc by
a nonzero ðσPÞbc, there will be a contradiction, as the
components of J in the plane transform differently from the
components of L in the same plane. So the corresponding
component of the tensor σP must be zero. These arguments
imply a magnetic conductivity of TaAs in the form
of Eq. (61).

1. Dielectric nonconducting medium

Let us come back to Eq. (65). If we start from a dielectric
with zero Ohmic conductivity ðϵ ≠ 0; σ ¼ 0; σB ≠ 0Þ, the
latter equations reduce to

n ¼
ffiffiffiffiffiffiffiffiffi
2ϒb

p
þ iΞb; Ξb ¼

μb3
2ω

; ð67Þ

which is compatible with the behavior of a conducting
medium. Therefore, the off-diagonal chiral conductivity of

4Note that we employ symbols different from those in Ref. [36]
to avoid confusion with some of our quantities.
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Eq. (61) ascribes a conducting behavior to the material even
for a purely dielectric substrate ðϵ ≠ 0; σ ¼ 0Þ.

2. Propagation modes

For a phenomenological analysis of the physics, let us
choose a convenient coordinate system, without loss
of generality. Since n and b define a plane, to be labeled
the y-z plane, we take the z axis along the direction of n
so that

n¼ð0;0;nÞ; b¼ bð0;sinθ;cosθÞ≡ ð0;b2;b3Þ: ð68Þ

Recall that θ is the angle between n and b. This choice of
coordinates leads to a very simple expression for the matrix
of Eq. (63):

½Mij� ¼

0
B@
n2−μϵ−n iμ

ωb3 0 0

0 n2−μϵ−n iμ
ωb3 0

0 n iμ
ωb2 −μϵ

1
CA; ð69Þ

which immediately yields the dispersion equation

�
n2 − μϵ − n

iμ
ω
b3

�
2

¼ 0; ð70Þ

with nb3 ¼ n · b. The latter corresponds exactly to Eq. (64)
when σ ¼ 0. Equation (70) has a single solution with a non-
negative real part, given by Eq. (67).

Recalling that
ffiffiffiffiffiffiffiffiffi
2ϒb

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵ − Ξ2

b

q
, we distinguish

between two cases according to the choice of the sign
inside the square root of the above relation. In the first case,
when μϵ ≤ Ξ2

b, the refractive index is purely imaginary with
a positive imaginary part, which damps propagation. The
alternative, μϵ > Ξ2

b, yields propagation modes that are to
be described now. The condition MijEj ¼ 0 requires

E3 ¼ n
ib2
ϵω

E2; ð71Þ

leaving E1 completely arbitrary. We take advantage of this
freedom to choose two orthogonal vectors satisfying the
condition in Eq. (71). We find

E� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þQ2Þ

p
0
B@

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

p
−1

−iQeiα

1
CA; ð72aÞ

Q ¼ b2N
ϵω

: ð72bÞ

Here we parametrized the complex refractive index as

n ¼ Neiα; N ¼
ffiffiffiffiffiffiffiffi
n�n

p
¼ ffiffiffiffiffi

μϵ
p

; ð73aÞ

tan α ¼ Ξbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵ − ðΞbÞ2

p : ð73bÞ

We can easily verify that E�þ · E− ¼ 0 and also that the y
and z components of the propagation modes obey Eq. (71).
Thus, we have recovered two orthogonal modes whose
propagation is described by the same refractive index. This
is an unexpected result, which nevertheless is analogous to
the simplest isotropic case (without the presence of a
magnetic conductivity) where two linear polarization
modes associated with the same refractive index occur.
Notice that we have k ·E� ≠ 0 in this case, which prevents
an interpretation of the fields in terms of standard elliptical
polarizations with components defined in the two-
dimensional subspace orthogonal to k.
Since in the coordinate system defined in Eq. (68) we

only have access to the inversion z ↦ −z, the parity
transformation n ↦ −n can be better studied in a rotated
frame where now the vector b defines the new z axis
endowing the system with axial symmetry. The new frame
is obtained via a rotation of the former one by an angle
θ ¼ arccosðb3=jbjÞ with respect to an axis perpendicular to
the n-b plane. The latter can be associated with an arbitrary
plane having a constant azimuthal angle ϕ in spherical
coordinates. Calling Ēi the components of the electric field
in the rotated frame, we derive the following expressions:

