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Because the Peccei-Quinn (PQ) symmetry has to be anomalous to solve the strong CP puzzle, some
colored and chiral fermions have to transform nontrivially under this symmetry. But when the Standard
Model (SM) fermions are charged, as in the PQ or Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models, this
symmetry ends up entangled with the SM global symmetries, baryon (B) and lepton (L) numbers. This
raises several questions addressed in this paper. First, the compatibility of axion models with some explicit
B- and/or L-violating effects is analyzed, including those arising from seesaw mechanisms, electroweak
instanton interactions, or explicit B- and L-violating effective operators. Second, how many of these effects
can be simultaneously present is quantified, along with the consequences for the axion mass and vacuum
alignment if too many of them are introduced. Finally, large classes of B- and/or L-violating interactions
without impact on axion phenomenology are identified, like, for example, the various implementations of
the type-I and -II seesaw mechanisms in the DFSZ context.
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I. INTRODUCTION

Even if the simplest axion models introduced more than
40 years ago have been ruled out, axions still remain one of
the best solutions for the strong CP problem of the
Standard Model (SM). This problem originates from the
observation that the QCD and the electroweak sectors, by
construction secluded, must somehow conspire to cancel
each other’s sources of CP violation. Indeed, while
individually their contributions to the θ term of QCD are
a priori both of Oð1Þ, the yet nonobserved electric dipole
moment of the neutron [1] requires their sum to be
tiny, θeff ≡ θQCD þ θYukawa ≲ 10−10.
Axions come under many guises, but the basic recipe is

always the same: Design a global Uð1Þ symmetry and
assign charges to some colored chiral fermions [2]. This
ensures that Uð1Þ rotations act on the strong CP phase,
since its current is anomalous. This is not sufficient yet to
dispose of the θ term, since fermion masses explicitly break
thisUð1Þ symmetry. To force θeff to zero, the trick proceeds
in two steps [2]. First, thisUð1Þ symmetry is spontaneously
broken, so that its associated Goldstone boson, the axion
[3,4], has a direct coupling to gluons. Second,

nonperturbative QCD effects create an effective potential
for the axion field, whose minimum is attained precisely
when the θ term is rotated away. In the process, the
axion acquires a small QCD-induced mass, typically
well below the eV scale [5,6]. Both the mass and the
couplings of the QCD axion are thus controlled by a single
scale: the one of spontaneous symmetry breaking, usually
dubbed fa.
To solve the strong CP puzzle, the axion needs to be

coupled to colored fermions, and this gives rise to two
broad classes of models. Those of the Kim-Shifman-
Vainshtein-Zakharov (KSVZ) type [7] introduce new very
heavy fermions, vectorlike for the SM gauge interactions,
while those of the PQ [2] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) [8] types make use of the SM chiral
quarks. In that latter case, the axion must arise from the
very same Higgs bosons that give the quarks their masses
and, thus, emerges only after the electroweak symmetry is
broken. In a previous study [9], we have described that, for
this class of models, the fermion charges are necessarily
ambiguous because of the presence of the accidental Uð1Þ
symmetries of the SM, corresponding to the conserved
baryon (B) and lepton (L) numbers. Though this ambiguity
was found to have no impact on the low-energy phenom-
enology, it raises several questions that we want to address
in the present paper. Specifically:

(i) Since the ambiguities arise from the SM accidental
symmetries, the main question is to study what
happens in the presence of explicit B- and/or
L-breaking terms. There are some conflicting con-
clusions regarding the capabilities of DFSZ models
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to accommodate for such violations. We will see that
some limited violation is possible, characterize it,
and study the consequences when this limit is
overstepped.

(ii) A second question is to which extent is it possible to
fix the ambiguities, or said differently, are there
naturally some B and/or L components embedded in
the axion Uð1Þ symmetry. Of course, those compo-
nents are projected out when the symmetry is
spontaneously broken, but finding the optimal rep-
resentation for the Uð1Þ symmetry could simplify
the form of the axion effective Lagrangian. We will
see that, in most cases, neutrino masses and electro-
weak instanton effects hold the key to identify the
Uð1Þ symmetry unambiguously.

(iii) Finally, since these ambiguities have no phenom-
enological consequence, it is worth to inversigate
whether it can be used to relate seemingly different
models. We will see that the fermion charges for all
PQ and DFSZ-like models based on the same
Yukawa couplings, whether with a seesaw mecha-
nism of type I or II or with some (limited) B
violation, are actually equivalent. Thus, despite their
very different appearance in terms of effective
interactions, those models cannot be distinguished
at low energy.

The paper is organized as follows. To set the stage, we
start in the next section by presenting the PQ axion model
and the DFSZ axion model. Then, in Sec. III, we study the
compatibility of these models with lepton number viola-
tion, by introducing various mechanisms to generate
neutrino masses. In Sec. IV, we investigate the impact of
baryon number violation on axion models and explore what
would happen if further explicit B- and/or L-violating
interactions were introduced in the theory. Finally, our
results are summarized in Sec. V.

II. FERMION CHARGE AMBIGUITIES
IN AXION MODELS

In this section, the simplest axion models are briefly
reviewed. We focus on the precise identification of the
global and localUð1Þ symmetries at play and their breaking
pattern. In this way, it will be immediately obvious that,
when the scalars giving masses to the SM fermions are
charged under the PQ symmetry, there remains an ambi-
guity in the PQ charges of the fermions and that this
ambiguity is related to the invariance of the Yukawa
couplings under B and L. In the next sections, this freedom
will play a central role, as it will be used to accommodate
the possibility of B and/or L violation in axion models.

A. Axion in the PQ model

The starting point is a two-Higgs doublets with the scalar
potential

VTHDM ¼ m2
1Φ

†
1Φ1 þm2

2Φ
†
2Φ2 þ

λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
2Φ1ÞðΦ†

1Φ2Þ: ð1Þ

Provided a consistent spontaneous symmetry breaking
(SSB) occurs, the mass spectrum is then made of two
neutral scalar Higgs bosons h0 and H0, a pseudoscalar A0,
and a pair of charged Higgs bosons H�.
This potential is invariant under the independent rephas-

ing of the Higgs doublets, corresponding to a global
Uð1Þ1 ⊗ Uð1Þ2 symmetry. Actually, a linear combination
of these Uð1Þ charges is nothing but the gauged hyper-
charge. Note that this Uð1Þ1 ⊗ Uð1Þ2 symmetry is truly
active at the level of the whole two-Higgs doublet model
(THDM), and, in particular, assuming Yukawa couplings of
type II,

LYukawa ¼ −ūRYuqLΦ1 − d̄RYdqLΦ
†
2 − ēRYelLΦ

†
2 þ H:c:;

ð2Þ

it requires that fermions are assigned appropriate Uð1Þ1 ⊗
Uð1Þ2 charges. Beside, these Yukawa couplings are also
invariant under the global baryon and lepton number
symmetries, Uð1ÞB and Uð1ÞL. Those must be left
untouched by the electroweak symmetry breaking
(EWSB). So, all in all, the pattern of symmetry breaking is

GTHDM ¼ Uð1ÞB ⊗ Uð1ÞL ⊗ Uð1Þ1 ⊗ Uð1Þ2 ⊗ SUð2ÞL
⊗ SUð3ÞC

¼ Uð1ÞB ⊗ Uð1ÞL ⊗ Uð1ÞX ⊗ Uð1ÞY ⊗ SUð2ÞL
⊗ SUð3ÞC

⟶
EWSB

Uð1ÞB ⊗ Uð1ÞL ⊗ Uð1Þem ⊗ SUð3ÞC: ð3Þ

When the doublets acquire vacuum expectation values
(VEVs), Uð1Þ1 ⊗ Uð1Þ2 ⊗ SUð2ÞL is broken down to
Uð1Þem. There are thus two Goldstone bosons, one is the
would-be Goldstone (WBG) eaten by the Z0, and the other is
truly present in the spectrum and is the massless axion.
In the breaking chain, it must be stressed that we wrote

Uð1ÞX and not Uð1ÞPQ for the part of Uð1Þ1 ⊗ Uð1Þ2 not
aligned with Uð1ÞY . Indeed, strictly speaking, the Uð1ÞPQ
symmetry is defined only after the doublets acquire their
VEVs, from the orthogonality of the axion with the WBG
of the Z0. Furthermore, if we denote the VEVs as
h0jReΦij0i ¼ vi with v21 þ v22 ≡ v2 ≈ ð246 GeVÞ2 and
v2=v1 ≡ x≡ 1= tan β, both these fields are vi-dependent
linear combinations of ImΦ0

1 and ImΦ0
2, and, consequently,

the PQ charges of the doublets are functions of vi. They are
defined only once Uð1ÞY is broken.
Specifically, adopting a polar representation for the

pseudoscalar Goldstone bosons, the Higgs doublets are
written in the broken phase as
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Φi ¼
1ffiffiffi
2

p expðiηi=viÞ
�

Hþ
i

vi þ ReHi

�
; i ¼ 1; 2: ð4Þ

The Goldstone bosons associated to the Uð1Þ1 and Uð1Þ2
symmetries, η1 and η2, are related to the physical Goldstone
bosons a0 and G0 as

�
G0

a0

�
¼

�
cos β sin β

− sin β cos β

��
η2

η1

�
: ð5Þ

Plugging this into Eq. (4), the PQ charge of each doublet
can be read off its phase variation under a shift of the
associated Goldstone boson, a0 → a0 þ vθ, and, thus,

