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Without any mechanism to protect its mass, the self-energy of the Higgs boson diverges quadratically,
leading to the hierarchy or fine-tuning problem. One bottom-up solution is to postulate some yet-to-be-
discovered symmetry which forces the sum of the quadratic divergences to be zero, or almost negligible;
this is known as the Veltman condition. Even if one assumes the existence of some new physics at a high
scale, the fine-tuning problem is not eradicated, although it is softer than what it would have been with a
Planck scale momentum cutoff. We study such divergences in an effective theory framework and construct
the Veltman condition with dimension-six operators. We show that there are two classes of diagrams, the
one-loop and the two-loop ones, that contribute to quadratic divergences, but the contribution of the latter is
suppressed by a loop factor of 1=16π2. There are only six dimension-six operators that contribute to the
one-loop category, and the Wilson coefficients of these operators play an important role towards softening
the fine-tuning problem. We find the parameter space for the Wilson coefficients that satisfies the extended
Veltman condition, and also discuss why one need not bother about the d > 6 operators. The parameter
space is consistent with the theoretical and experimental bounds of the Wilson coefficients and should act
as a guide to the model builders.
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I. INTRODUCTION

The title of this paper may appear to be an oxymoron for
two reasons. First, effective theories are known to be valid
up to a certain energy scale, so why should one talk about
the hierarchy problem, which essentially is a manifesta-
tion of extreme weakness of gravity, or the extremely high
value of the Planck scale ∼1019 GeV? Second, any
calculation of the scalar self-energy involves the evaluation
of loop contributions to the self-energy, and how may
one evaluate a loop in an effective theory with higher-
dimensional operators?
Both these problems can be easily surmounted (see, e.g.,

Ref. [1]). In a sense, it is subjective, depending on what
level of fine-tuning one is comfortable with. If the cutoff
scale of the theory be Λ and the Higgs vacuum expectation
value be v, the typical fine-tuning is of the order of v2=Λ2.

One can, however, be more quantitative. One may write the
physical Higgs mass, mh, in terms of a bare mass termmh;0

and higher-order self-energy corrections:

m2
h ¼ m2

h;0 þ δm2
h; ð1Þ

where δm2
h is some function of the masses, v and Λ. In this

case,m2
h=jδm2

hjmay be taken as an approximate measure of
fine-tuning. For Λ ¼ 2 TeV, just outside the reach of the
Large Hadron Collider (LHC), this is about one or a few
percent, not at all uncomfortable, but higher values of Λ
definitely brings back the fine-tuning problem, maybe in a
softened way. Also, if one has a renormalizable theory
below Λ, loop calculations do not pose any problem, with
the understanding of a momentum cutoff at Λ. Cutoff
regularization is not Lorentz invariant, but it is undoubtedly
the best way to feel the badness of a divergence.
Very briefly, the hierarchy of fine-tuning problem is why

the Higgs mass is at the electroweak scale and not at the
Planck scale when it is not protected by any symmetry.
If we use a cutoff regularization, the Higgs self-energy
diverges as Λ2 while the fermion and gauge boson masses
diverge only logarithmically. Thus, to get a Higgs mass of
the order of v from a quantum correction of the order of Λ,
one needs a fine-tuning between the bare mass term and the
quantum corrections.
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In this paper, we will not talk about any possible
ultraviolet complete (UVC) theory, like supersymmetry,
that may solve the hierarchy problem. We will, rather,
demand that perhaps due to some yet-to-be-discovered
symmetry, the quadratically divergent contributions to the
Higgs mass add up to zero, or a very small value. This is
known as the Veltman condition (VC) [2].
Thus, if we confine ourselves to one-loop diagrams only,

the renormalized Higgs mass squared is given by

m2
h ¼ m2

h;0 þ δm2
h ¼ m2

h;0 þ
1

16π2
fðgiÞΛ2 þ � � � ; ð2Þ

where the ubiquitous coefficient of 1=16π2 comes from the
evaluation of the loop, and fðgiÞ is a function of relevant
scalar, Yukawa, and gauge couplings. The VC demands
that fðgiÞ should be zero, or extremely tiny, so that mh;0 is
not too much away from the electroweak scale. The
logarithmically divergent as well as the finite terms coming
from the loop diagrams have been neglected, and denoted
by the trailing ellipses.
One may argue that fðgiÞ need not be exactly zero; in

fact, fðgiÞ ∼ 16π2m2
h=Λ2 should be perfectly acceptable.