Ē1
� ¼ � 1ffiffiffi

2
p ; ð74aÞ

Ē2
� ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ Q̄2sin2θÞ

p ½cos θ − iQ̄eiαsin2θ�; ð74bÞ

Ē3
� ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ Q̄2 sin2 θÞ

p sin θ½1þ iQ̄eiα cos θ�; ð74cÞ

with

Q̄ ¼ bN
ϵω

: ð74dÞ

The magnetic fields corresponding to Eq. (72) are obtained
using B� ¼ n ×E� and those associated with Eq. (74) are
computed in an analog way.
As n lies in a plane, we restrict the parity transformation

to the replacement rule of the polar angle: θ ↦ π − θ.
Then, a parity transformation of a vector in two dimensions
corresponds to its reflection at one of the two axes modulo a
rotation by π. Thus, the expected behavior under a parity
transformation in the plane is that only one of the two
vector components flips its sign. The vector n is trans-
formed in a way that the n3 component is reflected at the n2
axis. If parity was conserved, the sign of the second
components Ē2

� should change under a parity
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transformation, while the third components Ē3
� should

remain invariant. However, one can verify that Ē2
� and

Ē3
� do not behave in this manner. On the contrary, the terms

involving b spoil the behavior expected, which is a signal of
parity violation. Note that the refractive indices of Eqs. (65a)
and (67) also change under parity transformations,
as Ξb↦−Ξb.

D. Nondiagonal symmetric conductivity tensor

Now we examine the case where the magnetic conduc-
tivity is given by a traceless symmetric tensor, in accor-
dance with the following parametrization:

σBij ¼
1

2
ðaicj þ ajciÞ; ð75Þ

where ai and ci are the components of two orthogonal
background vectors a and c, i.e., a · c ¼ 0 such that
σBii ¼ 0. Inserting Eq. (75) into Eq. (12b) yields

ϵ̄ij ¼
�
ϵþ i

σ

ω

�
δij þ

i
2ω2

ðaicn þ anciÞϵnbjkb: ð76Þ

The tensor stated in Eq. (15b) is explicitly represented by
the following matrix:

½Mij� ¼

0
B@

n22 þ n23 − μϵ −n1n2 −n1n3
−n1n2 n21 þ n23 − μϵ −n2n3
−n1n3 −n2n3 n21 þ n22 − μϵ

1
CA

− i
μ

2ω

0
B@

2σ þ ϵ11 n1ða1c3 þ a3c1Þ − 2n3a1c1 −n1ða1c2 þ a2c1Þ þ 2n2a1c1
−n2ða2c3 þ a3c2Þ þ 2n3a2c2 2σ þ ϵ22 n2ða2c1 þ a1c2Þ − 2n1a2c2
n3ða3c2 þ a2c3Þ − 2n2a3c3 −n3ða3c1 þ a1c3Þ þ 2n1a3c3 2σ þ ϵ33

1
CA; ð77aÞ

where

ϵ11 ¼ ða1c2 þ a2c1Þn3 − ða1c3 þ a3c1Þn2; ð77bÞ

ϵ22 ¼ ða2c3 þ a3c2Þn1 − ða1c2 þ a2c1Þn3; ð77cÞ

ϵ33 ¼ ða3c1 þ a1c3Þn2 − ða3c2 þ a2c3Þn1: ð77dÞ

The evaluation of det½Mij� ¼ 0 yields the dispersion
equation stated as follows:

0 ¼
�
n2 − μ

�
ϵþ i

σ

ω

�
þ i

μ

2ω
n · ða × cÞ

�

×

�
n2 − μ

�
ϵþ i

σ

ω

�
− i

μ

2ω
n · ða × cÞ

�
: ð78Þ

In contrast to the antisymmetric magnetic conductivity of
Eq. (61), the new configuration of Eq. (75) does not imply a
single doubly degenerate refractive index [cf. Eq. (64)]. In
contrast, we obtain two distinct refractive indices in the
current scenario. Using n · ða × cÞ ¼ njajjcj cosφ in
Eq. (78) results in

n� ¼ α00þ þ iðα00− � Ξa;cÞ; ð79aÞ

Ξa;c ¼
μ

4ω
jajjcj cosφ; ð79bÞ

α00� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2

a;c þ
�
μσ

2ω

�
2

s
�ϒa;c

vuut ; ð79cÞ

2ϒa;c ¼ μϵ − Ξ2
a;c; ð79dÞ

with the presence of new imaginary terms stemming from
the exotic conductivity and modifying the absorption
coefficient. What is analogous to the antisymmetric con-
figuration of Eq. (61) is the structure of a single one of the
two refractive indices present, i.e., the dependence of the
refractive index on the angle between k and a three-vector
(b for the antisymmetric case and a × c for the current
scenario). Also, there is again a relative minus sign between
the two contributions in Eq. (79d). Therefore, we assume
μϵ ≥ Ξ2