PQðΦ1Þ ¼
v
v1

cos β ¼ x; PQðΦ2Þ ¼ −
v
v2

sin β ¼ −
1

x
:

ð6Þ

Note that the shift G0 → G0 þ vθ reproduces YðΦ1Þ ¼
YðΦ2Þ ¼ 1. It also shows explicitly how misleading any
idea of orthogonality of the Uð1Þ charges could be. We
started with Uð1Þ1 ⊗ Uð1Þ2 under which the pair ðΦ1;Φ2Þ
has the seemingly orthogonal charge assignment
ðv=v1; 0Þ ⊗ ð0; v=v2Þ. But once Uð1Þ1 ⊗ Uð1Þ2 is broken
and the associated Goldstone bosons compelled to be
orthogonal, we end up with the Uð1ÞY ⊗ Uð1ÞPQ charge
ð1; 1Þ ⊗ ðx;−1=xÞ for the pair ðΦ1;Φ2Þ.
Once these charges are fixed, those of the fermions can

be derived by requiring the Yukawa Lagrangian to be
invariant under Uð1ÞPQ. Since those couplings are also
necessarily invariant under B and L, these charges are
defined only up to a two-parameter ambiguity [9], which
we denote α and β:

PQðqL; uR; dR;lL; eRÞ ¼
�
α; αþ x; αþ 1

x
; β; β þ 1

x

�
:

ð7Þ

At this stage, there is no way to fix α and β, essentially
because neither B nor L have associated dynamical fields.
Further, as discussed for the pair ðΦ1;Φ2Þ, there is no
viable concept of orthogonality for the Uð1Þ charges in the
fermion sector either. Actually, it should be remarked that

BðqL; uR; dR;lL; eRÞ ¼ ð1=3; 1=3; 1=3; 0; 0Þ; ð8aÞ

LðqL; uR; dR;lL; eRÞ ¼ ð0; 0; 0; 1; 1Þ; ð8bÞ

YðqL; uR; dR;lL; eRÞ ¼ ð1=3; 4=3;−2=3;−1;−2Þ ð8cÞ

are not orthogonal among themselves to begin with, so
there is no reason to expect the PQ charge to be any
different.

The freedom in the PQ charges of the SM fermions has
no observable consequence. The simplest way to see that is
to adopt the usual linear parametrization for the THDM.
Since the ambiguity in the fermion PQ charges appears
nowhere in the Lagrangian, all the Feynman rules are
independent of α and β, and so are the physical observables.
Using the polar representation of Eq. (4), the situation is a
bit more involved. Though, initially, the Lagrangian is
again independent of α and β, and so are all the Feynman
rules, it is customary to perform a reparametrization of the
fermion fields to remove the axion field from the Yukawa
couplings. In full generality, this reparametrization is α and
β dependent, because the fermion rephasings are tuned by
their PQ charges,

ψ → ψ expðiPQðψÞa0=vÞ; ψ ¼ qL; uR; dR;lL; eR:

ð9Þ

In this way, a dependence on α and β is spuriously
introduced in the Lagrangian, first because the noninvar-
iance of the fermion kinetic terms generates the couplings

δLDer ¼ −
∂μa0

v

X
ψ¼qL;uR;dR;lL;eR

PQðψÞψ̄γμψ ; ð10Þ

and, second, because the noninvariance of the fermionic
path integral measure generates the anomalous interactions

δLJac ¼
a0

16π2
fN Cg2sGa

μνG̃
a;μν þN Lg2Wi

μνW̃i;μν

þN Yg02BμνB̃μνg ð11Þ

with

N C ¼
X

ψ¼q†L;uR;dR

dLðψÞCCðψÞPQðψÞ ¼
1

2

�
xþ 1

x

�
; ð12aÞ

N L ¼
X

ψ¼q†L;l
†
L

dCðψÞCLðψÞPQðψÞ ¼ −
1

2
ð3αþ βÞ; ð12bÞ

N Y ¼
X

ψ¼q†L;uR;dR;l
†
L;eR

dLðψÞdCðψÞCYðψÞPQðψÞ

¼ 1

2
ð3αþ βÞ þ 4

3

�
xþ 1

x

�
; ð12cÞ

where dC;LðψÞ and CC;LðψÞ are the SUð3ÞC and SUð2ÞL
dimensions and quadratic Casimir invariant of the repre-
sentation carried by the field ψ , respectively, and, by
extension, CYðψÞ ¼ YðψÞ2=4 with the hypercharges given
in Eq. (8c).
Yet, even if both δLDer and δLJac depend on α and β,

these parameters cancel out systematically in all physical
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observables, as shown explicitly in Ref. [9]. Nevertheless,
some theoretical quantities inevitably depend on α and β.
Besides the above interactions, another particular example
is the divergence of the PQ current, since it is related to the
anomalous interaction via δLJac ¼ a0∂μJ

μ
PQ.

Since the two-photon coupling arises as N L þN Y ¼
N em in Eq. (11), both the QED and QCD terms in ∂μJ

μ
PQ

are independent of α and β and immediately physical, but
the electroweak term is always ambiguous. This is, of
course, expected in view of the B and L origins of the α and
β parameters. If one remembers that these currents also
have anomalous divergences

∂μJ
μ
B ¼ ∂μJ

μ
L ¼ −

Nf

16π2

�
1

2
g2Wi

μνW̃i;μν −
1

2
g02BμνB̃μν

�
;

ð13Þ

one can immediately understand how α and β enter in
Eq. (12). Yet, one should not conclude too quickly that α
and β represent a spurious B and L component of the PQ
current and should be set to zero. Indeed, this would
entirely remove the electroweak Wi

μνW̃i;μν term of ∂μJ
μ
PQ,

but there is no reason for a (hypothetical) B- and L-free PQ
current to have no electroweak component. Besides, one
should realize that the final form ofN L reflects the specific
choice made in parametrizing the two-parameter freedom
in the fermion PQ charges. To bring Eq. (7) to a simple
form, we made the choice of fixing PQðqLÞ≡ α and
PQðlLÞ≡ β. So, setting α ¼ β ¼ 0 would simply remove
the left-handed fields from the PQ currents, but this is
hardly natural, since the axion is coupled to left-handed
fields, as can be confirmed adopting the usual linear
representation for the THDM scalar fields.

B. Axion in DFSZ model

When the axion is embedded as one of the pseudoscalar
degrees of freedom of the THDM, its couplings end up
tuned by the electroweak VEV and are far too large given
the experimental constraints. The DFSZ axion model [8]
circumvents this problem by moving most of the axion field
into a new field, whose dynamics take place at a much
higher scale. Specifically, the THDM is extended by a
gauge-singlet complex scalar field ϕ, with the scalar
potential

VDFSZ ¼ VTHDM þ Vϕ þ VϕTHDM þ VϕPQ;

8>><
>>:

Vϕ ¼ μ2ϕ†ϕþ λðϕ†ϕÞ2;
VϕTHDM ¼ a1ϕ†ϕΦ†

1Φ1 þ a2ϕ†ϕΦ†
2Φ2;

VϕPQ ¼ −λ12ϕ2Φ†
1Φ2 þ H:c:

ð14Þ

This potential is invariant under the same Uð1Þ1 ⊗ Uð1Þ2
symmetry as in the PQ realization of the previous section,
provided ϕ is charged under both Uð1Þ’s. Concerning
fermions, the same type-II Yukawa couplings as in Eq. (2)
are allowed, while ϕ cannot directly couple to fermions
because of its Uð1Þ charges.
The symmetry-breaking scale vs of the singlet is

assumed to be far above the electroweak scale. To leading
order in v=vs, h0jReϕj0i breaks Uð1Þ1 ⊗ Uð1Þ2 → Uð1ÞY ,
and its associated Goldstone boson is the axion. Indeed,
at the v scale, the λ12hϕ2iΦ†

1Φ2 term ensures the pseudo-
scalar state of the THDM is massive. In this leading-order
approximation, the axion is not coupled to fermions, since
it is fully embedded in ϕ. The interesting physics take
place at Oðv=vsÞ, where the VϕPQ coupling generates an
Oðv=vsÞ mass for Imϕ tuned by λ12v1v2. Neither Imϕ
nor ImΦ1;2 remain massless, but a linear combination of
these states does. The axion is, thus, a0 ¼ Oð1ÞImϕþ
Oðv=vsÞImΦ1;2, and, since all the couplings to SM
particles stem from its ImΦ1;2 components, the axion
essentially but not totally decouples. Yet, it is still able

to solve the strong CP problem, since this ensures its
coupling to GμνG̃

μν.
To be more quantitative, this picture is easily confirmed

adopting a polar representation for the scalar fields.
Plugging Eq. (4) together with

ϕ ¼ 1ffiffiffi
2

p expðiηs=vsÞðvs þ σSÞ ð15Þ

into VDFSZ and setting all fields but η1;2;s to zero, only
the λ12ϕ

2Φ†
1Φ2 coupling contributes, since all the other

terms involve the Hermitian combinations Φ†
iΦi and/or

ϕ†ϕ. Restricted to the pseudoscalar states, the potential
collapses to

VDFSZðη1;2;sÞ ¼ −
1

2
λ12v1v2v2s cos

�
η1
v1

−
η2
v2

−
2ηs
vs

�
: ð16Þ

By expanding the cosine function and diagonalizing the
quadratic term, the mass eigenstates are easily found to be
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0
B@