However, with all the masses known, the VC fails badly for
the Standard Model (SM) [3,4]. There are numerous
attempts in the literature to make fðgiÞ ≈ 0 by introducing
more particles, like extra scalars or fermions [5–11]. While
these attempts were more or less successful and provided
some important constraints on the parameter space, the VC
could hardly be stabilized over the entire energy scale from
v to Λ if one considers the renormalization group evolution
of the couplings. This remains one of the major short-
comings of the bottom-up approach.
We will take the bottom-up approach to its extreme limit.

For us, whatever new physics exists there at the high energy
scale can be effectively integrated out at the scale Λ to give
us the SM, plus some effective operators involving only the
SM fields, which is known as the SM effective field theory
(SMEFT). We will not venture to investigate the possible
nature of the UVC theory; rather, all the UVC information
will be clubbed in the Wilson coefficients (WC) of the
effective operators.
In SMEFT, the first interesting higher dimensional

operators come at d ¼ 6 (the d ¼ 5 Weinberg operator is
not relevant for scalar self-energies). There are many
equivalent bases to express the complete set of d ¼ 6
operators. We will use the basis given in Ref. [12]. Only a
handful among the 59 dimension-six operators contribute
to the quadratically divergent part of the scalar self-energy.
An n-dimensional operator can at most result in a

divergence in Higgs self-energy that goes as Λn−2. As
these operators are suppressed by Λn−4, one expects
contributions to fðgiÞ from all orders. What, then, is the
rationale to consider only d ¼ 4 and d ¼ 6 operators? We
have tried to answer this question in Sec. II.

Thus, we will focus only on an effective theory with a
schematic Lagrangian

L ¼ c4iOd¼4
i þ 1

Λ2
c6iOd¼6

i ; ð3Þ

where c4i and c6i are dimensionless constants. The VC now
takes the form

Fðc4i; c6iÞ ≈ 0: ð4Þ

Our aim will be to find out the parameter space for the c6i
coefficients.
In Sec. II, we discuss why it is enough to take into

account only the dimension-six operators. In Secs. III
and IV, we discuss the VC in the SM (with dimension-
four operators) and in SMEFT with dimension-six oper-
ators. In Sec. V, we show the allowed parameter space for
the c6i coefficients and discuss our results. Section VI
concludes the paper.

II. WHY WE CAN NEGLECT d = 8
AND HIGHER OPERATORS

The d ¼ 6 SMEFT has been well explored, and there are
several equivalent bases to express all the d ¼ 6 operators.
While the d ¼ 8 operators are not that well investigated, it is
known [13] that there are 993 such operators with one
generation and 44807 operators with three generations. A list
of the relevant bosonic operators can be found in Ref. [14].
For d ¼ 6 operators, there are two types of diagrams that

come with a Λ4 divergence. First are the two-loop dia-
grams, like the one from ðΦ†ΦÞ3, where Φ is the SM
doublet Higgs field. The second class consists of one-loop
diagrams but momentum-dependent vertices, like the one
coming from ðDμΦÞ†ðDμΦÞΦ†Φ. If the derivatives act on
the internal scalar lines, the vertex has a momentum
dependence ∼k2, where k is the loop momentum to be
integrated over, and the resulting divergence is again
quartic. However, there is a crucial difference: the first
set comes with ð16π2Þ−2, and the second set only with
ð16π2Þ−1, similar to the d ¼ 4 operators. Therefore, it is the
one-loop diagrams that should be the most relevant in
calculating the VC. One can have a similar conclusion with
operators involving the gauge field tensors, and the final
result is this:
Only those dimension-six operators contribute quartic