a;c.
A crucial difference is that two angles play a role for the

current configuration: the angle φ between k and a × c for
one mode and the complementary angle π − φ for the other
mode. This also means that both modes interchange their
roles when φ exceeds π=2. As the modes differ in their
imaginary parts only, birefringence does not occur. It is
merely the attenuation that differs for both modes.

1. Dielectric nonconducting medium

In this case we start from a medium with zero Ohmic
conductivity ðϵ ≠ 0; σ ¼ 0; σB ≠ 0Þ. Equation (79) is then
reduced to
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n� ¼ ffiffiffiffiffiffiffiffiffiffiffi
2ϒa;c

p � i
μ

4ω
jajjcj cosφ; ð80Þ

which exhibits an exotic absorbing behavior for noncon-
ductive matter, with attenuation coefficient 2α̃ ¼
μja × cj cosφ provided μϵ ≥ Ξ2

a;c. In this case, the modi-
fication is proportional to ja × cj ¼ jajjcj, which is why
such an effect is associated with the nondiagonal elements
of σBij instead of its trace.
Note that this nondiagonal magnetic conductivity also

provides a conducting behavior for a dielectric medium, in
much the same way as observed for the nondiagonal
antisymmetric case [cf. Eq. (67)].

2. Propagation modes

In order to examine the propagating modes, we will
rewrite the matrix given in Eq. (77a) for a simplified
coordinate system where a ¼ ð0; a; 0Þ and c ¼ ð0; 0; cÞ,
that is

Mij ¼ Aδij − ninj

þ Cðϵkljδi2δk3nl þ ϵkljδi3δk2nlÞ; ð81aÞ

with

A ¼ n2 − μϵ; C ¼ −i
μ

2ω
ac: ð81bÞ

The explicit form of the matrix in Eq. (77) simplifies to

½Mij� ¼

0
B@

A − n21 −n1n2 −n1n3
−n1n2 A − n22 −n2n3
−n1n3 −n2n3 A − n23

1
CA

þ C

0
B@

0 0 0

−n2 n1 0

n3 0 −n1

1
CA; ð82Þ

providing the following dispersion equation:

ðA2 − C2n21ÞðA − n2Þ ¼ 0: ð83Þ

Since A − n2 ¼ −μϵ, the dispersion relations are

A ¼ �Cn1; ð84Þ

with n1 ¼ n cosφ and corresponding to the σ ↦ 0 limit of
Eq. (78).We observe that the refractive indices depend on the
direction of n, which is defined in terms of the spherical
angles θ and ϕ according to Eq. (42). Recalling that φ is the
angle between n and a × cwe have that cosφ ¼ sin θ cosϕ.
Taking the plus sign in Eq. (84) and using Eq. (82) we

obtain

Ey
þ ¼ n2

n1
Exþ; Ez

þ ¼
�
Cn1 − n21 − n22

n1n3

�
Exþ: ð85Þ

Therefore, the electric field for the plus propagating
mode is

Eþ ¼ Eð0Þ
þ ðn1n3; n2n3; Cn1 − n21 − n22Þ; ð86Þ

with an appropriately chosen amplitude Eð0Þ
þ . For the

negative sign in the dispersion relation of Eq. (84), we
obtain

Ex
− ¼ n1

n3
Ez
−; Ey

− ¼ −
Cn1 þ n21 þ n23

n2n3
Ez
−: ð87Þ

Thus, the electric field reads

E− ¼ Eð0Þ
− ðn1n2;−ðCn1 þ n21 þ n23Þ; n2n3Þ; ð88Þ

with another amplitude Eð0Þ
− . We observe that n ·E� ≠ 0.

Equations (86) and (88) represent the propagation modes for
the case of a symmetric exoticmagnetic conductivitywith the
corresponding magnetic fields given by B� ¼ n ×E�.

