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We calculate contributions to the one-loop renormalization in the spinor sector of the minimal

Lorentz-violating extended QED in the second order in Lorentz-breaking parameters. From the
renormalizability viewpoint, we show that the inclusion of some of the Lorentz-breaking terms in the
model is linked to the presence of others. We also demonstrate that the Ward identities are satisfied up to

this order.
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I. INTRODUCTION

Nowadays, there is a consensus that the Standard
Model of elementary particles is a low-energy effective
theory for a more fundamental model. The search for this
fundamental theory encompasses the study of Standard
Model extensions that show physical meaning and
whose low-energy limits respect the known experimental
results. The Standard Model extension (SME) [1], in its
minimal version, is obtained by adding, to the minimal
Standard Model, all possible Lorentz-breaking terms that
could emerge from spontaneous symmetry breaking at
very high energy, which incorporate constant tensors as
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vacuum expectation values in the process. The upper limit
for the magnitude of these background tensors must be
fixed by experiments (see Ref. [2] for experimental
results) and, as a consequence, should be very tiny.
The SME is to be understood as an effective description
of Lorentz violation at low energy. It is relevant that the
SME preserves SU(3) x SU(2) x U(1) gauge symmetry
and renormalizability [3-6].

In the papers of Samuel and Kostelecky [7,8], the
possibility of Lorentz symmetry violation was first
discussed as a natural process when the perturbative
string vacuum is unstable. Later, Carroll, Field, and
Jackiw presented a first CPT- and Lorentz-violating
extension of QED with the inclusion of a Chern-
Simons-like term in the photon sector [9]. The
Carroll-Field-Jackiw (CFJ) model was exhaustively
studied in the subsequent years, mainly concerning its
quantum induction from a CPT-odd axial term added to
the fermionic part [10]. The so studied CFJ term is a part
of the extended QED, which is the subset of the minimal
SME that takes care of the Lorentz-violating QED. The
extended QED is well established at the tree level and, as
mentioned before, was proven to be renormalizable.
Besides, a very important subject of study is its quantum

Published by the American Physical Society


https://orcid.org/0000-0002-8108-2399
https://orcid.org/0000-0003-4516-655X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.075017&domain=pdf&date_stamp=2020-10-15
https://doi.org/10.1103/PhysRevD.102.075017
https://doi.org/10.1103/PhysRevD.102.075017
https://doi.org/10.1103/PhysRevD.102.075017
https://doi.org/10.1103/PhysRevD.102.075017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

L.C.T. BRITO et al.

PHYS. REV. D 102, 075017 (2020)

dynamics, since the inclusion of these parts in the
classical action may cause the radiative induction of
new terms. Many papers were dedicated to the inves-
tigation of the quantum corrections to the minimal
extended QED action with interesting results and
discussions, as in the case of the ambiguity of the
induced CFJ term. However, these discussions were held
almost always up to the first order in the Lorentz-
breaking parameters.

Actually, this focus on the first-order correction in the
background tensors is justified by the fact that the
extended QED corrections to the known results should
be very small, so that they can be encompassed by the
current experimental error. It is also true, however, that
the first-order corrections in some of these parameters are
null. In these cases, one must pay attention to the lowest-
order non-null correction. It is also necessary to verify the
nature of the null corrections: do they just eventually
vanish in that order, or is there some underlying deeper
reason? In Ref. [11], the one-loop corrections to the
photon sector of the extended QED at second order in the
background tensors were calculated. It is possible to
argue that some of the parameters do not induce quantum
corrections at all, while others contribute depending on
the order of calculation. It is interesting, for example, to
note the cases of the vector ¢# and the axial vector f*,
which do not contribute in the first-order calculation.
The one-loop second-order calculations in e¢* and f*,
however, give divergent contributions both to the
Maxwell and to the CPT-even aecther (that is, the
KH wF),) terms. This has relevant implications for
the renormalization of extended QED. A first-order one-
loop calculation that included only the Lorentz-violating
terms with e and f* might lead us to conclude that the
presence in action of an aetherlike term is unnecessary.
When the second-order results are considered, we see
that the aether term must be introduced in the action from
the beginning.

This is a compelling observation towards a more complete
study of the one-loop renormalization of the extended QED.
In the present paper, we carry out the renormalization of the
fermionic sector of the model up to the second order in
Lorentz violation parameters and investigate the role of the
different background tensors in the beta functions. The paper
is divided as follows: in Sec. II, we present the model and
discuss the previous results; in Sec. III, we perform the
calculation of the fermion self-energy and the vertex
correction and check the Ward identities; the beta functions
are calculated in Sec. IV; and we discuss our results and
present our conclusions in Sec. V.