divergences at one-loop for which both the derivatives act
on the field in the loop.
Thus, among the d ¼ 8 operators, one should look only

for those operators that come with four derivatives, i.e.,D4.
There are only three such operators [14], and all of them
have a generic structure of ðDΦÞ†ðDΦÞðDΦÞ†ðDΦÞ. As
two of the derivatives act on the external leg fields and
hence give the square of the external leg momentum, the
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vertex factor can only have a k2 dependence, and the
divergence remains only Λ4 and not Λ6. Similarly, operators
of the formD2ðΦ2W2Þ, whereW is the generic gauge tensor,
do not generate anyΛ6 divergence. Thus, it is enough, within
the limits of uncertainty, to consider only the d ¼ 6
operators. However, one may note that the argument is
not watertight; the huge number of d ¼ 8 operators may
offset the extra suppression coming from 1=16π2.
One can easily extend the logic for d > 8 operators.

For d ¼ 2n, one needs operators of the generic form
Φ†ΦðDpSÞ†ðDpSÞ, where p ¼ n − 2 and S some scalar
field, to throw a momentum dependence of k2p in the loop
and make the one-loop diagram equally important as those
coming from d ¼ 6 operators. Apparently, all such oper-
ators can be reduced to harmless (i.e., not producing a one-
loop Λ4 divergence) forms through equations of motion.

III. VELTMAN CONDITION WITH
DIMENSION-FOUR OPERATORS

We start from the SM Higgs potential with only d ≤ 4
terms:

VðΦÞ ¼ −μ2Φ†Φþ λðΦ†ΦÞ2; ð5Þ

where Φ is the SM doublet, with hΦi ¼ v=
ffiffiffi
2

p
. The Higgs

self-energy receives a quadratically divergent correction

δm2
h ¼

Λ2

16π2

�
6λþ 3

4
g21 þ

9

4
g22 − 6g2t

�
; ð6Þ

where g1 and g2 are the Uð1ÞY and SUð2ÞL gauge
couplings, and gt ¼

ffiffiffi
2

p
mt=v is the top quark Yukawa

coupling. All other fermions are treated as massless.
Dimensional regularization does not differentiate between
quadratic and logarithmic divergences, and we get a
slightly different correction [4]:

δm2
h ∝

1

ϵ

�
6λþ 1

4
g21 þ

3

4
g22 − 6g2t

�
: ð7Þ

As our goal is to cancel the strongest divergence, we will
use the cutoff regularization. Two- and higher-loop dia-
grams can also contribute to the quadratic divergence, but
they are suppressed from the one-loop contributions by a
factor of lnðΛ=μÞ=16π2 or more, where μ is the regulari-
zation scale. We will, therefore, not consider anything
beyond one loop.
At this point, let us make some comments on the gauge

dependence of the VC. They are gauge independent, as can
be explicitly checked by working out the quadratic diver-
gences in Landau and ’t Hooft-Feynman gauge. However,
one may ask what happens in the unitary gauge, as the
gauge propagator has a leading momentum dependence
of k0. While one may question the justification to use the

unitary gauge as the VC is relevant only for Λ ≫ v where
the electroweak symmetry is still unbroken, all particles are
massless, and the condition is formulated in terms of the
couplings only, it would nevertheless be satisfactory to see
that nothing catastrophic happens in the unitary gauge. For
example, one may think of having a quartic divergence,
∼Λ4, coming from the gauge loop, as the gauge propagator
is not momentum suppressed. At the same time, one has to
remember that the electroweak symmetry is broken, and
there are generic Higgs-gauge-gauge vertices in the theory.
One can have a self-energy contribution with two such
vertices, which again is quartically divergent. We have
explicitly checked that these quartic divergences cancel; for
the W loop, the amplitude with the four-point vertex gives
g2Λ4=ð128π2m2

WÞ, which is exactly canceled by the ampli-
tude with two three-point vertices. The latter also gives a
quadratic divergence, which is needed to restore the gauge
invariance.
One can say that the quadratic divergence is under

control if jδm2
hj ≤ m2

h, which translates into1

jm2
h þ 2m2

W þm2
Z − 4m2

t j ≤
16π2

3

v2

Λ2
m2

h: ð8Þ

This inequality is clearly not satisfied in the SM for
v2=Λ2 ≤ 0.1, or Λ ≥ 760 GeV, and onset of new physics
at such a low scale is already ruled out by the LHC. Thus,
one needs extra degrees of freedom, like more scalars or
fermions. There are a number of such studies in the
literature; we refer the reader to, e.g., Refs. [5,8–11].

