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A hidden sector that kinetically mixes with the minimal supersymmetric standard model provides simple
and well-motivated dark matter candidates that possess many of the properties of a traditional weakly
interacting massive particle (WIMP). These supersymmetric constructions can also provide a natural
explanation for why the dark matter is at the weak scale even if it resides in a hidden sector. In the hidden
sector, a natural pattern of symmetry breaking generally makes particles and their superpartners lie around
the same mass scale, opening novel possibilities for a variety of cosmological histories and complex
indirect detection signatures.
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I. MOTIVATION

A thermally produced stable particle with a weak scale
annihilation cross section reproduces the observed dark
matter relic abundance [1]. The weak scale is known to be
an important scale from the particle physics perspective,
and many beyond the Standard Model (BSM) theories
have dark matter (DM) candidates at this scale, often as
part of a solution to the hierarchy problem. This coinci-
dence has been dubbed the weakly interacting massive
particle (WIMP) miracle, and thermal DM associated with
hierarchy problem solutions has been the subject of intense
theoretical research as well as experimental searches. An
example is the lightest supersymmetric particle (LSP) [2],
stabilized by R-parity. However, even though several
compelling arguments—ranging from gauge coupling uni-
fication to considerations of the underlying theory of
quantum gravity—provide reasons to believe that super-
symmetry is part of the underlying description of nature,
the absence of signals at DM direct detection experiments
such as Xenon1T [3] and the nonobservation of super-
partners at the Large Hadron Collider (LHC) have led to
questions about whether the simplest instantiation of this
WIMP DM idea is realized in nature [4–6].
While it is possible that a weak scale cross section is

associated with the Standard Model (SM) weak interactions
themselves [7,8], it is not necessary. New dynamics
associated with the DM particle may be unrelated to the

SM and hold no direct connection to a hierarchy problem
solution. In particular, the WIMP miracle can be realized
with order one couplings within a separate weak scale dark
sector that only interacts very feebly with the SM. This idea
was dubbed secluded dark matter in [9]. The existence of
such secluded/hidden/dark sectors, with extended gauge
groups, is well motivated from a string theory perspective,
and their interactions with the SM can give rise to several
interesting phenomenological signatures (see [10] and
references therein). In particular, the kinetic mixing portal
[11], where a gauged Uð1Þ0 in a hidden sector mixes with
the SM hypercharge Uð1ÞY [12], has been extensively
studied in the literature, including in the context of dark
matter that realizes its thermal abundance via the afore-
mentioned “WIMP” miracle, see, e.g., [9,13–16].
If the DM is near the weak scale but in a separate sector,

it is of interest to understand how that sector knows about
the weak scale. In supersymmetric theories, this may occur
naturally if supersymmetry breaking is mediated to both
sectors with approximately equal strength, as might hap-
pen, e.g., in theories of gravity mediation. In this case, the
masses in the two sectors are correlated at some UV scale
but may be separated at lower energies by running effects.
We use this line of argument to motivate hidden sector
spectra. While hidden sector particles such as heavy Z0’s
are difficult to probe directly,1 the existence of such a
(largely) hidden sector could have consequences for cos-
mology, in particular for dark matter. Here we will work
under the assumption that the two sectors are coupled
strongly enough that the hidden and visible sectors
thermalize.Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
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1For studies of possible phenomenological implications of
hidden sector gauge bosons and their superpartners, see [17,18]).
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While this broad-brush picture has some appeal, it is of
interest to ask whether the data from the LHC can tell us
more about such a supersymmetric setup. The absence of
superpartners at the LHC suggests the weak scale itself is
somewhat fine-tuned, as does the Higgs boson mass, which
requires large loop level corrections due to supersymmetry
breaking [19–21]. In fact, the relatively large value of the
observed Higgs boson mass suggests that the scale of
supersymmetry breaking is several TeV in the absence of
significant stop mixing in the minimal supersymmetric
StandardModel (MSSM). This “little hierarchy problem”—
wherein theweak scale is tuned at a subpercent level—might
simply be accidental, or find explanations in some anthropic
or cosmological selection process. None of these need apply
to the hidden sector, and as a consequence the vacuum
expectation value (vev) in the hidden sector should be more
closely tied to the scale of supersymmetry breaking.
WIMP dark matter in minimal supersymmetric setups is

made stable by assuming R-parity. This, however, does not
work for a hidden sector dark matter candidate if the hidden
sector spectrum is heavier than that of the visible sector,
since the said dark matter candidate can decay into the
visible sector even in the presence of R-parity. In this case,
DM can instead be stabilized by other, perhaps accidental,
symmetries realized in the hidden sector. Interestingly,
R-parity need not be conserved, and the breaking of
R-parity might even be desirable, for instance, to break
baryon number in order to realize baryogenesis, as
studied in [22].
In this paper, we combine the above ideas to construct

simple and realistic models for hidden sector dark matter.
We assume this sector interacts with our own via super-
symmetric kinetic mixing. All the ingredients—hidden
sectors, supersymmetry, and kinetic mixing—are well
motivated. In the absence of accidental tuning in the hidden
sector, no large mass hierarchies are expected between
hidden sector particles and their superpartners, so that a
multitude of particles can be involved in both dark matter
freeze-out as well as present day dark matter annihilation.2

Our study therefore illuminates the wide range of dynamics
that can give rise to a WIMP-like miracle in well-motivated
hidden sectors.
The outline of the paper is as follows: In Sec. II,

we describe the field content of the hidden sector we
consider, outlining the possible dark matter candidates.
This is followed by detailed studies of fermion and scalar
dark matter in Secs. III and IV, respectively. Section V
addresses cases where the mass gap between the dark
matter candidate and its superpartner is small, leading to
coannihilation effects and long lifetimes. We then explore
relations between parameters in the UV and IR in Sec. VI,
discussing how consistent cosmological histories can

emerge from reasonable parameter choices in the UV.
Section VII is devoted to the discussion of the decay
modes of various hidden sector particles. Direct detection
and collider constraints are explored in Sec. VIII, followed
by a discussion of indirect detection signals in Sec. IX. We
end with some concluding remarks in Sec. X.

II. A SIMPLE DARK SECTOR

In addition to the field content of the MSSM, we
consider a dark/hidden sector with gauge group Uð1Þ0,
gauge coupling g0, and a trio of SM-singlet superfields: a
dark Higgs field Ĥ0 with chargeQ0 ¼ þ1 (which breaks the
Uð1Þ0 symmetry once the scalar component obtains a vev),
a superfield T̂ with charge Q0 ¼ −1 (necessary for can-
cellation of anomalies related to Uð1Þ0), and a singlet
superfield Ŝ with charge Q0 ¼ 0 (necessary to enable a
scale-invariant superpotential involving Ĥ0, T̂ 0). The most
general superpotential after imposing the above Uð1Þ0
charges along with any symmetry under which both Ŝ
and T̂ transform nontrivially is

Whid ¼ λŜ T̂ Ĥ0: ð1Þ

This superpotential possesses a Z2 symmetry under which
both Ŝ and T̂ are odd; this ensures the lightest particle in the
Ŝ − T̂ system, which we will refer to as the lightest Z2 odd
particle (LZP), is stable and therefore a dark matter
candidate.3 We assume that the hidden sector communi-
cates with the visible sector via supersymmetric kinetic
mixing [29]:

ϵ

2

Z
d2θWYW0 þH:c:

¼ ϵDYD0−
ϵ

2
Fμν
Y F0

μνþ iϵB̃σμ∂μB̃0†þ iϵB̃0σμ∂μB̃†; ð2Þ

where the WY , W0 represent the chiral field strength
multiplet for Uð1ÞY hypercharge and the hidden sector
Uð1Þ0, respectively, and we use the notation B̃0 for the
hidden sector gaugino. This basic set-up has previously
also been considered in the context of asymmetric dark
matter [30], as well as a way to generate dark matter at the
GeV scale [31]. It was also considered in some detail in
[32], where some consequences for thermal histories and
direct detection were considered.
We assume supersymmetry breaking induces a vev for

H0 only, hH0i ¼ v0=
ffiffiffi
2

p
. This vacuum will be preferred

when there is either a hierarchy between the soft masses
for the scalars, or if λ is large enough to overcome the
D-flatness condition (which favors hH0i ¼ hTi). This vev

2For related studies of dark matter in very supersymmetric
hidden sectors, see [23].

3In contrast, a pure singlet superfield Ŝ that can couple to SM
fields would give rise to decaying dark matter via a neutrino
portal, see e.g., [24–28].
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provides the hidden gauge boson Z0 with a massmZ0 ¼ g0v0

and combines the fermion components of Ŝ and T̂ into a
Dirac fermion, which we denote ψ , with mψ ¼ λv0=

ffiffiffi
2

p
.