II. THE MODEL AND GENERAL DISCUSSION ON
RENORMALIZATION AT ONE-LOOP ORDER

The minimal Lorentz-breaking extended QED, in its
most general and renormalizable form, is described by the
following classical Lagrangian density [3]:

Tr( TV 1 v 1 v 2
L =y(il"D, — M)y — ZFWF” - ZKMM/)F” P
1
+§8yu/1p(kAF)ﬂAbF/1ps (1)

in which
v = v arv v ) 1 v 2
=7y dyys + et iftrs 500y (2)
and
; " " 1w
M = m + imsys + a,y* + b,y*ys —|—5H 6 (3)

The covariant derivative is given by D, = 0, + igA,, with g
being the coupling constant. The constant tensors (or
pseudotensors) k,,,, (kap)t, a*, b¥, c, d", e, f*,
g*, and H" are responsible for the Lorentz symmetry
violation. Concerning c** and d**, here they are treated as
symmetric and traceless tensors. The null trace is justified by
the fact that the tensors can be redefined so that the traces are
absorbed in the Lorentz-invariant part. The simplification of
considering ¢** and d@* symmetric is based on the hypoth-
esis that only these parts of the tensors contribute to physical
results. As for the tensor ¢#*%, it is antisymmetric in the
two first indices. Here, for simplicity, we use a particular
form of ¢"**, given by the completely antisymmetric tensor
¢t = e h,. The a* vector can be eliminated from the
action by a suitable redefinition of the fields. All these
considerations about the background tensors were discussed
in Ref. [12], in which it was shown that some parameters can
be removed from the Lagrangian by using an appropriate
redefinition of the spinor field components.

In Ref. [11], this model was used to study the one-loop
second-order contribution in these parameters to the
photon two-point function. We proceed now to the
definition of the renormalization and normalization con-
ditions in the model for the purpose of performing an
investigation of its second-order one-loop quantum cor-
rections to the fermion two-point function and to the
interaction term (three-point function). We write below the
Lagrangian for the quantum model, in which the renorm-
alization constants were introduced:
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Z
L=- 3

F Fﬂy R (Z )zijg yyaﬂFpaFle + ZZV_/inayl// - ZZmel/_/l// - Zlql/_/yﬂl//A,u

N : 1 A
+ iz [(Zc)”” a1+ (Za)" ydPvsvs + (Ze)ue® +i(ZsY o s +5(Z,) ””aﬁyg“ﬂym] duw

_ , 1
- Zqp {(Zc)”” a1+ (Za)" ydPvsry + (Ze)ue® +UZeY o f s + 5 (Zg)ﬁ”"(,,;yg”ﬁym} WA, (4)

Note that the Lorentz violation (LV) parameters of M
are not being considered here. We are restricting our
analysis to the parameters contained in I'* and to the x**®
tensor of the CPT-even term of the gauge sector. The
latter is necessary, as it receives divergent contributions
from several of the ['* parameters, as shown in Ref. [11].
Besides, it contributes to the beta function of the
|

K 1
SF P —— (5 k

E —
Ty 4

+il/7[(5c)2’26“”7u (8a)sdPysyy + (8 e + i (5f)”f"ys+

I
parameter c* already at first order [3]. Note also that,
in principle, we do not assume any relationship between
the renormalization constants from the Ward identities,
such as Z; = Z,. We have left for the next section the
explicit verification of this identity at one loop and up to
second order in the Lorentz violation parameters. We
define the counterterm Lagrangian by

poil ;w(xﬁFp FM} + 5217/”1//6/4‘// 5mml//l// 61Q(WY”W)A

aﬂygaﬂyo-i } oy

—qw[@ ey, + (B Py, + (e + i3, fors + 1 5, a,,yg“ﬁy%]w,,, 5)
where
6, =2, -1, 8 =2, 1, 8y =125—1, O =Zm— 1,
(O )ap = Z2(Ze) g — 8l (8a)es = Z2(Za) gy — ) (0c)a = Z2(Z.): — 84
(O = Zo(Zy)" =B (8, = Za(Z,)ith — 453
B = Zy(Z)" =8 G =Zi(Z)" =8 (B =Z(Z,)h~ &
B =Z,(Zs), — 8 and (5, = Z,(Z,)ut — 5484}

The Ward identity, if respected, will set Z; = Z, and
(6,)” = (,)’, in which x represents the Lorentz-breaking
parameter and J indicates the appropriate set of Lorentz
indices.