G0

a0

π0

1
CA ¼

0
B@

sin β cos β 0

δsω cos β sin 2β −δsω sin β sin 2β ω

ω cos β −ω sin β −δsω sin 2β

1
CA

0
B@

η1

η2

ηs

1
CA; ð17Þ

with δs ¼ v=vs and ω−2 ¼ 1þ δ2s sin2 2β. The interest of
this form is that we can read off the PQ charges of η1, η2,
and ηs from their reactions to a shift a0 → a0 þ vsω−1θ,
and we find

PQðΦ1;Φ2;ϕÞ ¼ ð2 cos2 β;−2 sin2 β; 1Þ; ð18Þ

or, rescaling these charges by 2x=ðx2 þ 1Þ,

PQðΦ1;Φ2;ϕÞ ¼
�
x;−

1

x
;
1

2

�
xþ 1

x

��
: ð19Þ

We thus recover the same charges as in the PQ model
[Eq. (6)], so those of the fermions also stay the same
[Eq. (7)], including the α and β ambiguities related to
baryon and lepton numbers. Note that the final form of the
mixing matrix is compatible with the cosine potential, in
the sense that the massive π0 state is precisely the
combination of states occurring as the argument of the
cosine function:

π0 ¼ ωðcos βη1 − sin βη2 − δs sin 2βηsÞ

¼ ωv sin β cos β

�
η1
v1

−
η2
v2

− 2
ηs
vs

�
: ð20Þ

The potential VDFSZðη1;2;sÞ is necessarily flat in the other
two orthogonal directions, corresponding to the two Gold-
stone bosons (the G0 eaten by the Z0 and the a0). Finally,
remark that if the ϕ2Φ†

1Φ2 coupling is replaced by ϕΦ†
1Φ2,

everything stays the same but for PQðϕÞ. This has no
phenomenological impact, since the axion couplings to SM
fields are unchanged.

III. AXIONS AND LEPTON NUMBER VIOLATION

Up to now, neutrinos have been kept massless. To
account for the very light neutrino masses in a natural
way, the standard approach is to implement a seesaw
mechanism. Generically, these mechanisms assume the
observed left-handed neutrinos have a Majorana mass
term, typically via the dimension-five operator

Leff
seesaw ¼ −

c
Λ
ðl̄C

LΦT
i ÞðlLΦiÞ þ H:c:; ð21Þ

where c is understood as a matrix in flavor space and flavor
indices are understood. Neutrino masses are then
mν ¼ cv2i =Λ. The scale Λ represents that where the lepton
number is broken, either explicitly or spontaneously.
Obviously, neutrinos end up very light when Λ is suffi-
ciently high.

Since a generic feature of the seesaw mechanisms is a
breaking of L, the most immediate question is how to
accommodate for that in axion models. This has already
been studied quite extensively, but most of the time in a
KSVZ-like setting, where new colored fermions are intro-
duced and SM fermions need not be charged under the PQ
symmetry [10–13]. Here, we concentrate on DFSZ-like
models, in which L manifests itself as an ambiguity in the
PQ charges of the SM fermions. To study the conse-
quences, and actually show that axion phenomenology is
essentially unaffected by neutrino masses, we review in this
section three realizations. First, we supplement the PQ and
DFSZ model with a seesaw mechanism of type I [14].
Then, we consider the νDFSZ model of Ref. [15,16], where
the DFSZ singlet is made responsible for the breaking of
the lepton number. Finally, we consider the type-II seesaw
mechanism [17,18], realized either à la PQ or DFSZ
[19,20]. Other DFSZ-like realizations are possible—see,
for example, Refs. [21–24]—but those described here are
the simplest. Also, we do not consider the proposal of
Ref. [25] in which the PQ and B − L currents are identified,
with a nonlocal Majoron gluonic coupling arising through
complicated multiloop processes (for a model where the
standard singlet Majoron would not solve the strong CP
problem, see Ref. [26]).

A. PQ and DFSZ with a type-I seesaw mechanism

A first strategy to account for neutrino masses is to add to
the PQ or DFSZ model a type-I seesaw mechanism.
Specifically, we add right-handed neutrinos νR to the
model. Since those are singlet under the gauge symmetry,
the only new allowed couplings are

LνR ¼ −
1

2
ν̄CRMRνR þ ν̄RYνlLΦi þ H:c: ð22Þ

with i ¼ 1 or 2. The lepton number no longer emerges as an
accidental symmetry, because the Majorana mass term MR
breaks L by two units. It is also presumably very large, so
integrating out the νR fields generates the dimension-five
operator in Eq. (21) with cΛ−1 ¼ YT

νM−1
R Yν.

The PQ charge of the right-handed neutrinos has to
vanish to allow the presence of the Majorana mass term.
Given the PQ charge in Eqs. (7) and (6) or (19), this implies
that β must be nonzero, since

ν̄RYνlLΦ1∶ PQðνRÞ ¼ β þ x ¼ 0; ð23aÞ

ν̄RYνlLΦ2∶ PQðνRÞ ¼ β −
1

x
¼ 0: ð23bÞ
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These equations must be interpreted in the right way. This is
not a choice for β. Rather, in the presence of MR, Uð1ÞL is
removed from the symmetry-breaking chain of Eq. (3), and
the corresponding ambiguity is simply not there to start with.
In other words, it would make no sense to set β to any other
value and discuss the impact of the PQ breaking induced by
MR, since this breaking is spuriously introduced by an
inappropriate choice of PQ charges. Yet, remarkably, the PQ
symmetry does not forbid either the Majorana mass term in
Eq. (22) or the effective operator Eq. (21), contrary to the
claim made, for example, in Refs. [27,28].
The presence of the seesaw mechanism does not sig-

nificantly alter the axion phenomenology. This is most
clearly seen adopting the linear parametrization for the
scalar fields, since then all the axion couplings to SM
fermions are proportional to their masses. When νR have
been integrated out, that of the axion to light neutrinos will
arise from Eq. (21) and, thus, be tiny. In a polar repre-
sentation for the pseudoscalar fields, first note that, with β
fixed as in Eq. (23), the seesaw operator of Eq. (21)
becomes invariant under the PQ symmetry. It does not
prevent the fermion reparametrization of Eq. (9), which
proceeds exactly as in the absence of neutrino masses.
Except that β is fixed, the effective derivative and anoma-
lous interactions stay the same. Since we proved in Ref. [9]
that β cancels out in physical observables anyway, the

phenomenology is unchanged, except for the tiny kin-
ematical impact of the now finite neutrino masses (for
example, the a0WþW− loop amplitude depends on the
mass of the virtual fermions, including neutrinos).

B. Merging DFSZ with a type-I seesaw mechanism

Instead of adding a Majorana mass term for the right-
handed neutrinos, we can use the singlet field and set

LνR ¼ −
1

2
ν̄CRYRνRϕþ ν̄RYνlLΦi þ H:c: ð24Þ

This model, dubbed the νDFSZ, was first proposed in
Refs. [15,16].
Let us see how this merging of the DFSZ model with

a type-I seesawmechanism can be understood from the point
of view of the Uð1Þ’s. Since ϕ cannot be neutral
under Uð1Þ1 ⊗ Uð1Þ2, the right-handed neutrinos do have
charges, and no Majorana mass term is allowed. Basically,
what we are doing is to embed the lepton number inside the
global symmetries, Uð1ÞL ⊂ Uð1Þ1 ⊗ Uð1Þ2. Since the
VEV of ϕ breaks both Uð1Þ1 and Uð1Þ2, it also breaks
Uð1ÞL, and then the Goldstone boson can be viewed as a
Majoron. Note, though, thatΦ1 andΦ2 as well as quarks are
charged under Uð1Þ1 ⊗ Uð1Þ2, since the assignments are

ν̄RYνlLΦ1 ϕ Φ1 Φ2 qL uR dR lL eR νR
Uð1Þ1 þ1=2 1 0 α1 α1 þ 1 α1 −5=4 −5=4 −1=4

Uð1Þ2 −1=2 0 1 α2 α2 α2 − 1 þ1=4 −3=4 þ1=4

ð25Þ

or

ν̄RYνlLΦ2 ϕ Φ1 Φ2 qL uR dR lL eR νR
Uð1Þ1 þ1=2 1 0 α1 α1 þ 1 α1 −1=4 −1=4 −1=4

Uð1Þ2 −1=2 0 1 α2 α2 α2 − 1 −3=4 −7=4 þ1=4

ð26Þ

To ensure that Uð1ÞY ⊂ Uð1Þ1 ⊗ Uð1Þ2, we must set α1 þ α2 ¼ 1=3, and the remaining one-parameter freedom originates
in the B invariance of the Yukawa couplings. Yet, clearly, no linear combination of the Uð1Þ1 and Uð1Þ2 charges can make
the Higgs doublets and the quarks neutral. So Uð1ÞL ⊂ Uð1Þ1 ⊗ Uð1Þ2 does not correspond to the usual lepton number.
The symmetry breaking proceeds as in the DFSZ model, since the scalar potential stays the same. This fixes the PQ

charge of the scalar fields to the same values, Eq. (19). The fermions then have the same charge as in Eq. (7), but with β
fixed so that PQðνRÞ ¼ −PQðϕÞ=2:

ν̄RYνlLΦ1 ⇒ β ¼ −
1

4

�
5xþ 1

x

�

⇒ PQðlL; eR; νRÞ ¼ −
1

4

�
5xþ 1

x
; 5x −

3

x
; xþ 1

x

�
; ð27aÞ

ν̄RYνlLΦ2 ⇒ β ¼ −
1

4

�
x −

3

x

�

⇒ PQðlL; eR; νRÞ ¼ −
1

4

�
x −

3

x
; x −

7

x
; xþ 1

x

�
; ð27bÞ
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together with PQðqL; uR; dRÞ ¼ ðα; αþ x; αþ 1=xÞ, as
before. In some sense, Uð1ÞL never occurs at low energy.
Instead, it is embedded intoUð1ÞPQ via the specific value of
β imposed by the ν̄CRYRνRϕ coupling. So, in this model, the
axion and Majoron are really one and the same particle.
Further, the “axion ¼ Majoron” is automatically coupled to
quarks and to Ga

μνG̃
a;μν and, hence, can solve the strong CP

puzzle via the same mechanism as in the DFSZ model.
Once ϕ acquires its vacuum expectation value, νR has a

Majorana mass term, so it may seem this contradicts the
fact that PQðνRÞ ≠ 0. But actually, plugging Eq. (15) into
LνR of Eq. (24) and using Eq. (17), we find

ν̄CRYRνRϕ → ν̄CRMRνR expðiηs=vsÞ
≈ ν̄CRMRνR expðiPQðϕÞa0=vsÞ; ð28Þ

where MR ¼ vsYR=
ffiffiffi
2

p
. Thus, we now see why νR must

have a nonzero PQ charge. BecauseMR originates from the
ϕ field, it is always accompanied by the axion field. Then,
under a Uð1ÞPQ transformation, a → aþ vsθ must be
compensated by the phase shift νR → νR expðiPQðνRÞθÞ.
Also, thanks to this, the fermion field reparametrization
ψ → ψ expðiPQðψÞa=vsÞ is still able to entirely move the
axion field out of the fermion mass terms.
One point must be stressed, though. The axion couples to

SM fermions via its suppressed components η1;2, but it
couples directly to νR via its dominant ηs component. As a
result, the couplings to SM fermions are Oðv=vsÞ, but that
to νR is Oð1Þ, as evident in Eq. (28). Yet, since vs is
assumed to be well above the electroweak scale, νR should
be integrated out before performing the fermion repara-
metrization. In that case, we find (assuming YR ¼ Y†

R)

Leff
seesaw ¼ −

1

2
ðl̄C

LΦT
i ÞYT

ν
1

MR
YνðlLΦiÞ expðið2PQðΦiÞ

− 2PQðνRÞÞa0=vsÞ þ H:c: ð29Þ

Then, performing lL → lL expðiPQðlLÞa=vsÞ moves the
axion field entirely into the same effective derivative and
anomalous interactions as in Eq. (11), but with β now fixed
as in Eq. (27a) or (27b). Again, the phenomenology is
unaffected, since β cancels out of physical observables.
Thus, the Oð1Þ axion coupling to νR has no consequences
at low energy.

C. PQ and DFSZ with a type-II seesaw mechanism

In the previous sections, we have seen two ways to
incorporate neutrino masses in the DFSZ model. For the
first, one simply adds right-handed neutrinos νR with a
Majorana mass term. The PQ symmetry stays the same,
though a specific value of β is required [Eq. (23)] to ensure
PQðνRÞ ¼ 0. Also, this makes sure the explicit breaking of
the lepton number does not spill over to the PQ symmetry.

A second way to proceed, in the νDFSZ model, is again to
add right-handed neutrinos but ask the heavy singlet field to
induce their Majorana mass term. In that case, PQðνRÞ ≠ 0,
but the lepton number symmetry ceased to exist. Actually,
it is replaced by the PQ symmetry.
A third realization is provided by the type-II seesaw

mechanism [17,18]. Instead of right-handed neutrinos, let
us add to the THDM model three complex Higgs fields Δ
transforming as a SUð2ÞL triplet with hypercharge 2. For
the couplings to fermions, in addition to the THDM
Yukawas, we add to LYukawa of Eq. (2) the term

LνII ¼ l̄C
LYΔΔlL; lC

L ¼ iσ2
�
νCL
lC
L

�
;

Δ ¼ 1ffiffiffi
2

p
�
Δþ ffiffiffi

2
p

Δþþ

Δ0 −Δþ

�
; ð30Þ

where, as indicated, C acts in both Lorentz and SUð2ÞL
spaces. For the scalar potential, we introduce one new
coupling to entangle the Uð1Þ1 ⊗ Uð1Þ2 charges of Δ with
those of the doublets, so that Vν2THDM ¼ VTHDM þ VΔ þ
VΔTHDM þ VΔPQ with

VΔ ¼ μ2ΔhΔ†Δi þ λΔ1hΔ†Δi2 þ λΔ2hðΔ†ΔÞ2i; ð31aÞ

VΔTHDM ¼ aΔ1hΔ†ΔiΦ†
1Φ1 þ aΔ2hΔ†ΔiΦ†

2Φ2

þ aΔ3Φ
†
1ΔΔ†Φ1 þ aΔ4Φ

†
2ΔΔ†Φ2; ð31bÞ

VΔPQ ¼ −μΔλΔ12Φ̃T
1Δ†Φ2 þ H:c:; ð31cÞ

with Φ̃i ¼ iσ2Φi. A factor μΔ is introduced to make λΔ12
dimensionless. Even if μ2Δ is large and positive, the λΔ12
coupling generates a tadpole for ReΔ0 and this field has to
be shifted. In effect, this induces a VEV for the Δ field,
vΔ ∼ λΔ12v1v2=μΔ. To preserve the electroweak custodial
symmetry, μΔ ≫ v1;2 so that vΔ ≪ v1;2. Yet, this shift
generates a small Majorana mass term for the neutrinos,
mν ¼ vΔYΔ. This is the characteristic linear suppression of
the neutrino masses of the type-II seesaw mechanism.
We have not identified the axion field yet. To that end, we

adopt again the polar parametrization Eq. (4) together with

Δ ¼ 1ffiffiffi
2

p expðiηΔ=vΔÞ
�

Δþ ffiffiffi
2

p
Δþþ

vΔ þ ReΔ0 −Δþ

�
: ð32Þ

Restricted to the pseudoscalar states, only the λΔ12 coupling
survives and

Vν2THDMðη1;2;ΔÞ

¼ −
1ffiffiffi
2

p μΔλΔ12v1v2vΔ cos

�
η1
v1

þ η2
v2

−
ηΔ
vΔ

�
: ð33Þ

The mass eigenstates are easily found. First, the G0 state has
to be aligned with
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G0 ∼ v1η1 þ v2η2 þ 2vΔηΔ; ð34Þ

since this ensures it can be removed by a Uð1ÞY trans-
formation and YðΔÞ ¼ 2YðΦ1;2Þ ¼ 2. Second, the single
massive state, denoted π0, is aligned with the combination of

fields occurring in the argument of the cosine in Eq. (33).
The axion is then the only state orthogonal to both G0 and
π0, and a simple cross product permits one to construct the
mixing matrix:

0
B@

G0

a0

π0

1
CA ¼

0
B@

sβω cβω 2δΔω

cβð1þ 2δ2Δ=c
2
βÞωω0 −sβð1þ 2δ2Δ=s

2
βÞωω0 2δΔωω

0=t2β
δΔω

0=sβ δΔω
0=cβ −ω0

1
CA

0
B@

η1

η2

ηΔ

1
CA; ð35Þ

with δΔ ¼ vΔ=v, ω−2 ¼ 1þ 4δ2Δ, and ω0−2 ¼ 1þ 4δ2Δ=s
2
2β. The PQ charges of the three fields can be read off the second

line of this matrix, and upon adopting a convenient normalization:

PQðΦ1;Φ2;ΔÞ ¼
�
xþ 2xΔ;−

1

x
− 2xΔ; x −

1

x

�
; xΔ ≡ δ2Δ

�
xþ 1

x

�
: ð36Þ

Note that PQðΦ1Þ þ PQðΦ2Þ − PQðΔÞ ¼ 0, as it should, but those can be expressed as a simple function of x ¼ 1= tan β
only to leading order in δΔ.
Once the PQ charge of the scalars is set, that of the fermions can be derived, and we find

PQðqL; uR; dR;lL; eRÞ ¼
�
α; αþ xþ 2xΔ; αþ 1

x
þ 2xΔ;−

x
2
þ 1

2x
;−

x
2
þ 3

2x
þ 2xΔ

�
: ð37Þ

Apart from the small shifts induced by xΔ, this corresponds to the PQ current of the THDM with β ¼ −PQðΔÞ=2.
Since the η1;2 components of a0 are of Oð1Þ, the PQ scale stays at v, and the axion ends up too strongly coupled to SM

fermions. To cure this, the same strategy as in the DFSZ model can be used; that is, an additional complex singlet field is
introduced [19,20]. To study this situation, let us take the scalar potential