For convenience, we define as usual α0 ≡ g02=4π and
αλ ≡ λ2=4π. As we will discuss later (Sec. VI), αλ ¼ 2α0

is an RG fixed point where an accidental N ¼ 2 SUSY is
restored; at this point the ψ , Z0, and H0 are degenerate.
The hidden neutralino sector has the following mass

matrix in the B̃0, H̃0 basis:

Mχ0 ¼
�
mB̃0 mZ0

mZ0 0

�
; ð3Þ

with mB̃0 the hidden sector soft supersymmetry breaking
gaugino mass parameter. The off-diagonal terms arise when
the H0 takes on its vev. In the limit mB̃0 → 0 (also taking

ϵ → 0), B̃0 pairs with H̃0 to form a Dirac neutralino that is
degenerate with Z0. A nonzero mB̃0 splits this state into two
Majorana mass eigenstates, which we denote χ01 and χ02,
with mχ0

1
< mχ0

2
. If mB̃0 < mZ0 , the mass splitting is small

and the mass eigenstates contain significant B̃0 − H̃0

admixtures; on the other hand, the hierarchy mB̃0 ≫ mZ0

represents a seesaw limit where the lightest eigenstate is
approximately H̃ with suppressed mass jmχ0

1
j ≈m2

Z0=mB̃0 .
For later convenience, we define a mixing angle θN ,
with χ01 ¼ cos θNH̃0 − sin θNB̃0.
In the extended neutralino sector, we also allow a

gaugino mass portal

L ⊃ −ϵmB̃B̃0B̃B̃0 þ H:c:; ð4Þ

where we have pulled out a factor of ϵ to emphasize that we
expect mass mixing of this order. In the Higgs sector, upon
elimination of the auxilliary fields, we have a D-term
contribution to the Higgs potential that includes:

VD ∋
�
g2

8
þ g2Y
8ð1 − ϵ2Þ

�
ðjHuj2 − jHdj2Þ2 þ

g02

2ð1 − ϵ2Þ jH
0j4

−
ϵ

2ð1 − ϵ2Þ g
0gYðjHuj2 − jHdj2ÞjH0j2: ð5Þ

Thus, the kinetic mixing also provides a Higgs portal
between the two sectors.
Examining the above equation, we can see that at tree

level the hidden Higgs boson H0 is degenerate with the Z0.
Due to supersymmetry breaking effects, the H0 mass
receives loop corrections analogous to the well-known
top loop correction in the MSSM [19–21]. The size
of this correction will depend on the hidden sector
couplings λ and g0. We have redone this one-loop calcu-
lation to the Higgs mass in the effective potential formal-
ism. In general, we find that the correction is modest, since
the logarithm is smaller due to smaller mass splittings

between superpartners (i.e., because we assume less tuning)
in the hidden sector, and since large values of λ in the UV
will rapidly flow to the fixed point λ ¼ ffiffiffi

2
p

g0, causing the
Yukawa and gauge corrections to the hidden sector Higgs
mass to partially cancel. The corrections can become
significant for large values of λ, particularly in the case
λ ≫ g0, but we note that this occurs in a region of parameter
space where fine-tuning in the hidden sector is severe. In
what follows, we therefore generally assume the tree level
relation mH0 ¼ mZ0 , and comment on places where this
assumption may fail. Finally, the kinetic mixing induces
corrections to the mass eigenvalues of both Z0 and H0, but
these are generally quite small.
In the hidden scalar sector, the supersymmetry breaking

soft terms are

L ⊃ m̃2
SjS̃j2 þ m̃2

T jT̃j2 þ m̃2
H0 jH̃0j2 þ ðλAλS̃ T̃ H̃0 þ H:c:Þ:

ð6Þ

In the (S̃; T̃�) basis, the scalar mass matrix can be written as

m2
scalar ¼

 
m̃2

S þm2
ψ m�

ψA�
λ

mψAλ m̃2
T þm2

ψ − 1
2
m2

Z0

!
: ð7Þ

We denote the scalar mass eigenstates as S1 and S2, with
mS1 < mS2 . We define a scalar mixing angle θS with
S1 ¼ cos θST̃� − sin θSS̃. We follow the convention where
both λ and Aλ are real, but note that the model possesses
a physical phase, ArgðmB̃0A�

λÞ, which we denote ϕCP.
Depending on the sizes of the various soft masses, the
LZP may be the scalar S1 or fermion ψ .

A. Dark matter candidates

Depending on R-parity conservation (RPC) or violation
(RPV), several dark matter scenarios are possible. Here, we
outline some possibilities before focusing on the RPV case
for the rest of the paper. For simplicity, we take the LSP to
be the visible sector B̃ and assume mB̃ < mχ0

1
.4 We assume

that the gravitino is sufficiently heavy that it does not affect
cosmology.

(i) If R-parity is conserved, the LSP is stable and
therefore another dark matter component in addition
to the LZP. If the LSP is lighter than the LZP but
freezes out before the LZP, LZP annihilations
produce a secondary population of LSP DM. While
this provides a contribution to the abundance of LSP
DM on top of the thermal abundance, the LSP dark
matter population typically retains a thermal distri-
bution since it maintains kinetic equilibrium with the
SM bath at the time of LZP decoupling.

4Cosmological aspects of setups with hidden sector gaugino
LSP dark matter have been studied in [17,33,34].
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(ii) With RPC, an interesting wrinkle occurs if χ01 is
sufficiently long-lived (due to small ϵ). In this case, χ01
can freeze-out prior to the LSP, but decay after LSP
freeze-out, contributing another secondary LSP DM
abundance (since each χ01 decay produces an LSP). In
principle, the DM from χ01 decay might give a too-
large DM abundance. However, such concerns are
mitigated because the χ01 − B̃ coannihilation process,
which can determine χ01 freeze-out, while ϵ sup-
pressed, can remain in equilibrium longer than naively
expected because of the relatively unsuppressed B̃
abundance. The result is that it is not difficult to
suppress the χ01 freeze-out abundance (and hence the
secondary LSP abundance) to acceptable levels.

(iii) Another interesting possibility in the RPC case is the
existence of a trio of dark matter states. If the mass
splitting between the LZP and its superpartner is
smaller than the LSP mass, then decays between the
two are kinematically forbidden. The LZP, its super-
partner, and the LSP are thus all stable components
of dark matter.

(iv) On the other hand, if R-parity is broken, the LSP
decays into SM particles via RPV interactions. For
concreteness, consider the baryon number violating
coupling:

WRPV ¼ λ″ijkUc
iD

c
jD

c
k: ð8Þ

If λ″ is small, the consequently long lifetime of the
LSP is a potential concern, since the LSP abundance
can grow to dominate the energy density of the
Universe, and the significant entropy from its
subsequent decays may dilute the abundance of
LZP dark matter. While viable cosmologies of this

type may be constructed, significant dilution would
spoil the “WIMP miracle” that this scenario realizes.

In the remainder of this paper, we only consider
scenarios where R-parity is broken. Thus both the LZP
superpartner and the LSP are unstable, and the LZP is the
sole DM candidate. In the next two sections, we discuss a
variety of possible spectra with fermion and scalar LZP
dark matter, respectively, addressing cosmological histories
and present day annihilation cross sections.

III. FERMION DARK MATTER

We first review the cosmology of fermion LZP ψ DM
freeze-out with simplified analytic expressions to under-
stand the broad picture, followed by detailed numerical
treatment to include more complicated cases.
ψ LZPs can annihilate via s-wave processes within the

dark sector unless ψ is the lightest dark sector state. Over
much of the parameter space, the Z0H0 channel dominates if
open (αλ > 2α0); recall that αλ ¼ 2α0 is an RG fixed point.
The H0H0 channel is p-wave suppressed, and the Z0Z0
channel is suppressed by α0=αλ relative to Z0H0.5 When
Z0H0 is kinematically forbidden, the only other channel
potentially available completely within the dark sector is
χ01χ

0
1. Annihilations to Z

0H0 proceed either via s-channel Z0

exchange or t=u-channel ψ exchange, while annihilations
to χ01χ

0
1 proceed either via s-channel Z0 or t=u-channel

scalar exchange. In the limit where the scalars are
decoupled, the annihilation cross sections are

hσviχ0
1
χ0
1
≈c4θN

πα02

m2
ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηχ0

1

q 16ηχ0
1
þ2η2Z0 −ηχ1ηZ0 ð8þηZ0 Þ

η2Z0 ðηZ0 −4Þ2 ;

ð9Þ

hσviZ0H0 ≈
πα2λ
4m2

ψ

ð1 − ηZ0 Þ1=2ð64 − 128ηZ0 þ 104η2Z0 − 30η3Z0 þ η4Z0 þ η5Z0 Þ
ð2 − ηZ0 Þ2ð4 − ηZ0 Þ2 ; ð10Þ

where ηZ0 ≡m2
Z0=m2

ψ ¼ 2α0=αλ, so that ηZ0 ¼ 1 represents
the IR fixed point; ηχ0

1
≡m2

χ0
1
=m2

ψ , and θN is the neutralino

mixing angle as defined below Eq. (3).
Using the above expressions, we can compute the

approximate dark matter abundance in the specific cases
where individual annihilation channels dominate the
freeze-out process:

ðΩh2Þχ0
1
χ0
1
≈ΩDMh2

�
mψ

1 TeV

�
2
�
0.05
α0

�
2
�
ηZ0 −4

2

�
2

; ð11Þ

ðΩh2ÞZ0H0 ≈ΩDMh2
�

mψ

1 TeV

�
2
�
0.07
αλ

�
2

; ð12Þ

where ΩDMh2 represents the experimentally observed
value. We can use these to infer approximate combinations
of masses and couplings that reproduce the observed dark
matter relic density. Excepting the case where the inter-
mediate Z0 is nearly on resonance, requiring perturbativity
up to the GUT scale imposes the bound mψ ≲ 2 − 3 TeV.
Somewhat higher masses are possible in regions of param-
eter space where multiple channels contribute to dark
matter annihilation.
We now turn to a numerical treatment that encompasses

more general caseswithmultiple channels and contributions.