We write below in this section the general expressions for
the fermion two-point function and vertex correction and
leave the explicit results for subsequent sections. The
renormalized two-point function of the fermion field can
be written as

i2*(p) = iZ(p) + iZu((p), (6)

in which iZ(p) has the general form

(p) - Ilog( ){ wﬂ+An1m +A€p/4 + iA;J/SpM

1 Q|
+ A&y, + A vsyup, + EAgﬁ ”Ga/;pﬂ} (7)

and i, (p) is the contribution from the counterterms. The
coefficients AZ, at one-loop order, are given by

AL ={(po)i + (P1)I + (p2)i + -}, (8)

where (p;)] is the term of AJ of ith order in the parameters
(x{',xgz...). Here we are using the notation of implicit

regularization [13],

A dYk 1
Ilog(/lz):/ QA IE =227 )

for the logarithmic divergence, in which we assume the
presence of a regularization, indicated by the superscript A,
and A% is a mass parameter which can be introduced by
means of the scale relation
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Ilog(’lz) = Ilog(mz)

i 2?

J

Up to second order in the parameters x;, we have

iZ(p) =i2O(p) +i=V(p) + i@ (p).,  (11)

whose contributions can be extracted from the expansion
up to second order in the parameters of a unique graphic
with vertices —igl™* and the modified propagators for the
fermion and the photon. Alternatively, the terms with the
background tensors can be treated as vertices which are
inserted in the graphs. For example, the second-order
fermion two-point function is obtained after the summation
of the Feynman diagrams of Fig. 1. The counterterms that
cancel the logarithmic divergences in Eq. (7) are contained
in iZ.,(p), which is built from Eq. (5) and reads

iZ(p) = 6,0 = i, + i(8.)ae® Py = (874 f*Y5Ps
+ 1(5 )(lﬂc(lﬁyﬂpl/ + l(ad)aﬂdaﬂysyl/pﬂ

Ap o
+§( )a;;/;/g(ﬂ Glll/p,u (12)
The renormalized vertex correction at the one-loop order
is written as
—igNgy = —ig\* — igAL,. (13)

The first term, —igA*, on the right-hand side of the
equation above, has the general form

—igh* = Ilog(m2){B "+ Be + iBhys + Bl'y,

1
+Bd V57 +2BQWU/IV} (14)

and, from Eq. (5), the amplitude for the counterterms,
—igAL,, is given by

(1) f2) (3) 4)
15 (6) (7) (8

FIG. 1. Diagrammatic representation of the two-point function
at second order in the Lorentz violation parameters. The wavy
and solid lines represent the photon and fermion propagators,
respectively, and the crosses indicate the insertions.

_lcht = lq <S6qyll + (3 )ae + l(éf)”fGJ/S + ( c)a/}c v
- 1
vl Jaf A _ap
Gl re 5 @) e ). (19
The coefficients BZ, at one-loop order, are given by
Bi ={(o0) + (o) + (e2)i + -}’ (16)
7 is the term of B! of ith order in the

in which (o;)]
parameters (x]',xJ?...). Up to second order in the

Lorentz-breaking parameters, we have

N NG
= —ighy (p. ') —ig (p. ')
NG
~ i (p.p). (17)
For example, the second-order contribution —iqA,(f) is
obtained by the calculation of the Feynman diagrams

shown in Fig. 2. The coefficients A] and B must be such
that the Ward identity

—igA,(p.p")

(p P ) A][,mp lenop<p) - le(mp(p/) (18)

is respected (I = p — p’ is the momentum of the outgoing
photon). In particular, from Eqs. (7), (12), (14), and (15),
we can see that the renormalization constants Z; and Z,,
if we adopt a subtraction scheme that cancels only the
Liog(4%)’s, are given by

Zy=1-iB,q ' I,0s(#*) and Zy =1+iA,L,,,(4*). (19)

e
P
e
e
e
Lo

{1 {2l {3) {4) {5) {8)

B
B
Lo
oo
o
b

{7) {8 ) {19) {11) {12)

i =
I >
I e
Eo
e
B >

{13} {14) {15) {18) {17) {18)

FIG. 2. Diagrammatic representation of the one-loop, three-
point function at second order in the parameters. The wavy and
solid lines represent the photon and fermion propagators,
respectively, and the crosses indicate the insertions of the back-
ground tensors.
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As we shall see in the next section, the explicit calculation
of the diagrams will give us the expected result

A, = —q‘lBW, (20)
so that we have that, up to the second order in the
parameters, the identity Z; = Z, still holds in the minimal

Lorentz-violating extension of QED. We also obtain, for
the other renormalization constants,

Zy(Z, ) px" = % iAoy (27) (21)
and
Z\(Z,)px" = ! = iq7 Blliog (7). (22)
From the equations above, we have the conditions
Al = _q B!, (23)

In the next section, we present the explicit calculations of
the divergent parts of the fermion self-energy and the vertex
correction, as well as exhibiting the results for the vacuum
polarization tensor.