Vν2DFSZ ¼ VTHDM þ VΔ þ VΔTHDM þ Vϕ þ VϕTHDM þ bϕΔϕ†ϕhΔ†Δi
þ ½−λν1ϕ2Φ†

1Φ2 − λν2ϕΦT
1Δ†Φ2 − μΔλν3ΦT

1Δ†Φ2 þ H:c:�: ð38Þ

The coupling bϕΔ gives a largeOðvsÞmass to the triplet states, while those in VΔTHDM generate smallOðvÞ splittings among
the three Δ states. Of particular interest are the λνi couplings, since they entangle the scalar states. First, the λν2 and λν3
couplings create Δ tadpoles that need to be removed by shifting the Δ field

vΔ ¼ 1

2
λν2

v1v2vs
μ2Δ þ bϕΔv2s

þ 1

2
λν3

μΔv1v2
μ2Δ þ bϕΔv2s

: ð39Þ

Note that, if μΔ ≪ vs, the bulk of the Δ mass comes from the singlet, and the μ2Δ can be neglected in these expressions.
Plugging in the polar representations of the scalar fields, the scalar potential for the pseudoscalar states is

Vν2DFSZðη1;2;Δ;sÞ ¼ −
1

2
λν1v1v2v2s cos

�
η1
v1

−
η2
v2

−
2ηs
vs

�

−
1

2
λν2v1v2vsvΔ cos

�
η1
v1

þ η2
v2

þ ηs
vs

−
ηΔ
vΔ

�

−
1ffiffiffi
2

p μΔλν3v1v2vΔ cos

�
η1
v1

þ η2
v2

−
ηΔ
vΔ

�
: ð40Þ

If the three λνi couplings are present, there are three massive pseudoscalar states corresponding to the linear combinations
appearing in the cosine functions. Those are linearly independent. Together with G0 which stays, of course, massless, there
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is no room for the axion. This was evident from the start, since with all three λνi couplings, no Uð1Þ1 ⊗ Uð1Þ2 symmetry
can be defined.
Removing any one of these couplings, a second Goldstone boson appears and can be identified with the axion. Given that

the G0 state stays the same as without the ϕ [see Eq. (34)], we directly find the a0 state by its orthogonality with G0 and the
massive states in the cosine functions:

λν1 ¼ 0∶ a0 ∼ ðv22 þ 2v2ΔÞv1η1 − ðv21 þ 2v2ΔÞv2η2 þ ðv22 − v21ÞvΔηΔ; ð41Þ

λν2 ¼ 0∶ a0 ∼ 2ðv22 þ 2v2ΔÞv1η1 − 2ðv21 þ 2v2ΔÞv2η2 þ 2ðv22 − v21ÞvΔηΔ þ ðv21 þ v22 þ 4v2ΔÞvsηs; ð42Þ

λν3 ¼ 0∶ a0 ∼ 2ðv22 þ v2ΔÞv1η1 − 2ðv21 þ 3v2ΔÞv2η2 þ ð3v22 − v21ÞvΔηΔ þ ðv21 þ v22 þ 4v2ΔÞvsηs: ð43Þ

The first scenario collapses to that without ϕ and is ruled out, since the axion scale remains at v. The other two are viable,
with the axion scale set by vs. The PQ assignments can be read off the coefficients of the viηi terms above, and upon
adopting a convenient normalization,

λν2 ¼ 0∶ PQðΦ1;Φ2;Δ;ϕÞ ¼
�
xþ 2xΔ;−

1

x
− 2xΔ; x −

1

x
;
x
2
þ 1

2x
þ 2xΔ

�
; ð44Þ

λν3 ¼ 0∶ PQðΦ1;Φ2;Δ;ϕÞ ¼
�
xþ xΔ;−

1

x
− 3xΔ;

3

2
x −

1

2x
;
x
2
þ 1

2x
þ 2xΔ

�
; ð45Þ

with xΔ given in Eq. (36). The λν2 ¼ 0 scenario is the simple DFSZ generalization of the THDM with a type-II seesaw, and
the PQ charges stay the same; see Eq. (36). Consequently, the fermions have the charges in Eq. (37).
For the λν3 ¼ 0 scenario, corresponding to that discussed in Refs. [19,20], the PQ charges of the leptons are shifted, since

that of Δ is different:

PQðqL; uR; dR;lL; eRÞ ¼
�
α;αþ xþ xΔ; αþ 1

x
þ 3xΔ;−

3

4
xþ 1

4x
;−

3

4
xþ 5

4x
þ 3xΔ

�
: ð46Þ

Again, apart from the small shifts induced by vΔ, the PQ
charges in these two scenarios correspond to that of the
THDM in Eq. (7) with specific values of β:

λν2 ¼ 0 ⇒ β ¼ −
3

4
xþ 1

4x
; ð47Þ

λν3 ¼ 0 ⇒ β ¼ −
x
2
þ 1

2x
: ð48Þ

The electroweak terms in the divergence of the PQ current
are, thus, different in both scenarios. Yet, phenomenologi-
cally, the axion couplings are independent of β, and, apart
from negligible corrections brought in by vΔ, these scenar-
ios cannot be distinguished at low energy.

IV. AXIONS AND BARYON NUMBER VIOLATION

Up to now, we have seen that the violation of the lepton
number, through insertion of Majorana neutrino masses,
fixes one of the two ambiguities in the PQ charges of the
SM fermions, that parametrized by β in Eq. (7). We will
now concentrate on the remaining ambiguity, α, which
originates in the conserved baryon number current. In the
first subsection, we will discuss two frameworks in which α

is automatically fixed, for dynamical reasons. Then, in the
second subsection, the impact of explicit B-violating
operators will be discussed. Finally, in the last subsection,
the situation in which too many B- and/or L-violating
effects are introduced, preventing the PQ symmetry from
arising, will be described.

A. Dynamical B violation

Even without explicit B violation, Uð1ÞB is not a true
symmetry at the quantum level, because electroweak
instantons are known to induce B þ L transitions
[29,30]. This takes the form of an effective interaction
involving antisymmetric flavor contractions of three lepton
weak doublets and nine quark weak doublets:

Leff
inst ¼ cinstl3

Lq
9
L: ð49Þ

At zero temperature, cinst is tuned by expð−4π=g2Þ, and
these effects are totally negligible. Yet, even so, these
interactions are present, and, following the same philoso-
phy as for β, they prevent the emergence of the parametric
freedom to choose α and β separately. Specifically, the PQ
symmetry necessarily settles with
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ΔB ¼ ΔL ¼ 3 ⇒ 3αþ β ¼ 0: ð50Þ

Setting this combination to zero also kills off the Wi
μνW̃i;μν

term in the PQ current [see Eq. (11)]. In some sense, this
requirement removes a B þ L component in Uð1ÞPQ. Since
B − L is anomaly-free, there is then nothing remaining to
generate the Wi

μνW̃i;μν term. Yet, there remain couplings of
the axion to left-handed fields in the effective nonlinear
Lagrangian, since neither α nor β are vanishing when
Majorana neutrino masses are present.
It should be mentioned also that, once the electroweak

instanton interaction fixes 3αþ β ¼ 0, the axion decouples
from electroweak anomalous effects, including also the
sphaleron interactions. Mechanisms to generate the baryon
asymmetry from the rotation of an axion field (see, e.g.,
Ref. [31]) which relies on those interactions cannot be
active in the present simple axion models. Some additional
constraints must force the PQ symmetry to be realized
differently. At the very least, it must fix α to some value not
compatible with the β value imposed by the neutrino sector,
in order to induce 3αþ β ≠ 0.
So, generically, electroweak instantons prevent the

emergence of one of the ambiguities in the fermionic
PQ charges. However, this supposes the ambiguity is not
removed first at a yet higher scale. A generic class of
models where this occurs are the grand unified theory
(GUT) scenarios. Indeed, in that case, gauge interactions
can break B and L. For example, in SUð5Þ, B − L is
conserved but not B þ L, and one automatically has

GUT∶ 3αþ β ¼ −x −
1

x
: ð51Þ

Indeed, this is the unique value for which all three
anomalous terms in Eq. (12) coincide when taking into
account the SUð5Þ normalization of the hypercharge,
N C ¼ N L ¼ 5=3N Y . It is quite remarkable that this value
is not compatible with the instanton value in Eq. (50).
Further investigation of the fermion charge ambiguities in a
GUT context are deferred to future work [32].

B. Effective B violation

The basis of effective, gauge-invariant operators violat-
ing B and/or L is well known. It starts at the dimension-five
level with the ΔL ¼ 2Majorana mass operator of Eq. (21).
Then, at the dimension-six level, all the operators areΔB ¼
ΔL ¼ 1 (see Ref. [33]):

Ldim 6
eff ¼ 1

Λ2
ðlLq3L þ eRu2RdR þ eRuRq2L þ lLqLdRuRÞ

þ H:c: ð52Þ

Adequate contractions of the Lorentz and SUð2ÞL spinors
are understood, as well as Wilson coefficients and flavor
indices. Beyond that level, other patterns ofΔB andΔL can

occur at the dimension-seven level, thanks to additional
Higgs insertions. With only SM fermions, the next series of
operators arise at the dimension-nine level:

Ldim 9
eff ¼ 1

Λ5
ðeRl2

Lu
3
R þ l3

LqLu
2
R þ d4Ru

2
R þ d3RuRq

2
L

þ d2Rq
4
LÞ þ H:c: ð53Þ

The first two induce ΔB ¼ 1;ΔL ¼ 3 transitions, and the
last three ΔB ¼ 2;ΔL ¼ 0 ones. These operators are
peculiar, because, provided the flavor indices are antisym-
metrically contracted, they break only Uð1ÞL and Uð1ÞB
and not the flavor SUð3Þ’s [34].
Given the charges in Eq. (7), none of these operators is

invariant under Uð1ÞPQ but carry instead

PQðlLq3LÞ ¼ 3αþ β; ð54aÞ

PQðeRu2RdRÞ ¼ 3αþ β þ 2xþ 2

x
; ð54bÞ

PQðeRuRq2LÞ ¼ 3αþ β þ xþ 1

x
; ð54cÞ

PQðlLqLdRuRÞ ¼ 3αþ β þ xþ 1

x
ð54dÞ

and

PQðeRl2
Lu

3
RÞ ¼ 3αþ 3β þ 3xþ 1

x
; ð55aÞ

PQðl3
LqLu

2
RÞ ¼ 3αþ 3β þ 2x; ð55bÞ

PQðd4Ru2RÞ ¼ 6αþ 2xþ 4

x
; ð55cÞ

PQðd3RuRq2LÞ ¼ 6αþ xþ 3

x
; ð55dÞ

PQðd2Rq4LÞ ¼ 6αþ 2

x
: ð55eÞ

The way in which α and β enter reflects the ΔB and ΔL
properties of the corresponding operators, with n × α ⇔
ΔB ¼ n=3 andm × β ⇔ ΔL ¼ m. Yet, remarkably, the PQ
charge of the operators are not aligned with their ΔB and
ΔL contents. For example, all the dimension-six operators
are ΔB ¼ ΔL ¼ 1, but they do have different PQ charge.
Among the dimension-six operators, it is also interesting to
remark that only the first is compatible with electroweak
instantons [Eq. (50)], while only the last two are compatible
with GUTs [Eq. (51)]. This could have been expected, since
those are the operators arising from SUð5Þ gauge boson
exchanges.
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Another noticeable feature is that the misalignment
between two operators carrying the same ΔB and ΔL
always appears as a multiple of xþ 1=x. This means that,
even if the PQ symmetry does not exist when all types of
operators are simultaneously present, large classes of
operators can nevertheless be allowed, but at the cost of
a further scaling in their dimensions. Consider, for instance,
the DFSZ model where PQðΦ†

2Φ1Þ ¼ PQðϕ†Þ ¼ xþ 1=x.
Misalignments can always be compensated by scalar
singlet insertions. For instance, if one assumes Eq. (50)
holds, then the ΔB ¼ ΔL ¼ 1 operators must be

LΔðB−LÞ¼0
eff ¼ lLq3L

Λ2
þ eRuRq2L

Λ3
ϕþ lLqLdRuR

Λ3
ϕ

þ eRu2RdR
Λ4

ϕ2 þ H:c: ð56Þ

The PQ charge of all the operators is now aligned in the
direction of lLq3L, with PQðlLq3LÞ ¼ 0 when 3αþ β ¼ 0.
Operators involving insertions of the Higgs doublet com-
bination Φ†

1Φ2 need not be included, since they are
comparatively very suppressed, both dimensionally and
because v1;2 ≪ vs. Phenomenologically, given the bounds
on Λ from proton decay and provided vs < Λ, only the
leading operator is expected to play any role. The same
holds for other series of operators, though there is then no
clear reason to select one operator against another as
leading. For example, in the ΔB ¼ 2 class, assuming
d4Ru

2
R is leading, the effective operators must be

LΔB¼2
eff ¼ d4Ru

2
R

Λ5
þ d3RuRq

2
L

Λ6
ϕþ d2Rq

4
L

Λ7
ϕ2 þ H:c: ð57Þ

They are all neutral provided 3α ¼ −x − 2=x, and, thus,
there remains enough room for the PQ symmetry to exist.

C. Vacuum realignments

In the previous section, we have seen that the PQ
symmetry can accommodate for limited B and/or L break-
ing. Our goal here is to work out the consequences when
too much B and/or L violation is introduced. Indeed, if
there are too many misaligned ΔB and ΔL operators, the
Uð1Þ1 ⊗ Uð1Þ2 symmetry cannot be exact and the axion
cannot be massless.
To analyze this, we first remark that these breaking

effects have to be tiny given the experimental constraints on
ΔB and ΔL transitions. Thus, the Uð1Þ1 ⊗ Uð1Þ2 sym-
metry is at most only very slightly broken, and the leading
dynamics remain that of Goldstone bosons. The pseudo-
scalar degrees of freedom can still be parametrized using
the polar representation. Of course, the axion will no longer
be truly massless; it becomes a pseudo-Goldstone boson.
Naively, if this mass is too large compared to the QCD-
induced mass, then the axion fails to solve the strong CP

puzzle. This failure can also be viewed in terms of the
vacuum of the theory. In the presence of the ΔB- and ΔL-
breaking terms, the shift symmetry is no longer active. All
the vacua are no longer equivalent, and one direction is
preferred. At the low scale, QCD effects also require a
realignment of the vacuum, and the CP puzzle can be
solved only when the QCD requirement is stronger than
that coming from the ΔB and ΔL effects.
In the following, the axion mass arising from various

combinations of ΔB and ΔL operators is analyzed semi-
quantitatively, from the point of view of the effective scalar
potential before the electroweak SSB. Indeed, at tree level,
the Uð1Þ1 ⊗ Uð1Þ2 symmetry is still active in the scalar
sector, since it is broken explicitly in the fermion sector
only. Thus, at tree level, the axion remains as a massless
Goldstone boson. To go beyond that, we must consider the
effective scalar potential and, in particular, look for the
leading symmetry-breaking terms induced by fermion
loops. Clearly, such loops must include the misaligned
ΔB and/or ΔL interactions simultaneously in such a way
that the process isΔB ¼ ΔL ¼ 0 overall, since scalar fields
have B ¼ L ¼ 0. These loops then correspond to explicit
Uð1Þ1 ⊗ Uð1Þ2 symmetry-breaking terms in the potential,
from which the corrected axion mass can be calculated. For
completeness, in the Appendix, we perform the same
analysis in the spirit of the Dashen theorem [35], in which
case the alignment of the vacuum imposed by the ΔB and/
or ΔL operators is most transparent.

1. Scenario I: Weinberg dimension-six operators and the
axion mass

As a first situation, we consider the case where several
operators inducing the same ΔB and ΔL transitions are
introduced simultaneously. As discussed before, such a
set of operators can be organized into classes according to
their PQ charges, with the PQ charges of two classes
differing by some multiple of xþ 1=x. Because this is
precisely the charge of the Φ†

2Φ1 combination, the com-
bined presence of two operators whose PQ charges differ
by n × ðxþ 1=xÞ generates the correction

Veff
B;L ¼ −

22n−3λn
Λ2n−4
B;L

ðΦ†
2Φ1Þn þ H:c: ð58Þ

in the effective scalar potential, where ΛB;L is the scale of
theΔB andΔL physics, λn is a complicated combination of
the Wilson coefficients, Yukawa couplings, and loop
factors, and the factor 22n−3 is introduced for convenience.
From there, the mass of the axion can be estimated asm2

a0 ∼
Oðv2n−2=Λ2n−4

B;L Þ in the PQ model.
This correction to the scalar potential is also valid for the

DFSZ model, since the singlet does not couple directly to
fermions. The only way in which the breaking of Uð1Þ1 ⊗
Uð1Þ2 can be communicated to ϕ is via the mixing term
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ϕ2Φ†
1Φ2. To incorporate this effect, the full mass matrix for

the pseudoscalar states has to be diagonalized. To that end,
consider the effective potential restricted to pseudoscalar
states. It now contains a second cosine function:

VDFSZðη1;2;sÞ ¼ −
1

2
λ12v1v2v2s cos

�
η1
v1

−
η2
v2

−
2ηs
vs

�

− 2n−1
λnðv1v2Þn
Λ2n−4
B;L

cos

�
n

�
η1
v1

−
η2
v2

��
:

ð59Þ
Diagonalizing the mass matrix, one pseudoscalar state
remains at the vs scale, while the other has a mass

m2
a0 ¼ λnn2

v2

v2s

v2n−2

Λ2n−4
B;L

sinnð2βÞ: ð60Þ

Thus, in the DFSZ model, the lightest pseudoscalar mass is
suppressed by a v=vs factor compared to the PQ model.
Still, this factor does not really help to make a scenario
viable, because the QCD contribution to the axion mass
also scales as 1=vs. For instance, with ma0 jQCD ∼m2

π=vs, n
should be strictly greater than two if λn is Oð1Þ
and ΛB;L ≈ 1016 GeV.
To illustrate this discussion, let us take the Weinberg

operators of Eq. (54). If both the Q1 ≡ lLq3L and Q2 ≡
eRuRq2L operators are simultaneously present, given that
their mismatch is simply xþ 1=x, the induced axion mass
corresponds to Eq. (60) with n ¼ 1 and is, thus, way too
large at ma0 ∼OðΛB;L × v=vsÞ. This can be understood
qualitatively from the process depicted on the left in Fig. 1,
corresponding schematically to the symmetry-breaking
terms

Veff
Q1×Q2

¼ −m2
effΦ

†
2Φ1 þ H:c:;

m2
eff ∼

Λ6
reg

Λ4
B;L

× cIJKL1 cABKL2 ðYeÞAIðYuÞBJ; ð61Þ

where ci are the Wilson coefficients of Qi and summation
over the flavor indices is understood. The scaleΛreg denotes

that at which the loop diagrams are regulated. In all UV
scenarios we could think of, this scale corresponds to that
of the operators, Λreg ≈ ΛB;L. Indeed, if some new dynam-
ics is introduced that break the Uð1Þ1 ⊗ Uð1Þ2 symmetry,
there is no reason not to expect the same dynamics to
induce corresponding breaking terms in the scalar sector.
If, instead of Q2, one takes Q1 together with Q3 ≡

eRu2RdR, the mismatch in PQ charges is 2 × ðxþ 1=xÞ, and
the mass is ma0 ∼Oðv × v=vsÞ from Eq. (60) with n ¼ 2.
Again, this picture can be understood from the diagram on
the right in Fig. 1, with the corresponding dimension-four
breaking term in the effective potential:

Veff
Q1×Q3

¼ λeff
2

ðΦ†
2Φ1Þ2 þ H:c:;

λeff ∼
Λ4
reg

Λ4
B;L

× cIJKL1 cABCD3 ðYeÞAIðYuÞBJðYuÞCKðYdÞDL:

ð62Þ

Thus, when Λreg ≈ ΛB;L, the axion mass becomes insensi-
tive to the very high energy scale. Yet, it is still tuned by the
electroweak scale and is, thus, far too large to solve the
strong CP puzzle.