5For the nonsupersymmetric case the importance of the Z0H0
channel was discussed in [14,15], assuming both the Z0 and H0
receive their mass from the Higgs mechanism.
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We use a combination of FEYNRULES [35] and MICROMEGAS

[36–38] with numerical diagonalization through ASperGe
[39] to determine the relic abundance as well as the T ¼ 0
cross sections relevant for indirect detection. Our results are
shown in Fig. 1 for a representative parameter set, and ϵ
sufficiently small that all SM final states can be neglected.
The color coding represents the strongest annihilation
channel at each point of parameter space. The left panel
shows that the χ01χ

0
1 (blue) and Z0H0 (gold) channels tend to

dominate on either side of the fixed point η ¼ 1. As α0
increases, the lighter scalar mass decreases, owing to
the presence of the D-term, see Eq. (7). The right edge
of the plot denotes mS1 ¼ mψ , beyond which the scalar is
the LZP and the DM candidate. Close to this boundary, ψ
and S1 are approximately degenerate, and coannihilation
processes can dominate the freeze-out process (green
region). The green region, corresponding to coannihilation
into χ01Z

0, features a resonant effect where the heavier
neutralino χ02 can go approximately on-shell; this occurs
when mS1 þmψ ≈ 2mψ ∼mχ0

2
. In the upper-left corner of

this plot, we expect relatively large loop corrections to the
H0 mass, which we have not included in our relic density
calculations. However, in this same region the hidden
sector would also be fine-tuned for this set of supersym-
metry breaking parameters, since the relatively light Z0

would receive substantial corrections going like ∼λ2m̃2
S. In

addition, we do not expect the change in Higgs mass to

have a significant impact on the relic density, since
annihilation cross sections do not depend strongly on
the Higgs mass in this region.
In the right panel, we show dominant annihilation

channels at T ¼ 0, along with (dashed) contours of the
annihilation cross section. The solid contours denote
regions with the correct relic density. Again, over most
of the parameter space, annihilations to Z0H0 dominate.
Along the upper solid contour, the dominant p-wave
contribution (to H0H0) contributes a maximum of ∼3%
to the total annihilation cross section in the early Universe.
The result is that hσviT¼0 is very nearly the s-wave value of
2 × 10−26 cm3=s along this contour.
In either panel, annihilation rates to neutralino final

states do not exceed those to Z0H0 when the latter channel
is kinematically unsuppressed. Relative to the Z0H0 final
state, whose tree-level cross section is ∝ α2λ , s-channel
contributions to neutralino final states are suppressed by
powers of α0=αλ or 1=xf, with xf ≡mDM=Tfo. However,
neutralino final states are still relevant, if subdominant,
where the scalar exchange diagrams are sufficiently large.
This occurs near the right side of the plot, where a sizable
D-term acts to suppress one of the scalar masses.
Incidentally, the leading s-wave α2λ piece of neutralino
diagrams is suppressed by the scalar mass splitting,
m2

S1
−m2

S2
. The s-wave annihilation rate to neutralinos

assuming α0 ≪ αλ is

FIG. 1. Left panel (a): the black dashed contours give the dark matter relic density in units of the observed abundanceΩDMh2; the solid
contour corresponds to points that produce the observed DM abundance. The dense set of contours in the χ01χ

0
1 region corresponds to

cases where the DM annihilates through the Z0 resonance, mψ ≃mZ0=2. Right panel (b): contours denote T ¼ 0 annihilation cross
sections hσvi0, relevant for indirect detection of dark matter. In both panels, we have fixed v0 ¼ 1.25 TeV, m̃S ¼ 2.5 TeV,
m̃T ¼ 650 GeV, mB̃0 ¼ 1.5 TeV, λAλ ¼ 0.25 TeV, and ϕCP ¼ 0.
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hσviχ0iχ0j ¼ CiCjð2 − δijÞ
πα2λ
4m2

ψ

m4
ψ

m4
S1

ð2 − s22θSÞ

×
ð1 −m2

S1
=m2

S2
Þ2

ð1þm2
ψ=m2

S1
Þ2ð1þm2

ψ=m2
S2
Þ2 ; ð13Þ

where C1 ¼ cos2θN , C2 ¼ sin2θN . This additional sup-
pression can be understood by taking the m2

S1
→ m2

S2
limit

and performing a Fierz transformation on the sum of the
scalar mediated diagrams. In this limit, these diagrams
sum to give the operator ðψ̄γμγ5ψÞχ̄iγμγ5χj, which is
helicity suppressed [40]. In the limit αλ ≫ α0, the cross
section for annihilation to neutralinos can reach exactly
one-half the cross section of Z0H0, a limit saturated as
mS2=mS1 → ∞, mS1 → mψ , and S1 → T� or S. For the
explicit case shown in Fig. 1, where mS2=mS1 ≲ 6, over a
majority of the gold region annihilation to neutralinos
contributes roughly 10%–40% to the overall annihilation
rate, with smooth interpolation to 1 at the fixed point line.
Figure 1 is only one slice of parameter space, and it is of

interest to explore the dependence on other parameters
(m̃S;T , v0, mB̃0 , and Aλ). The arguments of the previous
paragraph summarize the dominant effect of varying the
scalar soft masses—they act as a dial that changes the
relative importance of the neutralino final state(s) when
both Z0H0 and neutralino final state(s) are kinematically
accessible. The mB̃0 chosen in the figure is such that the
χ01χ

0
1 final state can go on resonance, yet small enough that

the heavier neutralino is still accessible. A smaller mB̃0

would alleviate some of the heavy neutralino kinematic
suppression, allowing a marginally lighter thermal dark
matter in regions where annihilations to the heavy neu-
tralinos are relevant. Recall that for the dark matter to be a
fermion, the trilinear Aλ term must be small enough to not
push a scalar mass belowmψ. Otherwise, the primary effect
of Aλ is reflected via the impact of the scalar masses on
annihilations to hidden neutralinos as described above.
Finally, the relic density is controlled by the overall

mass scale. In cases where an s-wave process dominates
(typically the case here), in the freeze-out approximation,
Ω ∼m2 logðmÞ, where m is the mass scale associated with
the annihilation cross section, σ ∝ m−2. It is therefore
possible to shift any given contour to the correct
DM abundance by rescaling (within the limits permitted
by perturbativity considerations) all the mass scales
in the hidden sector by the square root of the number
displayed. When coannihilations become important, the
scaling is still roughly Ω ∝ m2, but with corrections that
cause some deviation from this behavior (see [41] for
further details).
In summary, we have shown that fermionic dark matter

with simple thermal histories is possible in our framework.
In the majority of the parameter space, annihilations to
Z0H0 provide for the “hidden WIMP miracle,” but more

complicated pictures, including coannihilations or annihi-
lations to hidden neutralinos, are possible.

IV. SCALAR DARK MATTER

In this section, we consider the scenario where the lighter
scalar S1 is the LZP dark matter candidate. For S1 to be the
LZP, one of two conditions are required: (i) one of the soft
masses m̃2

S, m̃
2
T should be negative, or (ii) one of m̃2

S, m̃
2
T

should not be too large (in this limit, SUSY relations force
the scalar to be degenerate with the ψ), and either the
trilinear term Aλ or D-term contribution must be large
enough to sufficiently split the eigenvalues to push the
smaller eigenvalue below mψ.
For case (i) with a single negative soft mass, in order to

ensure open annihilation channels in the hidden sector,
which is necessary to obtain the correct relic density via
freeze-out (since we assume ϵ to be small), we must further
have 2α0 < αλ or a seesawed down mχ0

1
. In the limit of

αλ ≫ α0 the cross sections are well approximated by

hσviS1S�1→Z0Z0 ¼ πα2λ
4m2

S1

�
1 −

jAλj2
m2

S1
þm2

S2

�
2

; ð14Þ

hσviS1S�1→H0H0

¼ πα2λ
4m2

S1

�
1−

jAλj2cos22θS
m2

S1
þm2

S2

−
1

2

�
2mψ − jAλjsin2θS

mS1

�
2
�

2

;

ð15Þ

hσviS1S�1→χ0iχ
0
j
¼CiCjð2−δijÞsin22θS

2πα2λ
m2

S1

�
m2

S1
=m2

ψ

ð1þm2
S1
=m2

ψÞ2
�
;

ð16Þ

where Ci ¼ cos2θN , C2 ¼ sin2θN . Note that because the
initial state is CP even, the relevant states are Z0Z0 and
H0H0, in contrast to the fermion case where Z0H0 played a
starring role. Of these states, H0H0 typically dominates
when mψ ≳mS1 on account of the term that goes like
m2

ψ=m2
S1

in Eq. (15). This term is due to t- and u- channel
diagrams generated via the jTj2jH0j2 term with oneH0 set to
its vev. Finally, the presence of sin 2θS in Eq. (16) can be
understood by noting that this channel receives a helicity
suppression in the absence of scalar mixing.
Figure 2 shows the relative importance of these channels

and illustrates a case where the correct relic abundance is
realized via annihilation to neutralinos. In the figure, mψ ¼
848 GeV and mS1 varies in the range 540–620 GeV. Even
with this relatively modest hierarchy, scalars still domi-
nantly annihilate to H0H0 when this channel is kine-
matically accessible. In this case, and for relatively
small A-terms, the dark matter abundance may be approxi-
mated as
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ðΩS1h
2ÞH0H0 ≈ ΩDMh2

�
0.12
λ

�
4
�
2 TeV
mψ

�
4
�

mS1

500 GeV

�
6

:

ð17Þ

However, for large α0, this channel becomes kinematically
inaccessible, and the relic density is set by annihilation into
the only available channel in the hidden sector, χ01χ

0
1.