III. TWO- AND THREE-POINT FUNCTIONS

In this section, we will present explicit results for the
amplitudes given by the summation of the diagrams in
Figs. 1 and 2 (two- and three-point functions, respectively).
The gauge field propagator in the Feynman gauge, repre-
sented by the wavy lines, and the fermion propagator,
drawn with solid lines in the diagrams, are given, respec-
tively, by

in"

p2

Ay (p) = (24)

and
|

i

:ﬁ_m’

So(p) (25)

in which the subscript “0” is used to indicate the zeroth-
order contribution in the Lorentz violation parameters and
the adopted metric is 7,, = (1,—1,—1,~1). Since we are
treating perturbatively the background tensors, they will
appear as vertices in the Feynman diagrams. So, a cross
appearing in the diagrams stands for

ipur!lt (26)
in the bilinear yy vertex,
—igl} (27)
in the trilinear vertex pwA*, and
—2ipyp kP (28)

in the bilinear A#AY vertex. Besides,

1
I =y +d™yys + e +if'ys + 59’“”5/1/4 (29)

is the Lorentz-violating part of I'*.

With the help of the Feynman rules [Egs. (24)—(28)], we
calculate all the divergent diagrams which contribute at the
second order in the parameters c**, d*, ¢, f#, and ¢’ to
the fermion two-point function and to the vertex correction
in the extended QED.

A. Self-energy of y

Let us first consider the corrections at second order in the
parameters. We have contributions with insertions of I’
both in the fermion line and in the vertex wA,y, whereas
the tensor x*** is inserted only in the photon propagator.
The diagrams which contribute are displayed in Fig. 1, and
the corresponding amplitudes are given below:

lz(lz) (p) — q2 / (d4l (p - l)ayﬂ(p_ l+ m)r?(%_ l+ m)rl;l

27)*

Pl(p-1)*

_ mz]z )

12(22) (p) _ 2 / (d4l (p - l)arlll(%_ l+ m)r(ll(ﬁ_ l+ m)Y}l

27)*

Plp-1)?-

m2]2 ’

=0 (p) = _qz/ (d“l (p = Dulp = Dyr"(F =]+ m)TS(F = [+ m)T (§ = [+ m)y,

27)*
< (2) - 2 d'l Fﬂ(ﬁ_ l+ m)r‘lu
iz, (p) = - / (2n) lzl[(p -2 —m}’

Fl(p =17 - T |

d4l ya(ﬁ - ,+ m)ynlxllélal‘r

l-ZgZ) (p) _ _4q2K/1a5ﬂKwaﬂ/ (2”)4

l(p -

-]
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d4l 71/(ﬂ - l+ m)rlﬂlal/i
@n)t Plp-1?-m? ~

d*l Fly(ﬁ - l+ m)yylalﬂ
@z)* Pllp-1*-m’ ~

d4l (p - k)pYV(ﬂ - l+ m)rll)(ﬂ - l+ m)y,ulal/}
(2m)* Fl(p = 1) —m?? '

After the calculation of the Feynman integrals, we obtain the divergent second-order contributions as

= (p) = 2q7k /

T —

12(82)(p) _ _quK.;ww/}/

=) (p) = -éqzllog(ﬂ){ew +9m) —dg(e- p)}.

1
i (p) = _ngzlog (2P —4£(f - p)}

IS0 (p) = =5 g %) (12 + 9m) = 4 p)}.