IV. VELTMAN CONDITION WITH
DIMENSION-SIX OPERATORS

We will use the SMEFT basis as in Ref. [12]. Keeping in
mind that only operators with two or more Higgs fields are
relevant and the divergence should be quartic, the relevant
operators are as follows:

OWW ¼ Φ†dWμν
dWμν Φ; OBB ¼ Φ† cBμν

cBμνΦ;

OGG ¼ Φ†ΦdGμν
dGμν; OW ¼ ðDμΦÞ†dWμνðDνΦÞ;

OB ¼ ðDμΦÞ† cBμνðDνΦÞ; Oϕ;1 ¼ ðDμΦÞ†ΦΦ†ðDμΦÞ;

Oϕ;2 ¼
1

2
∂μðΦ†ΦÞ∂μðΦ†ΦÞ; Oϕ;3 ¼

1

3
ðΦ†ΦÞ3;

Oϕ;4 ¼ ðDμΦÞ†ðDμΦÞΦ†Φ; ð9Þ

where

cBμν¼
ig0

2
Bμν; dWμν¼

ig
2
σaWa

μν; dGμν¼
igs
2
λAGA

μν; ð10Þ

1The VC can be expressed in terms of the masses only after the
electroweak symmetry is broken.
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g, g0 being the SUð2ÞL and Uð1ÞY gauge couplings,
respectively, and λA, σa are the Gell-Mann and Pauli
matrices. Note that the mixed gauge operator OBW ¼
Φ† cBμν

dWμν Φ cannot generate a self-energy amplitude,
either at one- or at two-loop. There is no contribution
from OB either, due to the Abelian nature of the field
tensor, but we keep it for completeness. Only the OVV
(V ¼ W, B, G) and Oϕ;i (i ¼ 1, 2, 4) operators are relevant
for one-loop diagrams.
We would like to mention that the SMEFT basis is far

from unique. The same exercise could have been performed
in the “Warsaw” basis [15], and the relevant operators fall
in the φ6, φ4D2, and X2φ2 categories. For the relevant
Feynman rules, we refer the reader to Ref. [16].
With these set of nine operators, we can write the

dimension-six part of Eq. (3) as

L6 ¼
1

Λ2

X9
i¼1

ciOi; ð11Þ

and Eq. (6) takes the form

δm2
h ¼

Λ2

16π2

�
6λþ 3

4
g21 þ

9

4
g22 − 6g2t

�
þ Λ2

16π2
X
i

fi

þ Λ2

ð16π2Þ2
X
i

gi; ð12Þ

where fi and gi terms come, respectively, from the one-
loop and two-loop quartic divergences with the insertion of
the operatorOi, any of the eight (exceptOB) dimension-six
operators listed above. The relevant Feynman diagrams are
shown in Fig. 1, where the top three are one-loop with
momentum-dependent vertices contributing to fi, and the

bottom four, contributing to gi, are two-loop where the
vertex factors are momentum independent; the latter set is
suppressed by an extra 1=16π2. In the Appendix, we show
explicitly which operators contribute to which diagrams,
and why operators like OB are irrelevant for us.
The contributions are given by

fϕ;1 ¼ −3cϕ;1; gϕ;1 ¼ −
9

2
ðg02 þ 3g2Þcϕ;1;

fϕ;2 ¼ −6cϕ;2; gϕ;2 ¼ 0;

fϕ;3 ¼ 0; gϕ;3 ¼ 18cϕ;3;