Although this channel is suppressed relative to the bosonic
final states, Fig. 2 shows that it is still possible to achieve

the correct DM abundance with this channel (even away
from the Z0, H0 pole).
For case (ii), with positive soft masses, an interesting

feature (for relatively modest mB̃0) is a relatively com-
pressed spectrum, with the gauge boson, Higgs boson,
scalars, and fermions all in close proximity. The Aλ term is
not expected to be too large compared to the scalar masses,
hence relatively compressed spectra are quite generic
unless the D-term is very large. Such compressed spectra
result in potentially richer cosmologies, including more
robust possibilities of coannihilation.

FIG. 3. Left panel (a): color coding represents the dominant annihilation process contributing to S1 freeze-out, while contours
represent the computed DM relic abundance in units of the observed relic density. Right panel (b): the annihilation cross section for
T ¼ 0, relevant for indirect detection. Again, different colors indicate the dominant annihilation channel. For both panels, α0 ¼ 0.01,
v0 ¼ 2 TeV, m̃T ¼ 400 GeV, MB̃0 ¼ 400 GeV, λAλ ¼ 200 GeV, and ϕCP ¼ 0.

FIG. 2. Left panel (a): relative contributions of various annihilation processes to S1 freeze-out. The relative importance is given by the

Micromegas output fi ≡ hσvii
hσvitotal and corresponds to a freeze-out approximation for the annihilation rate of each channel [38]. Right panel

(b): the annihilation cross section for T ¼ 0, relevant for indirect detection. For both panels, αλ ¼ 0.045, v0 ¼ 1.6 TeV,
m̃S

2 ¼ −4002 GeV2, m̃T ¼ 1500 GeV, MB̃0 ¼ 3000 GeV, λAλ ¼ 600 GeV, and ϕCP ¼ −π.
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The interplay of the above processes can be seen in
Fig. 3, where we plot the dominant annihilation processes
over a slice of parameter space. At low αλ, the only
kinematically accessible state for S1S

†
1 annihilation is

χ01χ
0
1 (blue region). However, in this blue region and for

αλ ≳ 0.02, there is also an open coannihilation channel
(Z0χ01). This coannihilation is exponentially suppressed
because the S1—ψ mass splitting is still substantial,
∼Oð100Þ GeV; however, for a slice in the bottom left
(red), a near perfect destructive interference among
diagrams contributing to the χ01χ

0
1 annihilation nevertheless

allows for coannihilation to dominate. However, because
the overall annihilation rate is exceedingly small, the
relic density far exceeds the observed relic density. For
larger αλ, annihilations to dark Higgs and gauge bosons
dominate as they become accessible at αλ > 2α0 (gold
region). Eventually, the χ01χ

0
2 (green region) state becomes

kinematically accessible and marginally exceeds these
channels. The neutralino channels diminish as we move
to the right side of either panel, owing to the decrease in
sin 2θS; see the discussion surrounding Eq. (16). For
sufficiently small θS, the process is driven by otherwise
subdominant pieces suppressed by g0=λ, which are not
shown in Eq. (16). Note that, again, the largest values of αλ
shown here correspond to tuned hidden sectors, particularly
for the largest values of mS.
The fact that Z0Z0 exceedsH0H0 here is a consequence of

the relatively degenerate spectrum; the enhancement that
hidden Higgs final states receive from factors of mψ=mS1 ,
discussed below Eq. (15), is no longer substantial. For
example, in the bottom right corner when Z0Z0 goes on-
shell,mψ=mS1 ∼ 1.09. This permits terms proportional to g0

[neglected in Eq. (15)] to allow annihilation to Z0Z0 to
dominate. The S1 and ψ grow closer in mass toward the top
right, and coannihilation processes are seen to become
important (red region). As discussed in the previous
section, any of the contours can be made to match the
correct relic density by rescaling the mass scales involved.
We see from these figures that unlike when ψ is the LZP,

the case where S1 is the LZP is more involved, with several
available annihilation processes that are viable candidates
for setting the relic abundance. The link between indirect
detection and freeze out, shown by comparing the left and
right panels of Figs. 2 and 3, is, however, relatively
straightforward due to the nearly universal presence of
s-wave processes. Exceptions occur in regions where
coannhilation processes dominate, rendering a suppressed
indirect detection signal.

V. COANNIHILATION REGIME

The regime where the mass gap between the LZP and its
superpartner is small is worthy of special attention. As seen
in earlier sections, in this regime coannihilations between
the two can be important for setting the dark matter relic

density. Moreover, the small mass gap can cause the heavier
of the two to have a long lifetime, which can have important
cosmological and phenomenological consequences.
The heavier state decays to its superpartner and a trio of

SM fermions via an off-shell neutralino and the RPV
coupling through a dimension-7 operator, which we write
schematically as

Odecay ¼
ðS1ψÞðψSMψSMψSMÞ

Λ3
; ð18Þ

where Λ is a combination of gaugino and sfermion masses,
and ψSM represents a SM fermion. The identity of the
fermions depends on the texture of RPV couplings but does
not affect our discussion here. The important effect is that
the large power of Λ in the denominator, coupled with the
phase space suppression due to the small mass splitting
and the 4-body final state, can lead to an extremely long
decay lifetime. Assuming ψ to be lighter without loss of
generality, the decay width for S1 → ψψSMψSMψSM is
schematically

Γ ∼
ϵ2g02g2Yλ

002

29π5
Δm7

m4
0m

2
LSP

; ð19Þ

where Δm ¼ mS1 −mψ , and m0 represents a generic scalar
superpartner mass in the visible sector. This decay width
corresponds to a lifetime

τ=s ∼
�
10−4

ϵg0λ00

�
2
�
10 GeV
Δm

�
7
�

m0

TeV

�
4
�
mLSP

TeV

�
2

: ð20Þ

A lifetime τ ≳ 1 s could disrupt big bang nucleosynthesis
(BBN) through late injection of energetic photons and
charged fermions. This potentially imposes a strong con-
straint on Δm and hence coannihilation as a viable method
to produce the correct dark matter relic density, though the
strength of the constraint depends on other unknown
parameters. One possibility that allows for sufficiently
short lifetimes—even in the presence of small Δm—is
for ϵ to be fairly large, which would have interesting
implications for direct detection.
Another possibility, following [42,43], is to note that

particle decays after BBN are allowed so long as the energy
injected into photons and e� is several orders of magnitude
smaller than the energy density in dark matter. This can
indeed be the case. Understanding the constraints requires
an understanding of the energy density stored in S1. For
instance, suppose the coannihilation process that sets the ψ
dark matter relic abundance is ψS1 → χ01Z

0. In this case, the
cross-processes S1Z0 → ψχ01 and S1χ01 → ψZ0 can continue
to deplete the S1 abundance until they freeze out at a later
time. Assuming mψ ≈mS1 , we can approximate the energy
density in S1 relative to the energy density in ψ DM after S1
freeze-out as
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ρS1
ρψ

∼ Exp

�
−
mψ

Tfo

�
mψ

minðmχ0
1
; Z0Þ − 1

��
; ð21Þ

where Tfo is the DM freeze-out temperature. Due to this
exponential dependence, we expect lifetimes with post-
BBN decays to be compatible for mψ

minðmχ0
1
;Z0Þ ≳ 1.4 even if all

of the S1 energy density were ultimately converted into
photons and e�. Note, however, that much of the S1 energy
goes into LZP dark matter, and only a small fraction
∼Δm=mS1 goes into photons and e�, significantly mitigat-
ing such constraints. Furthermore, given that nS1 ≪ nDM at
the time of dark matter freeze-out, we also do not expect
subsequent S1 scattering or decay processes to contribute a
significant additional population of dark matter.