1
iz (p) = ngllog(,lz){—SchC"” + 3¢, ¢ P = 12¢,,¢ py* ),

1
iE0(p) = & @ lop (){16md,,, d" + 3d,,d" P = 12d,,,d5 p'y" },

_ 1
iZ2)(p) = = ¢*Liog (A2)“Pi L (=3P + 4m) g + 6V uPo|N0sM07) + Nao P (27 $007)
24

(30)

(34)

(35)

(36)

in which the indices limited by parentheses must be exchanged symmetrically without the factor 1/n!. With the results
above, discarding for awhile the crossed terms, we obtain the total divergent part of the second-order correction to the

fermion self-energy:
ix®(p) =iz (p) + iz (p) + iz 4+ ixCN(p) + iz (p) + iz (p).
The zeroth- and first-order divergent corrections are given by
iZ0(p) = ¢ Loy (2°) (¢ — 4m)

and

) 1 )
iz (p) = ¢ @hop(){6€" (p, = 3my,) + 6i(f - p)rs = 10¢*y,p, = 107, 75p,

+ 38 hay175(py — my,) + 87ap i,

For example, the coefficient A,,, which is needed for obtaining the renormalization constant Z,, is given by

1
A, = qz{l -5 (8¢ + 8% + 8h* — 12¢,,c* — 12d,,,d" — 317(15179,)#35“’%/;9“’)}.
The other coefficients are found to be

1 1
A, = —q2{4 + 3 (64 + i€ oy v p7,) + g (18¢* + 18h* + 8¢, c* — 16d,,d" + r](,wngf)lcﬁ‘so"1

1
AL = (=50 +4xg") - {Aeret AP A — 6t — 607 dy + G (x) ).
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Al = quM, A; — quﬂ’

5
AZZ/ _ _ngdﬂv’ and A;gwu _ ng;wa’ (43)

with

1
G" (k) =~ 1 [3icH4P K/”;TBW(M’YHT) + 264K g5+ AKFVP Y ).

(44)

Note that the coefficients A%, A*]ﬁ, A"’ and A" do not have
second-order contributions.

B. Three-point vertex function yyA*

The one-loop Feynman diagrams that contribute to the
vertex function at second order in the Lorentz violation
parameters are shown in Fig. 2. As for the fermion self-
energy amplitudes presented before, the background ten-
sors are considered as vertices inserted in the diagrams,
represented by crosses. The sum of the diagrams which
contribute at second order in each one of the parameters
reads

) 1

—igAC = §q3llog(/12){7’/162 —4e'd}, (45)
) 1

—1q! \2NA = 3 q3110g(’12){7lf2 - 4fﬂf}’ (46)
) 1

_lqA(ZhM o §q3llog (12){7/&,12 - 4hﬁ%}’ (47)

) 1
—igAC) = =2 @l (P){r cue = 4y7c e .}, (48)

1
—igA2D* = -3 ¢ Log(P){r*d,,d" — 4y°d*d,,}. and

(49)
, 1
—igAP = =2 g Loy (KR {10, Y o1
+ 327,68, = V"Nl )M (01 }» (50)

while the total second-order one-loop vertex correction,
excluding the crossed terms, is written as the sum

—iqA,(,z) = —iq (Aflzc) + A,(,Zd) + A,(fe)
+ AP+ AR 4 AR (51)

We also need the zeroth- and first-order contributions,
given by

_lqu(lO) = _q3110g (’12)7/;4 (52)
and

: 1 :
_lqull) = 6q3llog(lz){_6eu - 6lf;47/5 + locpﬂp

+10d,,,y’ys — 3ie heyoyP — 8k 0y, 1.

ofua
(53)
From the above results, we obtain
B—31182828h212 Hy
v =—q —ﬁ(e+f+ = 12¢,,c
— 12d,,d" — 31519 K" (MKﬁeaT)} (54)
and
1
Bl = —qu{(—Sc’”’ + 4kt ) + {dete? + AfH Y
+ 4h*hY — 6cMoct — 6d"°dy, + G* (k) }}. (55)
The other coefficients are just of first order:
Bll__3;¢ BM__3fy BW_§ Sd;w
e — q e ’ f - q ] d 3 q k)
and By = —g>gve. (56)
All the coefficients are such that B/ = —gA7, as argued in

the last section as the conditions for having the Ward
identity [Eq. (18)] satisfied.