IV. CONSISTENCY OF MAXWELL’S EQUATIONS

For completeness, in this sectionwe extend the current J in
Eq. (2a) to include an external-source contribution Je such
that now J ¼ Je þ σ ·Eþ σB · B. In the previous sections,
we discussed wave propagation outside of sources, which
effectively meant taking Je ¼ 0. Moreover, the different
scenarios we have considered were defined by fixing the
current J via specific choices of the electric and magnetic
conductivities. Also, the propagation properties of the fields
were obtained just by using Faraday’s and Ampère’s laws,
incorporated into Eq. (12a), with no reference to Gauss’ law
given by the first of Eq. (2a).
A natural question that arises is the identification of the

particular contributions to the charge density ρ that are
consistent with the arbitrary choice of currents, in such a
way that charge conservation ∂tρþ∇ · J ¼ 0 is preserved.
To this end, we work in momentum space with the standard
conventions ∇ ↦ ik and ∂t ↦ −iω. The main point to
recognize is that Ampère’s law yields

iωk ·D − k · J ¼ 0; ð89Þ

which together with Gauss’ law ik ·D ¼ ρ gives the
identification

ρ ¼ k · J=ω; ð90Þ

for ω ≠ 0, which is precisely the charge conservation
condition in momentum space. In what follows, we
summarize the expressions for the charge densities
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corresponding to our previous choices of the magnetic
conductivity, setting σij ¼ 0, and recalling that the
Maxwell equations retain the general form of Eqs. (2a)
and (2b).
For the isotropic case of Sec. III Awith J ¼ Je þ ΣB, the

charge density is just ρ ¼ ρe ¼ k · Je=ω, since k · B ¼ 0.
The antisymmetric case studied in Sec. III C with J ¼
Je − b ×B yields

ρ ¼ ρe − μϵE · b −
iμ
ω
Je · b; ð91Þ

where we used some of the Maxwell equations in order to
get rid of the spatial derivatives arising from Eq. (90).
Finally, the symmetric case of Sec. III D, where we have

assumed a · c ¼ 0, starts from

J ¼ Je þ
1

2
½aðc · BÞ þ cða ·BÞ�

¼ Je þ a × ðc ×BÞ − 1

2
ða × cÞ × B; ð92Þ

and implies

ρ ¼ ρe −
μϵ

2
E · ða × cÞ þ 1

ω
k · ½a × ðc ×BÞ�

−
iμ
2ω

Je · ða × cÞ: ð93Þ

The alternative second form of Eq. (92) was motivated by
an attempt to use the remaining Maxwell equations in favor
of rewriting Eq. (90) without spatial derivatives, which,
unfortunately, was not possible in this case.

V. SOME CLASSICAL EFFECTS

Towards the end of the paper, we intend to understand
the impact that a magnetic conductivity has on certain
phenomena in electrodynamics that are a consequence of
material parameters such as refractive indices. As modified
refractive indices for particular choices of a magnetic
conductivity have already been determined earlier, we will
now benefit from these findings.

A. Skin depth effect

When an electromagnetic wave falls on the surface of a
conductor, its amplitude will partially penetrate the material
due to the attenuation coefficient, while another part will be
reflected. The characteristic penetration length into the
conducting medium defines the skin depth [30,33]:

δ̄ ¼ 1

ωIm½n� ; ð94Þ

where Im½n� is the imaginary part of the complex refractive
index. In the usual scenario for a simple conductor, the
general skin depth reads

δ̄ðωÞ ¼ 1

ωn00
¼

ffiffiffiffiffiffiffiffiffi
2

μωσ

s
; ð95Þ

for a good (Ohmic) conductor and with n00 given by
Eq. (7b). Consequently, the skin depth decreases for high
frequencies.
We can now write down the skin depth for the particular

symmetric (S) and antisymmetric (AS) scenarios of
Sec. III C and Sec. III D, respectively, in the case when
the conducting behavior is directly associated with the
magnetic conductivity only, i.e., when σ ¼ 0. From
Eqs. (67) and (80), we arrive at

δ̄AS ¼
2

μb cos θ
; ð96aÞ

δ̄S ¼
4

μja × cj cosφ : ð96bÞ

Therefore, such a skin depth effect does not exhibit a
frequency dependence, which means that the penetration
length is the same for all frequency bands. This is an
unusual characteristic for conductors.