VI. UV CONSIDERATIONS

In the previous sections, we illustrated several incarna-
tions of the WIMP miracle in the hidden sector that differed
both in the identity of the dark matter and the most
important annihilation channel. In this section, we examine
whether and how these various scenarios arise from
reasonable choices of parameters at a high scale, and
whether these are compatible with constraints on weak
scale MSSM parameters.
We pay particular attention to what mass scales are

reasonable in the hidden sector under the assumption that
supersymmetry breaking is communicated similarly to the
two sectors, as might occur with gravity mediation. One
must renormalization group (RG) evolve the resulting
parameters from the scale at which SUSY breaking is
mediated to the weak scale, relevant for dark matter
phenomenology. Evolution of the hidden sector parameters
is performed with β-functions from Ref. [32] with slight
corrections (see Appendix for details). A linear combina-
tion of soft masses convenient for RG evolution, which also
serves as a rough proxy for the overall scale of the hidden
sector, is

Σ≡ 1

3
ðm̃2

T þ m̃2
S þ m̃2

H0 Þ: ð22Þ

The physical mass spectrum is related through
ðm2

S1
þm2

S2
Þ=2¼Trðm2

scalarÞ=2¼2
3
Σþm2

ψ . When evolved
into the IR, which for concreteness we evaluate at the
top quark mass, we find the following approximate
expression, derived from numerical RGE flow graphs
shown in the Appendix, Fig. 10:

ΣðmtopÞ ¼ ð0.3; 1ÞΣ0 þ ð0; 0.4Þm2
B̃0
0

: ð23Þ

HeremB̃0
0
is the value of the soft mass of the hidden gaugino

at the high scale. The lower (upper) boundary of the range
of the Σ0 coefficient corresponds to large (small) αλ,

whereas the lower (upper) boundary for the range of the
m2

B̃0
0

coefficient corresponds to small (large) α0. Just as the

large top Yukawa in the MSSM suppresses stop masses in
the IR, large λ can suppress the dark scalar masses in the IR.
And as in the (no-scale) MSSM, the gaugino mass can
generate scalar masses at one-loop. However, because the
Abelian dark Uð1Þ0 runs to weak coupling in the IR, this
suppresses the IR gauginomass andmitigates its effects on
the scalar masses.
To understand what we expect for the hidden sector mass

scale in Eq. (22), we should compare to the parameters of
the MSSM, whose values we have some indirect clues
about from the LHC. We make use of the approximate
solutions to MSSM RGEs from, e.g., [44–47]. For
tan β ¼ 10, IR SUSY breaking parameters are related to
universal boundary conditions for scalars (m0Þ, gauginos
(m1=2), and trilinears (A0) as:

m̃2
Q3

≈ 0.63m2
0 þ 5.7m2

1=2 − 0.13m1=2A0; ð24Þ

m̃2
U3

≈ 0.26m2
0 þ 4.3m2

1=2 − 0.27m1=2A0; ð25Þ

m̃2
H2

≈ −0.12m2
0 − 2.6m2

1=2 − 0.40m1=2A0; ð26Þ

ðM3;M2;M1Þ ≈ ð2.9; 0.82; 0.41Þm1=2: ð27Þ

We are agnostic about the precise UV SUSY-breaking
boundary conditions, but universal boundary conditions
such as these enable us to get a sense of the rough scales
involved.
Some of these parameters are constrained by LHC data.

In particular, direct searches constrain stops and gluinos to
be TeV scale or heavier. But it is also possible to say more.
Given the absence of a definitive hint of the mass scale of
superpartners, we can take the measured mass of the Higgs
boson, mh ¼ 125 GeV, as an indirect measure of the stop
mass scale. It is known that this Higgs mass is compatible
with stop masses below a TeV in the presence of significant
stop mixing, but LHC direct searches place this scenario in
tension. If mixing in the stop sector is not near maximal,
then the observed Higgs mass requires that stops be much
heavier, ≳5 TeV [48–51]. From the equations above, we
see that the stop mass in the IR is largely determined by two
UV mass parameters: a soft mass scale m0 and the gaugino
mass scale m1=2. The gaugino mass piece provides
the dominant contribution in the IR unless m0 ≫ m1=2. In
the gaugino mass dominated scenario, ∼5 TeV stops sug-
gest m1=2; m0 ∼ TeV. Assuming that Σ0, mB̃0

0
are compa-

rable to their respective MSSM counterpartsm2
0 andm1=2 in

the UV, hidden sector RG running then suggests
Oð100Þ GeV–OðTeVÞ as the mass scale for hidden sector
particles. Scalar mass dominated scenarios are correlated
with somewhat heavier hidden sector masses. Therefore,
Oð100Þ GeV–OðTeVÞ scale hidden sector particles can be
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generically compatible with multi-TeV stops and gluinos in
theMSSMsectorwithout any significantmass hierarchies in
the UV. Detailed information on the hidden sector spectrum
requires RG evolution of the splittings between the various
soft masses. The splittings decrease fairly slowly and so are
sensitive to their UV starting points.
We now turn from these generalities to make a more firm

connection with the cosmological histories outlined in
earlier sections. We use analytic one-loop formulas for
IR quantities (see Appendix) to plot relic abundances given
UV initial conditions. In Fig. 4, we show (as a black curve)
the realized relic abundance as a function of the IR mass
splitting between the lightest scalar S1 and the fermion
ψ in the hidden sector. This splitting depends on m̃0

T in the
UV. The various curves denote the relative importance
of various annihilation channels—solid (dotted) curves
for fermion (scalar) dark matter—as well as coannihila-
tion (dashed curves). At largemS1 −mψ , we can see that the
correct relic abundance is realized for a wide range
of mass splittings, consistent with thermal histories domi-
nated by ψψ̄ → Z0H0 annihilations (solid orange curve).
Annihilations to the lighter neutralino are smaller by Oð1Þ
factors and therefore not negligible (solid green curve). On
the left hand edge of the plot, where scalar dark matter is
realized, S1S�1 → χ01χ

0
1 annihilation dominates (dotted

green). When the mass splitting is small, coannihilations
can dominate (dot-dashed curve). This figure therefore
shows that for a range of TeV scale input parameters in
the UV, the correct relic abundance can be realized for both
fermion and scalar darkmatter scenarios. It is worth pointing
out that at the right edge of the plot, S1 transitions from being
dominantly T̃� to S̃. For sufficiently large m̃T , m̃S will be
pushed down via the impact of m̃T on the RG flow of m̃S, so
further increase of m̃T actually results in a decrease in the
lightest scalar mass.
Finally, we comment briefly on the evolution of the

dimensionless couplings. There is a λ ¼ ffiffiffi
2

p
g0 IR fixed

point, which can be understood as the emergence of an
N ¼ 2 SUSY, where ψ is degenerate with Z0, H0. The
distance from this fixed point, r, has a simple solution at
one loop

rðtÞ≡1−
2α0ðtÞ
αλðtÞ

; rðtÞ¼ r0

�
α0ðtÞ
α00

�
3

¼ r0

ð1− α0
0
t

π Þ
3
; ð28Þ

where t≡ logðμ=MGUTÞ, MGUT ¼ 2 × 1016 GeV, and null
subscripts correspond to GUT boundary conditions.
Interestingly, rðtÞ is also a measure of the kinematic
suppression of ψψ̄ annihilation to Z0, H0 (see Fig. 9 and
surrounding text in the Appendix). This equation thus
indicates the possibility of kinematic suppression of this
channel as a consequence of RG evolution.

VII. DECAY MODES OF HIDDEN SECTOR
PARTICLES

In this section we discuss the decay modes of various
hidden sector particles. This is crucial for indirect detection,
as once the dark matter annihilates into these particles, their
decay modes will determine the spectra of SM states that
will be observed by experiments.