C. General results

There is another approach to the renormalization of
extended QED that is more general and compact. Let us
write the fermionic part of the quantum Lagrangian density
in the form

'Cy/ = lZZ‘/_/(ZF)ngauW - Zl ql/_/<ZF)llfr‘yl//A/4 - ZZmel/_’lllv
(57)

with the corresponding counterterm Lagrangian given by
Lyer = i (Sr)iT 0y — qip (5rJiT WA, = S,mipy,  (58)
in which

(Or)i =Zy(Zr)e =8, and (br)i=Z1(Zr)i =6, (59)

The fermion self-energy and the three-point function will
then be written as
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i2<p) = Ilog(’lz)(Allipu =+ Amm) (60)
and
—igN* = Loy (%) BY. (61)

It is possible to carry out the calculations of the divergent part of the graphs without the explicit form of I"}. For the four first
and the last three graphs of Fig. 1, one obtains, respectively,

2
~(2 q D
=, (p) = %Ilog(/lz)[fimﬂmp) (TP AT ¥ Mo + 1oy {00 v 30 + v THTL ¥ b e + 27 DT 7,)
+ =P luplon)? VAT 7 HIY . 77 e — 48P, (D5 Ty + Ty, + 77T T,
+ 4m[6(r(1l{rﬂ7 7#}70: + ya{FM’ J/M}Fla + yarlfrlﬂya) - 24F(frla - Va{rl”? J/[_/}{Fp’ y(’}yan(uvnpo)“ (62)

and

2
(2 q a,
= (p) = 25 o )P BT [3(§ + m)g: = 20" P (o1 + BYs[3(# + m)o: = 20" Potep)[Tra

+ y/}y/){l"ﬂ’ yy}ya [3[)”’7(141/779177/)0’) + 4p9’1(1ﬂ’71.//)) + 4pr’7((~)ﬂ’7y/))] + 4m}’[)’{rﬂ’ 7”}7(1’1(”1/’761)]’ (63)

in which {A, B} stands for the anticommutation of the matrices A and B. The result for the fifth graph is that of Eq. (36). In
the first order, we have
e
20 (p) = 15 Do () [Pty P {01 7 e = 6pu(=r7al§ = Tiyar" + {1, 7})

+ 3mly T v, 7 — HITV v, ] + 16740 K, 7). (64)
Collecting the results above, we obtain, for the coefficient AL, up to the second order in the parameters,
Af = (" + 9\ +0h)d (65)

with

1
P = ﬁ B VAT 7 }ra + 67l + Tirar — v {T.7a}) + 167,K,/7] (66)

and

1
P2 = 56 B (T AT 7Yy +7ar AT Y + 7 THT L Y + 7"V TN a) + =3(gpto0)y 7 ALY 1 HIL 17 Y
—48 (F(ﬁ/”r](l + F{llrlll},a + Var‘lfl—‘m) + 2K€(nﬂ [8(3(F1[)’yﬂy(z + Y(lyﬂrl/i)ﬂﬁf - Z(Fl/}}’/)}’(l + Y{typrl/})(y(lanfp))
+ },[)’yp{l—‘)L s Y”}Va(3’7”6’7(/1u’76177,m) + 4%”(11’71//}) + 46":’7(9/1771//;)) - 4K7”15K€M§(710.y5/&]/971m) +3 (2},”(% - 7”7’]{,—,,)7’](9,1711” )H :
(67)

The calculations for —igA* are so that Bf. = —gA}- and (5), = (5)/, as required by the Ward identity of Eq. (18). In the
next section, we carry out the study of the beta functions for the model, based on the above results.

IV. BETA FUNCTIONS

In this section, we intend to study the beta-functions associated with the Lorentz violation parameters. First, we present
the general procedure to be adopted. The relationship between a bare (left-hand side) and a renormalized (right-hand side)
coupling constant in the minimal extended QED is written as follows:
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xp = (Z)x", (68)
in which x}, and (Z,)’, stand for
xp = {cg s dys e i g5} (69)
and
(Z)3x" = {(Ze) g™ (Za)yfyd™s (Z, ) e
(Zp)af (Zy) s g7} (70)

Above, J and J' represent the free Lorentz indices asso-
ciated with each one of the elements in the sets. The beta
functions for the couplings are defined by

d J
pl =222 d(;)’ (71)

where A is the renomalization group scale, which is
represented by the argument of the basic divergence
I10g(4%) defined in Sec. II. The renormalization constant
(Z,)}, can be obtained, using the definitions of Eq. (7), by

Z,Zyx =x+ iAxllog <’12)’ (72)
with
Zy =1+ iA, Lo (22), (73)

in which we omit the J indices for simplicity. The one-loop
coefficients A, are represented as series in the Lorentz-
breaking parameters. We write

A, =(ag+ay+ay+---)g* and
Ax = {10)(0 + P P2+ _}qZ’ (74)
in which ¢; and p,; are of ith order in the Lorentz violation
parameters. So, we have
Xp = Zxx = {1 - iAy/Ilog(ﬂz)}{x + iAxllog(lz)}
=X+ i{Loxl _XGO] + [pr - xal]}qzllogu}) +e
(75)

up to the order g*x*. We then apply 24” -% in both sides of
the equation above to find