2. Scenario II: A viable scenario with many
ΔB and ΔL operators

The axion mass is too large for any combination of
Weinberg operators carrying different PQ charges. To get a
viable scenario, we have to allow for operators inducing
different ΔB andΔL patterns, so that the effective potential
term is forced to be of higher dimension. For example,
consider that, instead of a dimension-six operator, Q1 is
accompanied by the ΔB ¼ 2 dimension-nine operator
Q4 ≡ d4Ru

2
R. Alone, Q1 and Q4 do not break the Uð1Þ1 ⊗

Uð1Þ2 symmetry, since they have vanishing PQ charge for
some value of α and β. But if neutrinos have a Majorana
mass term, say,Qν ≡ l2

LΦ2
i of Eq. (21), then not all the ΔB

and ΔL operators can be simultaneously neutral. Thus,
together, Q1, Q4, and Qν introduce too much ΔB and ΔL
violation for the axion to remain massless.
Yet, the combined presence of these ΔB and ΔL effects

break Uð1Þ1 ⊗ Uð1Þ2 in a direction that can be matched in
the effective potential only at the cost of many Higgs
doublets. This combination of doublets need not be a power
of Φ†

2Φ1 anymore and actually corresponds to the dimen-
sion-eight coupling (see Fig. 2)

Veff
Q1×Q4×Qν

¼ λeffΦ2
iΦ2

1Φ
†4
2 þ H:c:;

λeff ∼
Λ6
reg

Λ10
B;L

× cνc4c
†
1c

†
1Y

2
uY4

d; ð63Þ

where cν is the Wilson coefficient of Qν. Also, we have
suppressed flavor indices and identified the scale of all the

FIG. 1. Fermion loops involving the Weinberg operators
Q1 ≡ lLq3L, Q2 ≡ eRuRq2L, and Q3 ≡ eRu2RdR, and inducing
symmetry-breaking effective potential terms.
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operators to ΛB;L for simplicity. Clearly, the axion mass is
negligible in this case, of Oðv3=Λ2

B;L × v=vsÞ when
Λreg ≈ ΛB;L. Even though θeff will not be entirely disposed
of, it is tiny and the strong CP puzzle is still solved.
Note that this estimate remains valid in the νDFSZmodel

even though Qν is replaced by the singlet coupling to νR.
Indeed, the leading term in the effective potential is then
ϕΦ2

iΦ2
1Φ

†4
2 , as can be seen from Fig. 2 by splitting the

l2
LΦ2

i vertex into ν̄RΦilL ⊗ ϕν̄CRνR ⊗ ν̄RΦilL, and one
can check that this leads to the same estimate for the axion
mass when vs ∼ ΛB;L.

3. Scenario III: Electroweak instantons
and the axion mass

As a final example, imagine now that onlyQ2 andQν are
present. At first sight, the Uð1Þ1 ⊗ Uð1Þ2 symmetry is
preserved. However, one still has to account for the
electroweak instanton effects. Since Eq. (50) is not com-
patible with the presence of Q2, the axion cannot be truly
massless. It is a bit more tricky to estimate its mass in this
case, because the electroweak instanton effects are not truly
local. But, to get an idea of the induced mass, let us
nevertheless use the same strategy as above with
Qinst ¼ l3

Lq
9
L. There will then be a new term in the effective

potential

Veff
Q2×Qinst

¼ λeffðΦ†
2Φ1Þ3 þ H:c:;

λeff ∼
Λ4
reg

Λ6
B;L

× cinstc
†3
2 ðYeY2

uYdÞ3: ð64Þ

In this estimate, we consider that the UV regularization
needs only to compensate for the scale of the dimension-six
operators ΛB;L, and not for the dimension-18 instanton
effect. So, this should be understood as nothing more than a
rough estimate of the maximal impact this combination of
operators could have on the axion. In any case, when

Λreg ≈ ΛB;L, the axion mass is completely negligible,
because it is suppressed by the ΛB;L scale [see Eq. (60)],
because instanton effects are tiny, cinst ∼ expð−4π=g2Þ,
and because of the flavor structure. Indeed, Qinst is fully
antisymmetric in flavor space, so first- and second-
generation fermions circulate in the loop and there will be
many small Yukawa couplings. Actually, additional gauge
interactions may be needed to prevent the leading flavor
contraction from vanishing, in a way similar to what happens
for the electroweak contribution to the electric dipole
moments; see, e.g., the discussion in Ref. [36]. Yet, even
if tiny, this shows that the axion would not be strictly
massless in this case. Furthermore, at high temperature,
when the QCD chiral symmetry is restored, these effects
would be dominant and force a specific alignment of the
vacuum.
A very similar conclusion is encountered when non-

perturbative quantum gravity, which is expected to violate
global symmetries, is taken into account by adding non-
local higher-dimensional operators in the low-energy
effective action [37–39]. Terms such as in Eq. (58) are
introduced with a Planck scale cutoff, MP ∼ 1019 GeV,
implying a lower limit on their dimension (2nþ 4) in order
not to impose permanently an alignment of the vacuum
away from the strong CP solution.

V. CONCLUSIONS

Axion models are based on the spontaneous breaking of
an extra Uð1Þ symmetry. When this symmetry has a strong
anomaly, the associated Goldstone boson, the axion, ends
up coupled to gluons, and this ensures the strong CP
violation relaxes to zero in the nonperturbative regime. In
this paper, we analyzed more specifically the PQ and DFSZ
axion models, where SM fermions as well as the Higgs
fields responsible for the electroweak symmetry breaking
are charged under the additional Uð1Þ symmetry. A
characteristic feature of these models is that the true
Uð1ÞPQ symmetry corresponding to the axion is not trivial
to identify because of the presence of three other Uð1Þ
symmetries acting on the same fields: baryon number B,
lepton number L, and weak hypercharge. As a conse-
quence, in general, the PQ charges can be defined only after
Uð1ÞY is spontaneously broken, and, even then, those of the
fermions remain ambiguous whenever the baryon or lepton
number is conserved. Our purpose was to study this
ambiguity, see when it can be lifted, and how it leaves
the axion phenomenology intact. Our main results are as
follows.

(i) The ambiguities in the PQ charges of the fermions,
here parametrized by α and β, are well known, but it
is often interpreted as a freedom. One seems free to
fix α and β as one wishes. Doing this, however,
prevents any further analysis of B and L violation.
For example, if one chooses to assign PQ charges
only to right-handed fermions, a ΔB ¼ 2 operator

FIG. 2. Left: Fermion loop involving the dimension-five
Majorana operator Qν ¼ l2

LΦ2
i , i ¼ 1 or 2, the dimension-six

Weinberg operator Q1 ¼ lLq3L, and the ΔB ¼ 2 dimension-nine
operatorQ4 ¼ d4Ru

2
R. Right: Fermion loop involving the instanton

Qinst ¼ q9Ll
3
L interaction together with the dimension-six Q2 ¼

eRuRq2L operator.
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like ðuRdRdRÞ2 would be forbidden. Yet, this is
merely a consequence of the choice made for the PQ
charges. What we showed here is that it is compul-
sory to keep the fermion charge ambiguity explicit to
leave the theory the necessary room to adapt to the
presence of B and/or L violation. Indeed, in the
presence of such interactions, these ambiguities
automatically disappear, and the corresponding
parameters α and β are fixed to specific values,
when the Uð1ÞPQ symmetry aligns itself with the
remaining Uð1Þ symmetry of the Lagrangian. This
proves that such violations of B and L can be
compatible with the PQ symmetry.

(ii) Since there are two parameters, reflecting the two
accidental symmetries Uð1ÞB ⊗ Uð1ÞL, axion mod-
els can accommodate for breaking terms in two
independent directions. This means, for example,
that adding a ΔL ¼ 2 Majorana mass for the
neutrinos as well as some B þ L-violating operators,
say, eRuRq2L and lLqLdRuR, preserves the axion
solution to the strong CP puzzle. Yet, this compat-
ibility is delicate and needs to be checked in detail.
For example, adding both the operators lLq3L and
eRuRq2L spoils the axion solution completely, even
though these operators have the same B and L
quantum numbers. When they are both present, there
is simply not enough room for theUð1ÞPQ symmetry
to remain active.