A. H0 decays

Kinetic mixing induces a mixed quartic interaction
between the visible and hidden sector Higgs fields via a
D-term contribution to the potential shown in Eq. (5). This
generates a mixed mass matrix after each field acquires a
vev. In the ðH0

d; H
0
u; H0Þ basis, this is (to leading order in ϵ)

m2
Hd;Hu;H0 ¼

0
BB@

s2βm
2
A þ c2βm

2
Z −sβcβðm2

A þm2
ZÞ ϵsθWmZmH0cβ

−sβcβðm2
A þm2

ZÞ c2βm
2
A þ s2βm

2
Z þ δ=s2β −ϵsθWmZmH0sβ

ϵsθWmZmH0cβ −ϵsθWmZmH0sβ m2
H0

1
CCA; ð29Þ

where we have used the abbreviations sx¼sinx and cx ¼
cos x, and tan β ¼ vu

vd
is the ratio of the up- and down-type

Higgs vevs, with v2u þ v2d ¼ v2 ¼ ð246 GeVÞ2. The δ term
encodes the radiative contribution to the Higgs mass, which

we adjust to recover the 125 GeV Higgs mass. After
rotating the visible sector Higgs fields by the standard
MSSM Higgs mixing angle α, the mass matrix in the
ðH; h;H0Þ basis is

FIG. 4. Interpolation between dark matter scenarios by scan-
ning the soft mass m̃0

T in the UV. The solid black curve indicates
the realized dark matter density, while the other curves indicate
the relative importance of different annihilation channels, with fi
as defined in the caption of Fig. 2. The parameters in the legend
are defined in the UV.
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m2
H;h;H0 ¼

0
BB@

m2
H 0 ϵsθWmZmH0cαþβ

0 m2
h −ϵsθWmZmH0sαþβ

ϵsθWmZmH0cαþβ −ϵsθWmZmH0sαþβ m2
H0

1
CCA: ð30Þ

In the MSSM decoupling limit, mA ≫ mZ, α ≈ β − π
2
. If H

is so massive that it decouples from this system,6

we get

m2
h;H0 ¼

 
m2

h ϵsθWmZmH0c2β

ϵsθWmZmH0c2β m2
H0

!
: ð31Þ

The mass eigenstates of this matrix are comprised
of the h, H0 states with mixing angle θH approximately
given by

θH ≈ −
ϵsθWmZmH0c2β
m2

H0 −m2
h

: ð32Þ

To understand which decays are allowed for H0
requires an understanding of the H0 mass relative to
those of other hidden sector particles. As discussed in
Sec. II, we expect an approximate degeneracy between
H0 and Z0 to be maintained even after accounting for
loop corrections. This eliminates the possibility of the
decay channel H0 → Z0Z0, except in extremely fine-
tuned regions (for moderate fine-tuning, it might be
possible that ZZ0 could be open). More likely is the
possibility of H0 decays to neutralinos. While the hidden
sector neutralinos are also degenerate with the H0 in the

supersymmetric limit, recall that a somewhat large mB̃0

produces a seesaw effect that makes (the mostly H̃0) χ01
light, opening the channel H0 → χ01χ

0
1. The width for this

channel is

ΓðH0 → χ01χ
0
1Þ ¼

g02mH0

4π
ðsin2 θN cos2 θNÞ

�
1 −

4m2
χ0
1

m2
H0

�3=2

;

ð33Þ

where θN is the B̃0 − H̃0 mixing angle, see Eq. (3).
If this decay channel is not kinematically accessible, the

H0 decays into SM states with an ϵ2 suppression. Because
H0 inherits the couplings of the SM Higgs via θH mixing, it
may decay into SM states such asWW, ZZ, tt̄ or hh [52], or
to visible sector superpartners, especially neutralinos.
Decays to hh are also directly mediated via the Higgs
portal coupling. Decays to MSSM Higgs states, e.g., AA,
HH, HþH−, are possible but likely kinematically sup-
pressed, and we do not consider them further for simplicity.
The final possibility is the decay into neutralinos of both
sectors, H0 → χ01χ1, which occurs at the same order in ϵ.
Among the visible sector SM states, H0 → WW will

dominate so long as mH0 > 2mW . In the approximation
given by Eq. (32), the partial widths to SM bosons are:

ΓðH0 → WWÞ ¼ ϵ2g2Yc
2
2βmH0

64π

�
1 − 4ðmW=mH0 Þ2 þ 12ðmW=mH0 Þ4

1 −m2
h=m

2
H0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
W

m2
H0

s
;

ΓðH0 → ZZÞ ¼ ϵ2g2Yc
2
2βmH0

128π

�
1 − 4ðmZ=mH0 Þ2 þ 12ðmZ=mH0 Þ4

1 −m2
h=m

2
H0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Z

m2
H0

s
;

ΓðH0 → hhÞ ¼ ϵ2g2Yc
2
2βmH0

128π

�
1þ 3c22βm

2
Z

m2
H0 −m2

h

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

m2
H0

s
: ð34Þ

In the largemH0 limit, we get ΓðH0→WWÞ≈2ΓðH0→ZZÞ≈
2ΓðH0→hhÞ as expected from the Goldstone equivalence
theorem.

The decay width into MSSM neutralinos H0 → χiχj is
subdominant to the above widths due to the relatively small
Yukawa coupling suppressed by mZ

μ . The decay into the
neutralino combination H0 → χ1χ

0
1, on the other hand, can

dominate in some regions of parameter space. This process
is generated by neutralino mixing. After diagonalizing the
kinetic terms of the neutralinos via B̃ → B̃ − ϵB̃0, the mass
matrix in the basis χ̃0gauge ¼ ðH̃0B̃0jB̃H̃DH̃UÞ is (to leading
order in ϵ)

6One must take care in taking this strict decoupling limit. For
processes such as the decay H0 → χ1χ1, the contribution via Hu
may be suppressed relative to those from Hd, for instance due to
χ1 having a roughly tan β larger content of Hd ∼H than Hu ∼ h.
In this case, effective decoupling can be delayed.
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mχ ¼

0
BBBBBBBBB@

0 g0v0 0 0 0

g0v0 mB̃0 ϵmB̃B̃0 − ϵmB̃
1
2
gYϵvd − 1

2
gYϵvu

0 ϵmB̃B̃0 − ϵmB̃ mB̃ − 1
2
gYvd

1
2
gYvu

0 1
2
gYϵvd − 1

2
gYvd 0 −μ

0 − 1
2
gYϵvu

1
2
gYvu −μ 0

1
CCCCCCCCCA
: ð35Þ

Here, we assume that the wino is sufficiently heavy
to be decoupled from the analysis. Diagonalizing the
neutralino and Higgs mass matrices as mχ;diag ¼ NmχN†,
m2

diag ¼ Um2
Hd;Hu;H0U†, we calculate the relevant decay

width as

ΓðH0→ χ1χ
0
1Þ¼

g02mH0

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

m2
χ1

m2
H0
−
m2

χ0
1

m2
H0

�2

−
4m2

χ1m
2
χ0
1

m4
H0

vuut

×

�
1−

m2
χ1 þm2

χ0
1
þ2mχ1mχ0

1

m2
H0

�

×ðU10;H0 ðN1;B̃0N10;H̃0 þN1;H̃0N10;B̃0 ÞÞ2: ð36Þ
The neutralino masses are allowed to be negative in

this formula, and the first index of Nij, Uij denotes
mass eigenstates, with i ¼ 10; 20; 1; 2; 3, with the
prime indicating that the eigenstate is dominantly com-
prised of hidden sector fields. The second index indicates
states after diagonalizing kinetic terms but prior to mass
diagonalization. In Fig. 5, we explore the branching

ratio into this decay channel in the H decoupling limit
and to leading order in ϵ. In the contour plot in the
left panel, the branching ratio vanishes for small jmB̃0 j
because the channel becomes kinematically inaccessible,
mχ þmχ0 > mH0 . At large jmB̃0 j it is negligible because the
hidden sector decay H0 → χ01χ

0
1 becomes kinematically

accessible and dominates. In between, large mixing
between the hidden neutralino and the lightest MSSM
neutralino can make this mixed channel dominant, reaching
branching ratios over 90%. The right panel shows two
slices of this contour plot at mB̃0 ¼ 600, −600 GeV. This
plot illustrates that the relevant branching ratio can vanish
for some value of mB̃B̃0 where contributions from field
redefinition to remove the kinetic mixing of Eq. (2) and the
diagonalization to remove the mass mixing introduced in
Eq. (4) conspire to cancel each other. For χ1 ∼ B̃ (equiv-
alently,mZ ≪ μ) and small ϵ, this cancellation occurs when
mB̃ ≈mB̃B̃0 , as seen from the relevant off-diagonal term
in Eq. (35).
In summary, we expect H0 decays to be dominated by

H0 → WW, H0 → χ01χ
0
1, H

0 → χ01χ1, or H
0 → Z0Z. Decays

FIG. 5. Branching ratio of the hidden Higgs boson to the lightest MSSM and hidden neutralino, BRðH0 → χ1χ
0
1Þ, as contours in the

hidden gaugino mass mB̃0—mixed gaugino mass mB̃B̃0 plane (left panel) and for mB̃0 ¼ 600, −600 GeV (right panel). The other
parameters are set to tan β ¼ 10, mB̃ ¼ 150 GeV, μ ¼ 1000 GeV, ϵ ¼ :01, g0 ¼ 1, and mH0 ¼ 500 GeV.
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to hidden sector particles will be followed by cascades into
SM final states.

B. Z0 decays

The hidden sector decay Z0 → χ01χ
0
1 will dominate if

kinematically accessible since all other channels are ϵ
suppressed; otherwise, decays to pairs of SM fermions
or to χ1χ

0
1 dominate. In the mZ0 ≫ mZ limit, the couplings

of the Z0 to fermions are simply proportional to hyper-
charge as induced by the kinetic mixing, and the residual
change to the coupling coming from the diagonalization of
the Z − Z0 mass matrix is negligible. The Z0 dominantly
decays to up-type quarks, followed closely by charged
leptons. In the opposite mZ0 ≪ mZ limit, the Z0 instead
primarily couples to electric charge, again decaying domi-
nantly to up-type quarks (except the top quark, which is
now kinematically inaccessible) or charged leptons. Decays
to WW or hZ are small, at the percent level or below.
For Z0 → χ1χ

0
1 decay to dominate requires a larger

neutralino mass mixing between the two sectors than in
the Higgs boson case, see Fig. 6. This is because unlike
the H0, which couples to the gaugino-Higgsino com-
bination in neutralinos, the Z0 couples to the Higgsino-
Higgsino combination. Since the χ01 is mostly H̃0 and the
ϵ-suppressed coupling to χ1 is via the B̃0 component, the
Z0 → χ1χ

0
1 coupling suffers from an additional H̃0 − B̃0

mixing angle suppression relative to the H0 → χ1χ
0
1 cou-

pling. The relative closeness of the two curves for different
signs of mB̃ compared to the H0 decay case (Fig. 5 right
panel) is merely an artifact of our choice of parameters, and
can be modified by changing θN .