1
pi= ) (P11 = xag) + (ply = x’a)}. (76)
Let us then calculate the specific results for the beta
functions. In the last section, we obtained the expressions
displayed in Eqgs. (40)—(43), up to second order in the
Lorentz violation parameters, for the coefficients A7. It is to

be noted that, among the Lorentz-breaking parameters,
only ¢* has contributions of second order to the corre-
sponding A%”. Consequently, if the crossed terms are not
considered, only the beta function for ¢*¥ will have a
nonzero second-order contribution in the parameters. For
the beta functions, we obtain, with the use of Eq. (76),

p=p=p=0. pr=Lam

7
ﬂ””— e { (2cm — k") + < choch +3dH°dy — 2et e”

~2pp -2 - 3640 ) | (17)

The first-order result is known from Ref. [3]. The
difference in our result for ;" is due to the fact that
we have considered a case of the completely antisymmetric
tensor g% = e Phy.

The results above for the beta functions do not take
crossed terms into account. An alternative way to obtain the
total second-order value for the beta function is to use the
approach developed in Sec. III C and calculate

dr#

J— 2&2
ﬁl" d/12

(78)

We start from the following equation:

Ty = (Zr)l” = {1 = iA, Log () I + iATT1o5 (A%) }
=T 4 (Al — A, T¥)110e (2%)
=D+ i{y" + (P —ag) + (P — Tar) }q* 110 (7).

(79)

with pf and pj given by Egs. (66) and (67), respectively. If
now we apply the operator 24>d/dA* on both sides of the
above equation, and take in consideration that oy = 1 and
a; =0, we get

) 4 ). (80)

With the equation above, we can get all the crossed terms.
Noting that Af. = A + A, y*, such that

pi =p; +airt, (81)

with 7 the coefficients of the expansion of Ar,, all the beta
functions discussed before can be recovered by means of
the following decomposition:

1 , 1
Pr =gz oar = Pe+ ip'rs + v, + B vsr, + 55" oup
(82)
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The second-order result brings us new conclusions. The
inclusion of some of the Lorentz-breaking terms is linked to
the presence of others. For example, a model with terms
involving e#, f*, ¢**, or k*** and without the c** term is
inconsistent from the renormalizability viewpoint, since the
c* term receives divergent contributions from other terms.
This conclusion is also valid for the Lorentz-violating
CPT-even term in the photon sector: it is needed if one
includes at least one of the terms in e, f*, g***, and c*.
As the explicit results for the crossed terms shown in
Appendix B make evident, all the parameters receive
divergent contributions at second order.

V. CONCLUSION

We carried out a study of the one-loop corrections to the
minimal extended QED up to second order in the Lorentz
violation parameters. At first glance, such an investigation
might seem unnecessary, considering the very low upper
limit for the magnitude of such background vectors
imposed by experimental results. This is the reason why
almost all articles devoted to the Standard Model extension
are focused on the study of first-order quantum corrections
effects. However, as pointed out in the Introduction, there
are some subtleties, which were clarified in the present
paper, that, in a way, suggest some care in the under-
standing of the model as a whole.

First of all, the first-order corrections in some of these
parameters are null. In these cases, it is advisable to take a
look at the lowest-order non-null correction. In a previous
paper [11], the second-order one-loop corrections to the
photon sector of the extended QED were studied, including
finite parts. It was shown that some of the parameters do not
cause quantum inductions in the photon sector at all, whereas
others contribute depending on the order of calculation.

In that study, the cases of the parameters e/ and f*, which do
not contribute in the first order calculation, are constructive.
At the second order, however, e and f* furnish divergent
amplitudes that affect both the Maxwell and the Lorentz-
violating CPT-even (also called here aether) terms.

In this paper, we went deeper in the analysis of the model
up to second-order contributions. It is meaningful that
various of the background tensors are linked to each other.
When someone selects a single term to formulate a simplified
Lorentz-breaking extension of QED, for example, it will
likely also be necessary to include, for consistency, one or
more other terms. And that view can be limited by an analysis
that takes into account only first-order corrections.