fϕ;4 ¼ −3cϕ;4; gϕ;4 ¼ −
9

2
ðg02 þ 3g2Þcϕ;4;

fWW ¼ −
9

4
g2cWW; gWW ¼ −27g4cWW;

fBB ¼ −
3

4
g02cBB; gBB ¼ 0;

fGG ¼ −6g2scGG; gGG ¼ −72g4scGG;

fW ¼ 0; gW ¼ −
27

2
g4cW;

fB ¼ 0; gB ¼ 0: ð13Þ

Equations (12) and (13) are the central results of this
paper. The extra 1=16π2 suppression tells us that we may
neglect the gi terms (and thus will be justified to neglect the
dimension-eight and other higher-dimensional operators),
unless we deal with pathological cases like

P
fi ≈ 0, or all

the WCs being zero except cϕ;3.
With only the fi terms, the modified VC reads

1

16π2

��
6λþ 3

4
g21 þ

9

4
g22 − 6g2t

�
þ
X
i

fi

�
≤
δm2

h

Λ2
; ð14Þ

FIG. 1. The Feynman diagrams that contribute to the Λ4 divergences. The first row shows the one-loop diagrams with momentum-
dependent vertices; the second row shows the two-loop diagrams where the vertex factor does not contain the loop momentum. The
latter set is suppressed by an extra 1=16π2 compared to the former set. ϕ0, ϕi, Wa, B, and GA stand for the Higgs boson, the Goldstone
bosons, the SUð2ÞL andUð1ÞY gauge bosons, and the gluons, respectively. The indices i and a run from 1 to 3, while A runs from 1 to 8.
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with all the couplings and WCs evaluated at the scale Λ.
Equation (14) immediately tells us that at least one, or
perhaps more, WCs should be negative. As the operators do
not contain strongly interacting fields (except OGG), the
running between Λ, which is the matching scale, and the
electroweak scale, are controlled by electroweak radiative
corrections only (at the leading order).
Before we go into the next section, let us enlist once

more a couple of important points.
(1) If we assume the WCs at the matching scale are

of order unity (which is expected if the UVC is
perturbative in nature), we can safely neglect the
two-loop gi terms, as they are suppressed by at
least two orders of magnitude coming from 1=16π2.
This also ensures that we do not have to worry about
d > 6 operators.

(2) At what scale should the VC be satisfied? Obviously,
it should be at the matching scale Λ. Equation (8)
shows that the cancellation need not be exact, it
should be of the order of v2=Λ2. Thus, it is mean-
ingless to talk about the fine-tuning problem if
Λ ¼ 1 TeV, and anyway we already know that there
is no new physics (at least strongly interacting) at
that scale, thanks to LHC. Λ ¼ 100 TeV makes the
fine-tuning problem come back in a softened avatar,
so this should be the correct ballpark to study the
issue. Even higher values, like Λ ¼ 106 TeV, makes
the fine-tuning problem seriously uncomfortable.

V. RESULT

Following what has been said just now, we will study the
VC for two values of Λ, namely, 100 and 106 TeV. To start
with, let us assume that only one of the six SMEFT
operators (neglecting Oϕ;3, OW , and OB, which do not
contribute to fi) is present at the matching scale. We also
need to evolve the SM couplings to that scale, for which we
use the package SARAH v4.14.1 [17], with two-loop renorm-
alization group equations.
Taking Λ ¼ 100 TeV, one gets, for exact cancellation of

the quadratic divergence,

100 TeVjcϕ;1 ¼ cϕ;4 ¼ 2cϕ;2 ¼ −1.15;

cBB ¼ −21.5; cWW ¼ −4.13;

cGG ¼ −0.78; ð15Þ

and for Λ ¼ 106 TeV

106 TeVjcϕ;1 ¼ cϕ;4 ¼ 2cϕ;2 ¼ −1.03;

cBB ¼ −17.3; cWW ¼ −4.20;

cGG ¼ −1.11: ð16Þ

Of course, one may relax these numbers a bit if exact
cancellation is not warranted. Note the large values for the

weak gauge WCs, they stem from the definition of the
corresponding fis in Eq. (13) which contain g2 or g02; the
UVC need not be nonperturbative. On the other hand, if we
take Λ ¼ 2 TeV only (which is hardly of any practical
interest), the corresponding exact-cancellation values are