(iii) In many cases, the capability of axion models to
accommodate for B and L violation is saturated
from the start. Indeed, first, these models should be
compatible with neutrino masses, and, seesaw mech-
anisms being the most natural, some ΔL ¼ 2 effects
are present. Second, electroweak instantons generate
B þ L-violating effects, and, even if negligible at
low energy, their mere existence forces the PQ
symmetry to be realized in a specific way. In this
case, there remains not much room for other B- and/
or L-violating effects. For example, the axion cannot
remain a true Goldstone boson in the presence of,
say, the eRuRq2L or ðuRdRdRÞ2 operator. Yet, the
instanton interaction is so small that the induced
mass of the axion is well below the QCD mass, and
the strong CP puzzle is still solved. Obviously, the
situation changes at high temperature. If the electro-
weak contribution to the axion mass becomes larger
than the QCD contribution, the axion is initially not
aligned in the CP-conserving direction but does so
only at a later time. Such a situation could have
important cosmological consequences.

(iv) Usually, axion models are specified in a particular
representation, in which the axion has only deriva-
tive couplings to SM fermions and anomalous
couplings to gauge field strengths. Because these
effective couplings arise from chiral rotations of the

fermion fields, tuned by their PQ charges, some
dependences on α and β are introduced (explicitly or
implicitly) in the Lagrangian. At the same time, we
have shown that α and β take on various very
different values, depending on the ΔB and/or ΔL
effects present. So, the axion effective interactions
are strongly dependent on the presence of these
ΔB and/or ΔL interactions, whatever their intrinsic
size. In this respect, the electroweak couplings
a0Wi

μνW̃i;μν, i ¼ 1, 2, 3, is extreme in that the theory
turns it off automatically whenever the PQ current
has to circumvent the tiny electroweak instanton
interactions. Of course, these dependences on α and
β are spurious. As we demonstrated in Ref. [9], the α
and β terms occurring in the derivative interactions
always cancel out exactly with those of the anoma-
lous interactions, and the physical axion to fermion
or gauge boson amplitudes are independent of α and
β. In particular, the a0WþW− coupling is nonzero
even when the anomalous a0Wi

μνW̃i;μν term is forced
out of the axion effective Lagrangian by electroweak
instantons.

(v) Several scenarios were discussed: the PQ and DFSZ
axion with massless neutrinos, with a seesaw
mechanism of type I and of type II, and the
νDFSZ where the singlet also plays the role of
the Majoron. Then, additional requirements were
discussed, arising from the electroweak instantons, a
GUT constraint, or various B-violating operators.
Despite their variety, for all those settings, the PQ
charges of the two Higgs doublets and the fermions
are the same, up to specific values for α and β and up
to negligible corrections in the type-II seesaw.
Though this can be understood as the orthogonality
condition among Goldstone bosons stays essentially
the same and the Yukawa couplings are always those
of Eq. (2), it is often obscured by the normalization
of the PQ charges. Yet, this is remarkable, because it
means the low-energy phenomenology of the axion
is the same in all these models, since it is indepen-
dent of α and β. This is most evident adopting a
linear parametrization for the two Higgs doublets,
since the axion then does not couple directly to
gauge bosons, while its coupling to each fermion is
simply proportional to the fermion mass times the
PQ charge of the doublet to which it couples [9].

The results of this paper should have implications in
other settings where B and/or L violations occur, most
notably in supersymmetry if R parity is not conserved and
in grand unified theories. While embedding the axions in
those models has already been proposed, further work to
identify the most promising scenario is required [32]. In
this respect, the connection with cosmology, either via the
axion relic density or its possible impact on baryogenesis,
could provide invaluable information.
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APPENDIX: VACUUM REALIGNMENT AND
DASHEN THEOREM

The effective potential approach of the previous section
is rather simple, but it does not clearly show how the
presence of too much B and/or L violation imposes a
realignment of the vacuum. This will be described here, by
perform the analysis directly in the broken phase.
Once the axion is introduced as the degree of freedom

spanning the vacuum, the fact that the symmetry is
explicitly broken manifests itself via nonzero matrix
elements h0jLB;Lja0i and ha0jLB;Lja0i. The latter cor-
responds to a mass term for the axion, and the former
asks for a realignment of the vacuum. Indeed, in the
presence of the perturbation, the vacuum is no longer
degenerate, and the theory is unstable. It is only once at
the true vacuum jΩi that the perturbation stops being
able to shift the vacuum and hΩjLB;Lja0i ¼ 0. This
condition on jΩi is equivalent to Dashen’s theorem [35],

which states that the true vacuum is that for which
hΩjLB;LjΩi is minimal.
Let us compute these matrix elements, and thereby the

axion mass and true vacuum jΩi, for the specific case of the
Weinberg operators, LB;L ¼ Ldim 6

B;L . First, let us move to a
more convenient basis. After the reparametrization ψ →
expðiPQðψÞa0=vÞψ of the fermion fields, the axion is
removed from the Yukawa couplings. As detailed in
Ref. [9], this generates derivative couplings −∂μa0=v ×
jJμPQjfermions from the fermion kinetic terms and anomalous
nonderivative couplings a0=v × ∂μJ

μ
PQ with ∂μJ

μ
PQ given

in Eq. (11) from the noninvariance of the fermionic path
integral measure. In addition, since LB;L is not invariant
under Uð1ÞPQ, each operator gets transformed into Qi →
Qi expðiPQðQiÞa0=vÞ.
Forgetting for now the anomalous couplings, the only

couplings surviving in the static limit are the nonderivative
couplings with the ΔðB þ LÞ interactions,

Ldim 6
B;L ¼ c1

Λ2
lLq3L exp

�
ið3αþ βÞ a

0

v

�
þ c3
Λ2

eRu2RdR exp

�
i

�
3αþ β þ 2xþ 2

x

�
a0

v

�

þ
�
c2
Λ2

eRuRq2L þ c4
Λ2

lLqLdRuR

�
exp

�
i

�
3αþ β þ xþ 1

x

�
a0

v

�
þ H:c: ðA1Þ

When taken alone, none of these operators is able to induce
hΩjLdim 6

B;L ja0i or ha0jLdim 6
B;L ja0i. For example, with only Q1,

the simplest ΔðB þ LÞ ¼ 0 matrix element arises from a
Q†

1 ⊗ Q1 combination, and the axion field disappears.
Some interference between two or more operators with
different phases is needed. Let us consider that arising from
Q1 ¼ lLq3L and Q2 ¼ eRuRq2L; see Fig. 3. We have two
contributions, Q†

1 ⊗ Q2 and Q†
2 ⊗ Q1. Since we are after

only ΔðB þ LÞ ¼ 0 matrix elements with external axion
fields, we can consider the generating function

Vdim 6
B;L ¼ hΩjQ1 ⊗ Q†

2jΩi exp
�
−2i

�
xþ 1

x

�
a0

v

�
þ H:c:

¼ 2jhΩjQ1 ⊗ Q†
2jΩij cos

�
δ12 þ 2

�
xþ 1

x

�
a0

v

�

¼ 2jh0jQ1 ⊗ Q†
2j0ij cos

�
δ12 þ 2

�
xþ 1

x

�
a0 þ ω

v

�
;

ðA2Þ

where δ12 denotes the phase of hΩjQ1 ⊗ Q†
2jΩi. In the last

line, we use the fact that the vacuum space is spanned by
the axion; i.e., any two vacua are related by shifts in the
axion field. This permits us to choose a reference vacuum
j0i and trade jΩi for the free parameter ω.
Expanding the cosine function up to second order, the

axion mass is found to be consistent with the previous

estimate [Eq. (61)], since the matrix element h0jQ1 ⊗
Q†

2j0i in Fig. 3 corresponds to the diagrams in Fig. 1 with
the external Higgs fields replaced by their vacuum expect-
ation values. Concerning the vacuum, hΩjLdim 6

B;L ja0i is
obtained from ∂Vdim 6

B;L =∂a0 at a0 ¼ 0 and, thus, vanishes
when ω satisfies

δ12 þ 2

�
xþ 1

x

�
ω

v
¼ 0: ðA3Þ

The fact that the preferred direction is set by the phase of
hΩjQ1 ⊗ Q†

2jΩi can be understood as follows. In the

FIG. 3. Diagrammatic representation of the matrix element in
Eq. (A2), where dots represent mass insertions. In a generic
vacuum, any number of axion fields can be generated. The correct
vacuum is that for which there is no axion tadpole. The axion
mass then arises from the emission of two axions from the Q1 ⊗
Q†

2 operators.
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absence of Ldim 6
B;L , thanks to the still exact Uð1ÞPQ sym-

metry, one can remove any phase occurring in the fermion
mass terms as well as take real VEVs v1;2 for the two Higgs
doublets [see Eq. (4)]. But, it is no longer possible to keep
both VEVs real once Uð1ÞPQ is broken by Ldim 6

B;L , and the
specific choice in Eq. (A3) becomes compulsory.
In some sense, we can also understand Vdim 6

B;L as a con-
tribution to the effective potential of the axion. With this
picture, bringing back the anomalous couplings and turning

on the QCD effects, the full axion potential looks like
Veff ¼ Vdim 6

B;L þ VQCD with VQCD ∼m2
πf2πm̄ cosðθQCD þ

a0=vÞ and m̄ ¼ mumd=ðmu þmdÞ2. Thus, the strong CP
puzzle is solved only if VQCD dominates and forces the
vacuum to align itself to kill θQCD. In the present case,
given that the Vdim 6

B;L -induced axion mass is much larger
than that induced by VQCD, the constraint from Vdim 6

B;L is
stronger and the vacuum is rather aligned in the direction of
Eq. (A3), leaving the strong CP puzzle open.
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