C. χ 01 decays

We are interested in scenarios where χ01 is the lightest
fermion in the hidden sector; hence all of its decays are into

the visible sector via the portal coupling and are ϵ sup-
pressed. The decay must proceed through the gaugino
component of χ01, denoted by N101. In the limit where R-
parity is unbroken, χ01 decays into the LSP χ1 via an off-
shell sfermion, with the width [22,53]

Γðχ01 → χ1ff̄Þ ¼
ϵ2α2YN

2
101

64π

m5
χ0
1

m4
0

f2ðm2
χ1=m

2
χ0
1
Þ; ð37Þ

where f2ðxÞ ¼ 1 − 8xþ 8x3 − x4 − 12x2 log x, and m0 is
the sfermion mass scale. If kinematically allowed, it can
also decay as χ01 → χ1ðh=ZÞ through the bino-Higgsino
mixing in the visible sector (if the χ01 − χ1 splitting is
smaller than the h=Z mass, the boson can be off-shell,
giving a 3-body decay). This on-shell decay channel is
subdominant to the above channel if jμj > 8π

gY
ðm0

mχ0
1

Þ2mZ. If

R-parity violation is significant, χ01 inherits the RPV decay
channel of χ1 into three SM fermions:

Γðχ01 → uddþ ū d̄ d̄Þ ¼ 3ϵ2λ002N2
101αY

128π2

m5
χ0
1

m4
0

: ð38Þ

For sufficiently large λ00, this can be the dominant decay
channel for χ01.

VIII. DIRECT DETECTION AND COLLIDER
CONSTRAINTS

Direct detection in scenarios of hidden sector dark matter
through the kinetic mixing portal has previously been
studied by, e.g., [16,54]. The spin-independent cross
section per nucleon can be written to leading order in ϵ as:

σ ¼ Cϵ2g02e2Z2c2θWμ
2
Dn

πA2m4
Z0

; ð39Þ

where μDn is the reduced mass of the dark matter particle
and the nucleon, Z is the atomic number, A is the mass
number, and C ¼ f1

4
; cos4 θSg for {fermion, scalar} dark

matter, with θS the mixing angle between S1 and S2.
Because mZ is much greater than the momentum exchange
in the scattering process, the cross section goes like
coupling to the electromagnetic current e2Z2.
Given these cross sections, we can derive constraints

on the product g0ϵ from direct detection experiments.
Current constraints from XENON1T [3] and projected
constraints from LZ [55] are shown in Fig. 7. We plot
two curves for each experiment, assuming mψ ¼ mZ0 or
mψ ¼ mZ0

2
for fermion dark matter. The choices are repre-

sentative of different parameter regimes that replicate the
correct relic abundance: The choice mψ ¼ mZ0 is inspired
by the IR fixed point λ ¼ ffiffiffi

2
p

g0, whereas mψ ¼ mZ0
2

repre-
sents the region of parameter space where the annihilation
ψψ̄ → χ0iχ

0
j occurs through a Z0 resonance (note that small

variations around the mψ ¼ mZ0
2

resonance can precisely

FIG. 6. Branching ratio of the hidden gauge boson to the
lightest MSSM and hidden neutralino, BRðZ0 → χ1χ

0
1Þ, for

mB̃0 ¼ 600, −600 GeV. The other parameters are set as in Fig. 5:
tan β ¼ 10, mB̃ ¼ 150 GeV, μ ¼ 1000 GeV, ϵ ¼ :01, g0 ¼ 1,
and mH0 ¼ 500 GeV.
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pick the early Universe annihilation cross section necessary
for the correct relic density but do not significantly affect
the direct detection cross section). In the limit where mψ is
much larger than the mass of a xenon nucleus, direct
detection constraints on the cross section scale with mψ , so
our constraints on g0ϵ will scale like m2

Z0
ffiffiffiffiffiffiffimψ

p , which goes

like m5=2
Z0 in Fig. 7.

Complementary collider constraints exist from CMS
and ATLAS searches for narrow dilepton resonances,
see Fig. 7. The orange region labelled CMS is the
constraint from searches for muon pairs in the 13 TeV
data corresponding to an integrated luminosity of 137 fb−1

[56]. This search provides direct bounds on g0ϵ for
110 GeV < mZ0 < 200 GeV. The CMS bound at higher
masses [57] and ATLAS bound [58] require a conversion
from bounds on a fiducial cross section σfid × BRðZ0 → llÞ
reported in [57,58], respectively, to bounds on g0ϵ. We do
this by implementing the model using FEYNRULES [59] and
simulating via matching MADGRAPH5 [60] with PYTHIA6

[61]. To extract these limits, we assume that no decays to
the visible superpartners or hidden sector states are kine-
matically accessible, and that the Z0 is narrow. For a general
branching ratio BRSM to SM states, the bound would be
modified as ϵ → ϵBR−1=2

SM , assuming the width remains
modest.

IX. INDIRECT DETECTION

We now comment on implications for indirect detection
signals. The relic abundance is essentially determined via a

WIMP miracle, and annihilations into hidden sector states
are unsuppressed by ϵ and typically dominated by s-wave
processes. Thus, the present day dark matter annihilation
cross sections can be large enough to make indirect
detection a potentially powerful probe. Hidden sector
decays are rapid enough to be considered prompt for
indirect detection signals.7

The indirect detection signals will be sensitive to the
mass spectra in both hidden and visible sectors, as well as
to whether R-parity is conserved or broken. The possibil-
ities are numerous. For now, we limit the discussion to
qualitative comments, and leave a detailed treatment of
various possibilities, including calculations of the precise
spectra of SM final states and limits/projections from
various experiments such as Fermi and CTA [66], to future
work [67].
For fermionic dark matter, the dominant annihilation

channel over the vast majority of the parameter space is
ψψ̄ → Z0H0, followed by decay via portals to the visible
sector as discussed in Sec. VII. Our expectation is that the
H0 is sufficiently heavy that on-shell decays to W bosons
are accessible, whereas the Z0 will decay to a mix of light
SM fermions, typically up-type quarks and leptons. We
therefore expect the dominant contribution to the photon
spectrum from, e.g., the galactic center and dwarf galaxies
to come from the hadronization of the quarks to pions and
their subsequent decay; this is consistent with earlier works
that studied indirect detection spectra of similar hidden
sector cascade decays [68–70].8
Modifications to this base case can occur when annihi-

lations or decays to neutralinos become important. As
discussed in Sec.VII (see alsoFig. 5), theH0will dominantly
decay to χ01χ

0
1 if kinematically allowed, or to χ1χ

0
1 in some

regions of parameter space.Alternatively, as shown in Fig. 1,
the correct thermal relic abundance can be achieved by dark
matter annihilations directly to χ01. In such cases, we need to
understand the fate of the χ01, which decays via portal
couplings to χ1. Decays of the type χ01 → χ1V with
V ¼ Z, h or χ01 → χ1ff̄ can dominate. Thus, dark matter
annihilations can take the form ψψ̄ → χ0χ0 → χ1χ1þVV=4f
or ψψ̄ → Z0h0 → ðff̄Þ þ χð0Þχ0 → χ1χ1 þ VðVÞ=2ð4Þf.
Further decays of χ1 into three SM fermions via the RPV
coupling adds another step in the cascade. Therefore, a
single dark matter annihilation process could produce as
many as 10 fermions in multiple steps.
For scalar dark matter, in the case where one of the scalar

masses is negative, S1S1 → H0H0 often dominates, with the
H0 decaying as discussed in Sec. VII. In the case where
both scalar masses are positive and the hidden sector

FIG. 7. Constraints on the product g0ϵ from direct detection for
fermion dark matter for mψ ¼ mZ0 (blue) and mψ ¼ mZ0

2
(green).

Solid lines denote constraints from XENON1T, and dotted lines
denote projected constraints from LZ after 1000 live days with a
5.6 tonne fiducial mass. LHC constraints are plotted assuming
g0 ¼ 1, as derived from CMS searches for a resonance decaying
to muon pairs [56] for 110 GeV < mZ0 < 200 GeV (orange),
from CMS searches for dilepton resonances [57] for mZ0 >
200 GeV (purple), and from ATLAS searches for dilepton
resonances [58] for mZ0 > 250 GeV (red). Precision electroweak
constraints [16] are plotted assuming g0 ¼ 1 (yellow).