B. Reflection coefficient at the surface
of conducting matter

Consider a system composed of an ordinary dielectric
characterized by a refractive index n1 ¼ ffiffiffiffiffiffiffiffiffi

μ1ϵ1
p

and a
conducting phase of matter with a complex refractive index
n2 ¼ n02 þ in002 described by the parameters ϵ2, μ2 and the
Ohmic conductivity σ. For a wave that propagates from the
dielectric and enters the surface of the conductor, the
reflection coefficient for normal incidence is given by [30]

R ¼
���� μ1n

0
2 − μ2n1 þ iμ1n002

μ1n02 þ μ2n1 þ iμ1n002

����
2

: ð97Þ

Considering n1 ≪ n02 one can rewrite Eq. (97) in the general
form

R ≈ 1 − 4

�
μ2
μ1

�
n1n02

n022 þ n0022
: ð98Þ

In standard electrodynamics, for a good conductor
(σ=ðωμ2Þ ≫ 1) one gets n02 ¼ n002 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2σ=ð2ωÞ

p
. Then

the reflection coefficient R from Eq. (98) yields

R ≈ 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
μ2ϵ1ω

μ1σ

r
: ð99Þ

Settingμ1 ¼ μ2weobtain theknownHagen-Rubens formula
[30]:
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R ≈ 1 − 2

ffiffiffiffiffiffiffiffiffiffiffi
2
ϵ1ω

σ

r
: ð100Þ

Now we will derive the version of the latter relation for
dielectric media (σ ¼ 0) endowed with an exotic magnetic
conductivity σBij.
In the scenario of an antisymmetric σBij, the refractive

index is modified according to Eq. (67), so that

n02¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ϵ2−

�
μ2
2ω

bcosθ

�
2

s
; n002 ¼

μ2
2ω

bcosθ: ð101Þ

By inserting Eq. (101) into Eq. (98), one obtains

RAS ≈ 1 − 4

ffiffiffiffiffiffiffiffiffi
μ2ϵ1
μ1ϵ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ2
ϵ2

�
b cos θ
2ω

�
2

s
; ð102Þ

for real n02. This result is a Hagen-Rubens-like formula for
the case when there is a contribution from the antisym-
metric magnetic conductivity only. It is also very different
from the reflection coefficient for an ordinary dielectric,

R ≈ 1 − 4

ffiffiffiffiffiffiffiffiffi
μ2ϵ1
μ1ϵ2

r
; ð103Þ

since the magnetic conductivity introduces a frequency-
dependent term in R. Hence, the exotic conductivity results
in a conducting-matter phase in the limit σ ↦ 0.
In the scenario of a symmetric σBij, one obtains a similar

result:

RS ≈ 1 − 4

ffiffiffiffiffiffiffiffiffi
μ2ϵ1
μ1ϵ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ2
ϵ2

�jajjcj cosφ
4ω

�
2

s
: ð104Þ

VI. FINAL REMARKS

Electrodynamics in matter is well described by the
Maxwell equations and the constitutive relations.
Extensions of the Maxwell equations including the pos-
sibility of a chiral magnetic current is a topical issue
[14–21]. In this work, we have extended the scenario of
electric currents generated by magnetic fields by studying
some basic classical properties of a magnetic conductivity
implemented into the Maxwell equations through the
extension of Ohm’s law given in Eq. (11).
The main purpose was to examine the propagation of

electromagnetic waves in dispersive dielectric materials,
paying attention to the conduction properties induced upon
non-Ohmic materials (σ ¼ 0). To this end, we proposed
some particular realizations for the magnetic-conductivity
tensor σBij: (i) a diagonal isotropic and a diagonal aniso-
tropic tensor (which include the chiral magnetic effect) in
Secs. III A and III B (ii) a nondiagonal antisymmetric

tensor in Sec. III C, and (iii) a traceless nondiagonal
symmetric tensor in Sec. III D. Let us point out that the
trace of the magnetic-conductivity tensor σBij is related to
the chiral magnetic effect and that the off-diagonal com-
ponents of σBij describe generalizations of such an effect. All
these configurations induce parity violation, since the
associated current entering Ampère’s law is linear in B.
We have verified that a diagonal isotropic tensor σBij ¼