2 TeVjcϕ;1 ¼ cϕ;4 ¼ 2cϕ;2 ¼ −1.34;

cBB ¼ −26.2; cWW ¼ −4.53;

cGG ¼ −0.66: ð17Þ

This change is entirely due to the running of the SM
couplings.
However, there is hardly any UVC theory that generates

only one of these six operators at the matching scale. As the
sign of the WCs can be either positive or negative, the six
free parameters do not even give a closed hypersurface in
the six-dimensional plot, and therefore marginalization is of
very limited use. Let us consider two distinct cases where
only a pair of WCs are nonzero at Λ:
(1) Only cϕ;2; cϕ;4 ≠ 0: the approximate condition to

satisfy the VC is

cϕ;4 þ 2cϕ;2 þ 1.150 ¼ 0 ðΛ ¼ 100 TeVÞ;
cϕ;4 þ 2cϕ;2 þ 1.030 ¼ 0 ðΛ ¼ 106 TeVÞ: ð18Þ

(2) Only cWW; cBB ≠ 0:

cBB þ 5.212cWW þ 21.544 ¼ 0 ðΛ ¼ 100 TeVÞ;
cBB þ 4.122cWW þ 17.306 ¼ 0 ðΛ ¼ 106 TeVÞ:

ð19Þ

All the WCs are evaluated at the scale Λ. The exact
conditions broaden out to finite-width bands if we allow
a finite amount of fine-tuning, the bands getting narrower
for higher values of Λ.
The SMEFT operators contribute to anomalous trilinear

and quartic gauge-gauge and gauge-Higgs couplings, as
well as modified wave function renormalization for the
bosonic fields. It is indeed heartening to note that the
parameter space that we obtain is consistent with all other
theoretical and experimental constraints [18,19]. For other
collider signatures of these d ¼ 6 operators, like vector
boson scattering and Higgs pair production at the LHC, we
refer the reader to, e.g., Refs. [20,21].

VI. CONCLUSION

In this paper, we have discussed the Veltman condition
leading to the cancellation of the quadratic divergence
of the Higgs self-energy in the context of an SMEFT
framework. In other words, we assume the existence of a
cutoff scale Λ, below which we have the SM, while the
theory above Λ introduces higher-dimensional operators in
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the low-energy domain. If Λ is large enough, the low-
energy theory is still plagued by the ∼Λ2 divergence, even
if it is not as uncomfortable as what one gets with a desert
up to the Planck scale.
We show that the higher dimensional operators lead

to quadratic divergences too, but there are two distinct
sources of them. For example, with d ¼ 6 operators, such
divergences can come from one-loop diagrams with
momentum-dependent vertices, or two-loop diagrams with
momentum-independent vertices. The latter, however, are
suppressed by an extra loop factor of 1=16π2 and hence can
be neglected as a first approximation. The same logic leads
to the important point that only d ¼ 6 operators are relevant
for such one-loop quadratic divergences. (There is a caveat,
though: the number of relevant effective operators increases
almost exponentially with d, and the loop suppression
may just be compensated by the large number of such
amplitudes.)
We find that there are only six operators that con-

tribute to the Veltman condition at the one-loop level. It
turns out that at least one of the WCs has to be negative,
but they are all consistent with a high-scale perturbative
theory. The parameter space that we find is compatible
with other theoretical and experimental constraints.
Thus, this study should set a benchmark for the model
builders.
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APPENDIX: THE DIMENSION-SIX OPERATORS
AND THE FEYNMAN DIAGRAMS

Let us refer to Fig. 1, which shows all the possible one-
and two-loop diagrams originating from the set of dimen-
sion-six SMEFToperators. These are the only operators for
which the divergence is quartic in nature. We will denote
the first three one-loop diagrams by (i)–(iii) and the last
four two-loop diagrams by (iv)–(vii), respectively. The
diagrams corresponding to the amplitudes generated by
different terms of any given operator are marked within
square brackets. Note that the terms involving the gauge
fields result in gauge-dependent propagators, but the final
results are gauge independent.