7Scenarios where this is not the case can lead to interesting
signatures, see e.g., [62–65].

8The work of [70] attempted to fit a similar model consisting of
∼20 GeV dark matter cascading via OðGeVÞ hidden bosons to
the galactic center excess.
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spectrum is more compressed, the dominant annihilation
channel over much of the parameter space is S1S1 → Z0Z0,
with the Z0 primarily decaying into SM fermions. This case
also admits regions of parameter space where annihilation
to neutralinos (and their attendant cascades, as described
above) can be important, again leading to multiple SM
fermions in the final state.
The realistic hidden sector dark matter scenarios con-

sidered in this paper can therefore lead to more complicated
signatures compared to “simplified” hidden sector dark
matter scenarios (such as those considered in [14,15]),
which generally consist of two-step dark matter annihila-
tions of the form DM þDM → Z0H0 → 4f.

X. CONCLUSIONS

In this paper, we have put together a simple framework
for dark matter, building upon ingredients and guiding
principles that are well-motivated: hidden sectors, super-
symmetry, naturalness, and the realization of the correct
relic density for dark matter via the WIMP miracle. A
hidden sector can lie around the weak scale, thereby
realizing the WIMP miracle. This happens naturally in
scenarios where, for instance, supersymmetry breaking is
mediated to both the hidden and visible sectors via gravity
mediation. This can be made compatible with stringent
LHC limits on superpartners with only Oð1Þ differences
between hidden and visible sector parameters in the UV. In
this framework, we studied the minimal matter field content
under a hidden sector Uð1Þ0 gauge symmetry that kineti-
cally mixes with the SM hypercharge, where dark matter is
stabilized not by R-parity but by an accidental Z2 symmetry
in the hidden sector. While the electroweak scale in our
sector might be accidentally small, we assumed symmetry
breaking in the hidden sector to be “natural,” which
suggests that the hidden sector scalars and fermions as
well as their superpartners lie around the same mass scale,
opening possibilities for a variety of dark matter candidates
as well as rich cosmological histories and indirect detection
signatures.
For fermion dark matter, we found that dark matter

annihilation is generally dominated by the Z0H0 channel,
though annihilations to hidden sectors neutralinos are still
relevant. For scalar dark matter, annihilations to χ0iχ

0
j, H

0H0

as well as Z0Z0 states were shown to lead to consistent
cosmological histories. We also found instances of coan-
nihilation between the scalar and the fermion providing the
correct relic density, where the heavier of the two can be
extremely long-lived, well beyond BBN, yet consistent
with all cosmological constraints.
In such frameworks, dark matter direct detection cross

sections and production cross sections for hidden sector
particles at colliders are generally suppressed by the portal
coupling strength ϵ mixing the two sectors. While such
signals might be observed, a too-small ϵ would preclude
such possibilities. Indirect detection is different: dark

matter annihilation into visible particles proceeds via a
series of cascade decays involving hidden sector particles,
and can lead to a wide variety of indirect detection signals
that might be within reach of future experiments; detailed
studies of such signals will be performed in a future
paper [67].
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APPENDIX:

We first present analytic one-loop solutions to the
RGEs of the model considered in this paper. We define
t≡ logðμ=MGUTÞ, with MGUT ≃ 2 × 1016 GeV. UV boun-
dary conditions will be specified with a 0 subscript
at t ¼ 0.

α0ðtÞ ¼ α00
1 − α00t=π

; ðA1Þ

αλðtÞ ¼ αλ0
−4πF0ðtÞ

1þ 6αλ0FðtÞ
; ðA2Þ

FðtÞ ¼ −
t

12π

�
3 − 3

α00t
π

þ α020 t
2

π2

�
: ðA3Þ

Note that since t < 0 in the IR, FðtÞ > 0 and increases
monotonically. In this Appendix, when we display quan-
tities in the IR, for concreteness, we evaluate them
at μ ¼ mtop.
The two-loop numerical RG flow is shown in Fig. 8,

and is well approximated by the above formulae. Recall
that these couplings have a fixed point at 2α0 ¼ αλ, where
the ψ becomes degenerate with the Z0, H0. We display the
impact of this fixed point on the possible kinematic
suppression of fermion annihilation to Z0H0 in Fig. 9 (as
discussed near Eq. (28)). For large couplings, it is
possible that evolution toward the fixed point can cause
substantial suppression of the annihilation rate into the
Z0H0 final state.
The coupling evolution itself is enough to determine two

more RG parameters:

mB̃0 ðtÞ ¼ mB̃0
0

α0ðtÞ
α00

; ðA4Þ
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AλðtÞ ¼ Aλ0

1

1þ 6αλ0FðtÞ

þmB̃0
0

�
2tα0ðtÞ

π
þ 6αλ0

tF0ðtÞ − FðtÞ
1þ 6αλ0FðtÞ

�
: ðA5Þ

In the basis

ΔHT ≡ m̃2
H0 − m̃2

T; ðA6Þ

ΔSTH ≡ 2m̃2
S − ðm̃2

T þ m̃2
H0 Þ; ðA7Þ

Σ≡ 1

3
ðm̃2

S þ m̃2
T þ m̃2

H0 Þ; ðA8Þ

the solutions for the soft scalar masses can be captured by
relatively simple expressions

ΔHTðtÞ ¼ ΔHT0

α0ðtÞ
α00

; ðA9Þ

ΔSTHðtÞ ¼ ΔSTH0
− 2m2

B̃0
0

�
1 −

α0ðtÞ2
α020

�
; ðA10Þ

Σ ¼ ΣSTH0

1

1þ 6αλ0FðtÞ
þ 2

3
m2

B̃0
0

�
1 −

α0ðtÞ2
α020

�
− 2IðtÞ;

ðA11Þ
where we have defined IðtÞ as

IðtÞ ¼ m2
B̃0
0

IGGðtÞ þmB̃0
0
Aλ0IAGðtÞ þ A2

λ0
IAAðtÞ; ðA12Þ

where

IAAðtÞ ¼
αλ0FðtÞ

ð1þ 6αλ0FðtÞÞ2
; ðA13Þ

IAGðtÞ ¼ −2
αλ0ðtF0ðtÞ − FðtÞÞ
ð1þ 6αλ0FðtÞÞ2

; ðA14Þ

IGGðtÞ ¼ −6
α2λ0ðtF0ðtÞ − FðtÞÞ2
ð1þ 6αλ0FðtÞÞ2

þ αλ0GðtÞ
1þ 6αλ0FðtÞ

; ðA15Þ

(a) (b)

FIG. 8. The IR couplings resulting from a two-loop numerical RG flow from MGUT to mtop. Left panel: The gauge coupling α0. Right
panel: The Yukawa coupling αλ.

FIG. 9. Contours of the IR kinematic suppression of ψ
annihilation to mZ0 as a function of UV couplings. This
suppression is exactly r1=2, for r defined in Eq. (28).
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GðtÞ ¼ −
2

π
α0ðtÞt2F0ðtÞ; ðA16Þ

with FðtÞ defined in Eq. (A3). The above equations can be
inverted to yield solutions for the soft masses.
We have verified these analytic results against numerical

solutions of the full two-loop RGE. The two-loop RGEs
have previously been discussed in [32]; we correct a few
small typographical errors: in Equation (A1) of Ref. [32], in
the two-loop part of the β function for the gaugino mass
there is an α2h that should read αh; in the two-loop part of the
β function for mS there is an α2S that should read αS, and in
the two loop expression for the β function form� there is an
α that should read αh.

At one loop, our proxy for the hidden sector scale, Σ,
when evaluated in the IR, can be written in terms of UV
parameters as:

Σ ¼ cΣΣ0 þ cmB̃0m
2
B̃0
0

þ cmB̃0Aλ
mB̃0

0
Aλ0 þ cAλ

A2
λ0
: ðA17Þ

In Fig. 10, we display these coefficients as functions of the
dimensionless parameters α0 and α in the UV. We note that
cmB̃0 and cΣ are the largest numerically, thus we expect UV
specification of the gaugino mass and/or Σ will largely
determine the scale of the hidden sector in the IR, absent very
large A-terms in the UV. Furthermore, examination of the
values of the cmB̃0 and cΣ in the figure, when taken in concert
with analogous expressions for the MSSM, see Eq. (24),
shows the disparity between the importance of the UV

FIG. 10. Each plot depicts the IR coefficient weighting respective soft breaking terms whose linear combination gives the IR value of
Σ, defined in Eq. (A17). The axes show the UV couplings that determine the coefficients (up to ϵ-suppressed effects).
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gauginomass in these two sectors; theMSSM is much more
sensitive to UV gaugino masses due to the strongly coupled
SUð3Þ in the IR.
It is interesting to note the existence of additional

IR fixed points in this model. The parameters mB̃0 and

ΔHT defined above flow to zero in the IR with
identical one-loop solutions. However, this is a relatively
slow effect, as can be extracted from Eq. (A9) and Fig. 8.
The trilinear Aλ term also flows to a fixed point given
by Aλ ¼ − 2

3
α
2αλ

mB̃0 ¼ − 2
3
mB̃0.
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