Σδij modifies the refractive index of a dispersive dielectric
medium yielding two distinct complex values n�. Most
notably, these results are independent of the propagation
direction, implying what we could call an “isotropic bire-
fringence.” In the σ ¼ 0 case, the resulting refractive indices
are real and the propagation modes correspond to left- and
right-handed circular polarizations. As such, thesemedia can
be characterized as optically active having a frequency-
independent specific rotatory power Δ ¼ −μΣ=2. This is a
consequence of the EPT being Hermitian and the electric
field being orthogonal to the wave vector k. In this case,
parity violation manifests itself only in the fact that nþ is
different from n−.
The diagonal anisotropic case also exhibits birefrin-

gence, but this time the complex refractive indices are
direction dependent. Nevertheless, the functions depend on
the squares of the momentum components ki for i ¼ 1, 2, 3
and are insensitive to parity transformations. Thus, the
violation of this symmetry is again manifest only in the
different values of n�. The EPT is non-Hermitian and
k · E ≠ 0, in general, thus preventing the description of
polarization in terms of left- and right-handed modes.
Focusing on the σ ¼ 0 case, we find again real refractive

indices. In this situation we have explored in detail the case
of propagation along n ¼ ðn1; n2; 0Þ showing explicitly
that the eigenvectors of the EPT do not correspond to the
polarization modes of the electric field. A further particular
case of propagation along n ¼ ð0; n2; 0Þ restores the
orthogonality between k and E and ends up with ellipti-
cally polarized propagation modes. The case of circular
polarization is recovered when taking the isotropic limit
Σi ¼ Σ, which also reproduces the previous expressions for
the refractive indices. As expected, in this specific situation
the eigenvectors of the EPT and the propagation modes
coincide. We remark that both cases of a diagonal chiral
conductivity tensor do not induce a conducting behavior in
a non-Ohmic dielectric medium.
We have also examined a nondiagonal (antisymmetric

and symmetric) σBij. In these cases, the off-diagonal
components of σBij provide complex refractive indices even
for a vanishing Ohmic conductivity (σ ¼ 0), which leads to
the remarkable behavior of a conducting phase in the
dielectric substrate. The magnetic conductivity in these
cases implies nonzero absorption coefficients that damp the
intensity of electromagnetic waves propagating through the
medium. In both cases, the EPT is non-Hermitian,
k · E ≠ 0, and the refractive indices are direction
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dependent. The latter exhibit contributions that obviously
induce parity violation.
A rather unexpected feature in the context of a parity-

violating theory occurs for the antisymmetric case, which is
the absence of birefringence. That is to say, we obtain only
one doubly degenerate value for the refractive index, which
nevertheless supports two orthogonal polarization modes,
as shown in general when σ ¼ 0. On the contrary, the
symmetric case exhibits birefringence.
For the nondiagonal cases (antisymmetric or symmetric)

we have calculated the associated skin depth, which in the
limit σ ↦ 0 becomes a constant for all frequency bands of
the electromagnetic wave that enters the medium. We also
have derived a generalization of the Hagen-Rubens relation
for nonconducting media (σ ¼ 0), with contributions stem-
ming from the magnetic conductivity only. In this case, the
reflection coefficient is frequency dependent, which is a
property that does not occur at the interface of two ordinary
dielectric substrates.
It is interesting to observe that when σ ¼ 0, the equation

determining the refractive indices in all four cases consid-
ered boils down to the form

n2 − μϵ ¼ nB; ð105aÞ

where B specifies each case according to

B ¼ � μΣ
ω

; ð105bÞ

for the isotropic diagonal case of Sec. III A,

B ¼ �
ffiffiffiffi
Ω̃

p

ω
; ð105cÞ

for the anisotropic diagonal case of Sec. III B,

B ¼ i
μ

ω
b cos θ; ð105dÞ

for the antisymmetric case of Sec. III C and finally,

B ¼ �i
μ

2ω
jajjcj cosφ; ð105eÞ

for the symmetric case of Sec. III D.
A comment in relation to the consistency of our

calculation is now in order. A current density J linear in
the magnetic field has been the only additional input we
have introduced into the calculation of the propagation
properties of a wave, without making any statement about
the corresponding charge density required by current
conservation. The point to be recalled is that when
ω ≠ 0, Ampère’s law directly yields charge conservation
via the use of Gauss’ law, as shown in Sec. IV. Thus, for
completeness, in the latter section we have identified the
charge densities corresponding to some of the currents we
have introduced before. Perhaps an unexpected feature is
that some of the parameters defining such currents (b and
a × c, for example) give rise to additional contributions to
the charge density proportional to the external currents that
we have set equal to zero in this analysis.
Finally, we conclude that this work presents a classical

perspective of some novel effects that a magnetic conduc-
tivity can provide for the propagation of electromagnetic
waves in dispersive media.
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