Oϕ;1 ¼ ðDμΦÞ†ΦΦ†ðDμΦÞ

⊃ ð∂μΦ†ÞΦΦ†ð∂μΦÞ ½i� þ
�
g2

4
σaσbΦ†Wa

μΦΦ†WμbΦ

þ g02

4
Φ†BμΦΦ†BμΦ

�
½v�; ðA1Þ

Oϕ;2 ¼
1

2
∂μðΦ†ΦÞ∂μðΦ†ΦÞ ½i�; ðA2Þ

Oϕ;3 ¼
1

3
ðΦ†ΦÞ3 ½iv�; ðA3Þ

Oϕ;4 ¼ ðDμΦÞ†ðDμΦÞðΦ†ΦÞ

⊃ ð∂μΦ†Þð∂μΦÞΦ†Φ ½i� þ
�
g2

4
σaσbΦ†Wa

μWμbΦΦ†Φ

þ g02

4
Φ†BμBμΦΦ†Φ

�
½v�; ðA4Þ

OBB ¼ Φ† cBμν
cBμν Φ

⊃ −
g02

2
Φ†½∂μBν∂μBν − ∂μBν∂νBμ�Φ ½ii�; ðA5Þ

OWW ¼ Φ†dWμν
dWμν Φ

⊃
�
−
g2

2
Φ†½σað∂μWa

νÞσpð∂μWpνÞ

− σað∂μWa
νÞσpð∂νWpμÞ

�
Φ� ½ii�

−
g4

4
σafabcσpfpqrΦ†Wb

μWc
νWqμWrνΦ ½vi�; ðA6Þ

OW ¼ ðDμΦÞ†dWμνðDνΦÞ

⊃
�
−
g2

4
ð∂μΦÞ†σp½∂μWpν − ∂νWpμ�σbWb

νΦ

þ g2

4
Φ†Wa

μσ
aσp½∂μWpν − ∂νWpμ�∂νΦ

�
½ii�

−
ig4

8
Φ†Wa

μσ
aσpfpqrWqμWrνσbWb

νΦ ½vi�; ðA7Þ

OB ¼ ðDμΦÞ† cBμνðDνΦÞ

⊃
�
g02

4
Φ†Bμ½∂μBν − ∂νBμ�∂νΦ

−
g02

4
ð∂μΦÞ†½∂μBν − ∂νBμ�BνΦ

�
½ii�; ðA8Þ

OGG¼Φ†ΦdGμν
dGμν

⊃
�
−
g2s
2
Φ†fλAλPð∂μGA

ν ∂μGPν−∂μGA
ν ∂νGPμÞgΦ

�
½iii�

−
g4s
4
λAλPfABCfPQRΦ†GB

μGC
νGQμGRνΦ ½vii�: ðA9Þ

In the expressions above, lowercase and uppercase Latin
stands for SUð2ÞL and SUð3ÞC indices, and run from 1 to 3,
and 1 to 8, respectively.
There are two comments that we would like to make here.
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(1) Whether all the gauge terms contribute depend
on the gauge choice; for example, the ∂μVν∂νVμ

term in OVV contributes in the ’t Hooft-Feynman
gauge, but not in the Landau gauge. As mentioned
before, the final results are independent of the gauge
choice.

(2) The mixed-gauge operator OBW does not even
come into the picture because there is no one- or

two-loop self-energy diagram originating from such
an operator. On the other hand, OB can potentially
generate a one-loop self-energy amplitude. How-
ever, note that one of the derivatives acts on the
external leg, and so the divergence can never be
quartic. The same conclusion holds for OW, but
because of its non-Abelian nature, there is a non-
trivial two-loop amplitude.
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