The second-order results obtained in the present paper
enforce the previous conclusions. As we already noted
above, a model with terms proportional to e, f*, or ¢*** but
without one proportional to ¢** is inconsistent, since the c**
term receives divergent contributions depending on e, f*,
or g*® This conclusion is also valid for the Lorentz-
violating CPT-even term in the photon sector: it is needed
if one includes at least one of the terms involving e*, f*,
g™, and c*. Our calculation of the beta functions also
demonstrates how these parameters are connected. Besides,
the preliminary calculations of the crossed terms show that
even more connections can be found, mainly if higher-order
corrections are considered. A more complete study of these
mixed terms is left for future studies.

ACKNOWLEDGMENTS

A.P.B. S acknowledges the financial support of
Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico (CNPQ) Project No 311392/2018-0. The work
by A. Yu. P. has been partially supported by CNPq Project
No. 301562/2019-9.

APPENDIX A: FEYNMAN INTEGRALS FOR THE VERTEX QUANTUM CORRECTIONS

K+ mUi(p—§+my,

2

3 —49

4

ou _ 5 [ d%k r* (¥ -
R e e e Ay
@u _ d'k TY(p =+ m)(p =+ m)y,
) R e .
o d*k (p = k)" (¢ —§+m (P =k + m)T (P =k +m)y,
A =0 [ Gy Rl =07 = ml[(p — K7 — ’ (A3
P = [ SR p N g "

(2m)*

K[(p' = k) =m*P[(p = k)* = m?] ’
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AP — g / (;1;‘[1;4 (P = k), (p - k)(,y"(%l’cz—[(i f_n;{))g’l _(11’1 2_]4(: Tg’;(if ;121]6; m)7(F =K+ m)ya (A3)
W= [ e Ao

AP g / (;lj[l; (p' - k)py“% (; /k_+kf)7;)f’f n(fj];( i ﬂ_L Zﬁ)l?i(’i% ¥4 m)y, ’ (A7)

W= [ e A

o

N =0 [ o= A (A1)

NP =t [ AR R e M b
PN — / (;i:; (p'=k),(p' - km"(ﬂ’kz[fépjr_mk);’f(_ﬂ;;] ;k[ (J; T),Sl;(iﬂ,;zf +m)y (P = §+m)y, (A12)
AP — 4oty / (;l;; y”(l,j; [Zj * ,L’;lyf(n’fziéi”gi”f‘;’jé'fky (A13)
o S

N L e e
k7 e e e e S

N =2 [ o] A1)

N = 2w [ SR DUF S Bl (al8)

APPENDIX B: SOME CROSSED-TERM CONTRIBUTIONS FOR TWO-POINT FUNCTIONS

Here, we present, for completeness, some results for the crossed terms of the two-point function [amplitudes depicted
in Eq. (30)]:

0D — _3gimby(P)(e - rs, (B)

o l - 1 ¢ ¢ ¢
lz<26h> = _g lqzllog(ﬂz){zﬂe(ﬂyﬂyyyueah/} + ¢€{ ﬂyﬁyuyupahﬂ —¢ Myﬂyypaethﬁ - eﬂw/}yyyuyahﬁ(e ’ p)}7 (BZ)
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o 1 1 1 1
lz(Zjh) == ngllog(lz)eﬂyaﬁhﬁYS {_7;¢71/7a¢f/_ 4m7/,uy(xfu + gﬂY[llef(X - 6}//4fupa - f}/UY(Xp/l - _yﬂyﬂ/a(f : p)}v (B3)

3 3
B = = 2Ly () {Seup, — men ) (B4)
. 8.
iECS) = =2ig’ys" fup, (BS)
iy (2de) _ %qzllog (ﬂz)d””rs{%,ey —Smy,e, + pudr, — % emy}, (B6)
izdf) = %iqzllog () {2pufy + pufr = 3F P74} (B7)
I = by s Iy + 205t + P, ~ 1y~ g P | (B)
2P = @2 Log () Py a7, P (BY)
i) = %iqzllog(Az)xﬂfl”ﬂmyf{,pﬁ’ (B10)
iz = %iqzllog (ﬂz)eﬂaw}’”{(mhﬁ’%aw + 76Klvayhﬂpi) + 4—11 i7”7”€laﬁd(mhﬁa'<ﬂayﬂ + hlPo"ﬂAal/ﬂ)}? (Bl 1)
i) = %qzllog (A {mc gy y P 4 Capp™ + 5¢,07 KM pg + 3oy kP pp = Couy kP pyt,  (B12)
i) = %qzllog (2%) {2d,,ym5l<”“"ﬂ pp + mdyy 5y, ysh ™ + %da/iﬂ}’ﬂﬂskﬂﬁm — dyy sk p/;}- (B13)
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